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Abstract—In this paper, we propose a new anomaly de-
tection method for hyperspectral images (HSI) based on two
well-designed dictionaries: background dictionary and potential
anomaly dictionary. In order to effectively detect an anomaly
and eliminate the influence of noise, the original image is
decomposed into three components: background, anomalies and
noise, respectively. In this way, the anomaly detection task is
regarded as a problem of matrix decomposition. Considering
the homogeneity of background and the sparsity of anomalies,
the low rank and sparse constraints are imposed in our model.
Then the background and potential anomaly dictionaries are
constructed using the background and anomaly priors. For
the background dictionary, a joint sparse representation (JSR)
based dictionary selection strategy is proposed, assuming that
the frequently used atoms in the overcomplete dictionary tend
to be the background. In order to make full use of the prior
information of anomalies hidden in the scene, the potential
anomaly dictionary is constructed. We define a criterion, i.e.
the anomalous level of a pixel, by using the residual calculated
in the JSR model within its local region. Then it is combined
with a weighted term to alleviate the influence of noise and
background. Experiments show that our proposed anomaly
detection method based on potential anomaly and background
dictionaries construction (PAB-DC) can achieve superior results
compared with other state-of-the-art methods.

Index Terms—Hyperspectral images, anomaly detection, low
rank, joint sparse representation, background dictionary, poten-
tial anomaly dictionary.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are of wide spectral

range and high spectral resolution [1][2], so it contains

rich spectral information to discriminate physical properties of

different materials [3]. Therefore, HSI finds many applications

in different areas, such as land cover classification [4][5][6][7],

urban change detection [8] and crop monitoring [9]. Espe-

cially, it is more appealing to detect interesting materials,

e.g., targets [10] or anomalies which are very different form

background pixels in an image scene [11]. Anomaly detection

[12] based on HSI has been widely studied in the fields of

agriculture[13], mineral exploration [14], maritime rescue [15]

and military defense [16][17]. Different from the supervised

target detection, anomaly detection is achieved without know-

ing the prior information of targets [18]. The difference of sta-

tistical distributions between background [19] and anomalies

can be utilized for detection [20]. However, due to the absence

of spectral information of anomalies, anomaly detection brings

more challenges to traditional detection methods.

In recent years, many anomaly detection methods based

on HSI have emerged. As the pioneering work in this area,

Reed and Chen [21] justified the assumption that most optical

clutters can be modeled as a whitened Gaussian random

process with a rapid space-varying mean and a slow vary-

ing covariance. Based on this assumption, they proposed a

new constant false alarm rate (CFAR) detector, based on

generalized maximum likelihood ration (GLRT) for multi-

dimensional image data. After that, Reed and Yu developed

a method to deal with the signal patterns with nonnegligible

and unknown intensities in several optical bands, that is, the

well-known Reed-Xiaoli (RX) detector [22]. However, the

assumption that the background of an HSI follows a zero

mean and unknown covariance multivariate normal distribution

is too strong to satisfy in reality. Thus, some modified RX

methods were proposed, such as linear-RX and iterative linear-

RX [23], weighted-RX [24], segmented-RX [25], subspace-

RX [26], kernel-RX [27] and regularized-RX [28]. Recently,

a new cluster kernel RX (CKRX) [29] has also been proposed,

which groups the background of HSI into clusters and applies

a fast Eigenvalue decomposition algorithm to achieve anomaly

detection. Unfortunately, it is difficult to perfectly model the

background utilizing a manually designed distribution form.

To avoid using an inappropriate data distribution, many

other methods were also attempted, in which sparse repre-

sentation [30] has shown great advantages in computer vision,

such as face recognition [31], image super-resolution [32] and

image denoising [33]. It has also been used in hyperspectral

target detection. Chen et al. [11] proposed a target detection

method based on sparse representation by utilizing a local dual

window to construct an adaptive background dictionary and

a global target dictionary. In [34], a target detection method

based on joint sparse representation and multi-task learning

has also been proposed. For anomaly detection, due to the

fact that there is no prior information about a target, existing

methods try to make full use of background information.

Most of them assumed that background pixels in the center

of a local region can be represented by the combination of

other pixels in the region, while anomalous pixels cannot.

With this assumption, in [35], an anomaly detection method

was presented based on joint sparse representation (JSR) of

background, which utilized the characteristics of JSR, that

all the similar pixels within a local region can be jointly

represented in the same low-dimensional subspaces. In [36],

a novel sparsity score estimation framework based on sparse

representation was proposed for anomaly detection.

Since HSI usually has large homogenous regions [10] whose

majority of pixels have similar spectral characteristics, the

structure can be represented by an underlying subspace using

a subspace learning method. The commonly used methods

include principal component analysis (PCA) [37] and robust
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Fig. 1. Schematic illustration of our dictionary construction method for hyperspectral anomaly detection. Firstly the PCA is used to get a low dimensional
3D cube. Then the original image is separate into many 3D regions by a fixed-size window. After that, the IPD based K-means is used to group the regions
into several classes. For the original spectral pixels corresponding to each region are reconstructed using JSR model with class based overcomplete dictionary.
The coefficient of JSR is used to construct the background and the residual in JSR is used to construct the potential anomaly dictionary.

principal component analysis (RPCA) [38]. For better multi-

subspace learning, low rank representation (LLR) [39] was

proposed. It attempts to minimize the rank of a dictionary with

corresponding coefficients whilst decomposing the original

data into low rank and noise components. For HSI data, an

LRR technique has been used in classification [40][41] and

denoising [42]. Recently, this method was also utilized to

model the problem of anomaly detection [43][44] based on

the assumption that the background has low rank properties

whilst the anomalies demonstrate sparse properties. In [43] the

observed data was decomposed into background and anomaly

parts. The coefficients of the model was constrained to be both

low rank and sparse in order to obtain the global and local

structures of the background. Because of the effectiveness

of low rank and sparsity constraints for background model-

ing, this method achieved promising performance. However,

anomaly and noise distributions are aliasing owing to similar

sparse characteristics. So, it is a challenge to distinguish

noise from anomaly component. In [44], both background

and anomaly priors were considered and each part of the

original data were modeled separately. It was assumed that the

background has the low rank property while an anomaly owns

the sparsity property so the observed data were decomposed

into background, anomaly and noise parts by extending the

RPCA model. An anomaly was then detected based on the

Mahalanobis distance.

To accurately model background and anomaly information,

we propose a new HSI anomaly detection method based

on well-designed background and potential anomaly dictio-

naries utilizing low rank and sparse representation strategy.

We decompose the original data into three components, i.e.,

background, anomaly, and noise. The background component

is constrained to have a low rank property due to the ho-

mogeneity of HSIs. The anomaly component is constrained

to have the sparsity property. More importantly, two well

designed dictionaries are constructed to constitute our model.

The JSR model is used to depict the pure background without

the influence of clutters and anomalies. In order to make full

use of the anomaly information hidden in the HSI, a potential

anomaly dictionary is constructed. The atoms of the dictio-

nary are selected according to the anomalous level utilizing

the residual calculated in the JSR model combined with a

weighted term. With the carefully constructed background and

potential anomaly dictionaries, the HSI can be separated into

background, anomaly and noise components using a sparse

and low-rank decomposition model. The flowchart of the

proposed algorithm is shown in Fig. 1. The main contribution

in our proposed anomaly detection method based on potential

anomaly and background dictionary construction (PAB-DC)

can be summarized as follows.

1) A new low rank and sparsity based anomaly detection

model is proposed with two well designed dictionaries,

i.e., background and potential anomaly dictionaries, so

that the original data can be properly decomposed into

background, anomaly, and noise components.

2) For the background dictionary construction, local and

nonlocal similarities of each region in the scene are

considered, and we propose to use the coefficients of

the JSR to select the atoms.

3) Making full use of the anomaly prior information hidden

in the scene, we propose to construct a potential anomaly

dictionaries utilizing the residual of each local region by

the JSR model.

The remainder of this paper is organized as follows. The

detailed introduction of our method is given in Section II. The

experimental results and discussions are reported in Section
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III. Finally, we conclude our work in Section IV.

II. PROPOSED METHOD

A. Background, anomaly and noise decomposition model

Let an HSI data be denoted as X ∈ R
h×w×d, where d is

the number of the spectral bands, and h and w are the spatial

size of the data. For convenience, we transform the 3D cube X

into a 2D matrix X = {xi}
n
i=1 ∈ R

d×n, where each column

of X is a spectral pixel vector in the HSI and n = h×w is the

number of the pixels. In our work, we formulate the anomaly

detection task as a matrix decomposition problem. The HSI

data matrix is decomposed into three components: background,

anomaly, and noise. Considering that there usually exists a

strong correlation between background pixels, which can be

represented by the combination of other background pixels,

and we want to distinguish the anomalies and noise simulta-

neously, our decomposition model is formulated as:

X = BZ+A+E (1)

where BZ is the background component, B = [b1, b2, ..., bnB
]

is the background dictionary, and nB is the number of the

atoms in the dictionary, Z = [z1, z2, ..., zn] are the corre-

sponding representation coefficients, and A = [a1, a2, ..., an]
and E = [e1, e2, ..., en] are the anomaly and noise compo-

nents, respectively. Intuitively, the whole spectral space can

be divided into several underlying subspaces. For an HSI,

pixels in a local region are most likely homogeneous, so we

assume that the background holds a low rank property. For

the noise component, it has been investigated that there are

mainly two kinds of noise existing in HSIs including sparse

noise (strip and deadline) and Gaussian random noise [45].

Compared with l2 and l1 norms, l2,1 norm is more robust to

describe both sparse noise and Gaussian random noise. So in

our work, l2,1 norm is utilized to model the noise. Thus, the

objective function can be further formulated as:

min
Z,A,E

rank(Z) + β∥A∥l + λ∥E∥2,1

s.tX = BZ+A+E

(2)

where β > 0 and λ > 0 are the coefficients used to balance

all the components. rank(Z) represents the rank of matrix Z

which is the coefficient matrix of the low rank representation.

The l2,1 norm is defined as the sum of the l2 norm of the

columns in a matrix, i.e.,

∥E∥2,1 =
n
∑

i=1

√

√

√

√

d
∑

j=1

(ei,j)
2

(3)

which attempts to enforce each element of the matrix to

approach zero except for some outliers.

It is difficult to estimate anomalies using a particular distri-

bution because anomalies may be different in the same HSIs.

Thus, pixels with significant differences from the background

are extracted and used as potential prior of the other anomalous

pixels. Intuitively, anomalies chosen as the atoms of the po-

tential anomaly dictionary are related to the other ones hidden

in the dataset. So a hidden anomaly can be represented by the

linear combination of the pre-detected strong anomaly atoms

in the dictionary, namely, A = TS, where T = [t1, t2, ..., tnT
]

is the potential anomaly dictionary, nT is the number of atoms

in potential anomaly dictionary and S = [s1, s2, ..., sn] is the

corresponding coefficient matrix. However, when generating

the potential anomaly dictionary, we may mistakenly include

some pixels that are not anomalies. To avoid this situation, we

assume that only the potential anomaly atoms are active when

reconstructing an anomaly pixel. The atoms in the potential

anomaly dictionary are expected to be the supportive bases for

reconstruction of an anomaly. Since these pixels are randomly

distributed in the scene, anomalous pixels retain sparse char-

acteristics. In this way, we constrain the coefficients matrix

to be sparse. As a result, anomalous pixels are reconstructed

using the atoms as few as possible from the potential anomaly

dictionary. The above formulation is nonconvex and NP-hard.

Fortunately, under certain conditions [38], the problem of

finding a low-rank approximation for a given matrix can be

solved by minimizing its nuclear norm. Now the model for

our proposed anomaly detection becomes as:

min
Z,S,E

∥Z∥
∗
+ β∥S∥1 + λ∥E∥2,1

s.tX = BZ+TS+E

(4)

where ∥∗∥
∗

denotes the matrix’s nuclear norm. The response

value of each pixel belonging to anomalies can be calculated

by the l2 norm of each column of the anomaly component

A = TS, i.e., ri = ∥ai∥2 i = 1, 2, ..., n. Finally, anomalies

can be determined by a pre-defined threshold.

B. Background dictionary construction

For the pixels within a local region of an HSI, they may

share common structures. So these regions can be jointly

approximated by a sparse linear combination of a few common

atoms. The objective of the JSR [46] is

min ∥ψ∥row,0

s.t.U = Vψ +R
(5)

where U = [u1, u1, ..., uL] is a 2D matrix with L spectral

pixels flattened from the 3D local region cube and ψ is the

corresponding representation coefficients where only a few

rows are non-zero, R = [r1, r2, ..., rL] are the residuals after

construction based on V and ψ, and ∥∗∥rows,0 denotes the

non-zero rows of ψ
The JSR model represents each spectral pixel within a local

region using common atoms chosen from an overcomplete

dictionary. Thus, it captures the common part from the original

region by the linear combination of a few atoms, which reflect

the consistent spectral information in this region. Obviously,

for the anomaly detection task, the common part within a

region tends to be regarded as the background, so we choose

the atoms that are frequently used as the bases to reconstruct

background. All the chosen atoms from different classes of

background materials form the background dictionary. Now

the challenge is how to construct an overcomplete dictionary

for the JSR model and how to design the metric to measure

the frequently used atoms chosen from the dictionary.

For the first problem, a simple method to construct the

dictionary in the JSR model is to utilize all the original spectral
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pixels in HSI. However, it is time consuming to calculate

each small region over such a large dictionary. Although, a

wide range of spectral information from different materials

may boost the representation ability of the JSR model, it

actually degrades the ability of describing a particular material.

This is because too many pixels from different classes are

involved when reconstructing a local region. Consequently, the

global dictionary may be confused when intending to extract

a common structure.

Considering the non-local similarity between the local re-

gions, we use an extended k-means clustering algorithm to

group all the pixels into several clusters so that each group

contains a similar underlying structure for reducing complex-

ity. Let the small region under investigation be denoted as a

3D cube U ∈ R
win×win×d of size win × win × d where

win is the window size. Its 2D form is U ∈ R
d×L, where

L = win×win. The image patch distance (IPD) [47] is used

to measure the distance between two regions, which is defined

as

oIPD(UP,UQ) = o(P (ui), Q(uj))

=
L
∑

h=1

max





min
b∈Q(uj)

o(ah, b)

min
a∈P (ui)

o(bh, a)





(6)

where o(a, b) is a non-local spectral similarity function, and

(here it is the Euclidean distance), and UP and UQ are two 2D

matrices representing two regions selected from the regions.

The calculation procedure is illustrated in Fig. 2.
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Fig. 2. The procedure of IPD based K-means.

With the increase of the number of classes, the number of

the regions in each class usually decreases. As a result, the

number of the regions in the smaller clusters is insufficient

to construct an overcomplete dictionary by the JSR model.

To solve this problem, those non-overcomplete classes will be

merged into the nearest class based on the IPD distance.

In this way, we group all the regions into several clusters.

For each cluster, the overcomplete dictionary is made up of

the overall spectral items in the class, which are used to

reconstruct each local region. The frequently used atoms in

the dictionary are treated as the final background dictionary

atoms. The ultimate formulation of the JSR model for each

class is as
min ∥ψc

i ∥row,0

s.t.Uc
i = G

cψc
i +R

c
i

(7)

where U
c
i is the ith region of the cth class, i = [1, 2, ..., nc],

nc = [n1, n2, ..., nK ] and c = [1, 2, ...,K], nc is the number

of the regions in the cth class and K is the number of classes,

G
c = [gc1, g

c
2, ..., g

c
nc ] is the overcomplete dictionary of the cth

class with nc atoms, and ψc
i and R

c
i are the corresponding

coefficients and residual, respectively.

The second problem is to measure the representation fre-

quency of each atom in each class. In our work, the frequency

is defined as the sum of the joint sparse representation coeffi-

cients after normalization. It can be expressed as:

P c =
1

γ

nc

∑

i=1

L
∑

j=1

∣

∣ψc
i,j

∣

∣

γ = sum(
nc

∑

i=1

L
∑

j=1

∣

∣ψc
i,j

∣

∣)

(8)

where ψc
i,j is the jth column of the ith region in the cth

class, γ is a normalization term, and P c is a vector, in which

the value of each element reflects the weighted frequency

chosen as the background dictionary atom, sum(·) denotes

the element-wise sum of a vector. We sort it in descending

order and the top atoms are chosen as background dictionary

atoms for the cth class. Finally, all the chosen atoms from

each class construct the background dictionary B.

C. Potential anomaly dictionary construction

We believe that some anomalous pixels with strong respons-

es to the background can be detected by the JSR model and

they can be considered as the prior in order to detect the other

anomalies. If a region is not completely homogenous, that is,

there are outliers or different pixels, these pixels are more like-

ly anomalies. Such heterogeneity in a local region is reflected

by the residual computed by the JSR model. Therefore, the

pixels in a region leading to a large reconstruction residual

are claimed to be anomalous pixels. Meanwhile, to reduce the

influence of noise and which may also have large residuals.

So, we use the region-based residual to select the potential

anomaly atoms. For the central pixel in a region, a larger

average residual of its neighboring pixels means the central

pixel is most likely an anomaly. Here the mean residual of

the regions is regarded as the anomaly response of the central

pixel.

For the ith region of the cth class, the response of the

anomaly is calculated by:

R̄
c
i =

1

L

L
∑

j=1

∥

∥rci,j
∥

∥

2
(9)

where rci,j is the jth column of the ith region in cth class. So

the error in the cth class is:

R
c
mean = [R̄c

1, R̄
c
2 , . . . , R̄

c
nc ] (10)
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The average residual of each region in K classes are concate-

nated, and then we define the response value of a pixel being

anomaly namely anomalous level (AL) as

AL =
1

χ
[R1

mean,R
2
mean, ...,R

K
mean]

χ =

K
∑

c=1

nc

∑

i=1

R̄
c
i =

1

L

K
∑

c=1

nc

∑

i=1

L
∑

j=1

∥

∥rci,j
∥

∥

2

(11)

where χ is the normalization part, and AL is a vector in which

each element is the anomaly response value of a region.

However, it is not enough to extract obvious anomalous

pixels. On the one hand, noise is always involved. On the

other hand, for a complicated scene, a region may contain

different types of background materials that may be mistakenly

regarded as potential anomaly pixels. In other words, not all

the pixels with large reconstruction residuals are anomalies.

For this concern, we take into account the importance of atoms

participating in reconstructing other pixels. Compared with

other atoms, the selected background and anomaly atoms are

more significant. So we can eliminate the atoms which do not

take part in reconstruction in order to alleviate the interference.

In addition, anomalies are selected as atoms only when

the current regions contain an obvious anomaly structure. In

order to identify these truly anomalous pixels, we utilize the

difference between the JSR coefficients when reconstructing

the background and anomaly. The way to estimating the

atoms of the background dictionary actually includes two

levels of information. The first level is the times of an atom

being selected. It describes the participation quantity of each

atom in a certain class. The second level is the absolute

value of the corresponding coefficients as show in Eq. (15),

which describes the importance degree of an atom in region

reconstruction. For the first level, the selection times of the

background atoms are always high while the selection times of

anomaly atoms are low when reconstructing each local region-

s. For the second level, the chosen anomaly atoms have strong

coefficients only when reconstructing a local region including

many anomalies. So the frequently used atoms for each class

tends to be background while those not always used but with

significant coefficients when reconstruct a region containing

anomaly pixels tends to be anomalies. The anomaly atoms in

each class show the property of low selection frequency and

large coefficient. We define the anomalous weight (AW) as

follows to depict the above issue

AW c =
P c

F c
(12)

where F c is a vector in which each element reflects the select

times of each atom, which can be written as

F c =
nc

∑

i=1

L
∑

j=1

sgn(
∣

∣φc
i,j

∣

∣)

,where sgn is the sign function. The weighted AL can be

expressed as:

AL =
1

χ
[R1

mean,R
2
mean, ...,R

K
mean]⊙AW

χ =
K
∑

c=1

nc

∑

i=1

R̄
c
i =

1

L

K
∑

c=1

nc

∑

i=1

L
∑

j=1

∥

∥rci,j
∥

∥

2

(13)

where ⊙ denotes the element-wise mulitiplication, and AW =
{AW 1, AW 2, ..., AWK}. We sort them in a descending order

and choose the top pixels as the atoms of the potential anomaly

dictionary T.

Algorithm 1

Input: Data matrix X, parameters λ > 0 and β > 0
Initialize: Z = J = S = L = 0, E = 0,

Y1 = Y2 = Y3 = 0, µ = 10−6, µmax = 1010, ρ = 1.2,

ε = 10−6

Output: Z,E,S

1. While not converged do

2. Fix others and update J by Eq. (16)

3. Fix others and update L by Eq. (17)

4. Fix others and update E by Eq. (18)

5. Fix others and update Z by

Z := (BT
B+ I)−1[BT

X−B
T
TS−B

T
E

+ J+ (BT
Y1 −Y2)/µ]

6. Fix others and update S by

S := (TT
T+ I)−1(TT

X−T
T
BZ−T

T
E

+ L+ (TT
Y1 −Y3)/µ)

7. Update the three Lagrange multipliers

Y1 := Y1 + µ(X−BZ−E−DS)

Y2 := Y2 + µ(Z− J)

Y3 := Y3 + µ(S− L)

8. Update the parameter µ,

µ = min(ρµ, µmax)

9. Check the convergence conditions

∥X−BZ−DS∥F < ε

∥Z− J∥F < ε

∥S− L∥F < ε

10. End While

D. Optimization and computational complexity

To solve the problem shown in Eq. (4), for convenience,

two auxiliary variables J and L are introduced to make

the objective function separable. Thus, the problem can be

converted to the following form:

min
J,E,Z,S,L

∥J∥
∗
+ β∥L∥1 + λ∥E∥2,1

s.t. X = BZ+TS+E,Z = J,S = L

(14)
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We solve Eq. (14) by utilizing the augmented Lagrange mul-

tiplier (ALM) method reported in [48], which is implemented

by updating one variable with others being fixed.

ℓ = ∥J∥
∗
+ λ∥E∥2,1 + β∥L∥1+

< Y1,X−BZ−E−TS > + < Y2,Z− J >

+ < Y3,S− L > +
µ

2
(∥X−BZ−E−TS∥

2
F

+ ∥Z− J∥
2
F + ∥S− L∥

2
F )

(15)

where Y1, Y2 and Y3 are the Lagrange multipliers, and µ > 0
is a penalty parameter. The problem can be resolved using the

following steps.

1) Fix E,L,S,Z and update J. The objective can be

derived as:

min
J

∥J∥
∗
+
µ

2

∥

∥

∥

∥

J− (Z+
Y2

µ
)

∥

∥

∥

∥

2

F

(16)

2) Fix J,L,S,Z and update E. The objective can be

derived as:

min
E

λ∥E∥2,1 +
µ

2

∥

∥

∥

∥

E− (X−BZ−TS+
Y1

µ
)

∥

∥

∥

∥

2

F
(17)

3) Fix J,E,S,Z and update L. The objective can be

derived as:

min
L
β∥L∥1 +

µ

2

∥

∥

∥

∥

L− (S+
Y3

µ
)

∥

∥

∥

∥

2

F

(18)

The nuclear norm, l1 and l2,1 norms can be solved by singular

value thresholding (SVT) [49], soft-thresholding [50], and l2,1
norm minimization operator [39] respectively. The complete

procedure is summarized in Algorithm 1.

The computation of our method include those of Algorithm

1 and dictionary construction. For the first aspects, the major

computation is Step 2, which requires computing the SVD of

an n×n matrix. So it is time consuming if n is large. However,

the computational cost of this step can be easily reduced using

the method reported in [39]. The optimal solution Z
∗ (with

respect to the variable Z ) to Eq. (4) always lies within the

subspace spanned by the rows of A. This means that Z∗ can

be factorized into Z
∗ = P

∗
Z̃

∗, where P
∗ can be computed in

advance by orthogonalizing the columns of BT. So our model

shown in Eq. (4) can be rewrite as:

min
Z̃,S,E

∥

∥

∥Z̃

∥

∥

∥

∗

+ β∥S∥1 + λ∥E∥2,1

s.tX = B
∗
Z̃+TS+E

(19)

where B
∗ = BP

∗. Since the number of rows of Z̃ is at most

rb (the rank of matrix B rb << n), so the computation com-

plexity of Step 2 is O(r3B). Noted that, X = {xi}
n
i=1 ∈ R

d×n,

so the computation complexity of Step 3 and 4 are O(dnrB).
For the dictionary B and potential anomaly dictionary T,

their column numbers are nB and nT respectively. In Step

5 and 6 the term (BT
B+ I)−1 and (TT

T+ I)−1 can be

calculated in advance, so the computation complexity of these

two steps are O(nr2B) and O(nn2
T ) respectively. Therefore, the

complexity of Algorithm 1 is O(ns(r
3
B+dnrB+nr2B+nn2

T )),
where ns is the number of iterations. The major computation

of the dictionary construction addresses on solving the JSR

model. In our work, the OMP-Cholesky based method [51]

is used to solve Eq. (14). However the dictionaries in the

JSR model vary across different classes. For convenience,

we consider that there is only one dominant class, so that

we can reconstruct the regions using one dictionary. In this

way, the upper bound of the computational complexity can

be calculated as O(nk(2ndL + nL2 + 2n + k2)), where k
is the sparsity-level. The computational complexity of the

IPD-kmeans is O(nk(drLKn)), where dr is the number of

the bands after dimensionality reduction, K is the number

of clusters, and nk is the number of the iterations. There-

fore, the computation complexity of the entire algorithm is

(nk(drLKn)+nk(2ndL+nL2+2n+k2)+ns(r
3
B+dnrB+

nr2B + nn2
T )).

Finally, our proposed PAB-DC is summarized in Algorithm

2. The construction of the background and potential anomaly

dictionaries is illustrated shown in Fig. 1.

Algorithm 2

Input: 2D data matrix X, 3D data cube R, parameters λ > 0
and β > 0, K, M , η, W , ρ
Output: Z,E,S

1. Generate a local region Ui (i = 1, 2, 3, ..., n) from the

dataset with a window of size win× win;

U = [U1,U2, ...,Un]

2. Obtain the class label of each Ui using a K-means

method based on the IPD on the regions after dimensionality

reduction by PCA;

3) Group the regions into K classes ;

U = [U1,U2, ...,UK ] = [U1
1,U

1
2, ...U

1
n1 ]∪

[U2
1,U

2
2, ...U

2
n2 ] ∪ ... ∪ [UK

1 ,U
K
2 , ...U

K
nK ]

4. Calculate the representation coefficient ψc
i and residual

R
c
i for each region in each class based on the JSR model

by Eq. (7);

5. Generate the background dictionary by Eq. (8);

6. Generate the potential anomaly dictionary by Eq. (13);

7. Apply the low rank and spare decomposition model using

the background and potential anomaly dictionaries from

Algorithm I

III. EXPERIMENTS RESULTS

In this section, we first compare our proposed PAB-DC

method with the widely used anomaly detection algorithms

such as Global-RX, Local-RX [22], the detector based on

collaborative representation (CRD) [52] and the low rank

and sparse representation based detector (LRSR) [43] on five

real HSI datasets. The CRD method was proposed based on

the assumption that the background can be approximately

represented by its spatial neighborhoods, while anomalies
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. Image descriptions: (a) The false color image of AVIRIS-I; (b) The false color image of AVIRIS-II; (c) The false color image of the HYDICE dataset;
(d) The false color image of the Urban dataset; (e) The false color image of Cri dataset; (f) The groundtruth of AVIRIS-I; (g) The groundtruth of AVIRIS-II;
The groundtruth of HYDICE dataset; The groundtruth of Urban dataset; The groundtruth of Cri dataset.

cannot. The LRSR method using both low rank and sparse to

constrain the background. In addition, the effectiveness of the

potential anomaly dictionary is investigated and the parameters

analysis is given. All the experiments are conducted on a

workstation with Intel Xeon Processor E5-2630 v3 2.40GHz

× 32 and 64 GB RAM.

A color detection map is provided to illustrate the results.

The colors ranges from dark blue to bright yellow which

reflects the responses of pixels in the current component, that

is, the brighter the pixels, the stronger responses to the corre-

sponding component. In addition, for qualitative comparisons,

the receiver operating characteristic (ROC) curves with point-

wise confidence intervals are used in our experiments. The

bias corrected and accelerated percentile method which is a

kind of bootstrap-based confidence bound estimation method

is used to estimate the confidence intervals on the level of

confidence being 95% [53][54]. The area under curve (AUC)

is summarized with upper bound and lower bound based on

the confidence intervals.

A. Dataset description

The first dataset was provided by [43]. It was collected

by the Airborne Visible/Infrared Imaging Spectrometer over

San Diego, CA, USA (AVIRIS). The spatial resolution is 3.5

m per pixel. It has 224 spectral bands in the wavelengths

ranging from 370 to 2510 nm. After removing the bands that

correspond to the water absorption regions, low SNR, and poor

quality (1-6, 33-35, 97, 107-113, 153-166, and 221-224), 189

bands are utilized in our experiment. The whole dataset has

an image size of 400× 400 . There are two kinds of airplanes

in the scene that are treated as anomaly. From up-left of this

hyperspectral dataset, a region of 100 × 100 pixels selected

as AVIRIS-I for testing. The three airplanes are regarded as

anomaly in the scene. The anomalous pixels refer to the main

body and edges of the airplanes with a total of 57 pixels. Fig.

3 (a) and (f) show the false color image and the groundtruth

map of AVIRIS-I dataset, respectively.

The second dataset AVIRIS-II is a 200× 200 area selected

from the AVIRIS image, which is located at the center of

San Diego region. Compared to AVIRIS-I this dataset has

more different types of background materials including roofs,

grasses, shadow, roads, and so on. The three airplanes with

134 pixels are regarded as anomalous pixels. The false color

image and the groundtruth map are shown in Fig.3 (b) and

(g), respectively.

The third dataset used in the experiment is obtained from

an aircraft platform with a Hyperspectral Digital Imagery

Collection Experiment (HYDICE) sensor. The image has a

spectral resolution 10nm and a spatial resolution of 1m. It

covers an urban area that comprises a vegetation area, a

construction area, and several roads including some vehicles.

The whole dataset has a size of 307 × 307 pixels. In this

experiment a subscene 80×100 on the upper right of the whole

scene is used. The 21 anomalous pixels are about vehicles with

different sizes [52]. The false color image and the groundtruth

map are shown in Fig.3 (c) and (h).

The fourth dataset is from an open Airport-Beach-Urban

dataset [54]. The sample images in this dataset were manually

extracted from large images downloaded from the AVIRIS

Web site. We use the dataset with the size of 100 × 100 as

shown in Fig.3 (d) and (i). It was collected over Texas Coast in

August 29, 2010. The spatial resolution is 17.2 m per pixel.

The noisy bands in the original images had been removed

and the ground truth is manually labeled with the help of the

Environment for Visualizing Images (ENVI) software [55].

The fifth dataset was acquired by the Nuance Cri hyperspec-

tral sensor. The spectral resolution of this dataset is 10nm.

The image scene covers an area of 400 × 400 pixels, with

46 spectral bands in the wavelengths ranging from 650 to

1100nm. The ten rocks in this scene can be regarded as
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anomaly to be detected which is different from the grassy

background as shown in Fig.3 (e) and (j) [44].

B. Detection performance

The detection performance of our proposed PAB-DC is eval-

uated and compared with four other state-of-the-art detectors:

Global-RX, Local-RX, CRD and LRSR. The dual windows

(winin, winout) in the Local-RX and CRD are set as (3, 5)
for HYDICE dataset and (7, 13) for the others. The number

of clusters of LRSR and the number of the pixels chosen for

constructing the background dictionary are set to be 15 and

20 respectively as in [43] for all datasets. The parameters β
and λ in our model are 0.01 and 0.1, which is quite stable

across different datasets except for Cri dataset where λ is

10 to get the best performance. The window size in PAB-

DC is 1 × 1 for HYDICE dataset because the anomalies

presented in it are isolated pixels while it set to be 3 × 3
for the other datasets empirically. The number of classes

K is determined by the number of background materials in

different datasets. So, for Urban dataset K is 5, for AVIRIS-I

and HYDICE datasets K are 10 and for AVIRIS-II and Cri

dataset K are 15. The number of atoms chosen to construct

the background dictionary varies for different classes. So,

we define the parameter η to present the percentage of the

chosen atoms who have the top frequencies in each class. For

AVIRIS-I, AVIRIS-II, HYDICE, Urban and Cri datasets it is

set to be 5%, 5%, 3%, 1%, 1% respectively to get the best

performance. In order to construct the over-complete potential

anomaly dictionary, the number of atoms should be larger than

the number of bands. So, the number of potential anomaly

dictionary atoms ρ for the experiment datasets are 200, 200,

100, 200, 100 respectively.

The color detection maps are shown in Fig. 4. It can be

seen that the Global-RX, CRD, and LRSR can correctly detect

the anomalous pixels in different datasets, but their responses

are not strong. Due to the sensitivity to the window size,

the Local-RX cannot detect the anomaly in AVIRIS-I and

AVIRIS-II datasets. In addition, the response of anomalies in

other three datasets are not very strong compared with other

methods. The PAB-DC method can get the strongest responses

of anomalies for all datasets especially for the AVIRIS-II and

Cri datasets. The LRSR method also gets good performance

in these five datasets, but on AVIRIS-II and Cri datasets it

cannot get strong responses because no anomaly information is

used. In contrast, PAB-DC obviously obtains strong responses

in these two datasets, it is benefit from the construction of

potential anomaly dictionary.

Additionally, to quantitatively compare the performance

of the proposed method with the other four methods, the

ROC curves with point-wise confidence intervals are shown

in Fig. 5 and the AUC values with upper and lower bounds

are given in Table I. The best results for each dataset in

Table I are highlighted in bold. In Fig. 5 we can see that

the Global-RX can obtain stable results for different datasets

because of its global characteristic. The CRD method shows

good performance except for Cri dataset. It shows advantage

compared with Local-RX method, this is because that, the

CRD method can model the background more exactly, while

the multivariate normal distribution based Local-RX cannot

always hold different kinds background. However, the CRD

method also suffers from the sensitivity to the window size,

and the local window cannot obtain the global background

information, so it cannot get good performance on the Cri

dataset which has a cluttered background. Since the low rank

model tries to catch the global information of whole scene,

it is very benefit for the simple background. So, the LRSR

method shows good performance on the AVIRIS-I, HYDICE

and Urban datasets illustrated in Fig. 5 (a) (c) and (d).

However, it cannot get good performance in AVIRIS-II and Cri

datasets due to their complex background. Our proposed PAB-

DC method gets the best performance in AVIRIS-I, AVIRIS-

II, HYDICE and Cri datasets as shown in Table I and Fig.

5. It also gets a comparable performance on Urban dataset

following Global-RX method as show in the fourth line of

Table I.

To further reveal the procedure of our PAB-DC method

we illustrate the segmentation map, the background dictionary

atoms, the potential anomaly dictionary atoms, the background

part, the anomaly part and the noise part in Fig. 6 (a) (b)

(c) (d) and (e). The JSR model can obtain the informative

background support to construct purer and more reliable

background dictionary. Combining with the strong robustness

of low rank constraint, our method can capture the background

across different dataset illustrated in Fig. 6 (b) and (d). As

shown in Fig. 6 (c), in most cases, the potential anomaly

dictionary can extract some obviously anomalies in advance,

which enhances the performance of subsequent detection tasks.

In addition, the procedure of clustering in our PAB-DC method

is quite different, which can be seen as a block-wise clustering

strategy, resulting in smoother segmentation as show in Fig.

6 (a). It is beneficial to area-wise anomaly detection just as

in AVIRS-I, AVIRS-II and Cri datasets. Meanwhile, for pixel-

wise anomaly detection we can simply set the window size

being 1 as in HYDICE datasets, and the PAB-DC achieves

better results as well. In 6 (d) (e) and (f), the background,

anomaly and noise parts are visualized. The PAB-DC can

effectively decomposes the original data into these three parts

and we can obviously see that the noise part can capture the

strong interference around the edges and cluttered background,

which makes the anomaly detection map more smooth.

C. Parameter Analysis

1) Effectiveness evaluation of potential anomaly dictionary:

To evaluate the effectiveness of the potential anomaly dictio-

nary, we compare the PAB-DC with the one without it, which

is implemented by setting the potential anomaly dictionary as

a zero vector. For convenience, we conduct the experiments on

the AVIRIS-I dataset. We set the window size as 3× 3 in this

experiment. The number of clusters is set as 10 empirically.

The number of atoms to construct the background dictionary

varies for different classes. The parameter η is 5%. The

number of the potential dictionary atoms ρ is slightly greater

than that of bands, or 0 in the comparison experiment. In

addition we reveal the coefficients obtained in our model to
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TABLE I
THE AUC COMPARISON OF THE METHODS WITH CONFIDENCE INTERVAL

Global-RX Local-RX CRD LRSR PAB-DC

AVIRIS-I 0.9091
+0.0268

0.6914
+0.0668

0.9530
+0.0118

0.9779
+0.0072

0.9950
+0.0032

-0.0369 -0.0908 -0.0206 -0.0109 -0.0105

AVIRIS-II 0.8870
+0.0191

0.8159
+0.0735

0.8765
+0.0165

0.7710
+0.0239

0.9186
+0.0071

-0.0268 -0.0419 -0.0285 -0.0452 -0.0080

HYDICE 0.9867
+0.0074

0.8983
+0.0838

0.9885
+0.0087

0.9303
+0.0312

0.9907
+0.0043

-0.0209 -0.1560 -0.0146 -0.0671 -0.0077

Urban 0.9946
+0.0012

0.9157
+0.0148

0.9309
+0.0095

0.9872
+0.0047

0.9937
+0.0020

-0.0017 -0.0256 -0.0135 -0.0053 -0.0026

Cri 0.9134
+0.0069

0.7543
+0.0084

0.6737
+0.0248

0.5545
+0.0135

0.9661
+0.0032

-0.0078 -0.0141 -0.0117 -0.0111 -0.0041

(I-a) (I-b) (I-c) (I-d) (I-e)

(II-a) (II-b) (II-c) (II-d) (II-e)

(III-a) (III-b) (III-c) (III-d) (III-e)

(IV-a) (IV-b) (IV-c) (IV-d) (IV-e)

(V-a) (V-b) (V-c) (V-d) (V-e)
Fig. 4. I is the results using AVIRIS-I dataset; II is the results using AVIRIS-II dataset; III is the results using HYDICE dataset; IV is the results using Urban
dataset; V is the results using Cri dataset. (a) Globa-RX (b)local CRX (c) CRD (d) LRSR (e) PAB-DC
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(a) (b) (c)

(d) (e)

PAB-DC

(f)

Fig. 5. Experimental results: (a) The ROC curves comparison on the AVIRIS-I dataset; (b) The ROC curves comparison on the AVIRIS-II dataset; (c) The
curves ROC comparison on the HYDICE dataset; (d) The ROC curves compaision on Urban dataset; (e) The ROC curves comparison on the Cri dataset; (f)
The ROC curves of PAB-DC method with and without potential anomaly dictionary.

show if the anomaly atoms in the potential anomaly dictionary

represent anomalies in the scene.

Fig. 7 shows the coefficients of the chosen anomalies pixels

in the potential dictionary, where the red bar is the position

of the anomalies detected by the potential anomaly dictionary.

The blue bar reflects the coefficients of each atom. We can

see that there are five anomalous pixels chosen in the potential

anomaly dictionary, two of which have very large coefficients

when they are used to reconstruct other anomalies. It is noticed

that the coefficients of other pixels in the potential anomaly

dictionary are relatively small. It is illustrated that the anomaly

part can be well reconstructed using the atoms in the potential

anomaly dictionary, thus, the anomaly part has the ability to

identify the anomalous pixels in the scene. Fig. 5 (f) shows the

ROC curve of these two methods. The AUC value produced

by the PAB-DC is 0.9950, while the AUC value of the PAB-

DC without the potential anomaly dictionary is 0.9409. From

the results we can see that the potential anomaly dictionary

indeed enhances the detection performance.

2) Analysis of the window size and cluster number: The

first parameter we discuss is the window size used in our

experiments. It influences the number of pixels within each

region, and also affects the construction of two dictionaries

by the JSR model. The number of classes is another important

parameter, which determines the size of the dictionary. As the

increase of the class number, the number of pixels in each

class may decrease, which results in the reduction of regions

in each class. We evaluate the performance of the PAB-DC

considering these two parameters together on the AVIRIS-I

dataset. The numbers of classes we chose are 5, 10, 15, 20, 25

and the window size is 3, 5, 7, 9 respectively. The parameters

β and λ of the objective function is fixed to β = 0.001 and

λ = 0.1. The results are shown in Fig. 8.

It can be seen that the PAB-DC is robust with the change

of the window size, which is different from the other local

detectors. Because we group the data on the region level into

several classes, it is beneficial to utilizing the relatively global

information without affecting the spectral information of the

other materials. In addition, for AVIRIS-I, the anomaly is not

too large nor too small. However, with the increase of the

window size, the computational cost in the procedure of JSR

increases. So, in the experiment, a 3× 3 windows is used.

3) Analysis of parameters β and λ: β and λ in the objective

function are the parameters to balance the background, anoma-

ly and noise parts. We analyze their effects on the performance

together. Both β and λ are chosen from 0.0001, 0.001, 0.01,

0.1, 1, 2, 3. In this experiment, the number of the classes is

fixed to 10 and the window size is set to 3×3. The experiment

is conducted on the AVIRIS-I dataset. The result is shown in

Fig. 9, where x-axis and y-axis represent λ and β, respectively.
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(I-a) (I-b) (I-c) (I-d) (I-e) (I-f)

(II-a) (II-b) (II-c) (II-d) (II-e) (II-f)

(III-a) (III-b) (III-c) (III-d) (III-e) (III-f)

(IV-a) (IV-b) (IV-c) (IV-d) (IV-e) (IV-f)

(V-a) (V-b) (V-c) (V-d) (V-e) (V-f)
Fig. 6. I is the results using AVIRIS-I dataset; II is the results using AVIRIS-II dataset; III is the results using HYDICE dataset; IV is the results using
Urban dataset; V is the results using Cri dataset. (a) The visualization of segmentation map. (b) The visualization of the chosen atoms in the background
dictionary. (c) The visualization of the chosen atoms in the potential anomaly dictionary. (d) The visualization of background component. (e) The visualization
of anomaly component. (f) The visualization of noise component.

Fig. 7. The coefficients of the chosen anomaly pixels in the potential
anomaly dictionary. The red bar reflect the true anomaly pixels chosen in the
potential anomaly dictionary. The blue bar presents the value of the coefficient
corresponding to each atom in the potential dictionary.

We can see that the parameter has slight effects on the AUC

ranging from 0.0001 to 3. When λ < 0.01, the result of the

PAB-DC is poor. When it is larger than 0.01, the AUC tends

to be stable. So, in our experiment, we choose β = 0.01 and

λ = 0.1.

4) Analysis of parameters of ρ and η: The parameter η
is the percentage of the selected atoms for each class to

construct the background dictionary, and ρ is the number of

atoms selected to construct the background dictionary. In our

experiment, η is chosen from 0.001, 0.01, 0.05, 0.1, 0.3, 0.5

and ρ is chosen from 10, 50, 100, 200, 250, 300, 500. The

number of the classes is fixed to 10 and the window size is

set to 3 × 3. The parameters β and λ are as those suggested
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above. The result is shown in Fig. 10. It can be seen that

the PAB-DC is not sensitive to the number of background

atoms. Even when 0.1% pixels are chosen, they are sufficient

to represent the background due to the low rank property of the

background. When the number of potential anomaly dictionary

atoms is too small, the dictionary is not overcomplete, which

leads to fluctuations of the AUC value. With the increase of

the number of atoms, the results tend to be stable. However,

too many non-anomaly pixels involved in will degrade the

effectiveness of the anomaly part in the process. So we set

the number of potential dictionary atoms to be 200, which is

slightly greater than the number of bands.

0
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5 
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U
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The number of class

15 920 7

Window siz
e
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Fig. 8. Analysis of the window size and class number on the AVIRIS-I
dataset.
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Fig. 9. Analysis of parameters β and λ on the AVIRIS-I dataset.

IV. CONCLUSION

In this paper, we have presented a new hyperspectral image

anomaly detection method based on background and potential

anomaly dictionaries utilizing low rank and sparse repre-

sentation strategy, denoted as PAB-DC, where the original

data is decomposed into background, anomaly and noise

parts. For the background part, the low rank representation is

used to capture underlying subspaces of different background

materials. For the anomaly part, the sparse representation is

utilized to simulate the property of anomalies. In addition,

0

0.2

The number of potential anomaly dictionary atoms

0.4
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The percentage of background dictionary atoms

0.05 300
0.1  250
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10 

Fig. 10. Analysis of parameters of ρ and η on the AVIRIS-I dataset..

different from other commonly used methods which only

consider the background information, we proposed to use

both background and estimated anomaly spectral information

to enhance the performance. The background dictionary is

constructed by introducing the JSR model with the grouped

over-complete dictionary for each class. The potential anomaly

dictionary is built to catch strong anomalous pixels using

the residual computed in the JSR model. The superiority of

our proposed PAB-DC method were demonstrated in five real

data experiments through the comparison with four standard

methods.
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