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ABSTRACT:

Accurate classification of hyperspectral data is still a competitive task and new classification methods are developed to achieve desired
tasks of hyperspectral data use. The objective of this paperis to develop a new method for hyperspectral data classification ensuring
the classification model properties like transferability,generalization, probabilistic interpretation, etc. While factor graphs (undirected
graphical models) are unfortunately not widely employed inremote sensing tasks, these models possess important properties such as
representation of complex systems to model estimation/decision making tasks.
In this paper we present a new method for hyperspectral data classification using factor graphs. Factor graph (a bipartite graph consisting
of variables and factor vertices) allows factorization of amore complex function leading to definition of variables (employed to store
input data), latent variables (allow to bridge abstract class to data), and factors (defining prior probabilities for spectral features and
abstract classes; input data mapping to spectral features mixture and further bridging of the mixture to an abstract class). Latent
variables play an important role by defining two-level mapping of the input spectral features to a class. Configuration (learning) on
training data of the model allows calculating a parameter set for the model to bridge the input data to a class.
The classification algorithm is as follows. Spectral bands are separately pre-processed (unsupervised clustering is used) to be defined
on a finite domain (alphabet) leading to a representation of the data on multinomial distribution. The represented hyperspectral data
is used as input evidence (evidence vector is selected pixelwise) in a configured factor graph and an inference is run resulting in the
posterior probability. Variational inference (Mean field)allows to obtain plausible results with a low calculation time. Calculating the
posterior probability for each class and comparison of the probabilities leads to classification. Since the factor graphs operate on input
data represented on an alphabet (the represented data transferred into multinomial distribution) the number of training samples can be
relatively low.
Classification assessment on Salinas hyperspectral data benchmark allows to obtain a competitive accuracy of classification. Employ-
ment of training data consisting of 20 randomly selected points for a class allows to obtain the overall classification accuracy equal
to 85.32% and Kappa equal to 0.8358. Representation of inputdata on a finite domain discards the curse of dimensionality problem
allowing to use large hyperspectral data with a moderately high number of bands.

1 INTRODUCTION

Development of new methods for single/multisensory data clas-
sification leads to an improvement of the data classificationand
a more precise identification of land-cover classes. Nevertheless,
requirements on the methods such as transferability, integration
into complex systems, or augmenting ability motivate an employ-
ment of probabilistic graphical models [Bishop, 2006]. Applica-
tion of probabilistic graphical models becomes more and more
popular and efficient solution for image annotation, classification,
for definition of semantic link between data and a high level la-
bels [Lienou et al., 2010], [Bratasanu et al., 2011], [Wang et al.,
2009].

Factor graphs (FG) were proposed in 1997 [Kschischang et al.,
2001] and since then the application of FGs for signal/image
processing and recognition is gradually emerging. B. Frey et
al. [Frey and Jojic, 2005] performed a work on a comparison of
learning and inference methods for probabilistic graphical mod-
els (Bayesian networks, Markov random fields, factor graphs).
Factor graph is a convenient tool to define complex systems for
data processing/interpretation, to expand the systems, allow to
model complex interactions among a system parts (e.g. map fea-
tures/properties from low to high level), to perform approximate
inference on data, or use non full data for plausible decision mak-
ing. Nevertheless, application of factor graphs as a more general

graphical model type is not so wide for remotely sensed data in-
terpretation.

In this paper a new approach for hyperspectral imagery super-
vised classification using factor graph is proposed. The structure
of the factor graph is defined in order to define prior probabilities
for input data, to map the input data to a latent variable (a mixture
of the input features) and bridge the mixture to a semantic class.
A configuration of the factor graph on training data allows toes-
timate the parameter set of the graph (probabilistic functions in
the factors) and an employment of a fast inference method (Mean
field [Frey and Jojic, 2005]) allows to obtain a competitive accu-
racy of the hyperspectral data classification.

2 FACTOR GRAPH MODEL FOR CLASSIFICATION

Factor graph (undirected probabilistic model) is a more general
graphical model than a Bayesian network or a Markov random
field. An FG possesses properties of Bayesian network and Markov
random field and allows to describe complex relationships among
parts of a modeled system. A factor graph is a bipartite graph
containing two types of nodes: variable nodes (xi, i = 1..n) and
function nodes (factors) (fj(x1, x2, . . . , xn), j = 1..m), where
a variable nodexi takes value on a finite domain (alphabetAi)
[Kschischang et al., 2001]. Figure 1 presents an example of



a factor graph with three variablesx1, x2, x3 and two function
nodesf1 andf2 with factorization:g(x1, x2, x3) = f1(x1, x2)∗
f2(x2, x3).

Figure 1: An illustrative example of simple factor graph with
three variablesx1, x2, x3 and two function nodesf1(x1, x2) and
f2(x2, x3).

The task of classification consists of determining the probability
of a particular hypothesis given some observed evidence. This is
solved by calculation of marginal probability of a latent variable,
or by calculating of the maximum likelihood probability (max-
imum likelihood on the configured factor graph given the evi-
dence). The likelihood of the evidence (the features vector) can
be written as follows:

p(x, c|sk) =
K∏

k=1

N∏

n=1

p(xn|ck)p(ck|sk), (1)

wherex is the input evidence;sk is the class;ck is the features
mixture (a latent variable);K is the number of classes;N is the
number of features in the input evidence vector. Here, the feature
is assumed to be a spectral band value.

The following factor graph structure can be defined for formula
(1):

Figure 2: Factor graph model (independent model; a mixture la-
tent variable is employed) for hyperspectral data classification

The factor graph is described as:

g(x1, x2, . . . , xN , ck, ss) =

N∏

n=1

zn(xn)

N∏

n=1

fn(xn, ck)

fc−s(ck, sk)zs(sk),

(2)

wherexn is then-th input feature;ck is the features mixture (a
latent variable) for thek-th class;sk is thek-th class number;
z1, . . . , zN , zs are normalizing factors in the graph model [Frey
and Jojic, 2005] (define prior probabilities);f1, . . . , fN are the
factors mapping the input features to the feature mixture;fc−s is
the factor bridging the latent variable to the semantic classsk.

The structure of a factor graph defines a dependency of class vari-
able node on input features. Use of training data allows to calcu-
late a configuration (parameter setθ(k)) for a factor graph for
each classk.

A configured factor graph with the configurationθ(k) is expected
to have a maximum likelihood probability (a low energy state) on

the evidence which most likely (similar) to the employed training
data. Expectation maximization method with gradient ascent op-
timizer are employed for learning the graph configuration. Mean
field inference method [Frey and Jojic, 2005] is employed forthe
inference. Comparison of the classes probability maps (maxi-
mum principle) allows to produce label map.

2.1 Employed data

Salinas hyperspectral data benchmark (AVIRIS sensor over Sali-
nas Valley, California; 3.7 m pixel size) is selected for classifi-
cation accuracy evaluation. The data cube size is 512 lines by
217 samples, 224 bands. 19 water absorption bands were dis-
carded (bands [108-112] and [154-167]) This image is available
as at-sensor radiance data. Ground truth classes and the number
of samples are given in Table 1.

Minimum noise fraction (MNF) [Green et al., 1988, Boardman
and Kruse, 194] is employed to reduce the number of input fea-
tures, reduce computational time, and separate noise from the
data. The MNF consists of two Principal Components (PC) trans-
formations. The first PC transformation decorrelates and rescales
noise in the data, the second PC transformation performed onthe
noise-cleared data.

Since factor graphs are discrete graphical models, the feature is
to be represented on a predefined finite domain (alphabet). The
finite domain refers to the unique values (or a list of values)the
feature can have. Here we use a finite domain consisting of nat-
ural numbers. To represent an input feature on the finite domain,
the feature is proposed to be processed separately by an unsu-
pervised clustering. A cluster’s number is assumed as the value
from the defined domain.k-means procedure is employed and the
number of clusters for feature representation on finite set is equal
to 100 (used for representation of all features). In an additional
experiment, the features before representation are processed by
median filtering.

20 points were randomly selected for each class in order to con-
figure the factor graph. Expectation maximization with a gradient
ascent method were employed for the factor graph configuration.

Table 1: Salinas hyperspectral benchmark classes (available
ground truth samples)

Number Class Samples

1 Brocoli greenweeds1 2009
2 Brocoli greenweeds2 3726
3 Fallow 1976
4 Fallow roughplow 1394
5 Stubble 3959
6 Celery 3579
7 Grapesuntrained 11271
8 Soil vinyard develop 6203
9 Corn senescedgreenweeds 3278
10 Lettuceromaine4wk 1068
11 Lettuceromaine5wk 1927
12 Lettuceromaine6wk 916
13 Lettuceromaine7wk 1070
14 Vinyard untrained 7268
15 Fallow smooth 2678
16 Vinyard vertical trellis 1807

3 RESULTS AND DISCUSSION

Table 2 presents the overall accuracy and Kappa coefficient for
the classification. The additional experiment with featuremedian
filtering allowed to obtain a better classification accuracyresults
(overall accuracy=85.3217 and Kappa=0.8358 versus 81.3692 and
0.7921, respectively; compare confusion Tables 3 and 4). Most
of the classes were labeled with an accuracy more than 90%,



except several most difficult classes (these classes are usually
hard to label and are mainly confused, see Tables 3 and 4). The
classes 7 (Grapesuntrained) and 14 (Vinyarduntrained) illus-
trate the highest confusion with classification accuraciesequal
to 68.79% and 65.05% (Table 4), respectively. Classes 11 (Let-
tuce romaine5wk) and 8 (Soilvinyard develop), also class 13
(Lettuceromaine7wk) and 12 (Lettuceromaine6wk) and 11 (Let-
tuce romaine5wk) are less confused.

Median filtering reduced the influence of the outlier samplesin
the input data for classification. Confusion among classes is re-
duced and a better labeling is reached. MNF data preprocessing
allows to reduce the time of calculation with a competitive clas-
sification accuracy. On full bands set data a better classification
accuracy is expected to be obtained.

Approximate inference methods should be employed for the like-
lihood probability computation. Approximate inference allows to
calculate decisions with the accuracy comparable to the results of
full propagation methods but with a high reduction of run time.
In this work Mean Field approximate inference method is em-
ployed. Factor graph allows to perform an inference for one class
(to produce a probability map) leading to an application of mate-
rial detection in hyperspectral data.

Among disadvantages we can note that probabilistic models re-
quire computational time higher than many classification meth-
ods, since inference in each point of input data is performed.
Also maximum principle on the likelihood probability maps (per-
formed to obtain class label map) can be a source of misclassifi-
cation.

Table 2: The accuracy of salinas benchmark classification using
the FG (MNF 20 features, alphabet size: 100). Additional ex-
periment with feature median filtering is also presented. OVA –
overall accuracy, Kappa – Cohen’s Kappa

Method OVA, % Kappa
FG 81.3692 0.7921
FG (Median5× 5) 85.3217 0.8358

(a) (b) (c)

Figure 3: Classification maps for Salinas benchmark using factor
graphs: (a) MNF, 20 features, alphabet size: 100, (b) MNF, 20
features, median filtering5 × 5, alphabet size: 100, (c) ground
truth label map

4 CONCLUSIONS

The paper presents another successful area of factor graphsap-
plication: hyperspectral data classification. A relatively simple

structure of the FG allows to reach a competitive accuracy of
classification even on data with decreased radiometric range (rep-
resented on the alphabet). An important property of factor graph
classification is that the method requires a relatively low number
of training samples (only 20 points for a class). Separate process-
ing of input features (spectral bands) and employment of thepre-
sented data fusion and classification model is not influencedby
the limitations of data dimensionality (i.e. there is no thecurse of
dimensionality). Classification on full data (all spectralbands) is
possible to run (comparing to MNF features) and will take more
computational time.
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Table 3: Confusion matrix of the FG classification on Salinasbenchmark (MNF 20 features, alphabet size: 100). Overall accu-
racy=81.3692, Kappa=0.7921 Percentages are given for an easier interpretation.

Ground truth, see Table 1
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 98.36 0.48 0.00 0.00 0.03 0.06 0.13 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
2 1.14 96.54 0.00 0.00 0.00 0.00 0.15 0.00 0.34 0.00 0.00 0.00 0.00 0.01 0.00
3 0.00 0.05 87.96 1.51 0.38 0.11 0.90 0.56 1.07 0.28 1.19 0.00 0.00 0.34 0.78
4 0.00 0.00 0.35 94.62 0.03 0.00 0.20 0.02 0.12 0.19 0.42 0.00 0.00 0.07 2.43
5 0.20 0.03 0.00 0.00 96.36 0.00 0.09 0.02 0.15 0.09 0.47 0.00 0.00 0.01 0.15
6 0.05 1.58 0.00 0.14 0.08 99.58 0.52 0.10 0.12 0.28 0.05 0.00 0.47 0.26 0.11
7 0.15 0.03 0.30 0.00 0.20 0.03 58.73 0.32 0.24 0.28 0.99 0.00 0.09 35.84 0.00
8 0.05 0.05 0.46 0.22 0.33 0.06 1.61 95.70 2.10 3.56 14.58 0.33 0.09 1.33 0.07
9 0.00 0.03 0.15 0.22 0.20 0.03 2.32 0.55 91.00 2.06 3.94 0.00 1.31 1.31 0.11
10 0.00 0.21 0.10 0.00 0.00 0.03 0.02 0.05 1.80 91.29 3.79 0.00 0.37 0.01 0.04
11 0.05 0.05 0.05 0.00 0.51 0.00 1.54 1.79 0.98 1.31 70.37 3.93 2.06 0.39 0.00
12 0.00 0.21 0.00 0.00 0.03 0.00 0.31 0.03 0.18 0.28 1.76 93.45 7.57 0.03 0.00
13 0.00 0.30 0.00 0.00 0.08 0.00 0.03 0.00 0.46 0.00 0.05 1.97 86.54 0.00 0.22
14 0.00 0.38 0.71 0.07 0.91 0.11 32.80 0.77 1.19 0.37 2.18 0.33 1.31 59.87 0.37
15 0.00 0.05 9.92 3.23 0.88 0.00 0.64 0.10 0.21 0.00 0.21 0.00 0.19 0.52 95.71

Table 4: Confusion matrix of the FG classification on Salinasbenchmark (MNF 20 features, alphabet size: 100, feature median5 × 5
filtering). Overall accuracy=85.3217, Kappa=0.8358 Percentages are given for an easier interpretation.

Ground truth, see Table 1
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 98.90 0.81 0.00 0.00 0.10 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00
2 0.25 96.81 0.00 0.00 0.10 0.00 0.31 0.02 0.85 0.00 0.00 0.00 0.09 0.11 0.00
3 0.00 0.05 98.38 0.43 0.66 0.14 0.48 0.16 1.34 0.19 0.16 0.00 0.09 0.15 0.56
4 0.00 0.03 0.00 96.99 0.00 0.06 0.07 0.00 0.06 0.00 0.00 0.00 0.00 0.10 2.05
5 0.40 0.43 0.00 0.00 94.04 0.00 0.02 0.19 0.09 0.37 1.19 0.00 0.09 0.04 0.00
6 0.05 0.56 0.00 0.00 0.05 99.66 0.78 0.34 0.18 0.00 0.10 0.00 1.03 0.37 0.34
7 0.30 0.59 0.05 0.36 1.11 0.00 68.79 0.77 0.49 0.19 1.09 0.00 0.37 32.47 0.04
8 0.00 0.16 0.10 0.50 0.48 0.03 1.46 96.08 0.92 1.31 10.33 0.00 0.28 1.28 0.00
9 0.00 0.00 0.10 0.00 0.08 0.03 1.49 0.11 91.79 0.37 0.62 0.00 0.65 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.58 96.25 1.19 0.00 0.00 0.00 0.00
11 0.00 0.21 0.00 0.00 0.91 0.03 0.83 0.98 1.37 0.47 83.60 3.38 4.86 0.14 0.00
12 0.00 0.21 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 96.07 7.66 0.00 0.00
13 0.00 0.08 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.55 84.49 0.00 0.26
14 0.10 0.05 0.05 0.29 1.67 0.06 25.24 1.34 2.23 0.84 1.66 0.00 0.09 65.05 0.07
15 0.00 0.00 1.32 1.43 0.78 0.00 0.24 0.00 0.06 0.00 0.00 0.00 0.09 0.29 96.68


