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 
Abstract—In recent years, convolutional neural networks 

(CNNs) have been widely used in hyperspectral image 

classification and have achieved good performance. However, the 

high dimensions and few samples of hyperspectral remote sensing 

images tend to be the main factors restricting improvements in 

classification performance. At present, most advanced 

classification methods are based on the joint extraction of spatial 

and spectral features. In this paper, an improved dense block 

based on a multi-scale spectral pyramid (MSSP) is proposed. This 

method uses the idea of multi-scale and group convolution of the 

convolution kernel, which can fully extract spectral information 

from hyperspectral images. The designed MSSP is the main unit 

of the spectral dense block (called MSSP Block). Additionally, a 

short connection with nonlinear transformation is introduced to 

enhance the representation ability of the model. To demonstrate 

the effectiveness of the proposed dual-branch multi scale spectral 

attention network (DBMSA), some experiments are conducted on 

five commonly used datasets. The experimental results show that, 

compared with some state-of-the-art methods, the proposed 

method can provide better classification performance and has 

strong generalization ability. The code is available at 

https://github.com/scp19801980/DBMSA. 

 
Index Terms—hyperspectral image; classification; 

convolutional neural network (CNN); multi-scale spectral 

pyramid (MSSP); multi-scale attention 

 

I. INTRODUCTION 

N recent years, with the rapid development of imaging 

technology, remote sensing images have been applied in 

many fields. Hyperspectral images have high spatial resolution 

and rich spectral bands [1], which makes them widely used in 
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many fields, such as earth exploration [2], environmental 

monitoring [3], ecological science [4], etc. 

Hyperspectral image classification is one of the important 

applications of hyperspectral technology. Hyperspectral images 

contain rich spatial and spectral information, fully extracting 

the spatial and spectral features of images can effectively 

improve the classification performance of hyperspectral images. 

Therefore, many methods of extracting spatial and spectral 

features have been proposed. In the past, some linear-based 

classification methods were proposed, such as discriminant 

constraint analysis [5], PCA [6], and balanced local 

discrimination methods [7]. However, due to the weak 

representation ability of the linear method, the classification 

effect is poor when applied to more complex problems. In order 

to improve the classification performance, some classification 

methods based on manifold learning have been proposed, such 

as the sparse and low rank near-isometric linear embedding 

method [8], and the semi-supervised sparse manifold 

discriminative analysis method [9], etc. 

For image classification, many representative classifiers 

have been proposed. For example, k-nearest-neighbor classifier 

based on unsupervised clustering [10], semi-supervised logistic 

regression classifier for high-dimensional data [11], extreme 

learning classifier with very simple structure [12], sparse based 

representation classifier [13], and SVM [14]. Among them, the 

classifier based on the SVM has obvious advantages in solving 

small sample size and high-dimensional problem, and it has 

shown great potential in HSI classification [15]. 

Hyperspectral images contain abundant information. 

However, the traditional machine learning methods cannot 

fully mine the features of hyperspectral images, and only 

extracted the shallow features of images, resulting in the poor 

classification effect and weak generalization ability of 

hyperspectral images. With the rapid development of image 

processing technology and the improvement in hardware 

performance, some deep learning methods that can learn deeper 

features have been proposed. Due to the advanced nature of the 

deep learning technology, it has been widely used in the field of 

image processing. In particular, some research works have 

proved that deep learning technology also has good 

performance in hyperspectral image classification [16]. To 

improve the traditional manual spatial-spectral learning method, 

Tao et al. [17] proposed a method based on stacked sparse 

auto-encoders (SAE), which adaptively learns appropriate 
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feature representations from unlabeled data, and finally uses 

SVM classifier for classification. In [18], a deep belief network 

(DBN) was proposed to improve the classification accuracy 

through spatial-spectral localization and classification. 

However, the SAE and DBN networks have some complete 

connection layers with a large number of parameters, and the 

spatial flattening operation also destroys the spatial information 

of images. 

At present, many deep learning methods have been applied 

to hyperspectral image classification, and have achieved good 

classification performance. Recurrent neural networks (RNNs) 

are widely used in image classification because of their good 

data modeling ability [19]-[21]. However, the feature 

extraction effect of RNNs is not very good in the case of small 

samples, which makes the classification performance not ideal. 

To alleviate this problem, a generative adversarial network 

(GANs) is proposed, which can generate high-quality data 

samples [22]-[29]. Similarly, graph convolutional neural 

networks (GCNs), which are modeled by graph structure data, 

can alleviate the problems caused by small samples in a 

semi-supervision way [30]-[31]. 

Inspired by human vision, CNN can provide better 

classification performance for hyperspectral images by using 

the weight-sharing method of local connection to train the 

model. In the study of hyperspectral image classification, most 

methods are based on spatial spectral joint feature extraction 

[32]. In [33], Zhang et al. proposed a dual-channel 

convolutional neural network (DCCNN). One channel uses 1-D 

CNN to extract the spectral information of the image, and the 

other channel uses 2-D CNN to extract the spatial information 

of the image. Finally, the spectral information and spatial 

information extracted by the two channels are fused and 

classified by regression classifier. To reduce the number of 

parameters, Chen et al. [34] proposed a 3DCNN method to 

extract deep spatial and spectral information at the same time. 

In [35], Mei et al. proposed a new deep learning method 

C-CNN to explore the feature-learning ability of five-layer 

CNN in hyperspectral classification, i.e., integrating spatial 

context information and spectral information into C-CNN, to 

improve the representation ability of spatial and spectral 

information. Although CNN-based methods can effectively 

extract features, in order to avoid over-fitting, the fine-tuning of 

parameters usually requires a large number of data samples. 

Therefore, a densely connection network (DenseNet) [36] is 

proposed, which can improve the generalization ability of the 

network for hyperspectral images. In order to improve the 

learning ability of the deep network and avoid the problems of 

gradient explosion and gradient dissipation, He et al. [37] 

designed a deep residual network (ResNet), which can make 

the deep network layer and the shallow network layer perform 

identity mapping. To jointly learn the spatial and spectral 

information of hyperspectral images, Zhong et al. [38] 

proposed a supervised residual network (SSRN) based on 

spatial and spectral residuals, but the training time is long. 

Wang et al. [39] proposed a fast and dense spatial spectral 

convolution network (FDSSC), which can effectively reduce 

the data dimension. In [40], Paoletti et al. proposed a residual 

pyramid network (PyResNet), which can gradually increase the 

feature mapping dimension between layers while balancing the 

workload of all units. The features extracted from hyperspectral 

images inevitably contain a lot of redundant information. 

Inspired by human visual attention, Juan et al. [41] proposed a 

model combining A-ResNet and attention, which can identify 

the most representative features in the data from the visual 

perspective. Similarly, Woo et al. [42] proposed a 

convolutional attention module (CBAM) by combining the 

ResNet network with the attention module of a feedforward 

CNN, which can retain useful features and discard useless 

features. Finally, a good classification result of hyperspectral 

images is obtained. In order to improve the classification 

performance of hyperspectral images, the multi-scale strategy 

is also an effective way [43]-[45]. Wu et al. [46] proposed a 

multiscale spatial spectral joint network (MSSN). Similarly, 

Pooja et al. [47] combined multi-scale strategy with CNN 

network to achieve high classification accuracy. 

In recent years, attention mechanism is widely used in 

computer vision and natural language processing [48]-[50]. 

Wang et al. [51] embedded the squeeze and-excitation (SE) [52] 

module into ResNet for HSI classification. In order to extract 

more discriminative spatial and spectral features, Ma et al. [53] 

proposed a dual-branch, multi-attention network (DBMA), 

which uses different attention mechanisms to extract the spatial 

and spectral features of hyperspectral images by dual branches, 

and then fuse these features for classification. The experimental 

results show that the DBMA network has a good performance 

in hyperspectral classification. For further research, Li et al. 

proposed a dual-branch and dual-attention mechanism network 

(DBDA) [54] based on a new dual attention network (DANet) 

[55], which has good classification performance in the case of 

small number of training samples. Roy et al. in [56] proposed a 

Hybrid-SN method, which combines 2D CNN and 3D CNN, 

and 3DCNN is used to extract the spectral features of the image, 

while 2D CNN is used to extract the spatial features, and good 

classification accuracy is obtained. Due to the correlation 

between noise and spectral band, CNN with fixed receptive 

field cannot enable neurons to effectively adjust RF sizes and 

cross-channel dependencies. Roy et al. [57] proposed an 

attention-based adaptive spectral–spatial kernel improved 

residual network (A2S2K-ResNet) with spectral attention to 

capture discriminative spectral and spatial features for HSI 

classification in an end-to-end training way. 

Compared with traditional machine learning methods, the 

above methods have more advantages in hyperspectral image 

classification, and have strong generalization ability. However, 

improving the classification performance of hyperspectral 

images is still a major challenge in the case of small samples. In 

the process of hyperspectral image extraction, a large amount 

of redundant information and the imbalance
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Fig 1. The overall structure of the proposed DBSMA 

between different labeled samples greatly reduce the 

classification performance of hyperspectral images. Therefore, 

how to obtain more features in the case of limited samples is 

still worthy of in-depth study. 

In order to obtain more image features with limited samples, 

a dual-branch multi scale spectral attention network (DBMSA) 

is proposed, which is based on Dense Net and utilizes 

multi-scale convolution kernels in the spectral branch to extract 

features of different levels of hyperspectral images. In addition, 

the attention mechanism is introduced in both the spectral 

branch and the spatial branch to learn more representative 

features, so as to enhance the representation ability of specific 

area of the image. 

The main contributions of this paper are as follows. 

1) Due to the limitations of single-scale convolution kernels, 

this paper proposes a structure of MSSP for the first time. This 

structure utilizes convolution kernels with different sizes to 

obtain features of different neighborhoods of the image, which 

makes the extracted features more comprehensive. Finally, the 

extracted feature information is fused to help improve the 

classification performance of hyperspectral images. 

2) In order to strengthen the connection of deep feature 

information, MSSPs are densely connected, that is, the output 

of the previous layer is used as the input of all subsequent layers. 

MSSP Block is conducive to a fuller feature extraction of 

hyperspectral images. 

3) In order to reduce the amount of training parameters, 

group convolutions with different sizes are used for different 

branches of the MSSP, which effectively improve the 

classification performance. 

4) The MSSP Block is the first attempt at spectral branching 

in hyperspectral classification. Experiments show that this 

method can provide excellent classification performance and 

has good generalization ability. 

The other parts of this paper are organized as follows. 

Section 2 introduces the structure of the DBSMA network in 

detail. Section 3 provides the classification results of the 

DBSMA network on the four common datasets, and compares 

them with that of some advanced methods. Section 4 provides 

the conclusion. 

II. METHODOLOGY 

For the classification of hyperspectral images, the extraction 

of the spatial and spectral features is very critical. In this paper, 

a DBMSA network is proposed. For spectral branches, spectral 

features are extracted from the structure composed of three 

MSSPs densely connected and a spectral attention mechanism. 

For spatial branches, dense block and a spatial attention 

structure are used to extract spatial features in cooperation. The 

following four parts will be introduced in detail: the overall 

structure of DBMSA, spectral feature extraction strategy, 

spatial feature extraction strategy, and non-local feature 

selection strategy. 
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A. The structure of DBSMA 

The proposed DBMSA model consists of a MSSP dense 

connection module, a spatial dense connection block, a spectral 

attention module and a spatial attention module, a fully 

connected layer, a global average pooling layer and a classifier. 

The overall structure is shown in Figure 1. The size of the input 

is 
0 0 bandsp p b

P R
  . In order to keep the size of the input cube 

and the output cube unchanged, the zero filling strategy is 

adopted. To avoid data explosion and gradient disappearance, 

BN + Mish [58] is used as the normalization and activation 

function to standardize the input data. In particular, in order to 

extract key information as much as possible, spectral attention 

and spatial attention are utilized to improve the performance of 

the network. After the output cube of the attention module 

passes through the dropout layer and the global average pooling 

layer, it becomes a one-dimensional vector. Then, the two 

output vectors of the spectral branch and spatial branch 

attention are cascaded into a new vector. The activation 

function is used to process the vector as the sum of the 

probabilities of all elements is 1, and then it is classified by the 

classifier. 

B. Strategy for extracting spectral features based on MSSP 

1). MSSP structure 

The structure of pyramid convolution is shown in Figure 2. 

For pyramid convolution, the size of convolution filter remains 

unchanged. From the top to the bottom of the pyramid, the 

depth of the filter is gradually increased. That is, the filter can 

transition from a smaller receiving field to a larger receiving 

field to obtain more complementary information. A 

convolution filter with small scale can obtain detailed 

information, while a filter with large scale can obtain global 

context information. Therefore, different scale convolution 

kernels can obtain hierarchical features of the image. 
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Fig. 2. The structure of pyramid convolution 

In order to better extract the spectral features and reduce the 

computational complexity of the model, randomly shuffled 

input data are grouped and convolved in MSSP (i.e., the input 

feature map is grouped in to 1,2,4,8 ).Figure 3 shows the case 

where the group is equal to 2. Here, the four input feature maps 

are divided into two groups. Compared with standard convolut- 
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Fig 3. The structure of grouped convolution 

-ion, the complexity of grouped convolution [59] is reduced. In 

particular, there are two situations in grouped convolution: if it 

is divided into one group (that is, not grouped), the calculation 

complexity of the convolution is the same as that of the 

standard convolution; on the contrary, as the number of 

grouping groups increases, the computational complexity will 

become lower and lower. Suppose the input are i
N  feature 

maps with size H W L  , and the size of the filter is 1 1 k  ; 

divide the input feature maps into m  groups, then each group 

of inputs will be /
i

N m  cubes of size H W L  , with /
o

N m  

convolution kernels of size 1 1 k  ; after grouped convolution, 

the output will be /
o

N m  feature maps of size H W L   and 

the total number of output feature maps is 0N
m

m
  (where i

N  

and 0N  are the number of input and output feature maps; 

,H W and L  are the height, width, and number of channels, 

respectively). Among them, the calculation times of standard 

convolution and grouped convolution are 

 
2

f k L W H l      (1) 

 
2( )

L l
F k H W m

m m
       (2) 

Here, f  represents the number of calculation required for 

standard convolution, F  represents the number of calculation 

required for grouped convolution, 2
k  is the space size of the 

filter, L  represents the number of bands of the input feature 

map, l  represents the number of bands of the output feature 

map, m  is the number of input groups, and H  and W  are the 

height and width of the output feature map, respectively. 

Obviously, f F , that is, the calculation times of grouped 

convolution is only 1/ m  of that of standard convolution. 

Figure 4 shows the proposed MSSP structure. The input size 

is H W L  . In order to extract the spectral information 

effectively, the convolution unit of 1 1 1   is used to expand 

the input size. Different sizes of convolution kernels are used 

for spectral feature extraction. In the branches of different scale  
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Fig 4. The proposed MSSP structure 

convolution kernels, the input is divided into one group, four 

groups, and eight groups respectively for group convolution, 

and the output features of different branches are fused. 

However, with the number of network layers increases, 

network degradation may occur, leading to unsatisfactory 

model training results. Therefore, after nonlinear convolution, 

skip connection is utilized to realize residual mapping, so as to 

avoid gradient disappearance and explosion. That is 

 ( ) ( ) ( )p x x q x   (3) 

Among them, ( )x  is the output of nonlinear residual 

structure, ( )q x  is the output of multi-scale convolution 

structure, and ( )p x  is the output after the model of MSSP. 

2). Dense connection block based on MSSP structure 

(MSSP-block) 

In order to facilitate the flow of information between layers, 

three MSSP are further densely connected, as shown in Figure 5. 

The input of the i -th layer is the sum of the output of the ( 1)i 

-th previous layer, and the relationship between input and 

output of MSSP Block can be represented as 

 1 2 1([ , ,..., ])
i i

y h x x x   (4) 

Here, i
y  represents the output of the i -th MSSP, ( )h   

represents the function of MSSP. 1 2 1[ , ,..., ]
i

x x x   represents the 

output of the previous ( 1)i   MSSP Block. 

Assuming that the input is H W L
P R

  , the output after each 

MSSP is Q  feature maps with the same size as the input. After 

i  MSSP Block, the linear relationship between the total 

number of output feature maps i
Q  and the number of output 

feature maps Q  of each MSSP can be represented as 

 ( 1)
i

Q L i Q    (5) 

Here, i
Q  represents the total number of output feature maps 

after i  MSSP Block, L  is the number of bands of the input 

map feature, and Q  represents the number of output after each 

MSSP. 

MSSP MSSPMSSP
H×W×L,P H×W×L,Q H×W×L,Q1 H×W×L,Q H×W×L,Q2 H×W×L,Q H×W×L,Q3

Dense pyramid block

Convolution kernel size is 1×1×K

 

Fig 5. MSSP Block 

C. Strategy for extracting spatial features 

It is difficult to extract the deep spatial features of 

hyperspectral images by shallow neural network. In order to 

establish the connection relationship between the different 

layers, shallow and deep layers are connected by skip, so that 

the layers are densely connected, which can not only facilitate 

the information flow of information in each layer, but also 

avoid information loss. 

The processing of the dense block in the spatial branch is 

similar to that of the MSSP Block in the spectral branch. The 

structure of the spatial branch dense blocks is shown in Figure 6. 

The relationship between the input and output of the spatially 

densely connected block can be represented as 

 1 2 1([ , ,..., ])
i i

x H x x x   (6) 

Here, ( )H   is the function of spatially dense connection, and 

1 2 1[ , ,..., ]
i

x x x   is the output of previous ( 1)i   layers. i
x is the 

number of feature maps in the i -th layer. 

Suppose that the input is 0x  feature maps with size 
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Fig 6. Spatially densely connected blocks 

D. Strategies for nonlocal feature selection -attention and 

fusion mechanism 

The attention mechanism cannot only automatically learn 

important spectral and spatial features, but also suppress 

useless information in the spectral and spatial. Because it helps 

to provide good classification effect in image classification, 

attention mechanism has been widely used in the field of image 

processing. In DBMSA, the attention mechanism is utilized in 

the spectral branch and spatial branch, respectively. According 

to the MSSP Block described in Section II. B and the spatial 

dense block introduced on Section II. C, the spectral and spatial 

features of HSI are extracted and fused. The process of 

attention mechanism in DBSMA network is described in detail 

as follows. 

The structure of the spectral attention mechanism is shown in 

Figure 7. It can be seen that, in the spectral branch, the attention 

mechanism generates attention maps by understanding the 

relationship between channels and emphasizing the important 

parts of the feature map. Assuming that the input size is 
s s c

P R
   (where s s  is the space size of input, c  is the 

number of input bands), through matrix multiplication and 

activation function, the weighted map with channel attention is 

obtained. On the one hand, the activation function normalizes 

the data and organizes the attention map into a probability 

distribution with the weighted sum of each channel being 1. On 

the other hand, the activation function can be used to highlight 

the more important parts. Let ( 1,2,..., )
n

X n c  be the channel 

of the input patch, and after passing through activation function 

layer, the spectral attention map c c
G R

  is  

 
exp( )

exp( )

T

i j

ji T

i jj

X X
g

X X





  (7) 

Here, ji
g  is the weight coefficient of the i  channel to the j  

channel, that is, the importance of the i  channel to the j  

channel. Let   be the attention parameter (if 0  , it means 

that operation without attention mechanism), then the output of 

the spectral attention mechanism is  

 j ji j jj
Y g X X


   (8) 

Here, ( 1,2,..., )
n

Y n c  is the n  channel feature map of the
s s c

Y R
  . 

The structure of the spatial attention mechanism is shown in 

Figure 8. It can be seen that the process of the spatial attention 

mechanism is similar to that of the spectral attention 

mechanism. Different from the spectral attention mechanism, 

the input X  is convoluted with the convolution kernel of size

r r b  , and three new feature maps A, B and C are obtained, 

respectively. Here,  , , s s c
A B C R

  . Next, A, B and C are 

transformed into 2D matrices with size ss c  (where ss  

represents the number of pixels). Then, multiply B and AT, and 

obtain the spatial attention map ss ss
E R

  after the softmax 

layer, that is 

 
exp( )

exp( )

i j

ji

i jj

A B
e

A B





  (9) 

Here, ji
e is the weight coefficient of the i  pixel to the j  

pixel, that is, the importance of the i  pixel to the j  pixel. Then, 

multiply the matrices C and ET, and connect the result to the 

original input X  through the residual connection, and the final 

output is 

 j ji j jj
Z e C X


   (10) 

Here, ( 1,2,..., )
n

Z n ss  is the value of the output cube 

s s c
Z R

   at the spatial position n , and   is the attention 

parameter. 
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Fig 7. Spectral attention module 
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Fig 8. Spatial attention module 

 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we first introduce the datasets used in the 

experiment, then give the hyperparameter settings of the 

network and detailed analysis of the parameters, and finally 

analyze the performance of the proposed method and compare 

it with other advanced methods. In order to quantitatively 

analyze the DBMSA, three commonly used quantitative 

indicators are adopted, namely, overall accuracy (OA), average 

accuracy (AA), and Kappa coefficient (Kappa). In order to 

avoid data bias caused by randomness, each experiment is 

repeated 30 times, and the average of these experimental results 

is taken as the final result. 

A. Hyperspectral data set 

In this part, we will introduce five datasets in detail, namely, 

Indian Pine (IN), University of Pavia (UP), Kennedy Space 

Center (KSC), and Salinas Valley (SV), and University of 

Houston (HS). Figure 9 shows the real image, false color image 

and class information of each data in the dataset. 

1) IN: The Indian pine dataset is a hyperspectral image              

acquired by an airborne visible infrared imaging 

spectrometer in the northwestern part of Indiana, USA. The 

image spatial size is 145×145, the number of bands is 220, 

and the wavelength range is 200-2400nm. The spectral and 

spatial resolutions are 10nm and 20m, respectively; except 

for background pixels, there are generally 10249 spatial 

pixels used for experiments; there are 16 true types of ground 

objects, but, because some of them have fewer data labels, 

only Take 9 of the 16 categories; because 20 are unavailable, 

the experiment only takes the remaining 200 bands out of the 

220 bands for research; 

2) UP: This dataset is used for image acquisition through a 

reflection optical system imaging spectrometer (ROSIS). 

The size of the image spatial is 610×340, and the spatial 

resolution is 1.3m. Among them, the dataset is divided into 

nine categories; 115 bands and 12 noise bands are removed, 

leaving 103 usable bands; 

3) KSC: This dataset was obtained by AVIRIS sensor in 

Florida in 1996, with a spatial size of 512×614 and a spatial 

resolution of 18m; in addition, the image consists of 13 

feature categories and 176 bands; 

4) SV: This dataset is a hyperspectral image obtained through 

an AVIRIS sensor in the United States; the spatial size of the 

image is 512×217, and the spatial resolution is 1.7m; among 

them, there are 16 categories of ground objects and 224 

bands, but 20 water absorption bands were removed, and the 

remaining 204 bands were used for hyperspectral image 

classification experiments. 

5) HS: The Houston 2013 (HS) data set is the competition data 

of the 2013 GRSS Data Fusion contest, which describes the 

landscape of Houston University and its surrounding areas. 

The size of the data set is 349 × 1905, and the spatial 

resolution is 2.5 m per pixel. The data set contains 144 

spectral bands and 15 kinds of surface features. 

B. Experimental setup 

During the experiment, the learning rate setting range is 
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0.001, 0.005, 0.0001, 0.0005 and 0.00005. Through multiple 

experiments on each learning rate, the best learning rate in the 

four datasets is 0.0005; the number of iterations of the 

experiment is set to 200 and batch size to 16. The hardware 

platform used in the experiment is Intel(R) Core(TM) i7-9750H 

CPU, NVIDA GeForce GTX1060 Ti GPU and 8G memory. 

The software environment is CUDA 10.0, pytorch 1.2.0 and 

python 3.7.4. In the experiment, the method in this paper is 

compared with classic classifiers and newer network models in 

hyperspectral classification, including SVM, SSRN, CDCNN, 

PyResNet, DBMA, DBDA, Hybrid-SN, and A2S2K-ResNet. 

In the experiment, OA, AA, and Kappa are used as indicators of 

model performance, and the average of the results of 30 

experiments is taken. In the case of small sample data, the 

experimental results show that the proposed network model has 

better classification performance than other advanced methods 

and has better generalization ability. 

 

 IN KSC 

      
Class Samples Class Samples 

No. Color Name Numbers No. Color Name Numbers 
C1  Alfalfa 64 C1  Scrub 761 
C2  Corn-notill 1428 C2  Willow swamp 243 
C3  Corn-mintill 830 C3  CP hammock 256 
C4  Corn 237 C4  Slash pine 252 
C5  Grass-pasture 483 C5  Oak/Broadleaf 161 
C6  Grass-trees 730 C6  Hardwood 229 
C7  Grass-pasture-mowed 28 C7  Grass-pasture-mowed 105 
C8  Hay-windrowed 478 C8  Graminoid marsh 431 
C9  Oats 20 C9  Spartina marsh 520 
C10  Soybean-notill 972 C10  Cattail marsh 404 
C11  Soybean-mintill 2455 C11  Salt marsh 419 
C12  Soybean-clean 593 C12  Mud flats 503 
C13  Wheat 205 C13  Water 927 
C14  Woods 1265     
C15  Buildings-Grass-Trees 386     
C16  Stone-Steel-Towers 93     

TOTAL 10267 TOTAL 5211 

 
 UP SV 

         
Class Samples Class Samples 

No. Color Name Numbers No. Color Name Numbers 
C1  Asphalt 6631 C1  Brocoil-green-weeds_1 2009 
C2  Meadows 18649 C2  Brocoil-green-weeds_2 3726 
C3  Gravel 2099 C3  Fallow 1976 
C4  Trees 3064 C4  Fallow-rough-plow 1394 
C5  Painted metal sheets 1345 C5  Fallow-smooth 2678 
C6  Bare Soil 5029 C6  Stubble 3959 
C7  Bitumen 1330 C7  Celery 3579 
C8  Self-Blocking Bricks 3682 C8  Grapes-untrained 11271 
C9  Shadows 947 C9  Soil-vin-yard-develop 6203 

    C10  Corn-senesced-green-weeds 3278 
    C11  Lettuce-romaine-4wk 1068 
    C12  Lettuce-romaine-5wk 1927 
    C13  Lettuce-romaine-6wk 916 
    C14  Lettuce-romaine-7wk 1070 
    C15  Vin-yard-untrained 7268 
    C16  Vin-yard-vertical-trellis 1807 

TOTAL 42776 TOTAL 54129 
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 HS 

 

 

Class Samples 
No. Color Name Numbers 
C1  Healthy grass 1251 
C2  Stressed grass 1254 
C3  Synthetic grass 697 
C4  Trees 1244 
C5  Soil 1242 
C6  Water 325 
C7  Residential 1268 
C8  Commercial 1244 
C9  Road 1252 

C10  Highway 1227 
C11  Railway 1235 
C12  Parking Lot 1 1233 
C13  Parking Lot 2 469 
C14  Tennis Court 428 
C15  Running Track 660 

TOTAL 15029 

Fig 9. Real features and false color maps of four common data sets, and the number of available samples 

(a) (b)

(c) (d)

 

Fig 10. The Classification performance of different numbers of MSSP dense connections. (a) IN. (b) UP. (c) KSC. (d) SV (%) 
 

Table I 

For the four datasets, the time consumed by training and testing under different combinations of MSSP numbers (s) 

         
Time(s) 

IN UP KSC SV 

Train Test Train Test Train Test Train Test 

2 MSSP 228 22 88 57 210 9 247 128 

3 MSSP 252 40 109 95 308 16 309 231 

4 MSSP 461 55 149 133 468 23 466 313 

          

C. Parameter analysis 

1) For the proposed DBMSA method, the feature extraction 

methods of spectral branch and spatial branch are different. In 

order to avoid the infection of spectral and spatial information, 

two branches extract spectral and spatial information 

respectively. In addition, in the five datasets of IN, UP, KSC, 

SV and HS, 3%, 0.5%, 5%, 0.5% and 2% of the data were 

randomly selected as training samples, and the remaining data 

were used as test samples. 

2) The influence of the number of dense connections of 
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MSSP on classification accuracy: In the MSSP Block, the 

output of the previous MSSP affects the input of the 

convolution of the next MSSP. Therefore, the classification 

performance of the network will be affected by the number of 

MSSP dense connections. When the numbers of MSSP dense 

connections is 2, 3, and 4, the experimental results are shown in 

Figure 10. It can be seen from Figure 10 that for the IN, UP, and 

KSC datasets, the OA, AA and Kappa values obtained by 

densely connected 2 MSSP Block and densely connected 4 

MSSP Block are all lower than those of the densely connected 

blocks of 3 MSSP Block. Moreover, the classification accuracy 

of the densely connected blocks of 3 MSSP Block on the four 

datasets is all above 93.5%. For the SV dataset, although the 

OA and Kappa values obtained by the dense connection of 4 

MSSP Block are 0.26% and 0.29% more than those obtained by 

the dense connection of 3 MSSP Block, the training time 

required is more than 1/3 times, as shown in Table I. According 

to the above analysis, densely connected blocks consisting of 3 

MSSP Block can extract image features more effectively.  

3) The effect of the combination of filters in MSSP on 

classification accuracy: in HSI classification, the size of the 

filter of CNN is directly related to the size of the receiving field, 

and the context information and detailed features of the image 

affect the classification accuracy. In order to reduce the spatial 

dimension, the size of the convolution filters are usually 

selected as 1×1×3, 1×1×5, 1×1×7, 1×1×9, and 1×1×11. 

However, as the size increases, the number of parameters also 

increases. Therefore, the use of small-scale filter is relatively 

widespread. In order to further explore the influence of the 

combination of pyramid multi-scale filter on the classification 

performance, the above several convolution kernels are 

grouped according to the pyramid multi-scale principle. 

Different combinations of multi-scale filters are used to obtain 

different classification accuracy. The experimental results are 

shown in Table II. Among them, 1×1×3, 1×1×5, 1×1×7 have 

the highest classification accuracy in the IN, UP and KSC 

datasets. Although this combination method is not the highest 

in the classification accuracy of the SV dataset, its OA is only 

0.24% lower than the highest. In addition, the multi-scale 

combination of 1×1×5, 1×1×7, 1×1×9 perform poorly in other 

datasets; that is, their generalization ability is weak. Therefore, 

the combination of pyramid multi-scale filters 1×1×3, 1×1×5, 

1×1×7 can provide the best classification performance.

Table II 

The influence of the size combination of the multi-scale convolution kernel in MSSP on the classification accuracy (%) 

              IN UP KSC SV 

 OA(%) AA(%) K×100 OA(%) AA(%) K×100 OA(%) AA(%) K×100 OA(%) AA(%) K×100 

1×1×3 

1×1×5 

1×1×7 

95.81 93.48 95.22 97.5 97.03 96.68 98.49 97.42 98.33 96.28 97.82 95.85 

1×1×5 

1×1×7 

1×1×9 

92.16 89.15 91.05 96.95 96.64 95.95 97.72 96.26  97.46 96.52 98.15 98.04 

1×1×7 

1×1×9 

1×1×11 

95.52 92.9 94.89 96.59 95.56 95.49 97.89 96.48 97.65 96.19 98.04 95.88 

             
D.  Experimental results and analysis 

In order to verify the method proposed in this paper, 

according to the parameter settings in Section III.B, the 

DBMSA is tested on four datasets. The proposed DBMSA 

method is compared with some classical and state-of-the-art 

classification methods, i.e., SVM, SSRN, CDCNN, PyResNet, 

DBMA, DBDA, Hybrid-SN, and A2S2K-ResNet. 

 

（a） （b） （c） （d） （e）

（f） （g） （j）（h） （i）

 

Fig 11. The classification maps on the IN dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN. (i) 
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A2S2K-ResNet. (j) Proposed. 

（a） （b） （c） （d） （e） （f） （g） （j）（i）（h）
Fig 12. The classification maps on the UP dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN. (i) 

A2S2K-ResNet. (j) Proposed. 

(a) (b) (c) (d) (e)

(f) (g) (j)(h) (i)
 

Fig 13. The classification maps on the KSC dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN. (i) 

A2S2K-ResNet. (j) Proposed. 

(a) (b) (c) (d) (e) (f) (g) (j)(h) (i)

Fig 14. The classification maps on the SV dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN. (i) 

A2S2K-ResNet. (j) Proposed. 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

 

Fig 15. The classification maps on the HS dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN. (i) 

A2S2K-ResNet. (j) Proposed. 
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1) Experiment 1: Figures 11-15 show the comparison of 

classification results of different methods on five datasets, 

respectively. It can be seen from Figures 11-15 that there is a lot 

of noise in the classification results based on SVM, and the 

classification effect is not ideal. Compared with the SVM 

method, CDCNN can provide a better classification 

performance by exploring the optimal local spatial–spectral 

context dependence. Compared with the CDCNN method, 

PyResNet and SSRN extract spatial-spectral features through 

the deep structure of residual connection, and the classification 

results are better. In order to fully extract the spatial-spectral 

features and avoid the mutual interference of spatial-spectral 

information, DBMA and DBDA use two branches to extract the 

spatial-spectral features of hyperspectral images separately, 

and achieve a good classification effect. The visual images 

obtained by HybridSN under the end-to-end deep learning 

framework are relatively smooth and less noise. By comparison, 

the visual images obtained by A2S2K-ResNet are coarse. 

However, the DBMSA not only learns spectral features through 

convolution kernels with different size in spectral branches, but 

also improves classification accuracy in the case of small 

samples through the attention mechanism. Thus, compared 

with other methods, the obtained classification maps are more 

accurate and smoother. 

The classification results of SVM-based and CNN-based 

methods are shown in Tables III-Ⅶ. It can be seen that, the 

lowest classification accuracy obtained by SVM, and for the 

advanced methods, namely, SSRN, PyResNet, DBMA and 

DBDA methods, the classification accuracy of the DBDA 

method based on dual branch and dual attention is slightly 

higher than that of SSRN, PyResNet and DBMA. It is worth 

noting that Hybrid-SN performs relatively well only on SV data 

sets, but poor on other data sets. Similarly, although the AA of 

the latest A2S2K-ResNet method is slightly higher than that of 

the proposed method on KSC data set, its overall performance 

is always poor on other data sets. Compared with the above 

methods, the proposed method has the highest classification 

accuracy. In the four datasets, the OA obtained by the proposed 

method is 1.81%, 1.01%, 1.73% and 2.54% higher than the OA 

obtained by the DBDA method, respectively. In particular, 

DBMSA achieved 100% classification accuracy in C9 

(Spartina marsh) and C10 (Cattail marsh) in the KSC dataset, 

and C2 (Brocoil_green_weeds_2) in the SV dataset. Figures 

11-15 and Tables III-Ⅶ prove the effectiveness of the proposed 

method.  

Table III 

Classification results of IN dataset using 3% training samples (value ± standard deviation) 

          Class SVM CDCNN SSRN PyResNet DBMA DBDA Hybird-SN A2S2K-ResNet Proposed 

C1 36.62±0 49.57±7.79 82.54±8.88 26.67±5.88 82.05±5.25 97.49±0.55 81.79±2.93 93.43±0.5 96.92±1.03 

C2 55.49±0 65.87±3.87 89.19±1.53 80.92±4.12 85.73±3 93.25±1.85 69.12±6.24 93.01±2.37 95.65±0.11 

C3 62.55±0.38 61.2±5.17 87.67±0.88 81.24±8.79 88.44±4.26 92.6±1.07 91±0.81 90.25±0.37 94.82±1.51 

C4 42.54±0 53.9±1.68 84.28±1.23 62.17±7.15 87.79±2.27 93.63±1.07 84.87±8.4 89.94±1.7 95.76±0.91 

C5 85.05±0 88.36±1.36 97.77±0.37 91.75±1.81 94.85±1.38 98.76±0.27 90.73±2.91 97.78±0.27 98.39±0.01 

C6 83.32±0 90.17±2.21 96.43±0.58 94.26±1.31 97.33±0.44 97.85±0.84 88.59±1.95 98.25±1.12 98.02±0.44 

C7 59.87±0 56.24±1.22 86.99±2.6 19.75±17.5 50.91±3.85 66.62±3.37 83.62±18.6 81.8±0.97 72.49±1.4 

C8 89.67±0 93.93±0.58 96.76±0.61 100±0 98.62±0.41 99.75±0.24 87.24±4.6 99.2±0.3 100±0 

C9 39.45±0.29 49.09±7.83 72.15±11.9 69.09±27.11 51.31±0.74 84.42±6.05 60.44±7.11 64.65±4.28 77.8±0.86 

C10 62.32±0 63.94±6.05 85.92±3.51 82.96±1.43 84.22±5.24 87.47±0.79 86.25±2.08 89.08±1.02 91.77±0.5 

C11 63.73±1.73 68.75±1.81 89.27±1.2 89.59±0.74 87.51±1.68 94.12±1.65 88.95±3.83 90.52±0.93 96.66±0.23 

C12 50.55±0 40.3±1.84 86.33±0.88 59.82±2.27 81.18±1.41 92.22±4.95 79.03±2.3 93.66±2.9 93.12±0.49 

C13 86.74±0 86.69±5.23 99.14±0.13 80.07±2.03 94.8±1.89 97.69±0.22 93.64±3.99 98.74±0.62 97.49±0.25 

C14 88.67±0 86.24±5.61 95.54±0.52 96.31±1.56 95.52±0.75 97.15±0.31 92.65±0.71 95.68±1.34 98.04±0.18 

C15 61.82±0 85.63±11.72 89.64±1.67 86.36±4.18 83.19±0.59 93.37±1.19 88.83±3.65 91.86±2.11 94.27±1 

C16 98.66±0 92.42±2.48 95.47±1.2 90.37±4.63 93.47±0.51 91.83±0.66 92.23±2.54 94.27±0.45 94.47±2.45 

OA(%) 68.76±0 70.43±2.58 90.25±0.42 85.65±1.45 87.95±1.07 93.58±0.55 82.18±1.5 92.55±0.11 95.81±0 

AA(%) 66.73±0 70.36±1.19 89.69±0.97 75.67±1.27 84.8±0.61 92.17±0.25 84.31±1.61 91.29±0.25 93.48±0.26 

K×100 63.98±0 66.23±2.75 88.87±0.48 83.6±1.64 86.24±1.21 92.69±0.64 79.85±1.42 91.48±0.12 95.22±0 

Params - 1.1225M 364.168k 22.388M 609.791k 382.326k 8.256M 373.184k 498.354k 

Runtime(s) - 24 106 56 222 194 37 40 242 

          
Table IV 

Classification results of the UP dataset using 0.5% training samples (value ± standard deviation) 

          Class SVM CDCNN SSRN PyResNet DBMA DBDA Hybird-SN A2S2K-ResNet Proposed 

C1 81.26±0 86.77±0.47 94.1±2.21 88.11±6.5 89.82±1.38 93.5±0.86 70.33±9.87 81.61±6.34 96.51±0.9 

C2 84.53±0 93.72±0.38 96.66±0.79 97.77±1.61 96.08±0.05 99.08±0.16 87.41±6.43 91.26±2.12 99.24±0.28 

C3 56.56±0 64.27±0.76 76.75±5.41 30.97±18.97 76.09±6.56 88.85±3.32 64.1±2.01 76.49±8.05 93.59±0.81 

C4 94.34±0 95.12±0.83 99.29±0.08 84.79±9.42 95.7±1.5 97.26±0.25 82.4±12.91 99.05±0.38 98.12±0.42 

C5 95.38±0 96.52±0.79 99.64±0.2 96.64±4.42 98.45±0.5 98.83±0.32 85.16±11.84 99.3±0.5 98.68±0.06 

C6 80.66±0 88.61±6.95 93.85±2.6 54.3±13.16 92.65±1.19 97.46±0.85 81.47±12.65 94±1.37 98.23±0.09 

C7 49.13±0 77.29±3.54 86.48±4.29 38.3±25.69 86.72±12.62 91.61±6.65 81.01±17.78 95.99±5.58 99.34±0.33 

C8 71.16±0 79.52±0.3 83.71±3.29 75.5±18.22 80.18±2.36 88.42±2.27 72.18±12.61 65.54±0.66 91.37±0.66 

C9 99.94±0 91.04±0.57 98.97±0.31 91.15±8.5 94.38±1.41 97.48±0.77 79.58±2.22 92.94±0.62 98.16±0.69 

OA(%) 82.06±0 87.94±0.13 92.5±1.33 83.01±1.89 91.8±0.56 96.01±0.03 82.38±4.48 86.81±1.19 97.5±0.05 

AA(%) 79.22±0 85.32±0.19 92.16±1.32 73.06±3.5 90.01±2.64 94.72±0.59 78.19±9.37 87.96±1.22 97.03±0.22 

K×100 75.44±0 83.95±0.16 90.89±1.64 76.9±2.64 89.04±0.75 94.71±0.04 73.76±9.36 82.18±1.54 96.68±0.06 

Params - 610.6k 216.537k 22.073M 324.376k 202.751k 6.467M 221.976k 318.779k 
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Runtime(s) - 42 71 61 96 93 71 182 132 

          
Table V 

Classification results of the KSC dataset using 5% training samples (value ± standard deviation) 

Table VI 

Classification results of SV data set using 0.5% training samples (value ± standard deviation) 

Table Ⅶ 

Classification results of HS data set using 2% training samples (value ± standard deviation) 

          Class SVM CDCNN SSRN PyResNet DBMA DBDA Hybrid-SN A2S2K-ResNet Proposed 

C1 92.43±0 96.81±0.69 98.4±0.48 99.86±0.14 99.39±0.39 99.67±0.16 88.08±5.95 100±0 99.99±0.02 

C2 87.14±0 83.65±1.41 94.52±1.92 92.93±7.05 93.8±2.36 96.58±0.43 76.94±3.25 99.13±0.39 97.55±0.31 

C3 72.47±0 83.92±2.96 85.2±5.46 84.22±5.84 80.2±1.62 88.72±2.03 69.65±5.79 87.81±0.62 94.68±3.22 

C4 54.45±0 58.61±1.53 74.55±2.39 44.63±15.75 75.31±1.08 80.82±0.59 71.36±7.4 98.53±0.02 91.72±4.05 

C5 64.11±0 52.83±3.21 75.13±11.77 72.98±12.98 69.6±6.22 78.14±2.55 83.99±4.44 92.36±0.2 89.67±2.96 

C6 65.23±0 77.17±0.29 94.35±0.72 89.91±10.33 95.06±3.41 97.75±1.82 73.62±12.16 99.92±0.11 99.41±0.71 

C7 75.5±0 75.34±2.14 84.64±4.05 98.33±1.53 87.08±1.09 95.15±1.22 63.61±14.69 95.85±1.99 95.9±0.66 

C8 87.33±0 85.83±0.11 96.97±1.44 94.3±7.86 95.4±1.88 99.08±0.76 76.35±7.53 99.41±0.6 99.74±0.33 

C9 87.94±0 91.65±0.29 97.83±0.82 99.87±0.23 96.21±1.07 99.98±0.03 74.55±23.64 99.76±0.05 100±0 

C10 96.01±1.73 93.87±0.09 98.84±1 97.05±3.76 96.13±1.85 99.92±0.07 80.07±3.3 100±0 100±0 

C11 96.03±0 98.77±0.17 99.14±0.37 98.24±1.65 99.64±0.29 98.92±0.34 94.41±4.86 100±0 98.53±0.4 

C12 93.75±0.01 94.08±1.85 99.17±0.28 99.37±0.63 98.19±0.04 98.95±0.18 71.55±0.2 99.64±0.11 99.32±0.03 

C13 99.72±0 99.8±0.13 100±0 100±0 100±0 99.97±0.05 91.96±0.11 100±0 99.97±0.05 

OA(%) 87.96±0 89.33±0.65 94.52±0.9 93.97±2.44 94.12±0.27 96.76±0.51 79.72±4.31 98.34±0.46 98.49±0.21 

AA(%) 82.55±0 84.03±0.95 92.15±1.87 90.13±3.65 91.23±0.75 94.9±0.2 78.17±4.24 97.87±0.08 97.42±0.25 

K×100 86.59±0 88.13±0.73 93.9±1 93.29±2.71 93.45±0.31 96.4±0.57 77.34±4.7 98.24±0.46 98.33±0.23 

Params - 563.152k 327.229k 22.309M 539.732k 338.187k 5.122M 335.369k 454.215k 

Runtimes(s) - 18 73 63 174 129 45 296 160 

          

          Class SVM CDCNN SSRN PyResNet DBMA DBDA Hybrid-SN A2S2K-ResNet Proposed 

C1 99.42±0 96.74±3.04 97.18±2.47 88.79±17.63 98.52±2.52 99.73±0.23 95.7±3.37 99.99±0.02 99.53±0.66 

C2 98.79±0 96.48±0.56 98.86±1.11 95.17±8.36 99.62±0.32 99.17±0.82 95.51±4.03 99.9±0.03 100±0.01 

C3 87.98±0 89.53±1.78 94.25±2.13 85.99±18.68 96.81±0.54 97.47±0.31 99.38±0.31 94.95±3.28 98.67±0.47 

C4 97.54±0 95.55±0.06 97.64±0.12 94.15±8.46 92.15±1.52 94.3±0.8 95.14±0.05 98.09±0.21 95.09±0.14 

C5 95.06±0.06 96.08±2.51 97.26±1.5 99.13±0.79 96.74±0.94 98.14±1.23 98.72±0.78 98.6±0.1 99.45±0.13 

C6 99.9±0 97.34±0.45 99.94±0.04 99.99±0.02 99.32±0.48 99.86±0.16 96.46±2.96 99.9±0.12 99.99±0.01 

C7 95.6±0.01 92.89±4.01 99.34±0.35 99.63±0.64 97.68±0.65 98.32±0.27 99.33±0.34 99.97±0.04 98.96±0.21 

C8 72.16±0.71 80.44±0.35 85.27±4.58 83.76±10.17 89.38±1.17 91.82±2.63 95.41±1.07 88.07±0.01 93.76±0.6 

C9 98.08±0 98.59±0.11 99.38±0.12 99.6±0.34 99.15±0.25 99.07±0.07 99.55±0.13 99.9±0.01 99.16±0.1 

C10 85.39±0 86.82±0.84 95.36±0.6 95.07±1.68 93.89±0.86 97.52±0.85 96.99±0.27 97.35±1.44 98.43±0.77 

C11 86.98±0 82.65±2.27 95.81±0.26 88.65±10.85 93.62±0.85 95.74±0.26 90.54±4.2 97.33±0.42 96.7±0.4 

C12 94.2±0 95.78±0.57 98±0.42 99.93±0.06 97.77±1.6 98.84±0.69 98.24±1.03 98.51±0.23 99.29±0.13 

C13 93.43±0 96.88±0.44 98.23±1.07 99.16±1 98.27±0.91 99.49±0.23 87.89±3.54 97.77±2.49 99.84±0.17 

C14 92.03±0 92.21±0.18 96.8±1.46 99.34±0.49 95.94±0.54 95.54±0.41 92.52±2.77 95.61±2.31 96.68±0.28 

C15 71.02±0 72.84±1.73 82.34±3.5 87.93±5.54 83.02±1.06 83.22±4.71 96.92±2.22 88.44±0.74 89.53±0.37 

C16 97.82±0 97.8±0.78 99.54±0.29 94.26±6.17 99.03±0.28 99.98±0.01 99.66±0.19 99.63±0.08 54.96±63.7 

OA(%) 86.98±0 88.36±0.28 92.04±0.96 92.73±1.9 92.95±0.33 93.74±0.74 96.06±1.18 95.15±0.31 96.28±0.14 

AA(%) 91.56±0 91.95±0 95.95±0.21 94.41±0.63 95.68±0.2 96.76±0.17 96.14±0.6 97.13±0.32 97.82±0.04 

K×100 85.45±0 87.05±0.3 91.14±1.08 91.92±2.09 92.16±0.34 93.05±0.8 95.95±1.31 94.6±0.34 95.85±0.16 

Params - 1.8758M 370.312k 21.808M 621.407k 389.622k 5.122M 83.771k 505.650k 

Runtime(s) - 34 129 650 230 225 112 72 265 

          

          Class SVM CDCNN SSRN PyResNet DBMA DBDA Hybrid-SN A2S2K-ResNet Proposed 

C1 92.96±0 77.22±3.37 86.44±6.14 87.92±1 88.51±2.26 89.61±1.7 88.07±2.87 90.72±2.43 91.49±0.68 

C2 94.04±0 91.71±4.34 93.87±3.7 91.71±3.5 95.57±1.56 97.12±2.38 95.97±1.97 97.62±1.31 94.69±5.26 

C3 99.65±0 72.39±1.36 99.8±0.29 98.02±1.97 100±0 100±0 97.79±0.47 99.63±0.1 100±0 

C4 98.58±0 84.75±4.22 96.35±0.86 93.32±1.32 98.51±0.44 98.47±0.37 94.38±2.05 96.51±1.88 99.11±0.2 

C5 91.41±0 94.22±2.11 94.5±0.91 91.87±1.01 96.58±1.76 97.74±0.01 94.88±1.28 95.99±0.28 97.71±0.68 

C6 99.56±0 79.67±10.22 100±0 95.65±0.49 99.66±0.24 98.83±0.44 96.22±1.88 98.57±1.32 98.08±1.34 

C7 75.97±0 81.4±4.37 80.62±1.82 78.25±1.56 85.32±1.57 87.2±2.24 87.03±0.33 93.46±0.18 88.27±0.71 

C8 75.86±0 82.26±1.26 86.33±0.66 93.27±3.3 94.41±0.78 95.54±1.9 87.41±2.06 95.25±1.22 93.25±2.91 

C9 73.68±0 83.23±2.81 91.02±0.2 73.53±4.19 85.83±0.37 86.86±0.34 81.96±0.47 87.48±0.65 89.05±0.7 

C10 74.88±0 64.19±2.14 78.69±1.75 65.26±10.76 90.19±1.33 82.11±1.58 83.04±0.38 78.42±0.66 86.17±1.25 

C11 76.63±0 73.88±1.57 84.48±0.33 65.56±7.57 86±0.68 93.95±2.81 87.89±5.56 90.87±1.77 94.69±2.28 

C12 73.56±0 81.21±3.57 84.01±5.97 70.12±12.14 88.75±2.38 90.12±1.46 86±0.59 91.47±0.43 91.61±1.68 

C13 53.28±0 82.37±1.05 88.35±0.54 93.03±8.68 85.89±0.84 90.66±0.13 93.33±1.41 92.03±2.42 88.56±5.4 

C14 88.57±0 82.18±3.8 95.29±4.29 94.41±0.78 98.86±0.11 98.52±0.01 91.43±0.78 97±0.35 97.4±1.57 

C15 99.19±0 83.36±2.74 96.76±0.31 94.83±4.04 95.91±0.15 96.15±0.14 96.59±1.79 98.27±1.03 95.84±0.43 

OA(%) 84.12±0 79.06±1.94 88.09±2.02 80.09±1.66 90.73±0.95 92.17±0.08 89.31±0.77 92.18±0.74 92.75±0.05 

AA(%) 84.52±0 80.9±1.58 90.43±1.15 85.79±0.54 92.33±0.65 93.53±0.01 90.87±0.77 93.55±0.41 93.73±0.48 

K×100 82.81±0 77.2±2.33 87.12±2.18 78.45±1.8 89.98±1.03 91.53±0.09 88.43±0.83 91.55±0.8 92.15±0.06 
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From Tables Ⅲ-Ⅶ, it can be seen that the amount of 

parameters and running time of the proposed network are 

moderate. Compared with PyResNet and Hybrid-SN, the 

amount of parameters of the proposed method is greatly 

reduced. Compared with DBMA and DBDA, the running time 

is similar, but our method can provide a superior ability of 

classification performance. 

2) Experiment 2: Figure 16 compares the convergence of 

verification accuracy and loss on the KSC verification set of 

SSRN, DBDA and the proposed method over 80 epochs. It can 

be seen that compared with SSRN and DBDA methods, the 

proposed method converges faster, and it has converged in 

about 30 generations. Since the SSRN network is deeper, the 

convergence speed is slower. For DBDA, although the model 

has fewer parameters, it has a double-branch structure, which 

makes the convergence of this method slower. 

To further verify the effectiveness of the proposed method, 

the confusion matrices obtained by the above three method on 

KSC dataset are compared, and the experimental results are 

shown in Figure 17. For SSRN method, the classification errors 

of Slash pin and Oak / Broadleaf are relatively large. Among 

them, the confusion ratio of true category Slash Pin with CP 

hammock and Oak / Broadleaf is 6% and 7% respectively, and 

the classification error rate of real category Oak/Broadleaf is 

26%. For DBDA, CP hammock, Slash pine and Oak/Broadleaf 

all have some confusion, and the classification accuracy of 

Slash pine and Oak / Broadleaf is poor, with only 77% and 75% 

accuracy. Compared with the above two methods, the 

classification accuracy of the proposed method is 100% for 

most categories, and the classification accuracy of Slash pine 

and Grass-pasture-mowed can reach more than 94%. This 

shows that the proposed method still has good classification 

performance for those easily confused categories. 

(a) (b)  

Fig.16. Comparison of the loss and verification accuracy curves of each method on KSC dataset. (a) The relationship between verification loss and epochs. (b) The 

relationship between verification accuracy and epochs. 

(a) (b) (c)

Fig 17. Comparison of confusion matrices of different methods on KSC dataset. (a) SSRN. (b) DBDA. (c) Proposed. 

 

3) Experiment 3: This experiment compares the 

classification performance of different methods under different 

training sample ratios. For the datasets of IN, UP, KSC and SV, 

the training ratios of each dataset are set to 1%, 5%, 10%, 15% 

and 20%, and SVM, CDCNN, SSRN, PyResNet, DBMA, 

DBDA, Hybrid-SN, A2S2K-ResNet and the proposed DBMSA 

method are tested. The experimental comparison results are 

shown in Figure 18. It can be seen that the classification 

performance of CDCNN and SVM is relatively poor when 

there are few training samples. For the four data sets, the best 

overall classification performance is achieved by the proposed 

DBSMA method. Although the classification accuracy of 

Hybrid-SN is slightly higher than that of the proposed DBSMA 

method on SV data sets, the generalization ability of this 

method is poor. Compared with SSRN, PyResNet and DBMA, 

A2S2K-ResNet can achieve relatively good results as a whole, 

but this method performs poorly in the case of fewer samples. 

With the increase of the number of samples, each method can 

Params - 812.559k 278127 22.211M 447.046k 280.021k 2.504M 258.199k 396.089k 

Runtime(s) - 29 76 73 253 107 33 154 259 
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achieve higher classification accuracy, but the classification 

accuracy of the proposed DBSMA method is still the highest. It 

proves that the proposed method has better generalization 

ability. 

4) Experiment 4: In order to explore the influence of the 

input spatial size on the experiment, many experiments with the 

spatial size of 5×5, 7×7, 9×9, 11×11 and 13×13 have been 

performed. The experimental results are shown in Table Ⅷ. It 

is worth noting that the classification accuracy first increases 

and then decreases with the increase of size. When the spatial 

size is 9×9, the classification accuracy is the best. Therefore, 

the spatial size of 9×9 is adopted as the input size of the 

proposed framework. 

 

(a) (b)

(c) (d)
 

Fig 18. The comparison results of the classification performance of different methods at different training sample ratios on the IN, UP, KSC, and SV datasets. (a) 

Classification performance of different methods on the IN dataset. (b) Classification performance of different methods on the UP dataset. (c) Classification 

performance of different methods on the KSC dataset. (d) Classification performance of different methods on the SV dataset. 

Table Ⅷ 

Classification accuracy on each data set with different spatial sizes. 

        5×5 7×7 9×9 11×11 13×13 

IN 

OA(%) 92.87 94.42 95.39 91.96 90.55 

AA(%) 94.23 94.04 94.42 87.02 89.52 

Kappa×100 91.88 93.65 94.74 90.84 89.96 

UP 

OA(%) 96.28 96.45 97.02 96.21 95.38 

AA(%) 95.87 96.16 96.81 95.76 94.48 

Kappa×100 95.07 95.29 96.05 94.97 93.85 

KSC 

OA(%) 97.22 98.22 98.49 97.38 97.19 

AA(%) 96.00 96.94 97.42 95.85 95.35 

Kappa×100 96.90 98.02 98.33 97.19 96.66 

SV 

OA(%) 95.13 96.08 96.28 95.23 95.01 

AA(%) 97.20 97.50 97.82 94.68 94.89 

Kappa×100 94.57 95.97 95.85 95.08 93.55 

HS 

OA(%) 91.50 92.41 92.75 91.99 91.89 

AA(%) 92.71 93.50 93.73 93.20 92.11 

Kappa×100 90.89 91.88 92.15 91.34 91.13 

        

5) Experiment 5: In addition, we extensively analyzed the 

different effects of the proposed MSSP block and attention 

mechanism. In this part, a series of comparative experiments 

are carried out to illustrate the advantages of MSSP block. 

Specifically, MSSP blocks are equipped with grouping and 

without grouping respectively. Table Ⅸ  shows the 

classification results of different module combinations on five 

data sets. It can be observed that the best performance is 
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obtained by combining the grouped MSSP block with the two 

attention mechanisms, which shows that the scheme has 

general advantages for all datasets. The classification accuracy 

of MSSP Block with grouping is improved by 10.37%, 4.61%, 

2.89%, 7.22% and 3.54%, respectively on IN, UP, KSC, SV, 

and HS datasets compared with those of other schemes without 

MSSP Block. 

Table Ⅸ 

The ablation analysis of different modules (OA%) 

        

Module 

MSSP 
Block 

No groups  √ √ √  

Groups     √ 

Spectral attention √ √  √ √ 

Spatial attention √  √ √ √ 

Data 

IN 85.44 74.50 94.07 94.89 95.81 

UP 92.89 86.40 95.84 96.65 97.50 

KSC 95.60 95.42 96.81 97.24 98.49 

SV 89.06 90.23 95.58 95.80 96.28 

HS 89.21 90.80 91.69 91.96 92.75 

        

IV. CONCLUSIONS 

This paper proposes a dual-branch spectral multi-scale 

attention network for hyperspectral image classification. It 

consists of two branches, i.e., spectral branch and spatial branch. 

In the spectral branch, the structure of the MSSP and the 

spectral attention mechanism is designed to extract the spectral 

information. In the spatial branch, the structure of the dense 

connection block and the spatial attention mechanism is 

utilized to extract the spatial information. In addition, the 

features obtained from the two branches are fused and 

classified. The proposed MSSP of the DBMSA network can 

obtain the spectral features of different receptive fields, which 

is beneficial to improve the classification performance of 

hyperspectral images. The experimental results show that the 

network model proposed in this paper has a good classification 

performance and strong generalization ability. In future 

research, we plan to further improve the DBMSA method to 

more effectively extract the features of hyperspectral images 

and reduce the running time of it. 
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