HYPERSPECTRAL DATA CLASSIFICATION USING FACTOR GRAPHS

Aliaksei Makarau, Rupert Miller, Gintautas Palubinskas, and Peter Reinartz

German Aerospace Center (DLR)
German Remote Sensing Data Center (DFD) bzw. Remote Sefsdmgology Institute (IMF)
82234 Oberpfaffenhofen, Germany
{aliaksei.makarau, rupert.mueller, gintautas.palulgissketer.reinarfz@dir.de

Commission VII/3

KEY WORDS: Hyperspectral, Classification, Training, Reference Data

ABSTRACT:

Accurate classification of hyperspectral data is still a petitive task and new classification methods are develapedtieve desired
tasks of hyperspectral data use. The objective of this papgerdevelop a new method for hyperspectral data classdicansuring
the classification model properties like transferabiligneralization, probabilistic interpretation, etc. Véhéctor graphs (undirected
graphical models) are unfortunately not widely employedeimote sensing tasks, these models possess importantt@sseich as
representation of complex systems to model estimatiorgidecmaking tasks.

In this paper we present a new method for hyperspectral tatsification using factor graphs. Factor graph (a bigagtiaph consisting
of variables and factor vertices) allows factorization ahare complex function leading to definition of variables fgoyed to store
input data), latent variables (allow to bridge abstracssle data), and factors (defining prior probabilities foecpal features and
abstract classes; input data mapping to spectral featupasrsand further bridging of the mixture to an abstractss)a Latent
variables play an important role by defining two-level maygpof the input spectral features to a class. Configuratiearing) on
training data of the model allows calculating a parametefasehe model to bridge the input data to a class.

The classification algorithm is as follows. Spectral bandssgparately pre-processed (unsupervised clusterirged) to be defined
on a finite domain (alphabet) leading to a representatiohefiata on multinomial distribution. The represented hgjpectral data
is used as input evidence (evidence vector is selectedys@)l in a configured factor graph and an inference is runltiegun the
posterior probability. Variational inference (Mean fietdlows to obtain plausible results with a low calculatiaméi. Calculating the
posterior probability for each class and comparison of tiobabilities leads to classification. Since the factor bsapperate on input
data represented on an alphabet (the represented daf@tradsnto multinomial distribution) the number of traigi samples can be
relatively low.

Classification assessment on Salinas hyperspectral datarpark allows to obtain a competitive accuracy of classifin. Employ-
ment of training data consisting of 20 randomly selectechtsdior a class allows to obtain the overall classificatiocuaacy equal
to 85.32% and Kappa equal to 0.8358. Representation of igaton a finite domain discards the curse of dimensionatiilpm
allowing to use large hyperspectral data with a moderatiglly humber of bands.

1 INTRODUCTION graphical model type is not so wide for remotely sensed data i
terpretation.

Development of new methods for single/multisensory daaa-cl
sification leads to an improvement of the data classificadimh  In this paper a new approach for hyperspectral imagery super
a more precise identification of land-cover classes. Neetess,  Vised classification using factor graph is proposed. Thegire
requirements on the methods such as transferability, riatieg of the factor graph is defined in order to define prior prolitéd
into complex systems, or augmenting ability motivate anlesap  for input data, to map the input data to a latent variable ¢aumé
ment of probabilistic graphical models [Bishop, 2006]. App-  of the input features) and bridge the mixture to a semangisc|
tion of probabilistic graphical models becomes more andemor A configuration of the factor graph on training data allowse
popular and efficient solution for image annotation, ckxsaion,  timate the parameter set of the graph (probabilistic fumstiin
for definition of semantic link between data and a high leael | the factors) and an employment of a fast inference methoduiMe
bels [Lienou et al., 2010], [Bratasanu et al., 2011], [Wanhgle  field [Frey and Jojic, 2005]) allows to obtain a competitivea
20009]. racy of the hyperspectral data classification.

Factor graphs (FG) were proposed in 1997 [Kschischang ,et al.

2001] and since then the application of FGs for signallimage 2 FACTOR GRAPH MODEL FOR CLASSIFICATION
processing and recognition is gradually emerging. B. Fitey e

al. [Frey and Jojic, 2005] performed a work on a comparison ofFactor graph (undirected probabilistic model) is a moreegain
learning and inference methods for probabilistic graghicad- graphical model than a Bayesian network or a Markov random
els (Bayesian networks, Markov random fields, factor graphs field. An FG possesses properties of Bayesian network ankdvar
Factor graph is a convenient tool to define complex systems forandom field and allows to describe complex relationshipsragm
data processing/interpretation, to expand the systertty ab parts of a modeled system. A factor graph is a bipartite graph
model complex interactions among a system parts (e.g. naap fe containing two types of nodes: variable nodes { = 1..n) and
tures/properties from low to high level), to perform appnoate  function nodes (factors)f((z1, z2,...,zn),j = 1..m), where
inference on data, or use non full data for plausible degisiak-  a variable noder; takes value on a finite domain (alphabg)

ing. Nevertheless, application of factor graphs as a monergé  [Kschischang et al., 2001]. Figure 1 presents an example of



a factor graph with three variablas, =2, x3 and two function the evidence which most likely (similar) to the employedrtirag

nodesf; and f2 with factorization:g(x1, z2, z3) = fi(z1, z2) * data. Expectation maximization method with gradient asopn

fa(z2, z3). timizer are employed for learning the graph configuratiormakl

e field inference method [Frey and Jojic, 2005] is employedtier

‘ v inference. Comparison of the classes probability maps itmax
mum principle) allows to produce label map.

2.1 Employed data

Salinas hyperspectral data benchmark (AVIRIS sensor oaér S

N 2 nas Valley, California; 3.7 m pixel size) is selected forssiéi-
777777777777 cation accuracy evaluation. The data cube size is 512 liges b

Figure 1: An illustrative example of simple factor graphtwit 217 samples, 224 bands. 19 water absorption bands were dis-

three variables, 2, z3 and two function nodeg; (1, z2) and ~ carded (bands [108-112] and [154-167]) This image is avtla

fa(z2, x3). as at-sensor radiance data. Ground truth classes and tHeenum

of samples are given in Table 1.

The task of classification consists of determining the plodita Minimum noise fraction (MNF) [Green et al., 1988, Boardman
of a particular hypothesis given some observed evidence.i¥h and Kruse, 194] is employed to reduce the number of input fea-
solved by calculation of marginal probability of a latentiable,  tures, reduce computational time, and separate noise fnem t
or by calculating of the maximum likelihood probability (ma  data. The MNF consists of two Principal Components (PC)tran
imum likelihood on the configured factor graph given the evi- formations. The first PC transformation decorrelates ascales
dence). The likelihood of the evidence (the features v@ctam  noise in the data, the second PC transformation performeiieon
be written as follows: noise-cleared data.

X N Since factor graphs are discrete graphical models, tharfea
to be represented on a predefined finite domain (alphabes. Th
p(@, clsi) = U U p(@nler)p(cilsk) @ finite do‘:nain refers to thpe unique values (or a Iist(ofpvalubz)
T feature can have. Here we use a finite domain consisting ef nat
wherex is the input evidences, is the classyy is the features g numbers. To represent an input feature on the finite dgma
mixture (a latent variable) is the number of classed] isthe e feature is proposed to be processed separately by an unsu
pumber of features in the input evidence vector. Here, thiife pervised clustering. A cluster's number is assumed as the va
is assumed to be a spectral band value. from the defined domairk-means procedure is employed and the
; ' number of clusters for feature representation on finitessetjual
IB? following factor graph structure can be defined for folanu to 100 (used for representation of all features). In an &t
experiment, the features before representation are [medds/
median filtering.

20 points were randomly selected for each class in orderrie co
figure the factor graph. Expectation maximization with adggat
ascent method were employed for the factor graph configurati

Table 1: Salinas hyperspectral benchmark classes (alailab

ground truth samples)
Figure 2: Factor graph model (independent model; a mixawe | [Number] Class [ Sampleg

tent variable is employed) for hyperspectral data clasgifia 1 Brocoli_greenweedsl 2009
2 Brocoli_greenweeds2 3726

3 Fallow 1976

The factor graph is described as: 4 Fallow.rough.plow 1394
5 Stubble 3959

6 Celery 3579

7 Grapesuntrained 11271

g(w1,22,..., 2N, Ck, 85) H Zn(Tn) H Jn(zn, cx) @) 8 Soilvinyard develop 6203
n=1 9 Cornsenescedreenweeds| 3278

Jelon )50, e |
wherez,, is then-th input featureg;, is the features mixture (a = Letuceromaneduk | o
latent variable) for the-th class;sy is the k-th class number; 14 Vinyard_untrained 7268
z1,...,2N, zs are normalizing factors in the graph model [Frey 15 Fallow_smooth 2678
and Jojic, 2005] (define prior probabilities}i, .. ., fx are the 16 Vinyard.verticaltrellis | 1807
factors mapping the input features to the feature mixtyire; is
the factor bridging the latent variable to the semanticscéas 3 RESULTS AND DISCUSSION

The structure of a factor graph defines a dependency of daiss v .
able node on input features. Use of training data allowslmiea 1able 2 presents the overall accuracy and Kappa coefficznt f

late a configuration (parameter sktk)) for a factor graph for the classification. The additional experiment with featmeian
each clasé. filtering allowed to obtain a better classification accureesults

(overall accuracy=85.3217 and Kappa=0.8358 versus 82 .860
A configured factor graph with the configurati@k) is expected  0.7921, respectively; compare confusion Tables 3 and 4)stMo
to have a maximum likelihood probability (a low energy state  of the classes were labeled with an accuracy more than 90%,



except several most difficult classes (these classes amdlyusu structure of the FG allows to reach a competitive accuracy of
hard to label and are mainly confused, see Tables 3 and 4). Tt&assification even on data with decreased radiometriceréreg-
classes 7 (Grapamtrained) and 14 (Vinyardntrained) illus- resented on the alphabet). An important property of factaply
trate the highest confusion with classification accuraeiggal  classification is that the method requires a relatively lamnber
to 68.79% and 65.05% (Table 4), respectively. Classes 1t (Leof training samples (only 20 points for a class). Separaieqss-
tuceromaine5wk) and 8 (Soilvinyard develop), also class 13 ing of input features (spectral bands) and employment opthe
(Lettuceromaine7wk) and 12 (Lettucgomaine6wk) and 11 (Let- sented data fusion and classification model is not influetged
tuceromaine5wk) are less confused. the limitations of data dimensionality (i.e. there is no thiese of
dimensionality). Classification on full data (all spectrahds) is
Median filtering reduced the influence of the outlier samjates possible to run (comparing to MNF features) and will take enor
the input data for classification. Confusion among classes-i  computational time.
duced and a better labeling is reached. MNF data preprogessi
allows to reduce the time of calculation with a competitilese
sification accuracy. On full bands set data a better claatific
accuracy is expected to be obtained.
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Figure 3: Classification maps for Salinas benchmark usicipfa
graphs: (a) MNF, 20 features, alphabet size: 100, (b) MNF, 20
features, median filterin§ x 5, alphabet size: 100, (c) ground
truth label map

4 CONCLUSIONS

The paper presents another successful area of factor gamshs
plication: hyperspectral data classification. A relagvsimple



Table 3: Confusion matrix of the FG classification on Salibaachmark (MNF 20 features, alphabet size: 100). Overali-ac

racy=81.3692, Kappa=0.7921 Percentages are given forsier éaterpretation.

Ground truth, see Table 1

Class| 1 2 3 4 5 6 7 8 9 10 [ 11 | 12 | 13 | 14 | 15
1 [98.36] 0.48 | 0.00| 0.00 | 0.03 | 0.06 | 0.13 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
2 | 1.14 [ 96.54] 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00
3 [ 0.00] 0.05[87.96] 151 0.38| 0.11 | 0.90 | 0.56 | 1.07 | 0.28 | 1.19 | 0.00 | 0.00 | 0.34 | 0.78
4 [ 0.00] 0.00] 0.35|94.62] 0.03| 0.00 | 0.20 | 0.02 | 0.12 | 0.19 [ 0.42 | 0.00 | 0.00 | 0.07 | 2.43
5 [ 0.20] 0.03] 0.00 | 0.00 [ 96.36] 0.00 | 0.09 | 0.02 | 0.15 | 0.09 | 0.47 | 0.00 | 0.00 [ 0.01 | 0.15
6

7

8

9

0.05| 1.58 | 0.00| 0.14| 0.08 [ 99.58| 0.52 | 0.10 | 0.12 | 0.28 | 0.05 | 0.00 | 0.47 | 0.26 | 0.11
0.15| 0.03]| 0.30 | 0.00| 0.20 | 0.03 | 58.73| 0.32 | 0.24 | 0.28 | 0.99 | 0.00 | 0.09 | 35.84| 0.00
0.05| 0.05]| 046 | 0.22| 0.33| 0.06 | 1.61 | 95.70| 2.10 | 3.56 | 14.58]| 0.33 | 0.09 | 1.33 | 0.07
0.00 | 0.03]| 0.15| 0.22| 0.20| 0.03 | 2.32 | 0.55[91.00| 2.06 | 3.94| 0.00 | 1.31| 1.31| 0.11
10 | 0.00 | 0.21]| 0.10| 0.00| 0.00 | 0.03 | 0.02 | 0.05 | 1.80 | 91.29| 3.79 | 0.00 | 0.37 | 0.01 | 0.04
11 | 0.05] 0.05| 0.05| 0.00| 051 | 0.00 | 1.54| 1.79| 0.98 | 1.31 | 70.37| 3.93 | 2.06 | 0.39 | 0.00
12 [ 0.00] 0.21] 0.00 | 0.00| 0.03| 0.00 | 0.31]| 0.03| 0.18 | 0.28 | 1.76 | 93.45| 7.57 | 0.03 | 0.00
13 | 0.00| 0.30| 0.00 | 0.00| 0.08 | 0.00 | 0.03 ]| 0.00 | 0.46 | 0.00 | 0.05| 1.97 | 86.54| 0.00 | 0.22
14 | 0.00]| 0.38| 0.71| 0.07] 0.91| 0.11 | 32.80| 0.77 | 1.19 | 0.37 | 2.18 | 0.33 | 1.31 | 59.87| 0.37
15 | 0.00 | 0.05]| 9.92| 3.23| 0.88| 0.00 | 0.64 | 0.10 | 0.21 | 0.00 | 0.21 | 0.00 | 0.19 | 0.52 [ 95.71

Table 4: Confusion matrix of the FG classification on Salibaschmark (MNF 20 features, alphabet size: 100, featuréamédx 5

filtering). Overall accuracy=85.3217, Kappa=0.8358 Petages are given for an easier interpretation.
Ground truth, see Table 1

Class| 1 2 3 4 5 6 7 8 9 10 [ 11 | 12 | 13 | 14 | 15
1 [98.90] 0.81] 0.00| 0.00 | 0.10 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00
2 | 0.25|96.81] 0.00] 0.00| 0.10 | 0.00 | 0.31 | 0.02 | 0.85 | 0.00 | 0.00 | 0.00 | 0.09 | 0.11 | 0.00
3 | 0.00] 0.05]98.38] 0.43| 0.66 | 0.14 | 0.48 | 0.16 | 1.34 | 0.19| 0.16 | 0.00 | 0.09 | 0.15 | 0.56
4 [ 0.00] 0.03| 0.00|96.99] 0.00 | 0.06 | 0.07 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 2.05
5 | 0.40 | 0.43 | 0.00 | 0.00 | 94.04] 0.00 | 0.02 | 0.19 | 0.09 | 0.37 | 1.19 | 0.00 | 0.09 | 0.04 | 0.00
6

7

8

9

0.05] 0.56 | 0.00 | 0.00 [ 0.05[99.66] 0.78 | 0.34] 0.18] 0.00 | 0.10[ 0.00 | 1.03 | 0.37 ] 0.34
0.30] 0.59] 0.05| 0.36| 1.11| 0.00 | 68.79] 0.77] 0.49 | 0.19 | 1.09 | 0.00 | 0.37 | 32.47]| 0.04
0.00]| 0.16 ] 0.10| 0.50 | 0.48 | 0.03 | 1.46 | 96.08] 0.92 | 1.31 |10.33] 0.00 | 0.28 | 1.28 | 0.00
0.00| 0.00| 0.10| 0.00 | 0.08 | 0.03 | 1.49| 0.11 |91.79] 0.37 | 0.62 | 0.00 | 0.65 | 0.00 | 0.00
10 | 0.00| 0.00| 0.00 | 0.00| 0.00| 0.00 | 0.04 | 0.00 | 0.58 | 96.25| 1.19 | 0.00 | 0.00 | 0.00 | 0.00
11 [ 0.00| 0.21] 0.00| 0.00| 0.91]| 0.03| 0.83| 0.98| 1.37 | 0.47 | 83.60| 3.38 | 4.86 | 0.14 | 0.00
12 [ 0.00| 0.21] 0.00 | 0.00| 0.03| 0.00 | 0.03 | 0.00 | 0.03 | 0.00 | 0.00 | 96.07| 7.66 | 0.00 | 0.00
13 | 0.00| 0.08 | 0.00 | 0.00| 0.00| 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.05 | 0.55 | 84.49] 0.00 | 0.26
14 [ 010 0.05] 0.05] 0.29] 1.67] 0.06 [25.24] 1.34| 2.23| 0.84 | 1.66 | 0.00 | 0.09 [ 65.05] 0.07
15 [ 0.00]| 0.00| 1.32| 1.43]| 0.78] 0.00| 0.24 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.09 | 0.29 | 96.68




