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Abstract 

Background: Charcoal rot is a fungal disease that thrives in warm dry conditions and affects the yield of soybeans 

and other important agronomic crops worldwide. There is a need for robust, automatic and consistent early detec-

tion and quantification of disease symptoms which are important in breeding programs for the development of 

improved cultivars and in crop production for the implementation of disease control measures for yield protection. 

Current methods of plant disease phenotyping are predominantly visual and hence are slow and prone to human 

error and variation. There has been increasing interest in hyperspectral imaging applications for early detection 

of disease symptoms. However, the high dimensionality of hyperspectral data makes it very important to have an 

efficient analysis pipeline in place for the identification of disease so that effective crop management decisions can 

be made. The focus of this work is to determine the minimal number of most effective hyperspectral wavebands that 

can distinguish between healthy and diseased soybean stem specimens early on in the growing season for proper 

management of the disease. 111 hyperspectral data cubes representing healthy and infected stems were captured 

at 3, 6, 9, 12, and 15 days after inoculation. We utilized inoculated and control specimens from 4 different genotypes. 

Each hyperspectral image was captured at 240 different wavelengths in the range of 383–1032 nm. We formulated 

the identification of best waveband combination from 240 wavebands as an optimization problem. We used a 

combination of genetic algorithm as an optimizer and support vector machines as a classifier for the identification of 

maximally-effective waveband combination.

Results: A binary classification between healthy and infected soybean stem samples using the selected six wave-

band combination (475.56, 548.91, 652.14, 516.31, 720.05, 915.64 nm) obtained a classification accuracy of 97% for the 

infected class. Furthermore, we achieved a classification accuracy of 90.91% for test samples from 3 days after inocula-

tion using the selected six waveband combination.

Conclusions: The results demonstrated that these carefully-chosen wavebands are more informative than RGB 

images alone and enable early identification of charcoal rot infection in soybean. The selected wavebands could be 

used in a multispectral camera for remote identification of charcoal rot infection in soybean.
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Background

Soybean [Glycine max (L.) Merr.] is the major oilseed 

crop grown in the United States [1]. Soybean is also eco-

nomically important as it is the second major crop over-

all produced by the United States [1]. Soybean is used to 

produce biofuel, cooking oil, soy foods, and animal feed, 

among many other uses, but the crop is threatened by 

over 100 diseases with 35 believed to be important path-

ogens affecting soybean yield [2, 3].

Charcoal rot is an economically critical disease that 

affects soybean, as well as 500 other plant species world-

wide, and is caused by the fungal pathogen Macropho-

mina phaseolina (Tassi) Goid [4–6]. Infection is favored 

by warm (30–35 °C), dry, drought-like conditions but can 

cause up to 50% yield loss even in irrigated environments 

[7–10]. Charcoal rot earned its common name from the 

gray-silver discoloration caused by microsclerotia forma-

tion in the vascular tissue and pith of lower stems and 

roots of infected plants [7, 11]. These microsclerotia are 

small dark survival structures that persist in the soil and 

plant debris after harvest and can act as an inoculum 

source for charcoal rot infection during the next grow-

ing season [3, 7, 12]. Symptoms generally become visible 

at the R5–R7 reproductive stages, or from early seed to 

early maturity, but can occasionally be seen earlier as 

reddish-brown lesions on the hypocotyl of seedlings [3, 

7]. In more mature infected plants, a reddish-brown dis-

coloration of the vascular tissue in the roots and lower 

stem generally precedes foliar symptom development 

[7]. Following internal discoloration, diseased plants may 

yellow, then wilt, and prematurely senesce leaving dead 

leaves and petioles still attached to the stem [3, 7, 13]. 

Black microsclerotia on the above ground plant are first 

visible at the stem nodes and can be seen in the epider-

mal and sub epidermal tissue of plant stems as well as 

scattered on dry pods and seed of more mature plants 

[3, 7]. Management of charcoal rot has proven to be dif-

ficult as no fungicides are available for control and more 

work needs to be done to research the potential of seed 

treatments [3, 12]. In addition, crop rotation may not be 

a viable strategy to manage infection, because charcoal 

rot infects the United States’ major crops including corn, 

cotton, and sorghum [14, 15]. Furthermore, no commer-

cial soybean varieties are considered resistant, though a 

few varieties demonstrate moderate resistance [8, 13, 16–

19]. However, a genome wide association (GWA) study 

across both field and greenhouse environments recently 

reported a total of 19 single nucleotide polymorphisms 

(SNPs) associated with charcoal rot resistance in soybean 

[20]. While over 800 soybean lines have been evaluated 

for charcoal rot resistance, identification of resistant 

genotypes has been limited due to a need for an accurate, 

rapid, and consistent method for disease assessment and 

classification [12, 13].

Current state of disease assessment and outlook

Multiple methods, which are predominantly visual, 

have been proposed for assessing charcoal rot severity 

of soybean plant canopies, roots, and stems in the field 

and indoor environments. These methods include evalu-

ation of the intensity or length of stem and root discol-

oration caused by microsclerotia formation, evaluation 

of the percent chlorosis and necrosis of the plant canopy 

throughout the growing season, chlorosis and necrosis of 

foliage that remains attached to the plant at R7, calcula-

tion of colony forming unit index to quantify the micro-

sclerotia content in the stem and root, and lesion length 

measurements of cut-stem inoculations on young plants 

[13, 19, 21, 22]. However, visual rating methods can be 

subjective and are susceptible to human error caused by 

rater ability, and inter/intra-rater reliability [23–28].

Furthermore, visual ratings only take advantage of vis-

ible wavelengths of the electromagnetic spectrum [23]. 

Hyperspectral imaging can capture both spectral and 

spatial information from a wider range of the electromag-

netic spectrum including the visible and near-infrared 

regions [29]. Automating disease severity rating through 

hyperspectral imaging offers a potential solution to the 

standardization and reliability issues in current visual 

rating systems. While some hyperspectral systems do 

not incorporate imaging, but rather average all spectra 

obtained from a given area, the imaging aspect inher-

ent in hyperspectral imaging techniques comparing to 

non-imaging hyperspectral systems offers many ben-

efits for studying plant disease symptoms [30]. Extrac-

tion of reflectance spectra from each pixel, enables one 

to relate changes in reflectance values to disease symp-

toms [31, 32]. Recent plant pathology and phenotyping 

studies have utilized hyperspectral imaging data to study 

the effect of different plant pathogens. Examples include 

approaches to identify differences in the reflectance 

patterns of resistant and susceptible barley genotypes 

inoculated with powdery mildew [30, 33] the content of 

charcoal rot (M. phaseolina) microsclerotia in ground 

root and stem tissue as a method for rating infection 

severity [34], and hyperspectral imaging to distinguish 

Keywords: Charcoal rot, Soybean disease, Precision agriculture, Band selection, Genetic algorithm, Support vector 

machines, Hyperspectral
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between the symptoms of Cercospora leaf spot, powdery 

mildew, and leaf rust at different developmental stages in 

sugar beet [32].

A key issue with utilizing hyperspectral imaging is that 

the resulting hyperspectral data cubes, or the 3-dimen-

sional output of hyperspectral imaging comprised of 

2 spatial dimensions and 1 wavelength dimension, are 

high dimensional and contain redundant information 

which reduces the ability to distinguish between differ-

ent object classes in classification problem. [35]. Using a 

hyperspectral camera on a drone for crop disease identi-

fication and phenotyping can also generate large quanti-

ties of data during the flight making it necessary to have 

a large on-board storage capacity and also substantially 

increases computational cost for any subsequent analysis. 

Therefore, there is a need to develop an analysis pipeline 

to reduce dimensionality of the data and to select opti-

mal wavelengths that are most useful for phenotyping 

and disease identification. This serves as the motivation 

of this study.

Feature extraction and feature selection are two dif-

ferent methods for dimensionality reduction of hyper-

spectral data. Feature extraction methods such as 

Principal Component Analysis (PCA), Linear Dis-

criminant Analysis (LDA), Independent Component 

Analysis (ICA) and Maximum Noise Fraction (MNF) 

project the original hyperspectral data into a new low-

dimensional data by reducing the spectral dimension 

[36–39]. Feature extraction methods alter the physical 

meaning of the hyperspectral data during transforma-

tion to a new (and lower) dimensional space whereas 

feature selection methods preserve the original features 

[40]. Feature selection essentially boils down to care-

fully selecting a subset of the available wavebands (i.e. 

waveband selection) that preserves certain traits of the 

full dataset [41]. Feature selection methods are broadly 

classified into supervised or unsupervised methods 

[42]. Supervised methods use input and desired out-

put variables for training an algorithm whereas unsu-

pervised methods use only the input data for training 

[43]. Some supervised waveband selection methods use 

class separability metrics like Euclidean distance, trans-

formed divergence, Bhattacharyya distance, Jeffreys–

Matusita (JM) distance [44, 45]. A waveband selection 

method based on estimation of mutual information for 

classification of hyperspectral images was proposed 

by Guo et  al. [46]. Sequential search strategies like 

Sequential Forward Selection (SFS), Sequential Floating 

Forward Selection (SFSS), Sequential Backward Selec-

tion (SBS) and Sequential Backward Floating selection 

(SBSS) have also been used for waveband selection [47, 

48]. These sequential search algorithms are simple and 

suboptimal. Evolutionary methods such as Particle 

Swarm Optimization (PSO) and genetic algorithms 

(GA) which can search for global optimal solutions 

have been found to be successful in effective waveband 

selection [49, 50]. In this study, we use an evolutionary 

method, specifically GA, as an optimizer along with 

Support Vector Machine (SVM) [51] as a classifier for 

effective waveband selection. GA-SVM based model 

have been successful in waveband selection for classi-

fication of remotely sensed hyperspectral images [49, 

52–55]. Although computationally costly, evolution-

ary algorithms can give better optimal solution than 

sequential algorithms since the best feature combina-

tion is selected simultaneously [56].

The objectives of this study were (1) hyperspectral 

imaging enabled early identification of charcoal rot dis-

ease and (2) to determine the most effective minimum 

number of wavebands for discrimination of healthy and 

charcoal rot infected stems. This study shows that a 

genetic algorithm-support vector machine based model 

can be used in selecting the most effective waveband 

combination for early detection of charcoal rot disease 

in soybeans. Additionally, using F1-Score as an optimi-

zation metric instead of classification accuracy can over-

come the skewness of classification accuracy metric for 

the dominant class of an imbalanced dataset (number of 

healthy samples more than the number of infected sam-

ples) [57].

Methods

Plant material

Four soybean genotypes, Pharaoh (susceptible), PI479719 

(susceptible), DT97-4290 (moderately resistant), and 

PI189958 (moderately resistant) were included in this 

study. Two seed of each genotype were planted in a com-

mercial soil substrate (Sungro horticulture professional 

growing mix) in 8 oz styrofoam cups in a growth chamber 

at 30  °C day/21  °C night with a 16-h photoperiod. Each 

styrofoam cup was supplemented with 1/8tsp (0.65 g) of 

osmocote 15-9-12 at planting. Ten days after planting, 

plants were thinned down to one plant per pot choosing 

the most vigorous plant. Plants were arranged in a rand-

omized complete block design with four replications. The 

two treatments were inoculation and mock-inoculation. 

Data collection was completed within 15 days after inoc-

ulation (DAI). Replication 1 was planted in the growth 

chamber in September 2016. Lesion lengths and hyper-

spectral images were collected at 3, 6, 12, and 15 DAI to 

study the earlier and then later time points post inocula-

tion. Replications 2–4 were planted together in Novem-

ber 2016. Lesion length ratings and data cubes were 

collected at 3, 6 and 9DAI in replications 2–4 focusing on 

the earlier disease development time points.
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Culture and inoculation of M. phaseolina

The pathogen M. phaseolina 2013X, originally collected 

from the field in Iowa in 2013, was re-isolated from 

inoculated stems of soybean plants grown in the growth 

chamber. Inoculation was performed 3  weeks (21  days) 

after planting of seeds. In order to prepare for inocula-

tion, cultures of M. phaseolina were started in the lab, 

17 days after planting (i.e. 4 days before inoculation). This 

culture preparation consisted of transferring 0.5 cm plugs 

of M. phaseolina to Potato Dextrose Agar (PDA) plates 

which were then stored in the dark at 30  °C for 4  days. 

Twenty-one days after planting, the four soybean geno-

types were inoculated according to the cut-stem inocu-

lation technique [22]. Sterile 200  µl pipette tips were 

placed open end down into the media around the leading 

edge of the fungal colony cutting a small disk of media 

and fungal hyphae from the plate. Each soybean stem 

was severed exactly 40  mm above the unifoliate node. 

A pipette tip was removed from the culture plate ensur-

ing that it carried a disk of PDA media + M. phaseolina 

mycelia for the inoculation treatment. The pipette tip was 

pushed onto the cut stem, like a hat, and the open wound 

imbedded in the media. The same protocol was carried 

out for the mock-inoculation treatment using uncontam-

inated plates of PDA media. Three days after inoculation, 

pipette tips were removed from all plants.

Hyperspectral image acquisition

Pika XC hyperspectral line scanning imager (Resonon, 

Bozeman, MT) was used to construct hyperspectral 

data cubes of soybean stems. The Pika XC imager has a 

spectral resolution of 2.5 nm, with 240 spectral channels 

covering a spectral range from 382 to 1032  nm. Hyper-

spectral images of healthy and charcoal rot infected stems 

were collected at different time points, as explained pre-

viously, for classification.

The imaging system also includes a mounting tower, 

linear translation stage, and a computer pre-loaded with 

SpectrononPro software (Resonon, Bozeman, MT). Illu-

mination was provided by two 70-watt quartz-tungsten-

halogen Illuminator lamps (ASD Inc., Boulder, CO) 

which provide stable illumination over a 350–2500  nm 

range. The distance between the lamps and the plant stem 

being imaged was 54 cm with lights pointed towards the 

sample at a 45-degree angle. Prior to imaging, the ASD 

pro-lamps were turned on and warmed up for at least 

20 min to produce a stable light source.

Using the SpectrononPro software interface, the cam-

era exposure was set automatically, and focus adjusted 

manually using a lens of f-number (ratio of focal length 

and diameter of a lens) of ƒ/1.4. The system was then 

calibrated to a white reference tile and a dark reference 

with the lens cap covering the objective lens. Aspect ratio 

was adjusted using a concentric circles sheet provided 

by Resonon. Data was captured with reflectance values 

between 0 and 1. Figure 1 shows the hyperspectral imag-

ing setup used in the study. The specimen was placed 

horizontally in the linear translator stage with the lesion 

on the right side.

Plant stems were destructively imaged at different 

time points after inoculation (3, 6, 9, 12 and 15 DAI). All 

leaves were removed from the plant stem and the stem 

severed at the soil surface immediately prior to hyper-

spectral data cube collection. Stems were placed on the 

linear translation stage for imaging. Growth patterns of 

stem lesions often resulted in irregular lesion boundaries. 

So, stems were positioned on the linear translation stage 

so that the longest edge of the lesion was facing the cam-

era lens. Following calibration, a data cube was collected 

from each stem. The hyperspectral data cubes and cor-

responding RGB images were saved on an external hard 

drive.

Charcoal rot rating protocol

In addition to stem images, disease progression was 

manually rated by measuring length (mm) of the exte-

rior lesion, interior lesion, and dead tissue lesion. The 

exterior lesion was clearly visible as a reddish-brown to 

black discoloration proceeding from the inoculated end 

of the stem. The interior lesion, a reddish-brown discol-

oration of the vascular tissue, progressed farther than 

the exterior reddish-brown lesion and was measured to 

the lowest point of the dark reddish continuous discol-

oration from the inoculated end of the stem. Tissue death 

was the last symptom to develop and as such, the dead 

tissue lesion was shorter than the interior and exterior 

lesions and was measured to the extent of the dry, dead 

plant tissue. Measurement protocol was designed based 

on Twizeyimana et  al., where charcoal rot lesion length 

was measured from the unifoliate node to the lowest 

edge of the lesion being measured [22]. Figure  2 shows 

the interior and exterior and dead tissue lesion lengths of 

an infected soybean stem.

Genetic algorithm‑support vector machine based feature 

selection

Problem definition

The identification of best waveband combination for 

maximally discriminating healthy and charcoal rot 

infected stems from a set of 240 wavebands was formu-

lated as an optimization problem. A genetic algorithm 

(GA) based optimization protocol using support vector 

machine (SVM) as a classifier was used to find the most 

optimal wavebands for designing a multispectral cam-

era system for phenotyping and disease identification. 

Spectral and spatial information from the hyperspectral 
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images were used for early identification and classifica-

tion of disease. The objective of the optimization was to 

find the best waveband combination that maximizes the 

classification performance (i.e. find the best k waveband 

combination that produces the best classification per-

formance when distinguishing between healthy and dis-

eased specimens). Figure  3 shows the flowchart of the 

GA-SVM architecture for waveband selection. MATLAB 

R2017a was used to implement the GA-SVM model.

Support vector machine

Support Vector Machine (SVM) is a kernel-based dis-

criminative supervised learning algorithm for classifi-

cation [51, 58]. SVM is one approach for constructing a 

classifier that maps an input data (of N waveband infor-

mation) to a class (healthy vs infected). SVM has been 

used with significant success in identification of variety of 

plant stresses [43, 59]. Formally, SVM projects data which 

are not separable linearly into a higher dimensional space 

Fig. 1 Illustration of the hyperspectral imaging setup for charcoal rot disease detection

Fig. 2 Charcoal rot disease ratings were obtained by measuring three different lesion elements of symptom development including the exterior 

lesion, dead tissue, and interior lesion length (mm)
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Fig. 3 GA-SVM architecture for selection of optimal bands
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using a kernel and separates the classes with an opti-

mal hyperplane that maximizes the margin between the 

classes [60]. In this study, we used Radial Basis Func-

tion (RBF) [61] kernel to learn the non-linear classifier. 

SVM has been used as a classifier in wrapper based fea-

ture selection methods for classification of hyperspectral 

images [49, 52, 54, 55, 62–65]. After trial and error, the 

two Radial Basis Function (RBF) kernel parameters C and 

γ were set to 1000 and 1, respectively.

Genetic algorithm

Genetic algorithms are population based stochastic 

search optimization techniques inspired by natural selec-

tion and natural genetics principles [66]. The population 

of candidate solutions (i.e. wavebands) is represented as 

a long string of bits and is called ‘chromosome’. Each of 

these chromosomes is assigned a score using a fitness 

function for evaluation [67]. In this case, the fitness func-

tion evaluates how well the chromosome (i.e. that par-

ticular selection of wavebands) performs to distinguish 

between diseased and healthy specimens. These chro-

mosomes are evolved in successive generations using 

selection, mutation and crossover genetic operators 

for exploring the solution space until a best solution is 

obtained, or termination criteria is encountered. Selec-

tion of chromosomes for reproduction can be done in 

diverse ways [68]. One of the ways is to choose the pair 

of chromosomes in the population that provides rela-

tively good fitness scores to perform crossover. Crossover 

operator randomly combines genetic information of two 

chromosomes. Mutation operator modifies some compo-

nent of a chromosome to form random new populations 

in the search space which prevents GA from choosing 

local optimal solutions. The “elite” is a GA hyperparam-

eter decides the number of most-fit individuals passed 

from one generation to the next generation without 

changing. This process of selection, mutation and cross-

over is repeated for multiple generations to improve the 

population fitness [66] (Fig. 3).

It is important to carefully choose a well-defined and 

appropriate fitness function. After exhaustive numeri-

cal tests and exploration, we chose the F1 score of the 

infected class as a useful tool to evaluate performance of 

the classifier. F1-score (Eq.  3) of the infected class have 

been used previously for evaluating plant disease classi-

fiers [69, 70]. Maximizing only precision (Eq. 1) or recall 

(Eq.  2) does not imply good classification performance 

[71]. F1 score is defined as harmonic mean of precision 

and recall values providing equal weightages to both 

precision and recall scores [72]. A good F1 score is also 

indicative of good classification performance. Equa-

tions 1, 2, and 3 provide the formulas for precision, recall, 

and F1 score metrics where TP is True Positive, FP is 

False Positive, and FN is False Negative. The value of F1 

score can vary from 0 to 1. A value of 1 and 0 is obtained 

for best and worst classification performance respec-

tively. We conduct a 10-fold cross-validation on the 

complete training data for evaluation of the SVM classi-

fier. The mean value of the 10 F1-scores from the 10-fold 

cross-validation was used as a fitness value for the GA. 

F1 score is a better metric over classification accuracy for 

measuring the classification performance of an imbal-

anced data, as classification accuracy is a biased metric 

which favors the class with more samples (healthy sam-

ples in our case) [57]. The objective of the GA was to find 

the best waveband combination that maximizes the F1 

score. Table 1 shows the variables of the confusion matrix 

to analyze the performance of the classification.

The termination criteria depend on the average change 

in fitness value for 50 continuous generations or the max-

imum number of generations allowed which were 100 in 

our study. The last generation of GA iteration will contain 

the most optimal solution.

We choose to augment the hyperspectral wavebands 

with some visible spectrum (RGB information). We do 

this since RGB cameras are inexpensive, light weight, 

and can be attached to drones easily for capturing 

images. Therefore, the input feature to the SVM classi-

fier consists of a fixed part and variable part. The mean 

values of reflectance from three wavelengths 475.56 nm, 

548.91  nm and 652.14  nm representing red, green and 

blue colors respectively were used as fixed part of the 

input feature. The variable part of the input feature was 

chosen by the GA. The input chromosome comprises of 

bits each representing one of the total 240 wavebands of 

the input hyperspectral image. The number of bits in a 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F1 Score =
2 ∗ Precision ∗ Recall

(Precision + Recall)

Table 1 Confusion matrix definition

Infected (Predicted) Healthy (Predicted)

Infected (Actual) True Positive (TP) False Negative (FN)

Healthy (Actual) False Positive (FP) True Negative (TN)
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chromosome is equal to the total number of wavebands 

to be selected by the GA. The number of bits chosen 

were 3 in our study. In total, the input features consisted 

of six wavelengths, including RGB and the wavelengths 

selected by the GA. Binary tournament [68], Laplace 

[73], and power methods [74] were used for selection, 

crossover and mutation respectively. Table 2 provides the 

implementation details of the GA.

Data pre‑processing

The dataset contains 111 hyperspectral images of size 

500 × 1600 × 240 pixels. Replications 1–4 provided 39, 

24, 24, and 24 data cubes respectively. Data cubes from 

each replication were distributed among the training and 

testing datasets. Seventy-two hyperspectral images were 

used for training and 39 hyperspectral images were used 

for testing. The training set had 35 data cubes of healthy 

stems and 37 data cubes of diseased stems. The testing 

set had 21 data cubes of healthy stems and 18 data cubes 

of diseased stems. Since the number of test data was 

small, to increase the amount of data for developing the 

model and for prediction of disease progression to get 

a better understanding of severity of the disease spread, 

each of the hyperspectral stem images was divided into 

patches of size 500 × 64 × 240 pixels for training and test-

ing purpose [75] (Fig. 5). The healthy (mock-inoculated) 

and diseased (inoculated) samples allowed for testing and 

training for classification of diseased compared to healthy 

tissue. Training data was labeled using ground truth data 

of the measured interior lesion length (mm). A sum-

mary of the ground truth data for interior lesion length 

as well as the exterior and dead tissue lesion lengths can 

be seen in Table 3. The interior lesion length, measured 

in mm on the interior of the stem, was used for ground 

truth labelling of the image patches. Time points 3 and 

6 each contain 4 replications while time point 9 contains 

3 replications. The decrease in sample numbers in 3 DAI 

interior and dead lesions lengths as well as 9 DAI exterior 

lesion length are a result of missing data points caused 

during data transfer. A stem is determined as infected if 

at least one of the image patches of the stem is predicted 

as infected.

Results and discussion

Spectral reflectance

Figure  4 shows an example of mean reflectance curves 

of healthy and infected samples at various stages. The 

mean reflectance value of a wavelength is obtained by 

spatially (500 × 1600) averaging the reflectance values in 

that wavelength. It is seen that the maximum reflectance 

value of infected samples is less than the healthy sample 

and the trends of all infected samples looks similar. The 

reflectance value decreases as the severity of the charcoal 

rot disease increases.

Feature selection

The number of wavebands used for classification were 

reduced from 240 to 6 using our GA-SVM model. 

475.56(B), 548.91(G), 652.14(R), 516.31, 720.05, 915.64 

(wavelengths in nm) are the maximally effective 6 wave-

band combinations selected by the GA-SVM model 

including RGB wavebands. The confusion matrices for 

the RGB wavelengths and selected wavelength combina-

tion are shown in Table 4. Table 5 shows the comparison 

of binary classification for the RGB and selected wave-

lengths. The F1 score of the infected class and overall 

classification accuracy were 0.769 and 76.92% respec-

tively using only RGB wavelengths whereas classification 

accuracy of 97% and F1-score of 0.97 for 39 test stems 

were obtained using the selected 6 waveband combina-

tions of GA.

The RGB wavelengths alone did not perform well, 

which might be because of their inability to differenti-

ate between the reflectance values of a healthy stem and 

charcoal rot infected stem. The classification accuracy 

and F1 score of the selected 6 waveband combinations 

indicate that they were good at distinguishing between 

healthy and charcoal rot infected samples.

Early disease detection for 3‑DAI samples

The ability to detect disease early is very important for 

mitigation. Among 39 test stems, 11 were collected at 

3-DAI. Out of 11, 6 represent healthy stems and 5 were 

infected. The binary classification results for 3-DAI sam-

ples are shown in Table  6. The classification accuracy 

and F1-score were 81.82% and 0.83 respectively using 

RGB wavelengths whereas the classification accuracy 

and F1 score were 90.91 and 0.90 respectively using the 

Table 2 Implementation details of genetic algorithm

Parameters

Number of genetic algorithm 
iterations

5

Population 100

Maximum number of generations 100

Crossover probability 0.8

Elite count 2

Mutation probability 0.2

Selection Binary selection tournament

Crossover Laplace crossover

Mutation Power mutation

Stopping criteria Average change in best fitness value 
is less than  10−6 for 50 generations 
or number of generations = 100
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6 waveband combinations. These results indicate that the 

specific wavelengths chosen in the six waveband combi-

nations are responsive to disease symptoms even at the 

early stage of infections.

Disease length prediction

Identification of charcoal disease length progression is 

important for understanding the severity of the disease 

and helpful in understanding the resistance of various 

soybean genotypes to the disease. Figure 5 shows the pre-

dictions for each patch in an inoculated stem.

The total disease length is the distance from the inocu-

lation point to the end of the farthest patch which was 

predicted as infected from the inoculation point. The 

total predicted disease length could be calculated by 

summing the length of the number of patches in one stem 

data cube classified as diseased. The predicted disease 

lengths for 39 test stems are shown in Fig. 6. The disease 

Table 3 Mean and standard error of the mean for lesion length

The lesion length measurements are from the three earliest time points of lesion rating [3, 6 and 9 days after inoculation (DAI)]. Due to the destructive nature of data 

collection individual lesion progression could not be tracked past the date of imaging. Because of the destructive nature as well as variability in samples, and the 

expected trend of lesion length increasing over time is not always observed

Trait Time point Genotype Number of samples Mean (mm) Standard 
error mean

Exterior lesion length 3 DAI DT97-4290 4 31.5 8.5

Pharoah 4 28.0 4.7

PI189958 4 25.5 4.5

PI479719 4 18.0 3.7

6 DAI DT97-4290 4 31.0 7.1

Pharoah 4 28.5 4.4

PI189958 4 28.5 2.5

PI479719 4 22.8 2.3

9 DAI DT97-4290 3 34.3 6.2

Pharoah 3 39.7 5.8

PI189958 2 20.0 1.0

PI479719 3 36.0 4.0

Interior lesion length 3 DAI DT97-4290 4 29.0 7.0

Pharoah 4 35.0 2.1

PI189958 4 30.0 3.0

PI479719 3 46.0 9.6

6 DAI DT97-4290 4 37.5 6.3

Pharoah 4 49.8 9.5

PI189958 4 34.3 3.6

PI479719 4 26.5 6.8

9 DAI DT97-4290 3 68.3 12.3

Pharoah 3 61.0 10.7

PI189958 3 41.0 2.5

PI479719 3 66.3 12.4

Dead lesion length 3 DAI DT97-4290 4 17.3 6.6

Pharoah 4 20.3 5.5

PI189958 4 18.3 2.5

PI479719 3 23.3 0.9

6 DAI DT97-4290 4 25.0 6.4

Pharoah 4 22.8 5.0

PI189958 4 16.0 1.8

PI479719 4 16.8 3.0

9 DAI DT97-4290 3 32.3 5.7

Pharoah 3 32.3 4.9

PI189958 3 12.0 4.6

PI479719 3 28.7 5.2
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length prediction for stem number 30 was incorrect due 

to misclassification of a patch at the end of the stem. For 

other stem samples, the predicted disease lengths were 

equal or proportional to the interior lesion length.

Conclusions

Hyperspectral images of four different soybean geno-

types (two susceptible and two moderately resistant), half 

healthy and half infected with charcoal rot disease were 

collected at 5 different time points post infection. The 

main objectives of this study were to identify the most 

effective minimal number of wavebands from a set of 

240 hyperspectral wavebands that are required for iden-

tification of charcoal rot disease and to analyze the per-

formance of these wavebands in early detection of the 

disease.

The study used both spectral and spatial information 

(mean value of reflectance from different wavelengths) 

for disease identification. Due to imbalanced dataset of 

healthy and infected stems used in our study, the SVM 

classification performance which was optimized using 

GA for optimal waveband selection was evaluated for 

maximizing the F1 score value of the infected class 

instead of overall classification accuracy.

An effective six waveband combination for discrimina-

tion of healthy and charcoal rot infected stems was found. 

Early identification of charcoal rot disease at 3 days after 

inoculation was possible using the selected waveband 

combinations. The GA-SVM model obtained F1-score of 

0.97 and classification accuracy of 97% using selected 6 

hyperspectral waveband combinations for complete test 

data (samples from 3, 6, 9, 12 and 15 DAI). These results 

were 26.1% better than those obtained using only the 

visible RGB wavelengths highlighting the importance of 

including the additional non-visible wavelengths for dis-

ease detection. The F1-score and classification accuracy 

for early detection (3-DAI samples) samples were 0.90 

and 90.91% respectively using the selected 6 wavebands. 

Fig. 4 Mean spectral reflectance curves of healthy and infected 

stems

Table 4 Confusion matrix of  test samples from  3, 6, 9, 12 

and 15 DAI

Waveband combination Confusion matrix

3 (RGB) TP = 17 FP = 8

FN = 1 TN = 13

6 TP = 18 FP = 1

FN = 0 TN = 20

Table 5 Classification results of test samples from 3, 6, 9, 12 and 15 DAI

**Per class accuracy (%)

Waveband 
combination

Precision Recall F1‑score Healthy** Infected** Overall 
accuracy 
(%)

3 (RGB) 0.68 0.94 0.79 92.85 68 76.92

6 0.94 1 0.97 100 94 97

Table 6 Classification results for 3-DAI samples

**Per class accuracy (%)

Waveband 
combination

Confusion matrix Precision Recall F1 Healthy** Infected** Overall 
accuracy 
(%)

3(RGB) TP = 5 FP = 2 0.71 1 0.83 100 71.43 81.82

FN = 0 TN = 4

6 TP = 5 FP = 1 0.83 1 0.90 100 83.33 90.91

FN = 0 TN = 5
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Two out of the three wavelengths selected (720.05  nm, 

915.64  nm) along with the RGB wavebands in the six 

waveband combinations were selected in the near-infra-

red region and one was selected in the visible region 

(516.31  nm) indicating that both near infrared region 

and visible region were useful in early identification of 

charcoal rot disease. This relationship between the stem 

reflectances and charcoal rot disease is along the lines of 

the results of a previous study [34]. Genotypes with sus-

ceptible and moderately resistant responses to charcoal 

rot were used in this study. The length of disease progres-

sion (mm) in each stem was measured to understand the 

severity of the disease spread among different genotypes. 

Using hyperspectral imaging combined with GA-SVM 

enabled waveband selection resulting in a higher classi-

fication accuracy compared to visible wavelengths alone. 

Fig. 5 Prediction of stem patches by selected optimal wavelengths

Fig. 6 Actual disease progression length (mm) compared to predicted disease progression length based on patch wise classification results
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However, this study focused on indoor imaging so future 

work should utilize field inoculations and evaluations to 

expand this technology into the field. Furthermore, field 

inoculations of diverse soybean genotypes will be imaged 

using a multispectral camera with the selected wave-

bands from the GA-SVM model for early identification 

of charcoal rot disease to understand the disease resist-

ance of specific genotypes. Also, the length of disease 

progression in different genotypes will be studied with 

larger sample size to characterize their disease resistance. 

In conclusion, this study provides an efficient method-

ology for selecting the most effective wavebands from 

hyperspectral data to be used for early disease detection 

of charcoal rot in soybean stems.
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