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Abstract

Precision agriculture using unmanned aerial vehicles (UAVs) is gaining popularity. These UAVs provide a unique aerial

perspective suitable for inspecting agricultural fields. With the use of hyperspectral cameras, complex inspection tasks are

being automated. Payload constraints of UAVs require low weight and small hyperspectral cameras; however, such cameras

with a multispectral color filter array suffer from crosstalk and a low spatial resolution. The research described in this paper

aims to reduce crosstalk and to increase spatial resolution using convolutional neural networks. We propose a similarity

maximization framework which is trained to perform end-to-end demosaicking and crosstalk-correction of a 4 × 4 raw

mosaic image. The proposed method produces a hyperspectral image cube with 16 times the spatial resolution of the original

cube while retaining a median structural similarity (SSIM) index of 0.85 (compared to an SSIM of 0.55 when using bilinear

interpolation). Furthermore, this paper provides insight into the beneficial effects of crosstalk for hyperspectral demosaicking

and gives best practices for several architectural and hyperparameter variations as well as a theoretical reasoning behind

certain observations.

Keywords Demosaicking · Hyperspectral imaging · Deep learning · Precision agriculture · UAVs

Mathematics Subject Classification 68T45

1 Introduction

Inspection of agricultural fields using hyperspectral cameras

and unmanned aerial vehicles (UAVs) is gaining popularity

[1,2]. It is well known that increasing the spectral resolution

can lead to more information about the properties of veg-

etation [3]. Crop recognition [4] has been performed using

regular color channels (Red, Green and Blue). By expanding

these measurements to near-infrared and the red-edge spec-

tral ranges, Chlorophyll can be estimated to quantify overall

vegetation health [5]. By further increasing the spectral reso-

lution, diseases [3] and soil concentrations can be determined

[6].
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The properties of UAV-based camera systems are poten-

tially ideal for the inspection of agricultural fields. UAVs

are non-invasive. (They do not interact directly with the

vegetation.) UAVs provide an aerial perspective at various

heights and resolutions. UAVs can use GPS waypoints, visual

features [7] or sensor fusion [8] to navigate automatically.

However, one of the major downsides of UAVs is their limited

payload capacity and the associated flight time. When aiming

to utilize UAVs for precision agriculture efficient hyperspec-

tral imaging devices are required.

Hyperspectral and multispectral imaging technologies can

be divided into three major categories [9]. Multi-camera-

one-shot describes a class of systems in which each spectral

band is recorded using a separate sensor [10]. Examples are:

Multiple cameras with different optical filters or multi-CCD

cameras. The weight increase by the special optics and/or

multiple cameras makes this class of systems not ideally

suited for utilization on a UAV.

Single-camera-multi-shot systems aim to use a single

camera to record different spectral bands at separate times.

This includes filter-wheel setups, liquid crystal tunable filters
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(LCTF) and line-scan hyperspectral cameras [11]. Because

each image is delayed in time, it is difficult to get a correctly

aligned spectral cube and to compensate for object movement

(e.g., leaves moving in the wind).

An interesting class of cameras for UAVs are single-

camera-one-shot. A standard RGB camera with a Bayer filter

[12] is an example of this type of system. Recently these types

of imaging systems have been further extended to 3×3, 4×4

and 5×5 mosaics [13] in both visible and near-infrared spec-

tral ranges. This technology could potentially accommodate

an arbitrary configuration of spectral bands. The main advan-

tages of these sensors are their small size, low weight and

the fact that each spectral band is recorded at the same time.

This makes them suitable for a moving UAV. However these

sensors suffer from a detrimental effect called crosstalk [14],

which means that distinct spectral channels also receive some

response of other spectral bands. These sensors also sacri-

fice spatial resolution to gain spectral resolution [15]. These

effects become increasingly detrimental as the mosaic sizes

increase and physical-pixel sizes decrease. An interpolation

method for demosaicking beyond Bayer filter interpolation

is not well defined.

A color filter array (CFA) or Bayer pattern [12] is a 2 × 2

mosaic of Red, Blue and Green twice, which is repeated over

the entire imaging sensor. This resembles the visual appear-

ance of a mosaic. With this CFA, each one of the 4 sensor

elements are sensitive to either Red, Green or Blue. This

means that not all three color spectra are known at all spatial

locations. An unknown spectral band of a pixel is interpolated

using Bayer interpolation [16]. This is essentially a regular

zooming of each channel using bilinear pixel interpolation.

Because Bayer interpolation does not explicitly exploit

information contained in the scenes (edges, shapes, objects),

chromatic aberrations can be present in the interpolated

images, mainly around strong image edges. These aberra-

tions can be mitigated by incorporating edge information

in the interpolation algorithm [9]. An interpolation method

which learns directly from the image data by means of a

shallow neural network, on several 2 × 2 mosaic images, is

proposed in [17].

Demosaicking of 4 × 4 mosaic images is proposed in

[18], using a greedy inpainting method. Additionally, a fast

and trainable linear interpolation method is described in [19]

for arbitrary sensor sizes. Recently, demosaicking algorithms

integrate other tasks like noise reduction and use deep neural

networks [20].

Image demosaicking is related to single image super res-

olution (SISR) [7,21]. Spectacular SISR has been achieved

using convolutional neural networks (CNNs) [22]. This suc-

cess is mainly due to upscaling layers which are also used

in semantic image segmentation [23] and 3D Time of Flight

(ToF) upscaling [24]. These algorithms benefit greatly from

the information contained in the scenes of a large set of

Fig. 1 Hyperspectral image with a 4 × 4 mosaic (left) and the actual

spatial resolution of each channel (right)

images. The main idea of SISR is to downsample images

and to train a model that tries to reconstructs the original

image. Our method uses a similar strategy. However mosaic

images contain additional spectral correlations [25] which

can be exploited. This makes demosaicking using a CNN

even more prone to improvement.

Figure 1 (left) shows the raw image produced by a 4 × 4

mosaic sensor. The right image shows each of the 16 bands

as separate tiles, which shows the actual spatial resolution

of each channel. Because of the mosaic layout of the sen-

sor, additional spatial information can possibly be uncovered

by combining the information contained in each channel.

The aim of this research is to increase the spatial resolution

and decrease crosstalk of hyperspectral images taken with a

mosaic image sensor.

By taking advantage of the flexibility and trainability of

deep neural networks [26–28], a similarity maximization

framework is designed to produce a full-resolution hyper-

spectral cube from a low-resolution hyperspectral mosaic

using a CNN.

Our demosaicking results will be quantitatively evaluated

with the structural similarity (SSIM) index [29] which is a

full-reference metric often used to compare visual artifacts in

images [30] and for evaluating SISR. Results are also qual-

itatively evaluated as visual images to give an intuition for

the interpretation of this SSIM metric.

Our observations from several proposed solutions for

demosaicking and crosstalk correction leads to three research

questions:

1. How much does hyperspectral demosaicking benefit

from spectral and spatial correlations?

Three major kinds of correlations exist in images taken with a

mosaic sensor. (1) Each spectral filter is at a different location

in the sensor mosaic so each spectral band gives additional

spatial information. (2) Crosstalk between different spectral

bands gives additional spectral information at spatial loca-

tions of other spectral bands. (3) Finally, correlations in scene

contents are present at visually similar parts of the image.
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Hyperspectral demosaicking and crosstalk correction using deep learning 3

This hypothesizes that hyperspectral demosaicking could

actually benefit from spectral and spatial correlations in

the image data. This will be investigated by demosaicking

images with various degrees of crosstalk, and using various

convolution filter footprints and training image sizes.

2. What are good practices for designing hyperspectral

demosaicking neural networks?

Designing deep neural networks and tuning their hyper-

parameters can be quite cumbersome. This paper presents

several variations of deep neural network designs and com-

pares their performance both quantitatively and qualitatively.

3. How well can hyperspectral demosaicking sub-tasks be

integrated for end-to-end training?

A particularly strong feature of deep neural networks is

their ability to provide an end-to-end trainable solution to

an increasing amount of challenges. The demosaicking task

can be split into three sub-tasks: (1) Conversion from a raw-

sensor mosaic to a 3-d hyperspectral cube, (2) upscaling

and (3) crosstalk correction. These tasks are designed as

separate steps toward the final solution. At the end of this

paper, the effect of integrating these sub-tasks in an end-to-

end neural network will be presented. This is the preferred

solution, because training is incorporated in each stage of

demosaicking.

1.1 Outline of this paper

In the next section, a brief introduction of the neural network

principles used in this paper is given. Section 3 describes the

imaging device and the dataset which has been used. Our

similarity framework is explained in detail in Sect. 4. The

design of our experiments is given in Sect. 5. Quantitative

and qualitative results are discussed in Sect. 6. In the last two

sections, the conclusions (Sect. 7) and future work (Sect. 8)

are discussed.

2 Convolutional neural networks

A convolutional neural network (CNN) consists of several

layers of neurons stacked together where at least one layer is

a convolutional layer. The first layer receives the input vector

and the output of a layer is passed as an input to the next layer.

The final layer produces the output vector. Training a neural

network requires a forward step which produces the output

of the network and a backward step to update the weights of

the network based on the desired output. The theory of CNNs

is large, and for a comprehensive explanation we would like

to refer the reader to [31].

To introduce the basic concepts of the neural networks

used in this paper, the forward and backward steps of a

single-layer neural network are explained. This network is

very similar to the one we use for crosstalk correction.

This section also briefly explains the convolutional layer, the

inner-product layer and the deconvolution layers that are used

in this research.

2.1 A basic single-layer neural network

At the basis of a neural network is a neuron which takes a

linear combination between the input vector x and a weight

vector w. The scalar output is transformed using a nonlinear

activation function g.

o = g
(

x⊤
· w

)

(1)

In this paper, the activation function g(·) takes the form

of either the sigmoid function φ or the Rectified Linear Unit

(ReLU) ψ . The sigmoid function produces a soft clipping

between zero and one and the ReLU function clips input

values which are below zero but keeps values above zero.

φ(x) =
1

1 + e−x
(2)

ψ(x) = max(0, x) (3)

Multiple neurons are organized in layers. The input vec-

tors to a layer are represented by an input matrix I, the desired

output vectors are given by matrix Y and the weight matrix

W contains the weight vectors of each individual neuron in

the layer.

X =

[

x⊤
1 , x⊤

2 , . . . , x⊤
n

]

(4)

Y =

[

y⊤
1 , y⊤

2 , . . . , y⊤
n

]

(5)

W =

[

w⊤
1 , w⊤

2 , . . . , w⊤
m

]

(6)

where n indicates the number of input vectors and m the

number of neurons.

The output of the neurons are produced by multiplying

the transposed input matrix X with the weight matrix W and

applying an activation function g(·) to each element.

O = g
(

X⊤W
)

(7)

where O is the output matrix with n ×m elements containing

m neuron outputs for each of the n input vectors.

In the forward step, an input matrix is presented to the net-

work and an output matrix is produced. A loss between the

desired input and the output is computed to get the current

error of the neural network. In this paper, the mean squared
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error (MSE) loss e is used for all networks. The MSE loss cal-

culates the average squared difference between the network

output O and the desired output Y.

e =
1

2n

n
∑

y=1

m
∑

x=1

(

Oyx − Yyx

)2
(8)

In the backward step, a layer is trained by adjusting the

weight matrix iteratively to converge toward the lowest loss

using gradient descent. The weights are updated by calcu-

lating the derivative of the loss function with respect to the

weight matrix W. The momentum µ prevents oscillations

during training by adding a small factor of the previous

weight change. The new weight matrix W′ is calculated by

adding a factor α (learning rate) of the derivative to the cur-

rent weights:

�Wt = −
∂e

∂Wt

+ µ × �Wt−1 (9)

Wt+1 = Wt + α × �Wt (10)

where Wt are weights at time-step t , and e, α and µ are the

loss, learning rate and momentum.

The backward and forward steps are repeated in several

epochs until the weights of the network stabilize.

2.2 Training the layers of the CNN

A typical CNN uses a slightly adapted training approach

which is referred to as stochastic gradient descent (SGD).

With SGD, the inputs are presented to the network in several

batches which is more efficient when training using a GPU

[32]. Training a single batch is referred to as an iteration.

When all batches have been trained an epoch has elapsed. A

network is trained using multiple epochs.

In this paper, three types of layers are used: the inner-

product layer, the convolutional layer and the deconvolution

layer.

2.2.1 Inner-product layer

In an inner-product layer (or sometimes called a fully con-

nected layer), all inputs are connected to all outputs. This

layer has been explained in the previous subsection and is

defined by a matrix multiplication between the input matrix

and the weights matrix followed by an activation function

(Eq. 7).

2.2.2 Convolutional layer

A convolutional layer accepts a multi-dimensional input ten-

sor. In our case, this is a hyperspectral cube with two spatial

Fig. 2 Example images taken from the UAV. These 16-channel images

have been converted to RGB for displaying

dimensions and one spectral dimension. It convolves the

input using multiple trained convolution kernels. In contrast

to the inner-product layer, the convolutional layer provides

translation invariance. Instead of having a weight associated

with each input element of the tensor, weights are shared

between image patches. In this paper, the convolutional layer

is denoted by the ⊗ symbol.

2.2.3 Deconvolution layer

The deconvolution layer (or strided convolution) performs

an inverse convolution of the input tensor. With a deconvo-

lution layer, the spatial dimensions of the output tensor are

larger than the original input tensor. Deconvolution layers

are used to upscale images to higher spatial [22] resolutions.

The trick is to first pad the input tensor with zeros between

individual spatial elements. Then a convolution is performed

and weights of the convolution kernel are trained. This layer

plays the most prominent role in demosaicking and is denoted

in this paper with the ⊘ symbol.

3 Sensor geometry and datasets

A 10 bit, 4 × 4 mosaic sensor is used to make a dataset of

2500 aerial images. The mosaic sensor layout is shown in

Table 1. A camera was mounted on a gimbal under a UAV. It

navigated over an area of 15 m×150 m at an altitude of 16 m

altitude. A lens with a 35 mm focal length was used with the

aperture set to 1.4. The scene contained mainly potato plants,

grass and soil. A short-pass filter of 680 nm has been used

to filter unwanted spectral ranges. In Fig. 2, a few example

images are shown. The set is split into an East and a West set

(separate ends of the field) containing 1000 and 1500 images.

The East set is used for training, and the West set is used for

validation. Although the set is quite large, only a random

subset of images is used for the experiments.

3.1 Calibration data

The camera vendor provides calibration data containing the

response of the MCFA sensor for 16 spectral ranges. A

calibrated light source illuminates a white reference [33].

The color is adjusted with increments of 1 nm from 400 to
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Table 1 Layout for the 4 × 4 mosaic sensor

489 nm 496 nm 477 nm 469 nm

600 nm 609 nm 586 nm 575 nm

640 nm 493 nm 633 nm 624 nm

539 nm 550 nm 524 nm 511 nm
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Fig. 3 Measured calibration data of the 4 × 4 mosaic sensor. Showing

responses for all 16 mosaic filter wavelengths

1000 nm. The response of each spectral pixel for all 16 spec-

tral bands is measured. Values for the same spectral band

are averaged for multiple spectral pixels in the image. This

produces 16 measurements per 1 nm increment of the illumi-

nation source. In Fig. 3, crosstalk between the various filters

can be observed. Because the 4 × 4 mosaic on the camera

sensor contains a band-pass filter, only the responses of the

spectral range from 400 to 680 nm are shown.

4 Similarity maximization

In this section, our similarity maximization framework for

demosaicking hyperspectral images is proposed. This frame-

work is shown in Fig. 4. Each arrow in the diagram represents

an operator of the framework. Two squares represent the con-

volutional neural network (CNN) in both the training phase

and the validation phase.

The left part of Fig. 4 illustrates the procedure of training

the CNN. A region of the input image is downsampled to 1
16

th

of the original size without filtering. This is denoted by the

dashed square in the input image. A CNN is trained to upscale

this region back to the original size. A loss is calculated by

comparing the upscaled and the original region. This loss

is then back propagated to update the weights of the CNN.

With each iteration, the CNN gets better at reconstructing the

image.

Fig. 4 Similarity maximization framework. The left part shows training

of the neural network. The right part shows validation of the neural

network

Fig. 5 Testing the neural network for final demosaicking

The right part of Fig. 4 illustrates the procedure for vali-

dating the quality of the reconstruction. The original image is

downsampled and then upscaled using the trained CNN. The

structural similarity (SSIM) index is used to quantitatively

evaluate the reconstruction.

Final demosaicking of a hyperspectral image is achieved

during the testing phase illustrated in Fig. 5. The trained

CNN produces a full-resolution demosaicked hyperspectral

cube of 2048 × 1088 × 16 from a hyperspectral cube of

512 × 272 × 16 pixels. In the testing phase no ground-truth

is available for the images.

The demosaic and the upscale operators both use iden-

tical (de)convolution kernels. However in our definition

demosaicking produces the final image and upscaling just

reconstructs the downsampled patches or images for training

and evaluation. Furthermore a mosaic image is defined as the

2-d image produced by the imaging sensor and the hyperspec-

tral cube is defined as the 3-d hyperspectral structure.

In the next subsections, all operators of our similarity

framework are explained in detail.
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4.1 Normalization

A typical neural network needs normalized values between

zero and one. The normalization operator NR(·) normalizes

the values of the hyperspectral cubes by multiplying each

element of the tensor by a scalar. Output values of the neural

network can be scaled back before display by the inverse

operator NR−1(·):

NR(I) = I ×
1

2bpp − 1
(11)

NR−1(I) = I ×

(

2bpp
− 1

)

(12)

where I is the input cube and bpp is the amount of bits per

pixel of the imaging sensor (in our case 10 bpp).

The normalization operators are implicit throughout the

paper. When explicitly referring to unnormalized tensors, an

accent (′) notation is used.

4.2 Mosaic to cube

Converting pixel values from the mosaic image to a spec-

tral cube is not entirely trivial because spatial and spectral

information is intertwined in a mosaic image. This conver-

sion can be handcrafted, but can also be implemented as a

convolutional neural network layer with a specific stride.

The mosaic-to-cube operator generates a 3-d structure I

with two spatial axes and a separate spectral axis from the

original 2-d mosaic M:

I = MC(M) (13)

No information is removed or added during this operation.

Only a 2048 × 2048 × 1 mosaic image is converted to a

512 × 512 × 16 hyperspectral cube.

The handcrafted mosaic-to-cube operator is defined as:

Cx,y,z = Mx×s+z mod s,y×s+z div s (14)

MChc(M) = C (15)

where M is the input mosaic image with a subscript indicating

the 2-d pixel coordinate, the 3-d coordinate in the hyperspec-

tral cube C is denoted by x, y and z. The size of the mosaic

is denoted by s which is 4, for a 4 × 4 mosaic. The operators

div and mod are an integer division and modulo.

An alternative implementation of the mosaic-to-cube

operator uses a convolutional layer:

G =

{

G9×9
1 , G9×9

2 , . . . , G9×9
16

}

(16)

MCnn(M) = M ⊗4 G (17)

where the G matrices denote 9 × 9 convolutional filters, G

denotes the filter bank of 16 filters (The amount of spectral

planes), and ⊗4 is the convolution operator with a stride equal

to the mosaic size, 4.

This convolutional method for the mosaic-to-cube con-

version will be identical to the handcrafted method if one

element of each filter contains the value one (it selects the

correct mosaic pixel from the image mosaic). There is some

freedom in choosing the size of these convolution filters. The

theoretical minimum size is 4 × 4. With a filter size of 9 × 9,

mosaic pixels from all around the current mosaic pixel can be

used by the network. In practice an oddly sized convolutional

layer is used so the padding for all sides of the input image

is the same. The weight initialization is uniform random.

Training this MCnn(·) operator in an end-to-end fashion

with the rest of the neural network will be investigated in

Sect. 5. In these results, it is shown that the learned filters

select specific mosaic-pixel regions from the image mosaic

as expected.

4.3 Downsampling

The downsampling operator generates a low-resolution

mosaic image from an original mosaic image. This opera-

tor is designed to give information on what the demosaicked

version of a lower-resolution image would look like. The

downsampling operator DS(·) is defined by:

Nx,y = Mx×s+x mod s,y×s+y mod s (18)

DS(M) = N (19)

where M and N are the original and the downsampled mosaic

images with a subscript indicating the mosaic-pixel coordi-

nate in the mosaic image, x, y are coordinates within the

downsampled mosaic image and s is the size of the mosaic

pattern.

Finally the downsampled spectral cube is produced by

D = MC(DS(M)) (20)

where DS(·) and MC(·) are the downsample and mosaic-to-

cube conversion operators.

An important feature of this downsampling method is that

it respects the spatial/spectral correlations of the mosaic pat-

tern by selecting different spectral bands (mod s) at different

coordinates (x and y). The main reason for this is to ensure

that the learned upscaling is not too different from demo-

saicking. The downsampled image has an area which is s2

times smaller than the original image (16 times for a 4 × 4

mosaic). By choosing a downsampling factor which aligns

with the mosaic only whole mosaic pixels are sub-sampled.

This means that no additional filtering is required or even

desired.
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Hyperspectral demosaicking and crosstalk correction using deep learning 7

4.4 Upscaling

Upscaling is at the heart of our similarity maximization

framework. Because of the close relation between the fre-

quently used Bayer interpolation and bilinear upscaling, we

compare several designs of our convolutional neural network

architecture to a standard bilinear interpolation method. The

upscaling operator will be investigated quantitatively with

a full-reference metric (SSIM). These experiments can be

found in Sect. 5.

The upscaling operator US(·) scales a hyperspectral cube,

or 3-d tensor, to another hyperspectral cube with a higher

spatial resolution.

In general a set of convolutional filters in a filter bank is

given by

F
t×t
m =

{

Ft×t
1 , Ft×t

2 , . . . , Ft×t
m

}

(21)

where Ft×t is 3-d tensor with the first two dimension sizes

set to t × t and m is the number of filters in the filter bank.

Note that all convolution filters in F are three dimensional

because they act on hyperspectral cubes. Only the first two

dimensions t × t are specified as hyperparameters. The third

dimension of the convolution filter is the same as the size

of its input tensor. For example, if the input tensor is the

hyperspectral cube the third dimension is equal to the amount

of spectra (16 in our case).

The specialization of the upscaling operator for bilinear

interpolation is defined by

U Sbl(D) = φ

(

D ⊘4 F
8×8
16

)

(22)

where D is the downsampled input tensor, φ is the Sigmoid

activation function and the deconvolution operator is denoted

by ⊘4, where the subscript 4 determines the stride of the

convolution which in turn is responsible for the upscaling

factor in both x and y directions.

The convolution filters are initialized by a bilinear filler

type described in [34]. When using a single deconvolutional

layer, mainly linear upscaling can be achieved (the function

φ is responsible for some nonlinearity).

To introduce more nonlinearity, at least two deconvolution

layers are used. The first layer determines the capacity of the

neural network and the second layer should have the same

amount of filters as the number of required spectral bands in

the output:

U St×t
m (D) = φ

(

φ
(

D ⊘2 F
t×t
m

)

⊘2 F
t×t
16

)

(23)

where U St×t
m (·) is the upscaling operator with m filters of size

t × t . Each deconvolution operator performs an upscaling of

2 × 2 = 4 times, which results in a total spatial upscaling

factor of 4 × 4 = 16.

To avoid extrapolating beyond the original resolution, the

product of the strides of both deconvolution layers should not

exceed the size of the mosaic. This presents an interesting the-

oretical implication: Optimal sizes for mosaic sensors should

ideally not be prime numbers. These cannot be upscaled

with multiple consecutive deconvolution layers to intro-

duce nonlinearity. For example a 5 × 5 mosaic, currently

also available on the market in the Near-InfraRed (NIR)

range, can only be demosaicked using a single deconvolu-

tion layer.

The upscaling operators which only use a single deconvo-

lution layer are referred to in the text as linear upscaling and

the upscaling operators using more than one deconvolution

layer are referred to as nonlinear upscaling.

4.5 Demosaicking

There is a subtle difference between the upscaling and

the demosaicking operator. Following the definition of the

upscaling operator, CNNs are trained to reconstruct original

images from downsampled images. The demosaicking oper-

ator is actually the final goal of hyperspectral demosaicking.

This is what produces a high-resolution hyperspectral cube

from a low-resolution cube. The main difference between the

upscaling operator and the demosaicking operator is the size

of the input and output tensors.

The upscaling operator in our similarity maximization

framework is trained on small regions of the original image.

Because these regions are downsampled to 1
16

th of the

original size, the neural network is trained to enlarge a down-

sampled region from 1
16

th to its original resolution.

The demosaicking operator uses this trained neural net-

work to enlarge an original image by a factor 16. This

results in an interesting trade-off regarding the footprint

size of the deconvolution filters. The footprint should be

sufficiently large to interpolate between spatial structures.

At the same time, the footprint should be kept sufficiently

small so that the neural network learns to generalize between

increasing the spatial resolution from 1
16

th to the original res-

olution and to increase the original resolution by a factor of

16.

In our case, the footprint of the deconvolution filters is

kept sufficiently small so the network cannot exploit large

spatial structures in the images. The idea is that this helps

generalize the upscaling operator to be suitable as a demo-

saicking operator. Another difference between the upscaling

operator and the demosaicking operator is that the demo-

saicking operator can and will only be evaluated visually

because the full-resolution demosaicked image is not known

a-priori, and thus, a full-reference comparison cannot be per-

formed.
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4.6 Loss function

A loss is calculated between the upscaled cube U and the

original cube I. A popular method for calculating loss is the

Euclidean loss which is both fast and accurate.

The operator LS(·) calculates the MSE loss between two

tensors of equal dimensions and size:

LS(U, I) =

√

√

√

√

c
∑

i=1

(Ui − Ii )
2 (24)

where c is number of elements of the 3-d tensor and the

subscript i indicates an element of the tensors.

The loss estimates the degree of similarity between two

hyperspectral cubes and is back-propagated through the neu-

ral network in a fashion similar to the algorithm described in

Sect. 2.1.

4.7 Structural similarity

The Euclidean loss gives a fast and unnormalized metric of

similarity which is used for training. For quantitatively com-

paring the measure of equality between two spectral cubes,

the structural similarity (SSIM) index is used [30]. This met-

ric calculates three different aspects of similarity where a

value of zero means that there is no similarity and a value of

one means that the spectral cubes are identical. The SSIM

index is a symmetric similarity metric meaning that switch-

ing the input tensors has no effect on the output value. A brief

summary of the algorithm will be given:

First a weight matrix G is constructed using an 11 × 11

Gaussian function with a 1.5 standard deviation with a sum

of one. A sliding window is used to calculate luminance,

contrast and structure at every pixel (each channel of the

hyperspectral image is calculated separately):

µx = g⊤x (25)

µy = g⊤y (26)

σx =

√

√

√

√

n
∑

i=1

(gi × (xi − µx ))
2 (27)

σy =

√

√

√

√

n
∑

i=1

(

gi ×
(

yi − µy

))2
(28)

σxy =

√

√

√

√

n
∑

i=1

gi (xi − µx )
(

yi − µy

)

(29)

where g is the 1-d contiguous vector of the weight matrix G,

the 1-d contiguous vector of pixels from a single 2-d patch

is denoted by x and y, n is the number of elements in these

vectors (11 × 11 = 121).

The per-channel SSIM index is calculated at each spatial

coordinate of the hyperspectral plane by

SSIM(x, y) =

(

2µxµy + C1
) (

2σxy + C2
)

(

µ2
x + µ2

y + C1
) (

σ 2
x + σ 2

y + C2
) (30)

where C1 = (0.01 × 2bpp)2 and C2 = (0.03 × 2bpp)2 are

constants taken from the original paper [29].

The final mean SSIM index between two hyperspectral

cubes is calculated by first taking the mean over all patches

and then taking the mean over all channels by:

MSSIM(Xc, Yc) =
1

n

n
∑

i=1

SSIM(Xci , Yci ) (31)

SI(X, Y) =
1

nc

nc
∑

c=1

MSSIM(Xc, Yc) (32)

where X and Y are two tensors where c indicates the image

plane of spectral channel c. Subscript i indicates a 1-d con-

tiguous vector of an 11 × 11 image patch of the tensors and

n and nc are the number of image patches and number of

channels, respectively. The final similarity operator SI (·) cal-

culates the average similarity over all channels and is used to

estimate similarities between upscaled and original spectral

cubes. In the text, the output of the SI(·) operator is mostly

referred to as the ‘SSIM index’.

4.8 Crosstalk correction

A mosaic imaging sensor suffers from crosstalk. This means

that each filter in the mosaic is not only sensitive to the

designed spectral range, but information from other bands

bleeds through. This is mostly regarded as an unwanted effect

and can be observed by a desaturation of the image colors

[14].

A linear method for correcting crosstalk is proposed in

[33]. The crosstalk between spectral responses for a spec-

tral pixel is corrected by talking a linear combination of all

spectral responses for that specific pixel:

CT(X) = ψ

(

X⊤W
)

(33)

where X is a matrix containing column vectors of spectral

responses, W is the crosstalk-correction matrix and CT(·)

is the crosstalk-correction operator. The ReLU function ψ

clips values below zero because negative spectral responses

cannot exist. This attributes to some nonlinearity and also

means that crosstalk correction is an irreversible operation

which reduces information.
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The remainder of this subsection explains how crosstalk

correction is implemented using an inner-product layer so

it can be integrated into a deep neural network to perform

a combination of tasks, e.g., performing a combination of

demosaicking and crosstalk correction.

Matrix W is the weight matrix of the inner-product layer

and is a square matrix.1

The ideal spectral responses are constructed as a collection

of Gaussian responses with a fixed standard deviation and a

given mean (the mean of each filter in the mosaic is given by

the vendor):

Y =

[

y400
⊤, y401

⊤, . . . , y680
⊤
]

(34)

where the target matrix Y contains the ideal spectral

responses from 400 to 680 nm of the 16 spectral bands in

the mosaic.

The weight matrix is trained by stochastic gradient descent

(SGD) using the Euclidean loss between the crosstalk-

corrected output CT(X) and the ideal output Y. The crosstalk-

calibration set is shown in Fig. 7. The figure shows individual

samples on the x-axis and the spectral responses of these

samples on the y-axis. Showing from top to bottom: The

measured, ideal and corrected response. Mean values of the

ideal responses are shown at the bottom of Fig. 7.

The crosstalk-correction matrix W is normalized after

training by multiplying each element by the amount of ele-

ments in the main diagonal divided by the trace. This forces

the matrix to roughly preserve absolute pixel values:

Wi j = Wi j ×
16

TRACE(W)
; ∀i,∀ j (35)

where i and j are i th row and j th column of matrix W.

If crosstalk correction was perfect the correlations between

spectral bands will be eliminated. This means that it is proba-

bly more difficult for the upscaling operator to reconstruct the

image using spectral correlations. While crosstalk is mostly

regarded as detrimental, it could be beneficial to demosaick-

ing. This is further explored in Sect. 5 where also end-to-end

training of a crosstalk-corrected image is investigated sepa-

rately.

5 Experiments

Our main goal is to demosaick images and to minimize

crosstalk between spectral bands. All experiments in this sec-

tion attribute to achieving this goal. Experiments are also

1 Because the number of spectral bands in the input and output are

identical, this is a square matrix; however, the number of output neurons

could be less or more than the number of input spectral bands (e.g., map

directly to RGB or map to multiple spectral harmonics).

specifically designed to gain deeper insight by trying to

answer the three research questions presented in Sect. 1.

This section is divided into three main parts: Starting with

the effect of crosstalk correction, followed by the good prac-

tices of several neural network designs. Finally, we discuss a

fully end-to-end trainable convolutional neural network for

demosaicking which can process data directly from the raw

sensor and produce the final hyperspectral cube.

5.1 The effects of crosstalk correction

The goal of this experiment is to investigate the effect of

crosstalk correction on the reconstruction result.

Raw image data from the mosaic sensor is first normalized

and converted to a spectral cube by our handcrafted conver-

sion method:

C = MChc(NR(M)) (36)

where M is the 2-d mosaic image and C is the 3-d hyper-

spectral cube.

By changing the order in which operators are executed,

we investigate how crosstalk effects the final reconstruction

result.

noCTsi = SI(US(DS(C)), C)) (37)

preCTsi = SI(US(DS(CT(C))), CT(C))) (38)

postCTsi = SI(CT(US(DS(C))), CT(C))) (39)

where DS(·), US(·), CT(·) and SI(·) are the downsam-

ple, upscale, crosstalk-correction and similarity operators,

respectively. Outputs of the upscaled versions of the down-

sampled cubes are compared to either the original spectral

cube C or the crosstalk-corrected spectral cube CT(C). The

metrics noCT , preCT and postCT contain are output val-

ues of the SSIM index.

Equation 37 performs an upscaling after downsampling to

investigate how well upscaling performs without correcting

crosstalk. This is used as a baseline in this paper.

Equation 38 first performs a crosstalk-correction before

applying downsampling and upscaling. This simulates demo-

saicking of a mosaic image taken with an MCFA sensor with

minimum crosstalk. This will show if crosstalk will actually

help demosaicking.

Equation 39 corrects crosstalk after applying downsam-

pling and upscaling. This will show how well crosstalk cor-

rection will perform when applied as a separate

operator.

In all the cases mentioned here, the crosstalk-correction

operator is trained using the method discussed in Sect. 4.8

and is used as a stand-alone operator. Later in this paper, it is

explained how the crosstalk-correction operator is integrated
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into a neural network which is trained in an end-to-end fash-

ion.

5.2 Demosaicking

The goal of the experiments in this subsection is to deter-

mine best practices and to get an intuition for setting several

hyperparameters. A number of demosaicking neural net-

work designs will be evaluated. These can be categorized

into variations in: model, footprint, image size and image

count. Within each configuration of the similarity-framework

design, relevant parameters will be varied.

All notations will follow the general upscaling operator

defined in Eqs. 22 and 23.

5.2.1 Models

The upscaling operator US(·) in Eqs. 37, 38 or 39 is imple-

mented as one of six models. The goal here is to determine

the optimal capacity of the neural network for demosaicking.

USbl(D) = φ

(

D ⊘4 F
8x8
16

)

(40)

USbl3d(D) = USbl(D)′ (41)

US4(D) = φ

(

φ

(

D ⊘2 F
4×4
4

)

⊘2 F
4×4
16

)

(42)

US16(D) = φ

(

φ

(

D ⊘2 F
4×4
16

)

⊘2 F
4×4
16

)

(43)

US32(D) = φ

(

φ

(

D ⊘2 F
4×4
32

)

⊘2 F
4×4
16

)

(44)

US256(D) = φ

(

φ

(

D ⊘2 F
4×4
256

)

⊘2 F
4×4
16

)

(45)

where D is the downsampled cube before or after crosstalk

correction, ⊘ is a deconvolution operator with a specific

stride, and F is a convolution filter bank with a specific num-

ber of filters of a given size.

The operator USbl(·) performs upscaling using bilinear

interpolation and is used as a reference. USbl3d(·) is essen-

tially the same as USbl(·), but the weights of this model are

trained. This can be viewed as the best-achievable result using

linear upscaling.

The remaining US(·) operators are nonlinear upscaling

models where the number of neurons in the first deconvolu-

tion layer are set to either 4, 16, 32 or 256 neurons.

5.2.2 Footprint

The footprint of a (de)convolution layer is related to the size

of the filter and determines the spatial context of the input

to the filter. As explained in Sect. 4, a larger footprint is

expected to better interpolate spatial structures while being

less general.

In this experiment, the upscaling operator US(·) in Eqs. 37,

38 or 39 is implemented as one of three models. The idea is

to investigate the effect of the footprint of the convolution

filter.

US2×2(D) = φ

(

φ

(

D ⊘2 F
2×2
32

)

⊘2 F
2×2
16

)

(46)

US4×4(D) = φ

(

φ

(

D ⊘2 F
4×4
32

)

⊘2 F
4×4
16

)

(47)

US8×8(D) = φ

(

φ

(

D ⊘2 F
8×8
32

)

⊘2 F
8×8
16

)

(48)

where D is the downsampled cube before or after crosstalk

correction, ⊘ is a deconvolution operator with a specific

stride and F is a convolution filter bank with a specific num-

ber of filters of a given size.

The operator US2×2(·) uses a 2×2 footprint. Because the

stride of the convolution is 2, no spatial context is used during

upscaling. Therefore this model can only exploit correlations

in spectral information. This model is used to investigate the

effect of context information (or spatial correlation) of the

upscaling operator.

The operator US4×4(·) uses a 4 × 4 footprint. Because of

the strided convolution, this actually is a 2×2 spatial context

when looking at spectral-pixel neighborhoods with respect

to the original downsampled cube D.

The operator US8×8(·) uses a 8 × 8 footprint. Because of

the strided convolution, this actually is a 4×4 spatial context

in the first deconvolution layer and a 2 × 2 spatial context in

the second deconvolution layer with respect to the original

downsampled cube D.

In Fig. 6, the sizes of the convolution filters are shown.

Black pixels indicate original spectral pixels from the down-

sampled image, dark gray spectral pixels are interpolated by

the first deconvolution layer and light gray spectral pixels are

interpolated by the second deconvolution layer. Note that the

number of original, black, spectral pixels that are used by dif-

ferent footprint sizes varies with the size of the convolution

filters and also varies depending on the layer of the upscaling

operator.

5.2.3 Image size and image count

The proposed similarity maximization framework uses images

which are a region of an original image for training. Gener-

ally image size and image count will both contribute to the

number of training samples. This can be understood by look-

ing at the nature of a convolution. A convolution is generally

an independent operation taking only a small spatial context

as input. Because no fully connected or inner-product layers

are used for demosaicking, the outputs from spatially sepa-

rated convolutions are never merged. This means that each

image patch (equal to the convolution filter footprint) can be

viewed as a separate sample. This effect of image count and
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Fig. 6 Upscaling using two deconvolution layers. Original image (top),

result of first deconvolution layer with interpolated spectral pixels in

dark gray (middle) and final upscaling result with interpolated spectral

pixels in light gray (bottom). The red, green and blue delineations indi-

cate convolution filter sizes of 2 × 2, 4 × 4 and 8 × 8 spectral pixels

(color figure online)

sample size will be quantified to determine the optimal region

size and the number of regions to extract from the original

images.

Region sizes will be varied from 1 to 30 spectral pixels

with increments of 5 spectral pixels. When the region size

is too small, it will probably suffer from border effects. A

region size of 1 is included to force the network to not use

any spatial context.

Image counts will be varied from 1 through 5 and 100, 500

and 1000 images. The idea is that a certain maximum amount

of images is enough for training the upscaling models. Theo-

retically, increasing the amount of images makes more sense

than increasing the size of a region because different images

will contain more spatially uncorrelated spectral pixels.

5.3 End-to-end trainable neural network

Prior knowledge about the input mosaic image and the hyper-

spectral cube in the output can be exploited to train an

end-to-end demosaicking deep neural network. In this exper-

iment, all earlier operators are combined.

First the normalized mosaic image I, the downsampled

mosaic M, the hyperspectral cube C, and the downsampled

cube D are generated:

I = NR
(

I′
)

(49)

M = DS(I) (50)

C = MChc(I) (51)

D = MChc(M) (52)

where I′ is the raw (unnormalized) input mosaic image,

NR(·) and DS(·) are the normalization and downsample oper-

ators, and MChc(·) is the handcrafted conversion operator (to

convert from a mosaic image to a hyperspectral cube).

Four deep neural networks are defined by varying two

operators. The mosaic-to-cube conversion operator will be

varied to either use the handcrafted version MChc(·) or

the trainable version MCnn(·). Also the crosstalk-correction

operator will either be trained end-to-end or will be applied

after upscaling:

US = US4×4
32 (53)

mchc/ctpost = SI(CT(US(MChc(M)))), CT(C)) (54)

mcnn/ctpost = SI(CT(US(MCnn(M)))), CT(C)) (55)

mchc/ctnn = SI(US(MChc(M)), CT(C)) (56)

mcnn/ctnn = SI(US(MCnn(M)), CT(C)) (57)

where mchc/ctpost contains the SSIM index when all

operator are executed separately. The similarity measure-

ment mcnn/ctpost contains the SSIM index when using

a trained conversion operator MCnn(·) and a separate

crosstalk-correction operator CT(·). The similarity measure-

ment mchc/ctnn is the SSIM index of a model with an

integrated crosstalk correction and a handcrafted conver-

sion operator MChc(·). Finally mcnn/ctnn contains the SSIM

index when all steps are integrated into a single deep neural

network.

Furthermore the upscaling operator uses 32 convolution

filters in the first layer. Filters have a size of 4 × 4 pixels.

Also note that the similarity operator SI(·) always calculates

the SSIM index using the crosstalk-corrected hyperspectral

cube CT(C).

To show how our final end-to-end trainable convolutional

neural network can use mosaic images as an input directly,

it can be rewritten in terms of convolutions by expanding all

operators:

E2E(M) = US4×4
32 (MCnn(M)) (58)

= φ

(

φ

(

φ

(

M ⊗4 G
9×9
16

)

⊘2 F
4×4
32

)

⊘2 F
4×4
16

)

(59)

where φ is the logistic activation function, ⊗ is the convolu-

tion operator, ⊘ is the deconvolution operator, and G and F

are the filter banks.
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6 Results

Special care has been taken to tune the hyperparameters so

that they are equal and lead to good performance for all mod-

els. All models are trained using 500K epochs, a learning

rate of 0.0005 and a momentum of 0.01. We observed that

a relatively low learning rate prevents the models from satu-

rating or overflowing the activation functions while the high

amount of iterations ensures convergence on this application.

This may indicate that the demosaicking problem is convex.

No regularization methods like weight decay [35] or drop-

out [36] are used because over-fitting was not observed in

our demosaicking models.

The remainder of this section is divided into four parts. In

the first part, the results of the crosstalk-correction operator

CT(·) are discussed. In that part also a spectral analysis of

the crosstalk-corrected hyperspectral cube is presented. The

second part discusses the quantitative results of the upscaling

operator US(·) by comparing SSIM index values between

original and upscaled images. The third part presents the

qualitative analysis with visual details of the output images

produced by the upscaling and demosaicking operators. The

final part of this section presents a spectral analysis of the

results of both the upscaling and the demosaicking operator.

6.1 Crosstalk-correction operator

The results of the crosstalk-correction operator CT(·) are

shown in Fig. 7 where the measured graph contains the raw

measured spectral responses. The responses in the ideal graph

represent the generated ideal Gaussian spectral responses.

The corrected graph shows responses after training and

applying the crosstalk-correction operator. These results

show that the crosstalk in the lower and higher wavelengths

has been drastically reduced because the spectral response

graphs are less intertwined for the corrected graph.

Generally the peaks of Fig. 7 (corrected) are all of similar

height and the energy is conserved between the measured

graph and the corrected graph by the normalization of the

crosstalk-correction operator formulated in Eq. 35.

Another two interesting observations can be made from

the graphs in Fig. 7. Firstly, crosstalk is corrected at the cost

of the 496 nm wavelength which is almost completely attenu-

ated (indicated by the red arrow in the ideal graph). Secondly,

the optical filter for wavelength 493 also has a major peak at

650 nm which is corrected by the crosstalk correction (indi-

cated by the blue arrows in the measured graph).

The spectral profiles for the average spectral pixel values

of some images are shown in Fig. 8. The top row shows the

profiles of the original, downsampled, upsampled and demo-

saicked images before crosstalk correction. The bottom row

shows the spectral profiles of the images after crosstalk cor-

rection. The average spectral response for all types of images
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Fig. 7 The measured calibration data of the 4 × 4 mosaic sensor (top),

the ideal Gaussian response (middle) and the crosstalk-corrected result

(bottom). The illumination wavelength is on the x-axis and the spectral

response is on the y-axis. Showing responses for all 16 mosaic filter

wavelengths and the vendor provided mean of the spectral responses
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Fig. 8 Average spectral-pixel values of the original, downsampled,

upsampled and crosstalk-corrected images before (noCT) and after

(postCT) crosstalk correction. The strong peak at wavelength 493 is

caused by crosstalk with wavelength 650. The graph has been centered

for display by subtracting the mean
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Fig. 9 Left shows a crosstalk-corrected image and right shows an orig-

inal image. Both images are mapped from 16 spectra to RGB

are almost identical. This means that the relative intensity is

preserved between conversions. Furthermore the strong peak

in Fig. 8 (noCT) at 493 nm which was most likely caused by

crosstalk is corrected in Fig. 8 (postCT). This shows that the

crosstalk-correction operator, which has been trained on the

calibration dataset, is performing well on the real images.

After crosstalk correction, the highest peak is observed at

550 nm. This is known to be the peak reflection wavelength

of Chlorophyll [37] and responsible for the green color of

vegetation. In Fig. 9 this manifests as a more vivid green

color of the image.

The RGB color images in this paper are generated from

the 16-channel hyperspectral cube. Our goal with this is to

visually interpret differences between demosaicking models

and no attempt has been made to generate realistic or even

plausible RGB images. Therefore a simple scheme for map-

ping hyperspectral colors to RGB colors is used. The mean

values of the responses of the 469, 477, 489, 493 and 496 nm

spectral bands are mapped to blue. The mean values of the

responses of the 511, 524, 539 and 550 nm spectral bands

are mapped to green. And the mean responses of the spectral

bands for wavelengths 575, 586, 624, 633 and 640 nm are

mapped to red.

6.2 Quantitative analysis

Quantitative results are produced by comparing the original

hyperspectral cubes with the upscaled cubes by analyzing the

structural similarity (SSIM) index, starting with the models,

then discussing the footprint, then the image size and the

image count. The results are presented in Table 2. The noCT

column of Table 2 shows the performance of upscaling with-

out crosstalk correction and serves as a reference. The preCT

column shows the performance with crosstalk corrected prior

to upscaling, and the postCT column shows the performance

with crosstalk corrected after upscaling.

Finally, the results for upscaling with our end-to-end con-

volutional neural networks are discussed.

Table 2 Median SSIM for upscaling using various models and inputs

noCT preCT postCT

Model

BL 0.48 0.63 0.55

BL3D 0.88 0.70 0.84

16 0.89 0.80 0.85

32 0.89 0.81 0.85

256 0.89 0.80 0.85

Footprint

2 × 2 0.87 0.75 0.82

4 × 4 0.89 0.81 0.85

8 × 8 0.90 0.81 0.86

Images

1 0.81 0.72 0.75

2 0.85 0.77 0.80

5 0.87 0.78 0.82

100 0.89 0.81 0.85

1000 0.89 0.81 0.85

Size

1 0.70 0.58 0.63

10 0.89 0.78 0.85

20 0.89 0.81 0.85

30 0.89 0.81 0.85

The bold result in the noCT column indicates the best median SSIM

when not correcting crosstalk. The bold result in the postCT indicates

the best median SSIM when crosstalk correction is applied. The column

noCT serves as a reference where no crosstalk correction is applied.

In preCT and postCT crosstalk correction is applied before or after

upscaling respectively

6.2.1 Models

Standard upscaling with bilinear interpolation (BL) is com-

pared to the linear upscaling (BL3D) and nonlinear upscaling

models (model 16, 32 and 256) that have been defined in

Sect. 5.2.1. The results that are discussed here are indicated

by ‘Model’ in Table 2.

The BL3D model is the same as the BL (Bilinear Inter-

polation) model, with the exception that weights are trained.

Interestingly this BL3D model is almost as accurate as non-

linear upscaling when crosstalk correction is applied after

upscaling (postCT) but falls short when crosstalk is corrected

before upscaling (preCT). This suggests that more complex

models are needed to upscale images with less crosstalk.

The median similarity increases from 0.55 to 0.85 when

comparing the bilinear model to the nonlinear models (see

column postCT). It is also shown that increasing the number

of convolution filters in the initial upscaling layer does not

need to exceed 16 filters, the SSIM index stays at 0.85.

The overall best result is achieved when not applying

crosstalk correction at all (noCT column, SSIM 0.89). This

123



14 K. Dijkstra et al.

is probably explained by the fact that crosstalk correction is

an operator which reduces information. Regardless of the

trained model, applying crosstalk correction after upscal-

ing outperforms crosstalk correction before upscaling. This

supports the hypothesis that demosaicking benefits from

crosstalk.

6.2.2 Footprint

The results for using various different footprints for the con-

volution filters are shown in Table 2 and are indicated by

‘Footprint’. These footprint sizes are measured in terms of

the spectral cube not the mosaic image, e.g., the conversion

operator MC(·) has already been applied.

The largest improvement is achieved when going from a

2 × 2 footprint to a 4 × 4 footprint. Although the results

increase asymptotically, the results for the 8 × 8 filter still

improves (SSIM 0.86) because also the information of the

original spectral pixels is exploited in the final upscaling layer

(explained earlier in Fig. 6).

The highest SSIM index observed in this paper is 0.90

and is achieved when performing upscaling without applying

crosstalk correction. This shows excellent baseline perfor-

mance for our nonlinear upscaling models.

6.2.3 Image size and image count

Two methods for increasing the training set size are either

to increase the number of training images or to increase the

size of the training images (explained in Sect. 5).

The results in Table 2 indicated by ‘Images’ show the

SSIM index for increasing the number of training images.

Interestingly, when only one training image is used, already

quite good results are achieved (the SSIM index is higher than

0.7). This is probably because one training image already

contains a lot of information about the spectral/spatial corre-

lations. By further increasing the amount of training images

the results keep improving. However increasing beyond 100

training images does not seem to further improve the results.

The results in Table 2 indicated by ‘Size’ show the SSIM

index for using different training image sizes. An image size

of one (basically a vector of 16 spectral intensity values)

performs poorly because the upscaling operator is only able

to exploit spectral information to reconstruct spatial infor-

mation. Increasing the size of the training images leads to an

increased performance because more spatial information can

be exploited to spatially interpolate pixels. Increasing the size

of the training image beyond 20 pixels seems to not further

improve the result. Interestingly, when upscaling images with

minimized crosstalk (the preCT column), image size seems

to matter more. This can be explained by the fact that for

these images the upscaling operator cannot exploit spectral

Table 3 The median SSIM for

upscaling with crosstalk

correction and mosaic-to-cube

conversion trained into an

end-to-end network or applied

separately. Results shown for

training 1000 images of size 20

CTpost CTnn

MChc 0.85 0.84

MCnn 0.86 0.85

Fig. 10 The 81 weights of each of the 16 convolution filters for

the learned mosaic-to-cube operator (MCnn). The bright-yellow pix-

els indicate large weights and dark-blue values indicate small weights

(color figure online)

correlations and needs to rely more on spatial information

for a valid reconstruction.

6.2.4 End-to-end

This final section of the quantitative analysis shows the

results when comparing different degrees of end-to-end

deep neural networks. The crosstalk-correction operator is

either applied after upscaling indicated by CTpost (·) or

the crosstalk-correction operator is trained directly into the

network indicated by CTnn(·). Also the mosaic-to-cube con-

version is either applied separately in a handcrafted manner

with the MChc(·) operator or is trained as an extra con-

volution layer into the neural network with MCnn(·). The

combination of MCnn(·) and CTnn(·) operators represent the

end-to-end trainable deep neural network for demosaicking

which is regarded as the final goal.

Table 3 shows the results of these networks. The median

SSIM index for the end-to-end network and the SSIM index

when using separated operations are identical (0.85). This

means that a neural network is good at solving all opera-

tions with one completely integrated model. When applying

crosstalk as a separate operator, a slightly better result is

achieved (0.86).

The trainable mosaic-to-cube operator MCnn that was

introduced in Sect. 4.2 is designed to specialize in converting

the image mosaic to a spectral cube by specifying a convolu-

tion stride of 4. Each of the 16 convolution filters could learn

to select a different pixel from the image mosaic to mimic the

handcrafted mosaic-to-cube operator. In Fig. 10, the weights

of the 16, 9 × 9 convolution filters are shown as they have

been learned by the end-to-end neural network. As expected

each filter specializes in selecting a different, mostly unique

part, of the image mosaic. Although the filter size is 9 × 9,

only large weight values for a 4 × 4 sub matrix are present

in the lower-right part of each filter. This is probably due
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Fig. 11 Images for evaluating upscaling (top row) and demosaicking

(bottom row). Soil (left), plants (middle) and grass (right)

to the 4 × 4 image mosaic and indicates that a filter size of

9×9 is probably not required for the trained mosaic-to-cube

operator.

6.3 Visual analysis

Further insight can be gained by visually analyzing the differ-

ences between images.2 This gives an intuition about which

SSIM value differences are still perceivable and is the main

method for evaluating the demosaicking operator. For this

analysis, three images have been selected.

The images used for validating the upscaling operator are

shown in the top row of Fig. 11. These images have been

downsampled by a factor 16 by the DS(·) operator. The

images used for the final demosaicking of an image mosaic

are shown in the bottom row of Fig. 11 and have the original

spatial resolution (and 16 channels). The left image contains

a patch of soil and is used to evaluate the performance on flat

surfaces. The middle image contains plants to analyze the

performance on images with sharp edges. The right image

contains grass which demonstrates performance on small

structures. Analyzing these images should give a fair judg-

ment of the performance of our method for different types

of images that can be encountered in vegetation inspection

with UAVs.

All the images in this subsection are presented in a sim-

ilar fashion. When visual results of the upscaling models

are presented, the first two columns contain the original

and downsampled images (Orig and DS) and the rest of the

columns contain results for various models, footprints, train-

ing images sizes or training image counts. When presenting

the results of demosaicking, the downsampled image col-

umn is not present because it is not used for demosaicking.

The rows of the images can indicate either noCT, preCT or

2 This part of the paper is best read on a screen.

postCT, where noCT shows images without crosstalk correc-

tion applied, preCT shows images where crosstalk correction

is applied prior to upscaling and postCT shows images where

crosstalk correction is applied after upscaling.

The remainder of this subsection discusses the visual

results of upscaling and demosaicking using the various mod-

els, footprints, images sizes and image counts, as well as the

difference in result when applying crosstalk correction either,

not, before or after upscaling.

6.3.1 Models

In Fig. 12, it be can clearly seen that the crosstalk-corrected

images appear more vivid green because colors are less inter-

mixed. When upscaling the image after applying crosstalk

correction (preCT) the resulting images appear slightly more

blurry. This shows visually that crosstalk helps upscaling.

In Fig. 12, it is shown that bilinear interpolation (BL)

results in a blurry image. The sharpest upscaling result of

the potato plant images in that figure is achieved using 32

convolution filters in the first upscaling layer. The images of

the soil show an increase in color accuracy when using more

convolution filters in the first upscaling layer. The greenish

haze in the soil images is least visible when using 16 or

more filters and applying crosstalk correction after upscaling

(postCT). These visual observations are confirmed by the

SSIM of 0.84 for the leaves and 0.79 for the soil patches

(when also correcting crosstalk).

Figure 13 shows the results when demosaicking the orig-

inal images. Here it is shown visually that more structure

appears in the image objects like the leaves and the small

plant in the soil image. This means that the upscaling opera-

tor not only performs well on reconstructing images but also

achieves good results when demosaicking the images beyond

their original resolution. If crosstalk correction is applied

after demosaicking, the results are better. This manifests as a

smoother upscaling result for the images containing leaves,

and this manifests as a strong reduction in chromatic aberra-

tions alongside strong edges in the soil images. The striped

background pattern in the bottom row of Fig. 13 keeps dimin-

ishing when adding more convolution filters (up to 256).

6.3.2 Image size and image count

The top row of Fig. 14 shows that applying crosstalk correc-

tion before upscaling and using a 1 × 1 pixel hyperspectral

training image does not yield any result, just a green image.

As crosstalk has been corrected, the model can use nei-

ther spectral correlations to reconstruct the image nor spatial

correlations because the training images are just one spec-

tral pixel. If the size of the training images is subsequently

increased to 5 × 5 and 10 × 10 the reconstruction sharp-

ness increases because spatial correlations can be exploited.
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Fig. 12 Upscaled images using different models. Using 32 filters

and applying crosstalk correction after upscaling (postCT) shows the

sharpest result on the potato leaf images and the best color reconstruc-

tion on the soil images. Images with crosstalk correction (preCT and

postCT) appear more vivid green (color figure online)

But applying crosstalk after upscaling (the middle row of

Fig. 14) shows the best results with training image sizes of

5×5 and larger. The bottom row of Fig. 14 shows that incre-

mentally adding more images to the training set results in

higher SSIM index values. However, an SSIM of 0.82 still

does not yield satisfying results (there is still a color haze). A

slight increase of only 0.02 still represents a great improve-

ment at 1000 training images. This shows that small SSIM

differences could still represent visual improvements.

6.3.3 Footprint

The footprint of the convolution filter seems to only marginally

affect the upscaling result in Fig. 15 beyond a filter size of

4×4. When the filter is 2×2, the model fails to capture spa-

tial relations and severe striped artifacts are produced which

is probably a result of the underlying mosaic pattern.
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Fig. 13 Demosaicked images using different models. Using 16 or more

filters and applying crosstalk after upscaling (postCT) achieves the

results with the least noise in the leaf images and the least chromatic

aberrations in the soil images

Interestingly, when applying the trained model for demo-

saicking, a visual improvement can still be perceived for

filters with a footprint of 8 × 8 (see Fig. 16, bottom row).

This shows that an SSIM increase of 0.01 can still represent

visual improvements of the striped pattern when looking at

the result of the demosaic operator. This also means that a

model which has been trained to perform upscaling also gen-

eralizes well to perform hyperspectral demosaicking.

6.3.4 End-to-end

The visual results for the various end-to-end models are

shown in Fig. 17. This shows a collection of potato leaves,

with Orig showing the source image. The columns MChc

and MCnn show demosaicking results of the handcrafted and

trained mosaic-to-cube operators. The rows CTpost and CTnn

show results when crosstalk correction is applied after demo-

saicking and when crosstalk correction is trained directly

into the model. The main conclusion that can be drawn is
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Fig. 14 Upscaled images with different training image sizes (top two

rows) and training image counts (bottom row). The model cannot recon-

struct the image if the training image size is a 1 × 1 spectral pixel

and when crosstalk is minimized before upscaling. The best result is

achieved with large training images (10 × 10) or many training images

(1000 images)

Orig DS 2×2 4×4 8×8
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Fig. 15 Upscaled images with different convolution filter footprint

sizes. The small details of the grass are clearer when correcting the

crosstalk after upscaling. Striped artifacts appear when using a small

footprint
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Fig. 16 Demosaicked images with different convolution filter footprint

sizes. The striped artifacts diminish with increasing footprint sizes, and

this effect is still visible for the 8×8 footprint size (see enlarged square)
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Fig. 17 Collection of demosaicked images of potato leaves with source

image (Orig). No noticeable differences between handcrafted mosaic-

to-cube (MChc), trained mosaic-to-cube (MCnn), post-processed

crosstalk correction (CTpost ) and crosstalk correction trained into the

model (CTnn). The bottom-right image shows the demosaicking result

when the network is trained end-to-end

that the end-to-end trained model (bottom-right corner of

Fig. 17) shows no noticeable differences in the final result.

This in turn means that an end-to-end solution for hyperspec-

tral demosaicking and simultaneous crosstalk correction can

be achieved with our similarity maximization framework and

a convolutional neural network.

6.4 Spectral analysis

In Sect. 6.1, a spectral analysis of the crosstalk-correction

operator showed that crosstalk is actually corrected in the

images and has shown why crosstalk-corrected images

appear more vivid. In Sect. 6.2, the reconstruction by the

upscaling operator has been analyzed using the full-reference

SSIM index on the complete spectral cube. This has given an

indication of the spectral reconstruction. Further visual anal-

ysis has been provided in Sect. 6.3, where an RGB mapping

of all original spectral bands was used to visually show the

upscaled and demosaicked results of the underlying spectral

cubes. In this subsection, an additional spectral analysis is

provided to show the effect of the upscaling and demosaick-

ing operator in the spectral domain.

In Fig. 18, the spectral results are shown for the upscaling

operator. The top image contains the original RGB mapping.

The spectral graphs of the dotted line are provided in the

subsequent images where the y-axis indicates the spectral

domain with the 16 spectra (ordered from low to high wave-

lengths, from top to bottom). Each pixel in these images is the

crosstalk-corrected intensity for a specific spectral frequency

at the dotted line. The images with captions Hyperspectral

Original and Hyperspectral Downsampled show the spec-

tral graphs of the original images and the image produced

by the downsampling operator DS(·). From this downsam-

pled image, the Hyperspectral Upscaled graphs are provided
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Fig. 18 Spectral graphs for the upscaling result. The top image shows

the RGB mapping of the original image and the second image shows the

spectral profile of the dotted line of the original image. The bottom graph

shows that a good reconstruction is achieved with our convolutional

neural network

for both the bilinear model as well as for our convolutional

(CNN) model. Here it is shown that the CNN model provides

a more detailed reconstruction for the upscaled result com-

pared to the bilinear model. This also shows that the upscaling

operator interpolates spatial structures for each spectral band.

It does not actually interpolate spectral information as the

number of spectral bands in the downsampled image and the

upscaled image are both 16 while the spatial resolution is

increased by a factor 4 in one direction.

In Fig. 19, the spectral results for demosaicking using the

upscaling operator are shown to investigate if the upscaling

operator generalizes to provide an apt demosaicking result.

The image with caption: RGB Original and RGB Demo-

saicked (CNN) show the RGB mapping of the original and

the demosaicked image, respectively. The image with caption

Hyperspectral Original shows the response of each of the 16

spectral frequencies on the dotted line in the original images.

In the bottom two images of Fig. 19, it is clearly shown

that the demosaicking process using our convolutional model

uncovers more detailed structures in the spectral domain

compared to bilinear interpolation. While no full-reference

quantitative comparison has been made for demosaicking,

the facts that relevant spatial structures like the leaves appear

in the result and that additional spectral structures are uncov-

Fig. 19 Spectral graphs for the demosaicking result. The top image

shows the RGB mapping of the original image and the second image

shows the spectral profile of the dotted line of the original image. The

bottom two graphs show that demosaicking with our convolutional neu-

ral network uncovers more details compared to demosaicking using

bilinear interpolation

ered provide arguments that our upscaling operator which has

been trained on downsampled images actually generalized

well to performing demosaicking.

7 Discussion and conclusion

This paper has presented an end-to-end trainable method

for demosaicking and simultaneous crosstalk correction of

images taken with a hyperspectral mosaic sensor, based on

deep learning. All experiment have been performed with an

image mosaic of 4×4 but our similarity framework can easily

be adjusted to incorporate larger sensor mosaics. A general

rule of thumb is that the dimension of the mosaic should not

be a prime number so that two deconvolution (upscaling)

layers can be used to introduce nonlinearity.

The quantitative and qualitative analyses show that our

similarity maximization framework for demosaicking out-

performs standard bilinear interpolation or Bayer demosaick-

ing. Even when directly plugging bilinear interpolation into

our framework and training the convolutional filters, a good

result is achieved. By increasing the number of layers and

adding nonlinearity, the demosaicking results can be further
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improved to achieve a median structural similarity (SSIM)

index of 0.86 between original and upscaled images. When

just using bilinear interpolation, an SSIM index of only 0.55

is achieved.

In the introduction of this paper, three research questions

were introduced. We will now reflect on these questions.

At the end of this section, we provide additional argu-

ments why these upscaling models can directly be used for

demosaicking.

1. How much does hyperspectral demosaicking benefit

from spectral and spatial correlations?

The experimental results show that upscaling benefits

from spectral correlations. This has been shown by the fact

that upscaling after crosstalk correction consistently pro-

duces inferior results compared to upscaling before crosstalk

correction.

The results also show that without crosstalk correction

the reconstruction results are better (SSIM is 0.90). This is

most likely explained by the fact that crosstalk correction is

destructive and irreversible.

By forcing the models to train with samples of single

spectral pixels (effectively disabling exploitation of spatial

correlations), the results have shown that without crosstalk

the upscaling cannot be trained. When only using spatial

information the upscaling performs reasonably well. A com-

bination of spectral and spatial information in the training

data shows the best results.

2. What are good practices for designing hyperspectral

demosaicking neural networks?

Good practices in relation to models, image size, image

count and convolution footprint have been investigated.

Our proposed nonlinear upscaling models show the best

results compared to bilinear interpolation and trainable linear

upscaling. A two-layer upscaling model with 16 convolu-

tional filters of size 4×4 seems to be sufficient when training

with 100 images of size 20 × 20 pixels. An SSIM index dif-

ference of 0.02 seems significant when visually perceiving

the result of the upscaling operator.

The final demosaicking results further improve when

using an 8 × 8 convolution filter for the first upscaling layer.

So when the results of the upscaling operators in the similarity

framework do not seem to improve much the demosaicking

results are still affected and an SSIM difference of 0.01 is

still visually perceivable after demosaicking.

3. How well can hyperspectral demosaicking sub-tasks be

integrated for end-to-end training?

The acclaimed power of convolutional neural networks

is the ability to learn problems end-to-end. Our results

show that a custom-designed deep learning model can be

trained to directly take a raw mosaic image and produce a

crosstalk-corrected and full-resolution demosaicked hyper-

spectral cube. We also observed that by design the first

layer of this network specializes in converting the raw image

mosaic to an initial spectral cube.

We have chosen a similarity maximization method which

shares many properties with single image super resolution

(SISR) methods. A point of discussion is whether this method

of using downsampling and upscaling to train a network for

demosaicking (upscaling beyond the original image resolu-

tion) is the correct approach. Could the upscaling models not

just be learning to invert the downscaling operator? Would

a comparison with a ground-truth for quantitatively vali-

dating the demosaicking results not be a better approach?

Our approach deals with a practical situation of a UAV

applied in precision agriculture. It would be very difficult

to produce accurate additional ground-truth images using a

multi-camera-single-shot or a single-camera-multi-shot sys-

tem. The pixel-precise alignment needed for validation would

be virtually impossible because of moving objects and par-

allax errors as noted in the introduction.

While a ground-truth could help, we argue that such a

setup is not necessary for our approach due to the following

reasons. The downsampling operator has been carefully and

specifically designed to retain the spectral and spatial infor-

mation in the same way that the actual raw mosaic image

contains this information. This helps to generalize the upscal-

ing operator to perform demosaicking. The demosaicked

images show recognizable reconstructed image objects like

leaves and plants and also additional spectral structures are

uncovered which confirms the generalizing behavior of the

upscaling operator. Because the convolution filters are very

small, the types of features that they respond to are limited to

basic image features like edges, corners, etc. This prevents

the upscaling operator from mistakenly learning large object

structures, specific to the downsampled image, like complete

leaves or other macro-scale objects. Finally, the size of the

image mosaic (4 × 4) is identical for the downsampled and

original images which means that the same trained crosstalk-

correction operator is applicable for both upscaling as well

as for demosaicking.

8 Future work

Performing crosstalk correction has several advantages for

future research. When the signal is untangled, a multivariate

spectral analysis of the data could be used to identify impor-

tant spectral bands. Also with an untangled signal, it is easier

to compare spectral outputs to theoretical spectral profiles

(for example, the peak reflection wavelength of Chlorophyll).

Crosstalk correction and demosaicking mostly reorder and
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augment information to a format which better represents the

physical world. Future research could focus on the benefits

of this representation for disease detection and for measuring

soil nutrient concentrations.

In this research, a 4 × 4 mosaic sensor was used. Future

research could apply the proposed similarity framework to

other types of mosaic sensor configurations. For example

to 3 × 3 or 5 × 5 mosaic sensors available from various

vendors. Further research could combine single image super

resolution (SISR) to demosaic and upscale images beyond the

spatial resolution of the original sensor. This could represent

a combination of these two fields in the form of hyperspectral

single image super resolution (HSISR).

These mosaic sensors seem ideally suited for utilization

on UAVs because of their low weight and small size. Our

framework could be used to investigate other agricultural

applications like classifying diseases, counting and clas-

sifying crops and determining soil properties. While this

paper focused mainly on precision agriculture applications

with unmanned aerial vehicles (UAVs), future research could

extend these experiments to a multitude of other applications

where hyperspectral mosaic sensors are used. For example:

medical imaging, environmental monitoring, food inspec-

tion, etc.
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