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5.1 INTRODUCTION

Hyperspectral imaging is concerned with the measurement, analysis, and interpretation of spectra 

acquired from a given scene (or speci�c object) at a short, medium, or long distance by an airborne 

or satellite sensor [1]. The concept of hyperspectral imaging originated at NASA’s Jet Propulsion 

Laboratory in California with the development of the Airborne visible infrared imaging spectrom-

eter (AVIRIS), able to cover the wavelength region from 400 to 2500 nm using more than 200 spec-

tral channels, at nominal spectral resolution of 10 nm [2]. As a result, each pixel vector collected 

by a hyperspectral instrument can be seen as a spectral signature or �ngerprint of the underlying 

materials within the pixel.

The special characteristics of hyperspectral data sets pose different processing problems [3], 

which must be necessarily tackled under speci�c mathematical formalisms, such as classi�cation, 

segmentation, image coding, or spectral mixture analysis [4]. These problems also require speci�c 

dedicated processing software and hardware platforms. In most studies, techniques are divided 

into full-pixel and mixed-pixel techniques, where each pixel vector de�nes a spectral signature or 

�ngerprint that uniquely characterizes the underlying materials at each site in a scene [5]. Mostly 

based on previous efforts in multispectral imaging, full-pixel techniques assume that each pixel 

vector measures the response of one single underlying material. Often, however, this is not a real-

istic assumption. If the spatial resolution of the sensor is not �ne enough to separate different pure 

signature classes at a macroscopic level, these can jointly occupy a single pixel, and the resulting spec-

tral signature will be a composite of the individual pure spectra, called endmembers in hyperspectral 

terminology [6]. Mixed pixels can also result when distinct materials are combined into a homo-

geneous or intimate mixture, which occurs independently of the spatial resolution of the sensor. 
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122 Hyperspectral Remote Sensing of Vegetation

To address these issues, spectral unmixing approaches have been developed under the assumption 

that each pixel vector measures the response of multiple underlying materials [7].

Our main goal in this chapter is to provide a seminal view on recent advances in techniques 

for full-pixel and mixed-pixel processing of hyperspectral images, taking into account both the 

spectral and spatial properties of the data. Due to the small number of training samples and the high 

number of features available in remote sensing applications, reliable estimation of statistical class 

parameters is a challenging goal [4]. As a result, with a limited training set, classi�cation accu-

racy (in full-pixel sense) tends to decrease as the number of features increases. This is known as 

the Hughes effect. Furthermore, high-dimensional spaces are mostly empty, thus making density 

estimation more dif�cult. One possible approach to handle the problem of dimensionality is to 

consider the geometrical properties rather than the statistical properties of the classes. In this 

regard, it is important to develop techniques able to select the most highly informative training 

samples from the available training set [8]. The good classi�cation performance already dem-

onstrated by techniques such as kernel methods and support vector machines (SVMs) in remote 

sensing applications [9], using spectral signatures as input features, has been further increased 

using intelligent training sample selection algorithms [10].

It should be noted that most available hyperspectral data processing techniques (including 

both full-pixel and mixed-pixel techniques) focused on analyzing the data without incorporating 

information on the spatially adjacent data, that is, hyperspectral data are usually not treated as 

images, but as unordered listings of spectral measurements with no particular spatial arrange-

ment. In certain applications, however, the incorporation of spatial and spectral information 

is mandatory to achieve suf�ciently accurate mapping and/or classi�cation results [11–13]. To 

address the need for developments able to exploit a priori information about the spatial arrange-

ment of the objects in the scene in order to complement spectral information, this chapter also 

presents several techniques for spatial–spectral data processing in the context of a mixed-pixel 

classi�cation scenario.

5.2 SUPPORT VECTOR MACHINES

Supervised classi�cation is one of the most commonly undertaken analyses of remotely sensed 

hyperspectral data. The output of a supervised classi�cation is effectively a thematic map that pro-

vides a snapshot representation of the spatial distribution of a particular theme of interest such as 

land cover. Recent research has indicated the considerable potential of SVM-based approaches for 

the supervised classi�cation of remotely sensed hyperspectral data [14]. Comparative studies have 

shown that classi�cation by an SVM can be more accurate than techniques such as neural networks, 

decision trees, and probabilistic classi�ers such as maximum likelihood classi�cation [9]. This is 

due to the superior performance of SVMs when analyzing high-dimensional data (particularly in 

the presence of limited training samples), which generally results in higher relative accuracies than 

those reported for other classi�cation methods. SVMs were designed for binary classi�cation but 

various methods exist to extend the binary approach to multiclass classi�cation, such as the one 

versus the rest and the one versus one strategies [15].

In essence, the SVM classi�cation is based on �tting an optimal separating hyperplane between 

classes by focusing on the training samples that lie at the edge of the class distributions, which 

are the support vectors (Figure 5.1, reproduced from [9]). All of the other training samples are 

effectively discarded as they do not contribute to the estimation of hyperplane location. In this 

way not only is an optimal hyperplane �tted, in the sense that it is expected to be generalizable 

to a large degree, but also a high accuracy may be obtained with the use of a small training set. 

It should be noted that the SVM used with a kernel function is a nonlinear classi�er, where the 

nonlinear ability is included in the kernel. Different kernels lead to different SVMs. The most 

used kernels are the polynomial kernel, the Gaussian kernel, or the spectral angle mapper kernel, 

among many others [9].

K12019_C005.indd   122 6/13/2011   10:43:08 AM



123Hyperspectral Data Processing Algorithms

Recently, innovative kernel-based algorithms with enhanced properties have been devel-

oped. These include semisupervised or transductive SVMs (TSVMs) learning procedures [16], 

which are used to exploit both labeled and unlabeled pixels in the training stage, or contextual 

SVMs [17], in which spatial and spectral information is incorporated by means of the use of proper 

kernel functions. The capability of semisupervised SVMs to capture the intrinsic information 

present in the unlabeled data can further mitigate the Hughes phenomenon, and contextual SVMs 

can address the issues related to the nonstationary behavior of the spectral signatures of classes in 

the spatial domain.

5.3 SPECTRAL UNMIXING OF HYPERSPECTRAL DATA

Spectral mixture analysis (also called spectral unmixing) has been an alluring exploitation goal 

from the earliest days of hyperspectral imaging [1] to the present [18]. No matter what the spatial 

resolution is, the spectral signatures collected in natural environments are invariably a mixture of 

the signatures of the various materials found within the spatial extent of the ground instantaneous 

�eld view of the imaging instrument [7]. The availability of hyperspectral imagers with a number of 

spectral bands that exceeds the number of spectral mixture components [2] has cast the unmixing 

problem in terms of an over-determined system of equations in which, given a set of pure spectral 

signatures (called endmembers) the actual unmixing to determine apparent pixel abundance frac-

tions can be de�ned in terms of a numerical inversion process.

A standard technique for spectral mixture analysis is linear spectral unmixing [19], which 

assumes that the collected spectra at the spectrometer can be expressed in the form of a linear com-

bination of endmembers weighted by their corresponding abundances. It should be noted that the 

linear mixture model assumes minimal secondary re£ections and/or multiple scattering effects in 

the data collection procedure, and, hence, the measured spectra can be expressed as a linear combi-

nation of the spectral signatures of materials present in the mixed pixel (Figure 5.2a).

Although the linear model has practical advantages such as ease of implementation and 

£exibility in different applications [3], nonlinear spectral unmixing may best characterize the 

resultant mixed spectra for certain endmember distributions, such as those in which the endmem-

ber components are randomly distributed throughout the �eld of view of the instrument [10,20]. 

In those cases, the mixed spectra collected at the imaging instrument are better described by 

assuming that part of the source radiation is multiply scattered before being collected at the sensor 

(Figure 5.2b).
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FIGURE 5.1 Classi�cation of a nonlinearly separable case by a SVM.
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5.3.1 LINEAR SPECTRAL UNMIXING

In order to be able to correctly unmix a hyperspectral data set using the linear model, two require-

ments are needed:

 1. A successful estimation of the number of endmembers (spectrally distinct pure signatures) 

present in the input hyperspectral scene.

 2. The correct determination of a set of endmembers and their correspondent abundance frac-

tions at each pixel.

In order to address the �rst requirement, two successful techniques in the literature have been the 

virtual dimensionality (VD) [21] and HySime [22]. The VD concept formulates the issue of whether 

a distinct signature is present or not in each of the spectral bands as a binary hypothesis testing 

problem, where a so-called Neyman–Pearson detector is generated to serve as a decision-maker 

based on a prescribed false alarm probability. In light of this interpretation, the issue of determin-

ing an appropriate value for the number of endmembers is further simpli�ed and reduced to setting 

a speci�c value of the false alarm probability. In turn, the HySime uses a minimum mean squared 

error-based approach to determine the signal subspace in hyperspectral imagery.

Regarding the second requirement for successful implementation of the linear mixture model, 

several algorithms have been developed in recent years for automatic or semiautomatic extraction 

of spectral endmembers [6]. Classic techniques include the pixel purity index (PPI) [23], N-FINDR 

[24–26], iterative error analysis (IEA) [27], optical real-time adaptive spectral identi�cation system 

(ORASIS) [28], convex cone analysis (CCA) [29], vertex component analysis (VCA) [30], and an 

orthogonal subspace projection (OSP) technique in [31]. Other advanced techniques for endmember 

extraction have been recently proposed, but few of them consider spatial adjacency. However, one 

of the distinguishing properties of hyperspectral data is the multivariate information coupled with a 

two-dimensional (pictorial) representation amenable to image interpretation.

Subsequently, most endmember extraction algorithms listed earlier could bene�t from an inte-

grated framework in which both the spectral information and the spatial arrangement of pixel vec-

tors are taken into account. An example is given in Figure 5.3, in which a hyperspectral data cube 

collected over an urban area (high spatial correlation) is modi�ed by randomly permuting the spa-

tial coordinates of the pixel vectors (i.e., removing the spatial correlation). In both scenes, the appli-

cation of a spectral-based processing method would yield the same analysis results, while it is clear 

that a spatial–spectral technique could incorporate the spatial information present in the original 

scene into the process.

To the best of our knowledge, only a few attempts exist in the literature aimed at including 

the spatial information in the process of extracting spectral endmembers. Extended morphological 

operations [13] have been used as a baseline to develop an automatic morphological endmember 

Linear mixture

(b)(a)

Nonlinear mixture

Single scattering Multiple scattering

FIGURE 5.2 Graphical interpretation of the linear (a) versus the nonlinear (b) mixture model.
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extraction (AMEE) algorithm [32] for spatial–spectral endmember extraction. Also, spatial averag-

ing of spectrally similar endmember candidates found via singular value decomposition (SVD) was 

used in the development of the spatial spectral endmember extraction (SSEE) algorithm [33].

Recently, a spatial preprocessing (SPP) algorithm [34] has been proposed. A spatially derived 

factor is used by this technique to weight the importance of the spectral information associated to 

each pixel in terms of its spatial context. The SPP is intended as a preprocessing module that can be 

used in combination with an existing spectral-based endmember extraction algorithm.

Once a set of endmembers have been extracted, their corresponding abundance fractions in a spe-

ci�c pixel vector of the scene can be estimated (in least squares sense) by using the unconstrained and 

constrained techniques [35]. It should be noted that the fractional abundance estimations obtained 

in unconstrained fashion do not satisfy the abundance sum-to-one (ASC) and the abundance non-

negativity (ANC) constraints that should hold in order for the linear mixture model to be physically 

meaningful (i.e., the derived endmember set should be complete and negative abundance estima-

tions lack physical interpretation). Imposing the ASC and ANC constraints leads to a more complex 

optimization problem, which has been solved (in least-squares sense) in the literature [36].

5.3.2 NONLINEAR SPECTRAL UNMIXING

In a nonlinear model, the interaction between the endmembers and their associated fractional abun-

dances is given by a nonlinear function, which is not known a priori. Various machine learning 

techniques have been proposed in the literature to estimate this function. In particular, arti�cial 

neural networks have demonstrated great potential to decompose mixed pixels due to their inherent 

capacity to approximate complex functions [37]. Although many neural network architectures exist, 

for decomposition of mixed pixels in terms of nonlinear relationships mostly feed-forward networks 

of various layers, such as the multilayer perceptron (MLP), have been used [10,38,39]. It has been 

shown in the literature that MLP-based neural models, when trained accordingly, generally outper-

form other nonlinear models such as regression trees or fuzzy classi�ers [40].

A variety of issues have been investigated in order to evaluate the impact of training in mixed 

pixel classi�cation accuracy, including the size and location of training sites, and the composition of 

training sets, but most of the attention has been paid to the issue of training set size, that is, the num-

ber of training samples required for the learning stage [41]. Sometimes the smallness of a training 

set represents a major problem. This is especially apparent for analyses using hyperspectral sensor 

data, where the requirement of large volumes of training sites is a serious limitation [42].

Even if the endmembers participating in mixtures in a certain area are known, proportions of 

these endmembers on a per-pixel basis are dif�cult to be estimated a priori. Therefore, one of the 

Pixel spatial coor-
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Same output
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Spectral processingSpectral processing

FIGURE 5.3 The importance of including spatial information in hyperspectral data processing.
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most challenging aspects in the design of neural network-based techniques for spectral mixture 

analysis is to reduce the need for very large training sets. Studies have investigated a range of issues 

[43], including the use of feature selection and feature extraction methods to reduce the dimension-

ality of the input data [38], the use of unlabeled and semilabeled samples [42], the accommodation 

of spatial dependence in the data to de�ne an ef�cient sampling design [33], or the use of statistics 

derived on other locations [44].

Our speculation (and that of many thoughtful investigators over the past 40 years [42,43]) is that 

the problem of mixed pixel interpretation demands intelligent training sample selection algorithms, 

able to seek for the most informative training samples, thus optimizing the compromise between 

estimation accuracy (to be maximized) and ground-truth knowledge (to be minimized). In this 

sense, several efforts in the literature have been oriented toward the selection of mixed (border) 

training samples using previous work developed by Foody, as well as core (pure) training samples 

developed by simple endmember extraction algorithms.

In our experience, machine learning techniques such as MLP neural networks or SVMs can 

produce stable results when trained accordingly, a fact that leads us to believe that training can 

indeed be more important than the choice of a speci�c network architecture in mixture analysis 

applications.

5.4 EXPERIMENTAL RESULTS

5.4.1 ANALYSIS OF SUPERVISED HYPERSPECTRAL DATA CLASSIFICATION USING SVMS

The hyperspectral scene used for experiments in this subsection was gathered by AVIRIS over 

the Indian Pines test site in Northwestern Indiana, a mixed agricultural/forested area, early in the 

growing season, and consists of 1939 × 677 pixels and 204 spectral bands in the wavelength range 

400–2500 nm (523 MB in size). Twenty AVIRIS bands (151–170) were removed from the original 

scene prior to analysis due to low signal-to-noise ratio (SNR) in those bands. The AVIRIS Indian 

Pines data set represents a very challenging classi�cation problem dominated by similar spectral 

classes and mixed pixels. Speci�cally, the primary crops of the area, mainly corn and soybeans, 

were very early in their growth cycle with only about 5% canopy cover. This fact makes most of the 

scene pixels highly mixed in nature. Discriminating among the major crops under this circumstances 

can be very dif�cult, a fact that has made this scene an extensively used benchmark to validate 

classi�cation accuracy of hyperspectral imaging algorithms. For illustrative purposes, Figure 5.4a 

shows a randomly selected spectral band (587 nm) of the original scene and Figure 5.4b shows the 

corresponding ground-truth map, displayed in the form of a class assignment for each labeled pixel, 

with 30 mutually exclusive ground-truth classes. Part of these data, including the ground-truth, are 

available online from Purdue University (from http://dynamo.ecn.purdue.edu/∼biehl/MultiSpec).

In the following, three types of kernels are used in experiments: polynomial, Gaussian, and 

spectral angle mapper. Small training sets, composed of 1%, 2%, 4%, 6%, 8%, 10%, and 20% of 

the ground-truth pixels available per class, were extracted using pure (core) and mixed (border) 

training sample selection algorithms [10], and also using a random selection procedure. The SVM 

was trained with each of these training subsets and then evaluated with the remaining test set. Each 

experiment was repeated �ve times in order to guarantee statistical signi�cance, and the mean accu-

racy values were reported. Table 5.1 summarizes the overall classi�cation results obtained using the 

three considered kernels and training sample selection algorithms.

From Table 5.1, it can be seen that SVMs generalize quite well: with only 1% of training pix-

els per class, almost 90% overall classi�cation accuracy is reached by all kernels when trained 

using border training samples. In all cases, classi�cation accuracies decreased when random and 

pure samples were used for the training site. This con�rms the fact that kernel-based methods 

in general and SVMs in particular are less affected by the Hughes phenomenon. It is also clear 

from Table 5.1 that the classi�cation accuracy is generally correlated with the training set size. 
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However, when border training samples were used, higher classi�cation accuracies were achieved 

with less training samples. The aforementioned results indicate the importance of including 

mixed pixels at the border of class boundaries in the training set, as these border patterns are 

most ef�cient to determine the hyperplane between two classes.

Finally, it can be seen in Table 5.1 that the best classi�cation scores were generally achieved 

for the Gaussian kernel, in which the overall accuracy obtained with 1% of the training pixels per 

class is only 4.22% lower than the overall accuracy obtained with 20% of the training pixels per class 

TABLE 5.1

Overall Classi cation Accuracies (in Percentage) Achieved by the SVM Classi er after 

Applying Polynomial, Gaussian and Spectral Angle Mapper Kernels to the AVIRIS Indian 

Pines Data Set, Using Different Strategies for Training Sample Selection (Random, Pure, 

Border Patterns)

Kernel Training 1% 2% 4% 6% 8% 10% 20%

Polynomial kernel Random 82.33 82.94 83.21 83.82 85.34 86.12 86.52

Pure 81.23 82.06 82.80 83.00 84.03 84.45 85.57

Border 83.44 84.23 84.45 84.96 86.27 87.44 89.96

Gaussian kernel Random 87.94 88.23 88.78 88.96 89.45 89.48 90.77

Pure 86.53 87.02 87.64 87.93 88.12 88.26 88.55

Border 89.45 90.25 91.24 92.08 92.93 93.04 93.67

Spectral angle kernel Random 85.90 86.22 86.49 87.03 87.56 88.09 88.72

Pure 85.12 85.67 86.08 86.45 86.97 87.13 87.81

Border 86.05 86.93 87.57 88.12 89.30 90.12 90.57

Bare soil
Buildings
Concrete/asphalt
Corn
Corn?
Corn-EW
Corn-NS
Corn-clean till
Corn-clean till-EW

Corn-clean till-NS-irrigated
Corn-clean tilled-NS?

Corn-min till-EW
Corn-min till

Corn-min till-NS
Corn-no till
Corn-no till-EW
Corn-no till-NS
Fescue
Grass
Grass/trees
Grass/pasture-mowed
Grass/pasture
Grass-runway
Hay
Hay?
Hay-alfalfa
Lake
Not cropped
Oats

(b)(a)

Corn-clean till-Ns 

FIGURE 5.4 (See color insert.) (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising 

agricultural and forest features at Indian Pines region. (b) Ground-truth map with 30 mutually exclusive land-

cover classes.
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(extracted using border training sample selection). On the other hand, the spectral angle mapper 

kernel gives slightly degraded classi�cation results. However, with accuracies above 85% in a 

challenging classi�cation problem, this kernel also provides promising results. Finally, the poly-

nomial kernel needs more training samples than the two other kernels to perform appropriately, 

as can be seen from the relatively poor results obtained by this kernel for a very limited number 

of training samples.

5.4.2 ANALYSIS OF UNSUPERVISED LINEAR UNMIXING OF HYPERSPECTRAL DATA

The hyperspectral scene used for experiments is the well-known AVIRIS Cuprite data set, available 

online in re£ectance units (from http://aviris.jpl.nasa.gov/html/aviris.freedata.html) after atmo-

spheric correction. This scene has been widely used to validate the performance of endmember 

extraction algorithms. The portion used in experiments corresponds to a 350 × 350-pixel subset 

of the sector labeled as f970619t01p02_r02_sc03.a.r£ in the online data. The scene (displayed in 

Figure 5.5a) comprises 224 spectral bands between 400 and 2500 nm, with full width at half maxi-

mum of 10 nm and spatial resolution of 20 m per pixel.

Prior to the analysis, several bands (1–3, 150–170, and 217–224) were removed due to water 

absorption and low SNR in those bands, leaving a total of 192 re£ectance channels to be used 

in the experiments. The Cuprite site is well understood mineralogically [45,46], and has several 

exposed minerals of interest included in a spectral library compiled by the U.S. Geological 

Survey (USGS) available online (from http://speclab.cr.usgs.gov/spectral-lib.html). A few 

selected spectra from the USGS library, corresponding to several highly representative minerals 

in the Cuprite mining district (Figure 5.5b), are used in this work to substantiate endmember 

signature purity.

Two different metrics have been used to compare the performance of endmember extraction 

and spectral unmixing algorithms in the AVIRIS Cuprite scene. The �rst metric is the spectral 

angle [3,19] between each extracted endmember and the set of available USGS ground-truth 

spectral signatures. Low spectral angle scores mean high spectral similarity between the com-

pared vectors. This spectral similarity measure is invariant in the multiplication of pixel vec-

tors by constants and, consequently, is invariant before unknown multiplicative scalings that 

may arise due to differences in illumination and angular orientation. In our experiments, the 

spectral angle allows us to identify the USGS signature that is most similar to each endmember 
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FIGURE 5.5 (a) False color composition of the remote sensing image used in experiments. (b) Reference 

spectral signatures provided by USGS and used for validation purposes.
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automatically extracted from the scene by observing the minimum spectral angle reported for 

such endmember across the entire set of USGS signatures.

A second metric employed to evaluate the goodness of the reconstruction is the root mean square 

error (RMSE) obtained in the reconstruction of the hyperspectral image (using the derived end-

members and their corresponding abundance fractions). This metric is based on the assumption that 

a set of high-quality endmembers (and their corresponding estimated abundance fractions) may 

allow reconstruction of the original hyperspectral scene with higher precision than a set of low-

quality endmembers. In this case, the original hyperspectral image is used to measure the �delity of 

the reconstructed version of the same scene on a per-pixel basis.

Table 5.2 tabulates the spectral angles (in degrees) obtained after comparing the USGS library 

spectra of �ve highly representative minerals in the Cuprite mining district (alunite, buddingtonite, 

calcite, kaolinite, and muscovite) with the corresponding endmembers extracted by several differ-

ent algorithms (listed in subsection 5.3.1) from the AVIRIS Cuprite scene. In all cases, the input 

parameters of the different endmember extraction methods tested have been carefully optimized so 

that the best performance for each method is reported. Again, the smaller the spectral angles across 

the �ve minerals in Table 5.2, the better the results. It should be noted that Table 5.2 only displays 

the smallest spectral angle scores of all endmembers with respect to each USGS signature for each 

algorithm.

For reference, the mean spectral angle values across all �ve USGS signatures are also reported. 

In all cases, the number of endmembers to be extracted was set to 14 after using a consensus 

between the VD concept and the HySime method. Table 5.2 reveals that the AMEE provides very 

good results (all spectral angle values scores below 10°), with the SSEE and the SPP + OSP (where 

SPP indicates spatial preprocessing prior to the classic OSP procedure for endmember extraction) 

are the algorithms that can provide comparable—but slightly worst—results. Table 5.2 also reveals 

that, in this real example, SPP generally improves the signature purity of the endmembers extracted 

by spectral-based algorithms.

On the other hand, Figure 5.6 graphically represents the per-pixel RMSE obtained after recon-

structing the AVIRIS Cuprite scene using 14 endmembers extracted by different methods. It can be 

seen that the methods using SPP (SPP + OSP, SPP + N-FINDR, SPP + VCA) improve their respec-

tive spectral-based versions in terms of the quality of image reconstruction, while both AMEE and 

SSEE also provide lower reconstruction errors than OSP, N-FINDR, and VCA. These results sug-

gest the advantages of incorporating spatial information into the automatic extraction of image end-

members from the viewpoint of obtaining more spatially representative spectral signatures, which 

can be used to describe other mixed signatures in the scene.

TABLE 5.2

Spectral Angle Scores (in Degrees) between the USGS Mineral Spectra 

and Their Corresponding Endmember Pixels Produced by Several 

Endmember Extraction Algorithms

Algorithm Alunite Buddingtonite Calcite Kaolinite Muscovite Mean

OSP 4.81 4.16 9.62 11.14 5.41 7.03

N-FINDR 9.96 7.71 12.08 13.27 5.24 9.65

VCA 10.73 9.04 6.36 14.05 5.41 9.12

SPP + OSP 4.95 4.16 9.96 10.90 4.62 6.92

SPP + N-FINDR 12.81 8.33 9.83 10.43 5.28 9.34

SPP + VCA 12.42 4.04 9.37 7.37 6.18 7.98

AMEE 4.81 4.21 9.54 8.74 4.61 6.38

SSEE 4.81 4.16 8.48 11.14 4.62 6.64
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5.4.3 ANALYSIS OF SUPERVISED NONLINEAR UNMIXING OF HYPERSPECTRAL DATA USING MLPS

In the Iberian Peninsula, Dehesa systems are used for a combination of livestock, forest, and agri-

culture activity [47]. The outputs of these systems include meat, milk, wool, charcoal, cork bark, 

and grain. Around 12%–18% of the area is harvested on a yearly basis. The crops are used for 

animal feed or for cash cropping, depending on the rainfall of the area. Determination of fractional 

land-cover using remote sensing techniques may allow for a better monitoring of natural resources 

in Dehesa agro-ecosystems.

Our choice of this type of landscape for evaluating nonlinear unmixing techniques was 

made on several accounts. The �rst one is the availability of hyperspectral image data sets 

with accurate geo-registration for a real Dehesa test site in Caceres, SW Spain, collected simul-

taneously in July 2001 by two instruments operating at multiple spatial resolutions: Digital 

Airborne Imaging Spectrometer (DAIS) 7915 and Re£ective Optics Spectrographic Imaging 

System (ROSIS), operated by the German Aerospace Agency (DLR). A second major reason is 

the simplicity of the Dehesa landscape, which greatly facilitates the collection of reliable �eld 

data for model validation purposes. It is also important to emphasize that the scenes were col-

lected in summertime, so atmospheric interferers were greatly minimized. Before describing 

our experiments, we �rst provide a comprehensive description of the data sets used and ground-

truth activities in the study area.

The data used in this study consisted of two main components: image data and �eld measure-

ments of land-cover fractions, collected at the time of image data acquisition. The image data are 

formed by a ROSIS scene collected at high spatial resolution, with 1.2 m pixels, and its correspond-

ing DAIS 7915 scene, collected at low spatial resolution with 6 m pixels. The spectral range from 

504 to 864 nm (consisting of a total of 112 spectral bands) was selected for experiments, not only 

because it is adequate for analyzing the spectral properties of the landscape under study, but also 

because this spectral range is well covered by the two considered sensors through narrow spectral 

bands. Figure 5.7 shows the full £ightline of the ROSIS scene, which comprises a Dehesa area 

located between the facilities of University of Extremadura in Caceres (leftmost part of the £ight-

line) and Guadiloba water reservoir at the center of the £ightline. Figure 5.8a shows the Dehesa 

test site selected for experiments, which corresponds to a highly representative Dehesa area that 
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FIGURE 5.6 (See color insert.) RMSE reconstruction errors (in percentage) for various endmember extrac-

tion algorithms after reconstructing the AVIRIS Cuprite scene.
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contains several cork-oak trees (appearing as dark spots) and several pasture (gray) areas on a bare 

soil (white) background. Several �eld techniques were applied to obtain reliable estimates of the 

fractional land cover for each DAIS 7915 pixel in the considered Dehesa test site:

 1. First, the ROSIS image was roughly classi�ed into the three land-cover components 

discussed earlier using a maximum-likelihood supervised classi�cation approach based 

on image-derived spectral endmembers, where Figure 5.8b shows the three endmembers 

used for mapping that were derived using the AMEE algorithm. Our assumption was 

that the pixels in the ROSIS image were suf�ciently small to become spectrally simple 

to analyze.

 2. Then, the classi�ed ROSIS image was registered with the DAIS 7915 image using a ground 

control point-based method with subpixel accuracy [48].

 3. The classi�cation map was then associated with the DAIS 7915 image to provide an ini-

tial estimation of land cover classes for each pixel at the DAIS 7915 image scale. For that 

purpose, a 6 × 6 m grid was overlaid on the 1.2 × 1.2 m classi�cation map derived from the 

ROSIS scene, where the geographic coordinates of each pixel center point were used to 

validate the registration with subpixel precision.

 4. Next, fractional abundances were calculated within each 6 × 6 m grid as the propor-

tion or ROSIS pixels labeled as cork-oak tree, pasture, and soil located within that grid, 

respectively.

FIGURE 5.7 Flightline of a ROSIS hyperspectral scene collected over a Dehesa area in Caceres, Spain.
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FIGURE 5.8 (See color insert.) (a) Spectral band (584 nm) of a ROSIS Dehesa subset selected for experi-

ments. (b) Endmember signatures of soil, pasture, and cork-oak tree extracted by the AMEE algorithm, where 

scaled re£ectance values are multiplied by a constant factor.
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 5. Most importantly, the abundance maps at the ROSIS level were thoroughly re�ned using 

�eld measurements (Figure 5.9a) before obtaining the �nal proportions. Several approaches 

were developed to re�ne the initial estimations:

 a. Fractional land cover data were collected on the ground at more than 30 evenly dis-

tributed �eld sites within the test area. These sites were delineated during the �eld 

visit as polygons, using high-precision global positioning system (GPS) coordinates 

(see Figure 5.9b).

 b. Land cover fractions were estimated at each site using a combination of various tech-

niques. For instance, �eld spectra were collected for several areas using an Analytical 

Spectral Devices (ASD) FieldSpec Pro spectro-radiometer. Of particular interest were 

�eld measurements collected on top of tree crowns (Figure 5.9c), which allowed us to 

model different levels of tree crown transparency.

 c. On the other hand, the early growth stage of pasture during the summer season allowed 

us to perform ground estimations of pasture abundance in selected sites of known 

dimensions, using pasture harvest procedures supported by visual inspection and labo-

ratory analyses.

After following the aforementioned sequence of steps, we obtained a set of approximate fractional 

abundance labels for each pixel vector in the DAIS 7915 image. Despite our effort to conduct a reli-

able ground estimation of fractional land-cover in the considered semiarid environment, absolute 

accuracy is not claimed. We must emphasize, however, that the combined use of imagery data at 

different resolutions, subpixel ground control-based image registration, and extensive �eld work 

including high-precision GPS �eld work, spectral sample data collection, and expert knowledge 

represents a novel contribution in the area of spectral mixture analysis validation, in particular, for 

Dehesa-type ecosystems.

In order to evaluate the accuracy of linear spectral in the considered application, Figure 5.10 

shows the scatter plots of measured versus linearly estimated fractional abundances (using linear 

spectral unmixing with the ASC and ANC constraints imposed) for the three considered land-cover 

materials in the DAIS 7915 (low spatial resolution) image data set, where the diagonal represents 

perfect match and the two £anking lines represent plus/minus 20% error bound. Here, the three 

spectral endmembers were derived using the AMEE algorithm, which incorporates spatial informa-

tion into the endmember extraction process.

As expected, the £atness of the test site largely removed topographic in£uences in the remotely 

sensed response of soil areas. As a result, most linear predictions for the soil endmember fall within 

the 20% error bound (see Figure 5.10a). On the other hand, the multiple scattering within the pasture 

and cork-oak tree canopies (and from the underlying surface in the latter case) complicated the spec-

tral mixing in nonlinear fashion, which resulted in a generally higher number of estimations lying 

(a) (b) (c)

FIGURE 5.9 Ground measurements in the Dehesa area of study located in Caceres, Spain. (a) Spectral 

sample collection using an ASD FieldSpec Pro spectroradiometer. (b) High-precision GPS geographic delimi-

tation. (c) Field spectral measurements at different altitudes.
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outside the error bound, as illustrated in Figures 5.10b and c. Also, the RMSE scores in abundance 

estimation for the soil (11.9%), pasture (15.3%), and cork-oak tree (16.9%) were all >10% estima-

tion error in percentage, which suggested that linear mixture modeling was not £exible enough to 

accommodate the full range of spectral variability throughout the landscape.

In order to characterize the Dehesa ecosystem structure better than linear models do, we used 

nonlinear spectral unmixing to better characterize nonlinear mixing effects. For this purpose, we 

applied a mixed (border) training sample selection algorithm to automatically locate highly descrip-

tive training sites in the DAIS 7915 scene and then used the obtained samples (and the ground-truth 

information associated to those samples) to train the MLP-based neural network model described 

in subsection 5.3.2. Figure 5.11 shows the scatter plots of measured versus predicted fractional 

abundances for soil, pasture, and cork-oak tree by the proposed MLP-based model, �rst trained with 

the three pure training samples by the AMEE algorithm (Figure 5.11b) plus 40 additional training 

samples selected by an algorithm designed to seek for the most highly mixed training samples [10]. 

This represents <1% of the total number of pixels in the DAIS 7915 scene. These samples were 

excluded from the testing set made up of all remaining pixels in the scene. From Figure 5.11, it is 

clear that the utilization of intelligently selected training samples resulted in fewer points outside 

the two 20% difference lines, most notably, for both pasture and cork-oak abundance estimates.

The pattern of the scatter plots obtained for the soil predictions (Figure 5.11a) was similar 

(in particular, when the soil abundance was high). Most importantly, the RMSE scores in abun-

dance estimation were signi�cantly reduced (with regard to the experiment using fully constrained 

linear unmixing) for the soil (6.1%), pasture (4%), and cork-oak tree (6.3%). These results con�rm 

our intuition that nonlinear effects in Dehesa landscapes mainly result from multiple scattering 

effects in vegetation canopies. It is worth noting that, although the ASC and ANC constraints were 

not imposed in our proposed MLP-based learning stage, negative and/or unrealistic abundance 
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FIGURE 5.10 Abundance estimations of cork-oak tree (a), pasture (b), and soil (c) by the fully constrained 

linear mixture model from the DAIS 7915 image.
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ture model, trained using mixed (border) samples, from the DAIS 7915 image.
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estimations (which usually indicate a bad �t of the model and reveal inappropriate endmember/

training data selection) were very rarely found in our experiments.

The experimental validation carried out in this subsection indicates that the intelligent incorpo-

ration of mixed training samples can enable a more accurate representation of nonlinearly mixed 

signatures. It was apparent from experimental results that the proposed neural network-based 

model was able to generate abundance estimates that were close to abundance values measured in 

the �eld, using only a few intelligently generated training samples. The need for mixed training 

data does, however, require detailed knowledge on abundance fractions for the considered train-

ing sites. In practice, these data are likely to be derived from imagery acquired at a �ner spatial 

resolution than the imagery to be classi�ed, for example, using data sets acquired by sensors oper-

ating simultaneously at multiple spatial resolutions as it is the case of the DAIS 7915 and ROSIS 

instruments considered in this experiment. Such multiresolution studies may also incorporate prior 

knowledge or ancillary information, which can be used to help target the location of training sites, 

and to focus training site selection activities on regions likely to contain the most informative train-

ing samples.

5.5 CONCLUSIONS AND FUTURE PERSPECTIVES

This chapter focused on hyperspectral data processing algorithms that included (a) SVM techniques 

for supervised classi�cation using limited training samples and (b) development of linear and 

nonlinear spectral unmixing techniques, some of them integrating the spatial and the spectral infor-

mation. The special characteristics of hyperspectral images pose new processing problems, not to 

be found in other types of remotely sensed data:

 1. The high-dimensional nature of hyperspectral data introduces important limitations in 

supervised, full-pixel classi�ers, such as the limited availability of training samples or the 

inherently complex structure of the data (leading to the Hughes phenomenon).

 2. There is a need to integrate the spatial and spectral information to take advantage of the 

complementarities that both sources of information can provide, in particular, for unsuper-

vised mixed-pixel classi�ers.

In this regard, the SVM experiments reported in our quantitative assessment demonstrated that, with 

only 1% of training pixels per class, almost 90% overall classi�cation accuracy is reached by all ker-

nels when trained using border training samples. This highlighted the opportunity of overcoming 

the Hughes phenomenon using kernel approaches. On the other hand, our unmixing experiments 

indicate that new trends in algorithm design (such as the joint use of spatial and spectral information 

in linear spectral unmixing, or the development of nonlinear unmixing models based on machine 

learning techniques with an appropriate exploitation of limited training samples) can signi�cantly 

improve the accuracy in the estimation of fractional abundances in real analysis scenarios.

As demonstrated by our experimental results and the determination of the accuracy of these 

approaches, techniques are rapidly changing from hard classi�ers to soft classi�ers. In this regard, we 

anticipate that the full adaptation of soft classi�ers to mixed-pixel classi�cation problems (e.g., via mul-

tiregression and robust training sample selection algorithms) may push the frontiers of hyperspectral 

data classi�cation to new application domains. Further developments on the joint exploitation of the 

spatial and the spectral information in the input data are also needed to complement initial approxi-

mations to the problem of interpreting the data in unsupervised fashion, thus being able to cope with 

the dramatically enhanced spatial and spectral capabilities expected in the design of future imaging 

spectrometers. Advances in high performance computing [49], including clusters of computers and 

distributed grids, as well as specialized hardware modules such as �eld programmable gate arrays 

(FPGAs) or graphics processing units (GPUs), will also be crucial to help increase algorithm ef�-

ciency and meet timeliness needs in many remote sensing applications.
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