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Hyperspectral Anomaly Detectors using Robust

Estimators
Joana Frontera-Pons, Student Member, IEEE, Miguel A. Veganzones, Member, IEEE, Frédéric Pascal, Senior

Member, IEEE, and Jean-Philippe Ovarlez, Member, IEEE

Abstract—Anomaly detection methods are devoted to target
detection schemes in which no a priori information about the
spectra of the targets of interest is available. This paper reviews
classical anomaly detection schemes such as the widely spread
Reed-Xiaoli Detector and some of its variations. Moreover, the
Mahalanobis distance based detector, rigorously derived from a
Kelly’s test-based approach, is analyzed and its exact distribution
is derived when both mean vector and covariance matrix are
unknown and have to be estimated. Although, most of these
techniques are based on Gaussian distribution, we also propose
here ways to extend them to non-Gaussian framework. For this
purpose, elliptical distributions are considered for background
statistical characterization. Through this assumption, this paper
describes robust estimation procedures (M-estimators of location
and scale) more suitable for non-Gaussian environment. We show
that using them as plug-in estimators in anomaly detectors leads
to some great improvement in the detection process. Finally, the
theoretical contribution is validated through simulations and on
real hyperspectral scenes.

Index Terms—Hyperspectral Imaging, anomaly detection, el-
liptical distributions, M-estimation.

I. INTRODUCTION

TARGET detection and anomaly detection of

multidimensional signals have proved to be valuable

techniques in a wide range of applications, including

search-and-rescue, surveillance, rare mineral and land mines

detection, etc (see for e.g. [1], [2], [3]). Target detection

aims to discover the presence of a specific signal of interest

among a set of signals. Statistical target detection is based

on the Neyman-Pearson (NP) criterion, which maximizes the

probability of detection (PD) for a given probability of false

alarm (PFA).

Classical target detection methods require the knowledge

of the spectra of the desired targets. One could be interested

in a large number of possible targets each with different

signatures. Thus, the variety of sought spectra corresponding

to the different kind of targets and the difficulties due to

the atmospheric compensation for the measured spectral

signatures (used as steering vectors) have led to the derivation
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of new algorithms that intend to distinguish unusual materials

in a scene without reference to target signatures. In this

work, we are focused on anomaly detection (see e.g. [4] and

references therein). It can be interpreted as a particular case

of target detection in which no a priori information about the

spectra of the targets of interest is available. Hence, the aim

of anomaly detection is to locate objects in the image that

are anomalous with respect to the background. The type of

interesting targets can differ significantly from one application

to another, e.g. in forestry applications infected trees are the

anomalies of interest, whereas in defense and intelligence

applications, the anomalies to be detected are usually vehicles.

Note that, since anomaly detectors do not use any a priori

knowledge, they cannot distinguish between true targets and

detections of bright pixels of the background or targets that

are not of interest. This fact makes extremely difficult to

define a false alarm rate for the detectors as highlighted in [5].

Anomalies are defined with reference to a model of the

background. As for the previous target detection methods, the

background model is developed adaptively using reference

data (see e.g. [6] for a complete survey in anomaly detec-

tion methods). Most of these methods rely on the classical

Gaussian distribution assumption and need for the statistical

characterization of the background usually through first and

second order parameters (i.e. the mean vector and the co-

variance matrix). In this case, the reference data are taken

either from a local neighborhood around the observation vector

either using all the pixels in the image. Both approaches

have their benefits (see e.g. [7]). Local strategy provides

more realistic scenario for the background characterization.

However, it can be sensitive to the presence of false alarms

due to isolated anomalies. While the global approach is not

likely to generate this kind of false alarms, it will decrease

the detection capability for isolated targets. From here on,

local procedures will be considered for the different detection

schemes.

A. Related work

The actual distribution of the background pixels differs from

the theoretically predicted under Gaussian hypothesis (see [8]

for a recent overview on background modelling for HSI). In

fact, as stated in [9], [10], the empirical distribution usually

has heavier tails compared to the Gaussian distribution, and

these tails strongly influence the observed false-alarm rate of

the detector. Therefore, the class of Elliptical distributions
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is assumed for background statistics characterization. The

family of Elliptical distributions were originally introduced

by Kelker in [11] and widely studied in [12]. They account

for non-Gaussianity providing a long tailed alternative to

multivariate normal model. They are proven to represent a

more accurate characterization of HSI than models based on

Gaussian assumption [9]. However, when considering elliptical

distributions, the classical Gaussian-based estimators do not

provide optimal performance anymore. Complementary to the

paper [8] focused on the non-Gaussian background modeling

with Elliptical distributions, this work aims at studying appro-

priate robust parameters estimates.

B. Contributions

We consider on the first part of the paper the most popular

Gaussian-based anomaly detectors, and we provide a rigorous

derivation of the Mahalanobis distance through a Kelly’s test-

based approach. Moreover, one of the theoretical contribution

is the derivation of the exact distribution for the classical

Mahalanobis-based anomaly detector when both the mean

vector and the covariance matrix are unknown in Gaussian

environment.

Furthermore, robust estimation methods are considered in

classical anomaly detection schemes for non-Gaussian dis-

tributed background assumption, and the improvement brought

in most scenarios is pointed out. The Fixed Point estimators

(also known as Tyler’s estimators [13]) are proposed for the

parameters estimation. These can then be used as plug-in

estimators in place of the unknown mean vector or/and of

the covariance matrix in the detection scheme (see for e.g.

[14], [15]). This is a simple but often efficient method to

obtain robust properties for signal processors derived under the

Gaussian assumption. One of the contributions of this work is

to extend the results presented in [16].

C. Outline and notation

This paper is organized as follows. Section II revisits clas-

sical anomaly detection schemes and provides the theoretical

contribution of this paper by deriving the distribution of one

of the detectors. Section III describes the family of elliptical

distributions and the robust estimation methods studied in this

paper for anomaly detection purposes. Section IV illustrates

the theoretical analysis through simulations and Section V

reveals the theoretical improvement over real hyperspectral

images. Finally, Section VI concludes this work.

In the following, vectors (resp. matrices) are denoted by

bold-faced lowercase letters (resp. uppercase letters). T rep-

resents the transpose operator. |A| represents the determinant

of the matrix A and Tr(A) its trace. j is used to denote the

unit imaginary number. ∼ means ”distributed as”. Γ(·) denotes

the gamma function. Eventually, ||x|| represents the Euclidean

norm of the vector x.

II. ADAPTIVE ANOMALY DETECTION METHODS

Before detailing the analysis of the corresponding detectors,

let us recap the most common Gaussian-based estimators.

Along with their well-known properties and their simplicity

of analysis, the Sample Covariance Matrix (SCM) and the

Sample Mean Vector (SMV) are the most extended estimates

since they are the Maximum Likelihood Estimators (MLE) for

Gaussian case, as shown in [17]:

µ̂SMV =
1

N

N
∑

i=1

xi, (1)

Σ̂SCM =
1

N

N
∑

i=1

(xi − µ̂SMV )(xi − µ̂SMV )
T . (2)

Further, we shall denote the Centered SCM (CSCM) as:

Σ̂CSCM =
1

N

N
∑

i=1

(xi − µ)(xi − µ)T . (3)

where N denotes the number of secondary data. However,

such widespread techniques are suboptimal when the noise is

a non-Gaussian stochastic process. Section III reviews some

robust procedures particularly suited for estimating the covari-

ance matrix and the mean vector of elliptical populations.

Let us now detail the most popular Gaussian-based anomaly

detectors .

A. Reed-Xiaoli Detector

The original Reed-Xiaoli Detector (RXD) proposed in [18]

is commonly considered as the benchmark anomaly detector

for hyperspectral data. The considered signal model can be

written as:
{

H0 : xi = bi, , i = 1, . . . , N

H1 : xi = pαi + bi, , i = 1, . . . , N,

where xi are the N available data vectors on the image of

dimension m. bi ∼ N (0,Σ) represents the residual back-

ground, p is the spectral signature of the possible anomalous

material assumed to be unknown; and αi stands for the ampli-

tude of the intended targets through the N available data, i.e. it

is a known vector α of dimension N that indicates the strength

and position of the sought targets over the image. Remark that

each vector from the available data can potentially contain an

anomaly while in classical detection problem secondary data

are assumed to be signal free. Thus, one can arrange the vector

data into a matrix as X = [x1,x2, . . . ,xN ], and the detection

scheme derived in [18] takes the form:

Λ(X) =
(Xα

T )T (XXT )−1(Xα
T )

ααT

H1

≷
H0

λ .

Since hyperspectral data are not zero mean, let us now consider

that the background bi is distributed according to N (µ,Σ)
and the mean vector µ is supposed to be known. In the case

just one anomaly in the data under test is intended to be

detected, the corresponding amplitude vector can be written

as αi = [0 . . . 0 1 0 . . . 0]T where 1 is at the ith position and

the previous detector, whatever i ∈ [1, N ], takes the form:

ΛRXD = (xi − µ)T Σ̂
−1

CSCM (xi − µ)
H1

≷
H0

λ .



3

Finally, since the mean vector is usually unknown, it can

be replaced on the detector in by its estimate µ̂SMV . The

resulting detector, commonly known as two-step Generalized

Likelihood Ratio Test, yields:

ΛARXD = (xi − µ̂SMV )
T Σ̂

−1

SCM (xi − µ̂SMV )
H1

≷
H0

λ . (4)

The covariance matrix estimation Σ̂SCM in Eq. (4), is per-

formed over all the data set, i.e. including the vector xi under

test. In the following, the test in Eq. (4) will be referred as

the Adaptive RXD (ARXD), to underline the fact that the

unknown mean vector is replaced by its estimate.

B. Kelly Anomaly Detector

We detail here a classical anomaly detector often mistakenly

referred as the RXD. Following the development proposed in

[19], let us now assume the following signal model:

{

H0 : x = b, xi = bi , i = 1, . . . , N

H1 : x = αp+ b, xi = bi , i = 1, . . . , N,

and the b1, . . .bN are assumed to an independent identically

distributed (IID) sample from a Gaussian distribution bi ∼
N (µ,Σ) As in classical Kelly detector, the covariance matrix

Σ is unknown and the mean vector µ is supposed to be known.

However for anomaly detector derivation, the amplitude of the

signal α is supposed to be known and the unknown parameter

is now the steering vector p. Therefore, N+1 m-dimensional

vectors are observed under each hypothesis and the joint

probability density function (p.d.f.) of the the N secondary

data and the observation vector x under the two hypotheses

Hi can be written as:

fi(x) =

(

1

2π
m

2 |Σ|
1
2

exp

[

−
1

2
Tr(Σ−1Ti)

])N+1

, (5)

where Ti is the composite sample covariance matrix con-

structed from both the secondary data and observation vector:

T0 =
1

N + 1

(

(x− µ)(x− µ)T + Ŵ
)

,

T1 =
1

N + 1

(

(x− (αp+ µ))(x− (αp+ µ))T + Ŵ
)

,

and Ŵ = N Σ̂CSCM . The first step is to maximize with

respect to (w.r.t) the unknown covariance matrix Σ. Thus,

the matrix maximizing the PDF fi is simply Ti. When this

estimator is replaced in the PDF, one obtains:

max
Σ

fi =

(

1

(πe)m|Ti|

)

N+1

2

. (6)

and the Generalized Likelihood Ratio Test (GLRT), neglecting

the exponent (N + 1)/2 is given by:

Λ(x,p) =
|T0|

|T1|

H1

≷
H0

η . (7)

It remains to maximize this expression over the unknown

spectral signature p and the resulting MLE takes the form:

p̂ =
x− µ

α
. (8)

After replacing p by Eq. (8) in Eq. (7), it is easy to show that

the resulting GLRT test is equivalent to:

ΛKellyAD Σ̂
= (x− µ)T Σ̂

−1

CSCM (x− µ)
H1

≷
H0

λ . (9)

The quadratic form in Eq. (9) corresponds to the Maha-

lanobis distance detailed in [20]. It performs statistically as

an outlier detector. When Gaussian assumption is valid, the

quadratic form (x−µ)T Σ−1 (x−µ) follows a χ2-distribution

with m degrees of freedom for Σ and µ perfectly known. In

case the parameter Σ is replaced by its MLE, the CSCM, the

distribution of the quadratic form can be written according to

(see [21]):

Λ
(N)

KellyAD Σ̂
∼ T 2 , (10)

becomes a Hotelling T 2 distribution and thus,

N −m+ 1

mN
Λ
(N)

KellyAD Σ̂
∼ Fm,N−m+1 (11)

where Fm,N−m+1 is the non-central F -distribution with m
and N −m + 1 degrees of freedom [22] and the superscript
(N) is used to stress the dependence on the number of

secondary data N . For high values of N, (N > 10m), the

distribution can be approximated by the χ2-distribution.

As discussed above, when the mean vector is unknown, it

can be replaced on the detector (two-step GLRT) by its MLE

leading to:

Λ
(N)

KellyAD Σ̂,µ̂
= (x− µ̂SMV )

T Σ̂
−1

SCM (x− µ̂SMV )
H1

≷
H0

λ .

(12)

Remark II.1. Interestingly, note that ΛRXD (resp. ΛARXD)

and the ΛKellyAD Σ̂
(reps. Λ

(N)

KellyAD Σ̂,µ̂
) differ only on

the fact that the vector x under test is also present in the

covariance matrix estimation in Eq. (4). Therefore, in ΛRXD,

the N secondary data are not assumed to be signal free

and the proposed detector aims to compare every sample

to the covariance matrix over all the samples. While in the

second approach, ΛKellyAD Σ̂
, one intends to differentiate

the observation vector from the background statistically

characterized using N samples. Hence, N + 1 vectors are

available in the latter and ΛKellyAD Σ̂
does not represent

anymore a benchmark structure. Often, the local Kelly

detector is mistakenly referred as the local RXD when the

users, either remove the vector xi from the secondary data or

they prevent it to be part of this set by using a guard window.

The distribution of this detection test is given in the next

Proposition.
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Proposition II.1. The distribution of the detector under Gaus-

sian assumption is given by

N −m

m (N + 1)
Λ
(N)

KellyAD Σ̂,µ̂
∼ Fm,N−m , (13)

with Fm,N−m is the non-central F -distribution with m and

N −m degrees of freedom.

Proof: For simplicity matters, the following notations are

used: Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .

Let us set ∀i = 1, ..., N,xi ∼ N (µ,Σ) and x ∼ N (µ,Σ),
where all these vectors are independent. Now, let us denote

ŴN−1 =
N
∑

i=1

(xi − µ̂)(xi − µ̂)T = N Σ̂SCM .

Note that as an application of the Cochran theorem (see e.g.

[23]), one has

ŴN−1
dist.
=

N−1
∑

i=1

(xi − µ)(xi − µ)T = (N − 1) Σ̂CSCM ,

where
dist.
= means is distributed as.

Since µ̂ ∼ N
(

µ, 1
NΣ

)

, one has x − µ̂ ∼ N
(

0, N+1
N Σ

)

.
This can be equivalently rewritten as

y =
√

N/(N + 1)(x− µ̂) ∼ N (0,Σ).

As we jointly estimate the mean and the covariance matrix, a

degree of freedom is lost, compared with the only covariance

matrix estimation problem.

Let us now consider Λ
(N−1)

KellyAD Σ̂
(i.e. µ known) built from

N − 1 secondary data, rewritten in terms of ŴN−1:

Λ
(N−1)

KellyAD Σ̂
= (N − 1)

(

(x− µ)TŴ−1
N−1(x− µ)

)

where (x − µ) ∼ N (0,Σ) and whose distribution is given

by Eq. (11) where N is replaced by N − 1.

Now, for the joint estimation problem, the ΛKellyAD Σ̂,µ̂ can

be rewritten as:

Λ
(N)

KellyAD Σ̂,µ̂
= N

(

(x− µ̂)TŴ−1
N−1(x− µ̂)

)

= N
N + 1

N

(

yTŴ−1
N−1y

)

dist.
=

N + 1

N − 1
Λ
(N−1)

KellyAD Σ̂

This concludes the proof.

The “PFA-threshold” relationship is easily obtained as the

complementary cumulative density function (c.d.f.) of the

detector distribution.

It is worth pointing out from Eq. (12) that ΛKellyAD Σ̂,µ̂

performs similarly to a matched filter structure applied to

x− µ̂SMV :

Λ(x) = cHT (x− µ̂SMV ) , (14)

where HT is the matched signal and c a constant that can be

also a function on x. The expression in Eq. (14) is completely

characterized by the matched signal HT and the scale constant

c. Hence, one can identify from Eq. (12) the matched signal

HT = (x− µ̂SMV )
T Σ̂

−1

SCM and c = 1.

C. Normalized-RXD and Uniform Target Detector

Following the same approach than in Eq. (14), one can

derive many different anomaly detection schemes. We recall

here two popular variants of the Mahalanobis distance

described in [4]: the Normalized-RXD (N-RXD) and the

Uniform Target Detector (UTD).

The N-RXD takes the form:

ΛN−RXD =
(x− µ̂SMV )

T

||x− µ̂SMV ||
Σ̂

−1

SCM

(x− µ̂SMV )

||x− µ̂SMV ||

H1

≷
H0

λ ,

(15)

where ||x − µ̂SMV ||
2 = (x − µ̂SMV )

T (x − µ̂SMV ) stands

for the Euclidean norm of the vector. The detection test in

Eq. (15) can be immediately identified as the normalized

version of ΛKellyAD. In addition, ΛN−RXD takes also the

form of a matched filter specified in Eq. (14) with matched

signal HT = (x − µ̂SMV )
T Σ̂

−1

SCM the same as in Eq. (9)

and a different scale constant c = ||x− µ̂SMV ||
−2.

The UTD is another widespread anomaly detection test. It

was firstly introduced in [24] and can be defined as:

ΛUTD = (1− µ̂SMV )
T Σ̂

−1

SCM (x− µ̂SMV )
H1

≷
H0

λ . (16)

with 1 = [1, . . . , 1]T is the m-dimensional unity vector. Once

again the detector in Eq. (16) can be interpreted as a matched

filter where HT = (1−µ̂SMV )
T Σ̂

−1

SCM is the matched signal.

If there is no a priori information about the target spectra,

the non-prior approach is the one that does not introduce any

information into the detector and consists on assuming uniform

distribution for the spectra over all the bands.

D. Generalized Kelly Anomaly Detector

In the previous detection schemes, it has not been taken into

account in the derivation of the test that both mean vector µ

and covariance matrix Σ were unknown. One simply replaced

the mean vector by a plug-in estimate in the detector (two-step

GLRT). In case both covariance matrix and mean vector are

unknown, we need to derive a new detector. This strategy is

similar to the one proposed in [25] for the generalized Kelly

detection test. The likelihood functions under H0 and H1 are

given in (5). Under H0 and H1, the maxima are achieved at

max
Σ,µ

fi =

(

1

(πe)m|Ti|

)

N+1

2

, for i = 0, 1,

where

(N+1)T0 = (x−µ0)(x−µ0)
T +

N
∑

i=1

(xi−µ0)(xi−µ0)
T ,

(N + 1)T1 = (x− αp− µ1)(x− αp− µ1)
T

+

N
∑

i=1

(xi − µ1)(xi − µ1)
T ,
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and

µ0 =
1

N + 1

(

x+

N
∑

i=1

xi

)

, (17)

µ1 =
1

N + 1

(

x− αp+

N
∑

i=1

xi

)

. (18)

Following the same lines than in [25], one has to maximize

the LR in Eq. (7) w.r.t. p. This is obtained by taking:

p̂ =
N + 1

N

(x− µ0)

α
. (19)

Hence, the resulting detector can be written according to:

ΛG−KellyAD = (x− µ0)
H S−1

0 (x− µ0)
H1

≷
H0

λ , (20)

where S0 =

N
∑

i=1

(xi − µ0)(xi − µ0)
H , and µ0 =

1

N + 1

(

x+

N
∑

i=1

xi

)

. Once again the mean vector estimate

µ0 and the covariance matrix S0 depend on the data under

test x. Hence, x − µ0 and S0 are not independent. Remark

that one can write (x−µ0) =
N

N + 1
(x−µ̂SMV ). Neglecting

the multiplicative constants, the test in Eq. (20) appears to

be equivalent to the classical ΛRXD obtained throughout a

different approach but built with N + 1 available data.

III. ROBUST ANOMALY DETECTION

In this section, the class of elliptical distributions and robust

estimation procedures are reviewed.

A. Elliptical Distributions

Hyperspectral data have been proven not to be multivariate

normal but long tailed distributed [9]. In order to take into

account these features, the class of elliptical distributions (see

for e.g. [12] and [26] for a complete survey on elliptical

distributions) is considered to describe the statistical behavior

of the hyperspectral background. An m-dimensional random

real vector x has a multivariate elliptical distribution if its

characteristic function is of the form:

Φx(c) = exp
(

jcTµ
)

φ

(

1

2
cT Σc

)

, (21)

for some function φ : R+ → R, called characteristic generator,

a positive semidefinite matrix Σ, called scatter matrix and

µ ∈ C
m the location vector. We shall write x ∼ E(µ,Σ, φ).

From Eq. (21), it does not follow that x has a p.d.f. fx(·), but

if exists, it has the form:

fx(x) = cm,h|Σ|−
1
2 hm

(

1

2
(x− µ)T Σ−1 (x− µ)

)

, (22)

where cm,h is a normalization constant and hm(·) is any

function such as Eq. (22) defines a p.d.f. in R
m. The function

hm is usually called density generator and it is assumed to

be only approximately known. In this case, we shall write

E(µ,Σ, hm) instead of E(µ,Σ, φ). Remark that the p.d.f.

in Eq. (22) depends on x only through the quadratic form

(x − µ)T Σ−1 (x − µ). Thus, the level sets of the density

fx(x) are ellipsoids in the Euclidean m-space.

If the second-order moment exists, then Σ reflects the

structure of the covariance matrix of the elliptically distributed

random vector x, i.e. the covariance matrix is equal to the

scatter matrix up to a scalar constant. It serves to characterize

the correlation structure existing within the spectral bands. It

is worth pointing out that the family of elliptical distributions

includes a large number of distributions, notably the Gaussian

distribution, multivariate t-distribution, K-distribution or

multivariate Cauchy. Thus, it allows for heterogeneity of the

background power with the texture.

In order to improve the parameter estimation, the objective

is to find an appropriate model and to use the corresponding

MLEs. Therefore, if the density generator hm is perfectly

known, once could obtain the optimal MLEs for such hm.

This method leads to asymptotically efficient estimators but

not necessarily robust. Indeed, the robust estimator is rather

one that is still fairly reliable, regardless of the data departure,

failing to be optimal in some scenarios. In a real life appli-

cations, although elliptical distributions offer a great deal of

possible distributions, the risk that the data do not follow the

model considered still remains. Thus, the models used always

correspond to simplifications of the reality. The fact that a

slight deviation between reality and the model assumed has

little or no influence on the parameter estimates, is precisely

the robustness of the estimator.

B. Robust parameters estimation

We detail in this section robust estimation procedures

suitable for estimating the mean vector and scatter matrix

within the class of elliptical distributions.

1) Maximum Likelihood Estimators: When the density gen-

erator hm(.) is perfectly known, i.e. the p.d.f. of the underlying

distribution is explicit, then the MLEs of µ and Σ can be

derived and they are given by:

µ̂MLE =

N
∑

i=1

ψ(ti)xi

N
∑

i=1

ψ(ti)

Σ̂MLE =
N
∑

i=1

ψ(ti) (xi − µ̂)T (xi − µ̂MLE) ,

where ti = (xi − µ̂MLE)
T Σ̂

−1

MLE (xi − µ̂MLE) and

ψ(t) = −2h′m(t)/hm(t).

Note that the two quantities µ̂MLE and Σ̂MLE appear

on both sides of these equations, characterizing fixed-point

equations µ̂MLE = f
(

µ̂MLE , Σ̂MLE

)

and Σ̂MLE =
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g
(

µ̂MLE , Σ̂MLE

)

. Note that, due to the classical ML theory,

solutions of such equations exist.

2) Fixed Point Estimators: Generalizing these MLEs leads

to the class of M -estimators, introduced in hyperspectral

community in [27]. More precisely, the main idea is to define a

class of estimates that are not directly related to the underlying

p.d.f.: ψ(.) is not anymore a function of hm(.). However, the

asymptotical distribution of these M -estimates are very close

to those obtained in the Gaussian context, i.e. for Σ̂SCM and

µ̂SMV . In the elliptically distributed background context, they

appear to be more appropriate and robust to potential outliers

present in the data. For consequence, this implies that these

M -estimates can replace conventional Gaussian estimates in

all detection schemes without degrading their performance in

Gaussian context but with enhancing their performance in non-

Gaussian context. Among the large class of M -estimators,

the Fixed Point (FP) estimators, according to the definition

proposed by Tyler in [13], appears to be the most robust

estimates satisfying the following implicit equations:

µ̂FP =

N
∑

i=1

xi
(

(xi − µ̂FP )
T Σ̂

−1

FP (xi − µ̂FP )
)1/2

N
∑

i=1

1
(

(xi − µ̂FP )
T Σ̂

−1

FP (xi − µ̂FP )
)1/2

(23)

Σ̂FP =
m

N

N
∑

i=1

(xi − µ̂FP ) (xi − µ̂FP )
T

(xi − µ̂FP )
T Σ̂

−1

FP (xi − µ̂FP )
. (24)

The joint solutions can be obtained using the recursive algo-

rithm given by:

µ̂
(0)
FP = µ̂SMV Σ̂

(0)

FP = Σ̂SCM






µ̂
(n+1)
FP = f

(

µ̂
(n)
FP , Σ̂

(n)

FP

)

Σ̂
(n+1)

FP = g
(

µ̂
(n)
FP , Σ̂

(n)

FP

) . (25)

The FP estimates have been widely investigated in statistics

and signal processing literature. We refer to [28] for a detailed

performance analysis. It is worth pointing out that Σ̂SCM and

Σ̂FP have the same asymptotic Gaussian distribution which

differs on their second order moment by a factor m+1
m N , i.e.

for N sufficiently large, Σ̂FP behaves as a Wishart matrix

with m
m+1 N degrees of freedom. Indeed, these estimators

belong to the wider class of robust M-estimators [29].

3) Shrinkage estimators: We present now shrinkage meth-

ods that are suitable for high dimensional problems with small

number of samples (large m small N ). In these ”large m
small N” problems, classical estimators suffer from a distorted

eigen-structure and improved estimators are required.

A common regularization approach has been widely studied,

the shrinkage-SCM approach introduced in [30], [31]. Thus,

in Gaussian context the regularized SCM takes the form:

M̂Shr−SCM (β) =

1− β

N

N
∑

i=1

(xi − µ̂SMV ) (xi − µ̂SMV )
T + β Im . (26)

In presence of non-Gaussian, impulsive background the esti-

mate in Eq. (26) suffers from the same drawbacks than the

SCM and the class of robust estimates are more appropriate.

Yet, the FP estimators described above exhibit important

shortcomings in high dimensional context and they can not

be computed for the undersampling case when m > N .

Morover, we extend here FP covariance matrix estimator to

the high dimensional setting using shrinkage regularization.

Let us consider now the shrinkage FP introduced in [32] and

defined as the solution of the following fixed point equation:

M̂Shr−FP (β) = (1− β)
m

N
×

N
∑

i=1

(xi − µ̂FP ) (xi − µ̂FP )
T

(xi − µ̂FP )
T M̂−1

Shr−FP (β) (xi − µ̂FP )
+ β Im, (27)

for β =∈ (0, 1] and µ̂FP given in Eq. (23).

It was shown in [32] that when β tends to 0, the proposed

shrinkage estimator in Eq. (27) tends to the FP estimator in

Eq. (24) whose inverse has its trace equal to m. A different

approach that introduces a normalization constraint in the

algorithm for the shrinkage FP estimates is found in [33].

Moreover, in [34], [35], [36], this estimator has been used

within the Expected Likelihood framework. The optimization

of the shrinkage parameter β has been discussed in [37].

The basis of the proposed method are the FP estimators.

However, the approach presented here could be extended to

other M -estimators.

C. Robust Kelly Anomaly Detector

All the detection schemes explained in Section II are derived

under Gaussian assumption. In this section, we explore the use

of robust estimation methods presented above for anomaly

detection. These can then be used as plug-in estimators in

place of the unknown mean vector and/or of the covariance

matrix in the detection scheme. This is a simple but often effi-

cient method to obtain robust properties for signal processors

derived under the Gaussian assumption.

The Kelly anomaly detector has the advantage that the mean

vector and the covariance matrix are independent to each

other and to the observation vector, which is not the case

for the Generalized Kelly or the classical RXD. This allows

replacing the unknown parameters by a robust FP estimators

or Shrinkage estimators and the detector can be written as:

ΛKellyAD Σ̂,µ̂ = (x− µ̂Robust)
T Σ̂

−1

Robust(x− µ̂Robust)
H1

≷
H0

λ,

(28)

where µ̂Robust and Σ̂Robust are those described in Section

III-B. It is important to highlight that the distribution of

this detector is still an open question, as far as the authors

are aware. In fact, it will surely depend on the underlying

particular CE distribution, i.e. the distribution will change with

the choice of hm(·).

IV. SIMULATIONS

In this section, we validate the theoretical analysis on

simulated data. Firstly, we validate through Monte-Carlo sim-

ulations the distribution of ΛKelly AD detailed above. The
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Fig. 1: PFA versus threshold for the ΛKelly AD (m = 5) when

(1) µ and Σ are known (Mahalanobis) (red and black curves)

(2) only µ is known (gray and blue curves) (3) Proposition

II.1: both µ and Σ are unknown (yellow and green curves).
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Fig. 2: Probability of detection for different SNR values, m =
5, N = 10 and PFA = 10−3 in Gaussian case.

experiments have been conducted on Gaussian vectors of

dimension m = 5 and for different values of N . The compu-

tations have been made through 106 Monte-Carlo trials. The

true covariance is chosen as a Toeplitz matrix whose entries

are Σi,j = ρ|i−j| and where ρ = 0.4. The mean vector is

arbitrary set to have all entries equal to 3. Exceedance plot

shows the fraction of points in the data set whose Mahalanobis

distance is larger than the indicated value. This is essentially

a cumulative histogram of Mahalanobis distance values which

correspond to the ”PFA-threshold” relationship. Remark that

the definition of false alarms is not unique and it depends on

the application. Thus, we will rather refer to the distribution

of the detector in target absent hypothesis.

Fig. 1 illustrates the distribution of the detector under null

hypothesis. The case where both covariance matrix and mean

vector are perfectly known corresponds to the χ2-distribution

and the adaptive versions of the quadratic form become a

T 2 Hotelling. The perfect agreement of the green and yellow

curves bears out the results of Proposition II.1. Furthermore,

we compare, in Fig. 2, the five proposed anomaly detectors in

terms of PD for different values of the Signal-to-Noise Ratio

(SNR). The experiments were on Gaussian vectors of dimen-

Fig. 3: True color composition of the Hyperion scene.
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theoretical distribution.
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to land materials.

sion m = 5, for N = 10 and the artificial targets signature

used for the simulations is the unity vector p = [1, . . . , 1]T .

On a first step, the threshold is determined to ensure exactly

the same PFA = 10−3 for all detectors. The best results are

obtained for the Mahalanobis-based detectors, i.e. the classical

RXD, Kelly AD and generalized Kelly AD. The two detectors

derived according to Kelly’s approach perform fundamentally

the same and slightly better than the RXD. This improvement

may be due to the fact that N + 1 data are available for

the Kelly’s strategies, while only N samples are used in the

classical RXD. The matched filter based detectors deliver poor

performance in the case of the UTD, as the matching signal is

the unity vector, which is shown to be not optimal even in the

case the artificial targets signature used for the simulations is

the unity vector. The N-RXD presents an almost flat curve as

the normalization factor grows as the SNR gets higher. The

outcome of this detector can be assimilated to the residual

background level and its use in Gaussian environment should

be avoided.

V. REAL HYPERSPECTRAL DATA

A. Gaussian Background

The same experiments that in simulations have been con-

ducted on a real hyperspectral image. The scene analyzed is

the NASA Hyperion sensor dataset displayed in Fig. 3. The

image is constituted of 798 × 253 pixels and 116 spectral

bands after water absorption bands have been removed. The

analysis has been done on a homogenous part of the image

corresponding to the water region on the top left of the image.

The part extracted consists on 60 × 20 pixels. In order to

ensure the validity of the proposed methods, we show in Fig. 4

the outcome of a classical Gaussianity test ”Q-Q plot” for

the selected region over the band 42. Even if this allows to

”validate” the Gaussianity of each band, it cannot ensure the

Gaussianity of the corresponding multivariate vector.

To avoid the well-known problem due to high dimen-

sionality, we have chosen sequentially m = 6 bands. In

this approach, both covariance matrix and mean vector are

estimated using a sliding window of size 5×5, having N = 24
secondary data.

Fig. 5 shows the distribution of the ΛKellyAD Σ̂,µ̂ in real

hyperspectral data (red curve). We also plot the theoretical

relationship defined by Eq. (13). The results obtained on real

HSI data on a Gaussian distributed region agree with the

theoretical relationships presented above.

Finally, we illustrate the detection capability of the pro-

posed methods when artificial anomalies with known spectral

signature are inserted on the real hyperspectral image. For

this purpose, we extract the spectral signature from ground

materials in Fig. 3 and the anomaly spectra is depicted in

Fig. 6. Fig. 7(a) details the position and the shape of the

targets. For the same fixed value of FA PFA = 0.1, we

present in Fig. 7 the outcome of the different conventional

detectors for m = 6 and N = 24 secondary data. Note that the

edges of the image are not processed and the detection maps

are trimmed in function of the window size. The detectors

based on the Mahalanobis distance deliver best results for

detection purposes as expected and the matched filter based

detectors do not detect properly the artificial targets. These

detection maps are in agreement with the SNR figure detailed

above. Remark that the two-pixel targets are not detected

by any of the detection schemes. This problem is due to

the presence of a strong target in the secondary data that

pollutes the covariance matrix estimation. Its occurrence has

a significant impact on the detection process and it degrades

the performances of conventional detectors.

Fig. 8 shows the results of the extended ΛKelly AD detector

(m = 6, N = 24) built now with FP estimators and with

Shrinkage estimators, both SCM and FP. The same value

of FA PFA = 10−1 is considered for the three detectors.

Remark that all the anomalies of interest are now detected

even those bigger than one pixel. Thereafter, due to their

robustness, the proposed estimation methods allow for better

detection results in Gaussian case.

Receiver Operating Characteristics (ROC) curves are widely

used in signal processing to evaluate the performances of

the detectors [38]. ROC curves depict the outcome for a

set of thresholds instead of showing the misclassification for

only one. The x-axis represents the PFA and the y-axis, the

probability of detection (PD). A good detector presents high

PD values at low PFA, i.e., the curve is closer to the upper
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(a) Original (b) RXD (c) Kelly AD (d) G-Kelly (e) N-RXD (f) UTD

Fig. 7: Conventional Anomaly Detection for artificial targets in real HSI (m = 6, N = 24, same PFA=10−1).

left corner. Fig. 9 shows the results of the ROC curves for

the different detectors presented above (m = 6, N = 24)

computed on the Gaussian water region of the Hyperion image.

For a fixed value of the SNR = 10 dB, RXD, Kelly AD built

with the different estimators and Generalized Kelly AD exhibit

perfect classification while N-RXD and UTD provide worse

results.

(a) FP (b) Shr-SCM (c) Shr-FP

Fig. 8: Extended Kelly AD detectors built with robust esti-

mates for artificial targets in real HSI (m = 6, N = 24, same

PFA=10−1).

B. Non-Gaussian Background

Let us now present some results on a real hyperspectral

image in which the background can not be characterized with

Gaussian distribution and artificial targets were introduced as

anomalies. The original data set consists on 50×50 pixels with

126 bands, from which we have chosen sequentially m =
9 bands, see Fig. 10 (a). For this example, both covariance
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P
D RXD

Kelly AD (SCM)

N-RXD

UTD

G-Kelly

Kelly AD (Shr-SCM)

Kelly AD (FP)

Kelly AD (Shr-FP)

Fig. 9: ROC curve comparing the different detectors in Gaus-

sian environment (m = 6, N = 24 and SNR=10dB).

matrix and mean vector are estimated using a sliding window

of size 9× 9 having N = 80 secondary data. The results for

the ΛKelly AD built with classical SMV-SCM estimates, FP

estimates and shrinkage estimators are shown in Fig 10, the

FA being fixed at the same value of PFA = 0.03. In this

case, FP estimators and notably shrinkage FP estimates are

capable of locating all the artificial targets and exhibit a lower

number of false alarms. This improvement is due to the fact

that FP estimates treat the outliers and impulsive samples in

order for them to have a smaller contribution to the background

characterization process, while the SMV-SCM estimates (and

its respective shrinkage version) suffer from the presence of

strong reflectance pixels in the secondary data. Remark that

the shrinkage FP estimates lead to a better detection compared

to FP estimates.

Let us now consider the dataset in Fig. 10(a) with all

126 bands available. In high-dimensionality problems, the

SMV-SCM and the FP estimators suffer from distorted

eigen-structure. This fact motivates the use of shrinkage

estimators. As the background is shown to be non-Gaussian,
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(a) Original (b) SCM (c) Shr-SCM

(a) FP (b) Shr-FP

Fig. 10: Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI with all the bands

(m = 9, N = 80, same PFA = 0.03).

(b) SCM (c) Shr-SCM (a) FP (b) Shr-FP

Fig. 11: Extended Kelly AD built with conventional and robust estimates for artificial targets in real HSI (m = 126, N = 288,

same PFA=10−1).
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Fig. 12: ROC curve comparing the different estimation meth-

ods in non-Gaussian environment (m = 9, N = 80 and

SNR=10dB).

the shrinkage FP estimators are the most appropriate solutions

when dealing with all the bands. We show in the Fig.11 the

results when using all the bands, m = 126, and the sliding

window has been increased to 17×17, N = 288. Note that the

edges of the image are not processed and the detection maps

are trimmed in function of the window size. The shrinkage

FP are still capable of detecting all the targets while all the

other estimation techniques lead to poor detection results.

Fig. 12 displays the different ROC curves in non-Gaussian

background for the image in Fig. 10 (a), with m = 9, N = 80
and a fixed value of SNR = 10dB . Classical SMV-SCM

provide worse results than their shrinkage counterpart.

Moreover, in non-Gaussian case, FP estimators and the

corresponding shrinkage FP estimators allow for better

detection while keeping the false alarm low. This is translated

in ROC curves closer to the upper left corner and improved

detection performances.
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(a) MUSE data cube (b) SMV-SCM (c) FP estimates

Fig. 13: Anomaly detection in a MUSE hyperspectral image (size 300× 300) with m = 36 channels and N = 120 secondary

data. a) Original image. b) Kelly AD built with conventional estimates. c) Kelly AD built with FP estimates

The algorithm has also been applied for galaxy detection on

the MUSE data cube. The Multi Unit Spectroscopic Explorer

(MUSE) project (see [39]) aims to provide astronomers with

a new generation of optical instrument, capable of simulta-

neously imaging the sky (in 2D) and measuring the optical

spectra of the light received at a given position on the sky.

MUSE was installed on the VLT telescope and operational in

2013, and its performances are expected to allow observation

of far galaxies up to 100 times fainter than those presently

detectable. MUSE will deliver a 3D data-cube made of a

stack of images recorded at 3578 different wavelengths over

the range 465-930 nm. Each monochromatic image represents

a field of view of 60 × 60 arcsec, recorded with a spatial

sampling of 0.2 arcsec. Each record results in a data cube of

size 1570 MB encoding 3578 images of 300 × 300 pixels,

possibly containing thousands of objects (galaxies) existing

over different subsets of wavelengths.

An example of MUSE data cube image is displayed in

Fig. 13 (a), from the 3578 available bands, we have chosen

one band of each 100. The results for anomaly detection

are presented in Fig.13 for the same imposed FA value

PFA = 10−3. Note that detection with FP estimators (c)

provides better and clearer results than the classical ones (b).

These examples illustrate the robust behavior of FP es-

timators in non-Gaussian environments or for close targets

detection problems.

VI. CONCLUSION

The classical RXD test is explored and compared to other

four detectors. The different advantages and drawbacks for the

different detection schemes are commented. Furthermore, the

comparison is performed through Monte Carlo simulations in

Gaussian context and extended to real hyperspectral data with

simulated anomalies. The family of elliptical distributions is

considered for impulsive background characterization in hy-

perspectral imaging. In this context, robust estimation methods

for mean vector and covariance matrix are used to overcome

the non-Gaussianity of the background and the presence of

outliers or strong scatters in the secondary data. Moreover the

robust methods presented in this work outperform significantly

the classical Gaussian-based SMV-SCM. Therefore, robust

estimators offer a versatile alternative to Gaussian estimates.

They allow to obtain better performances in impulsive envi-

ronments while keeping good results in Gaussian background.

The theoretical improvement provided by the robustness of the

estimators is borne out through two real hyperspectral images.
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