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Hyperspectral Image Classification Method Based on

2D–3D CNN and Multibranch Feature Fusion
Zixian Ge , Guo Cao , Xuesong Li , and Peng Fu

Abstract—The emergence of a convolutional neural network
(CNN) has greatly promoted the development of hyperspectral
image (HSI) classification technology. However, the acquisition
of HSI is difficult. The lack of training samples is the primary
cause of low classification performance. The traditional CNN-based
methods mainly use the 2-D CNN for feature extraction, which
makes the interband correlations of HSIs underutilized. The 3-D
CNN extracts the joint spectral–spatial information representation,
but it depends on a more complex model. Also, too deep or too
shallow network cannot extract the image features well. To tackle
these issues, we propose an HSI classification method based on the
2D–3D CNN and multibranch feature fusion. We first combine 2-D
CNN and 3-D CNN to extract image features. Then, by means of the
multibranch neural network, three kinds of features from shallow
to deep are extracted and fused in the spectral dimension. Finally,
the fused features are passed into several fully connected layers and
a softmax layer to obtain the classification results. In addition, our
network model utilizes the state-of-the-art activation function Mish
to further improve the classification performance. Our experimen-
tal results, conducted on four widely used HSI datasets, indicate
that the proposed method achieves better performance than the
existing alternatives.

Index Terms—Activation function, convolutional neural
network (CNN), deep learning, feature fusion, hyperspectral
image (HSI) classification.

I. INTRODUCTION

H
YPERSPECTRAL remote sensing, also called imaging

spectral remote sensing, is a multidimensional informa-

tion acquisition technology combining imaging technology and

spectral technology [1]. The hyperspectral remote sensor can

simultaneously obtain the 2-D geometric spatial information

and the 1-D spectral information of the target area. There-

fore, the hyperspectral data have the form and structure of

an “image cube,” which reflects the characteristics of “image

spectrum unification.” While imaging the spatial features of the

target, each spatial pixel is dispersed to form dozens or even

hundreds of narrow bands for continuous spectral coverage.

Hyperspectral images (HSIs) combine image information and
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spectral information. The image information shows the external

characteristics of the sample, such as size, shape, and texture.

Meanwhile, the spectral information reflects the differences

in the physical structures and chemical compositions of the

sample. Therefore, the HSIs reflect the comprehensive charac-

teristics of the image. Different components in the image have

different spectral absorption factors, different internal physical

structures and chemical compositions lead to different reflection

characteristics, it is the basis of HSI classification technology.

Hyperspectral remote sensing technology has been widely used

in environmental monitoring [2], mineral exploration [3], [4],

precision agriculture [5], [6], among others.

Recently, deep learning has become a promising approach to

big data analysis. The great breakthrough has been made with

the approach in many computer vision tasks. With the devel-

opment of deep learning technology, research institutions and

scholars applied this technology to the HSI classification field

and embraced exciting achievements. Deep learning models

mainly include Stacked AutoEncoder (SAE) [7]–[9], restricted

Boltzmann machine [10], convolutional neural network (CNN)

[11]–[14], recurrent neural network (RNN) [15]–[17], and gen-

erative adversarial network [18], [19].

Previously, most methods depend on spectral information

[20]–[23] or spatial information [24], [25] for classification.

However, utilizing spectral or spatial information alone is

not enough to extract features with sufficient discrimination.

In recent years, researchers tended to combine the spectral

and spatial information [26]–[31] to deal with classification

tasks, which achieved good performance. We now provide

a brief summary of related work for spectral–spatial based

methods.

In terms of spectral–spatial based method, one popularly used

structure is decoupling the task for two streams, that is, a spectral

feature extraction stream and a spatial feature extraction stream.

Guo and Zhu [32] proposed a CNN-based spatial feature fusion

algorithm. This algorithm first extracts the spectral and spatial

features from original HSIs. Then, the spatial information is

intelligently fused with the spectral features extracted by the

artificial neural network model supervised by center loss, and

the classification task is carried out by the fused features. In

[33], a unified deep network combined with active transfer

learning (TL) was proposed. The model can be well trained

with a small number of labeled training data. This method first

extracts deep joint spectral–spatial features through a layered

and stacked sparse autoencoder (SSAE) network. Then, the

corresponding active learning strategy is utilized to select limited

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7905-6450
https://orcid.org/0000-0002-2689-0932
https://orcid.org/0000-0002-2370-8998
mailto:zxge727@foxmail.com
mailto:caoguo@njust.edu.cn
mailto:cedar_xuesong@163.com
mailto:fupeng@njust.edu.cn


GE et al.: HYPERSPECTRAL IMAGE CLASSIFICATION METHOD BASED ON 2D–3D CNN AND MULTIBRANCH FEATURE FUSION 5777

labeled samples from the source and target domains to fine tune

the SSAE network. Shen et al. [34] proposed a spectral–spatial

domain-specific convolutional deep extreme learning machine

in view of large and complex deep model network structure

and time-consuming training. The model has a two-branch

convolutional learning structure to separately extract spectral

features and spatial features. Li et al. [35] proposed a two-stream

spectral and spatial feature extraction and fusion network based

on 2-D CNN. By fusing the features of the spectral feature

extraction branch and the spatial feature extraction branch, joint

spectral–spatial features are obtained. Moreover, SE-Conv and

SE-Res modules based on the squeeze-and-excitation networks

are designed to enhance the joint feature extraction capability.

Zhou et al. [36] presented an HSI classification method using

a spectral–spatial long short-term memory (LSTM), which in-

cludes spectral LSTM and spatial LSTM. This method first feeds

the spectral and spatial features of each pixel into softmax layers

for two results and then utilizes a decision fusion method to

further obtain the joint classification results. Hang et al. [37] ex-

plored an attention-aided CNN network for the spectral–spatial

classification of HSI. Similarly, this method uses the two-stream

strategy to design a spectral attention subnetwork and a spatial

subnetwork for joint feature classification. Combined with at-

tention modules, this method aids the network focus on more

discriminative channels or positions.

Another candidate structure is feeding a local cube, cropped

from HSI, into a CNN module with 2-D or 3-D convolutional

kernel for extracting the joint spectral–spatial features [38].

This is the wider used method to directly extract the joint

spectral–spatial features for HSI classification. He et al. [39]

proposed a multiscale 3-D deep convolutional neural network

(M3D-DCNN), which jointly learns 2-D multiscale spatial fea-

tures and 1-D spectral features. Zhong et al. [27] designed a su-

pervised 3-D deep learning model for spectral–spatial represen-

tation learning and HSI classification. Inspired by the residual

network (ResNet), this model contains many jump connections,

which allows the network to be composed of more layers to

extract the deep features. In [40], a semisupervised deep learning

framework based on the ResNet was proposed, which utilizes

the limited labeled data supplemented by abundant unlabeled

data. This method guides the network to learn from unlabeled

data by using the complementary cues of spectral and spatial

features. In [41], a hybrid network model was designed by

combining 2-D CNN with 3-D CNN, which effectively extracts

the spatial and spectral features of HSIs. The model has a

simple structure, fast training speed, and good classification

performance. But the classification result using a small number

of training data is not ideal. Liu et al. [42] proposed a deep

multigrained cascade forest method called dgcForest. First, the

cascade forest is embedded in the multigrained scanning process

to obtain the deep representative features with high diversity.

Then, these features are put into the pooling layer to reduce

the dimensions for cascaded forests. In addition, the training

cost of dgcForest is very small and it does not require a lot of

computing resources. Compared with DNN, this model saves

a lot of time. Gong et al. [31] proposed a neural network with

multiscale convolution. This model takes the advantage of both

determination-point-process-based diversity-promoting deep

metrics and multiscale features for effective HSI classification.

Chen et al. [43] aimed at the problem that the handcraft network

structure cannot adapt well to different datasets; they proposed

the automatic CNN models called 1-D auto-CNN and 3-D

auto-CNN for HSI classification. First, a search algorithm based

on the gradient descent is used to efficiently find the best network

structure to evaluate the performance on the validation set. Then,

the best CNN architecture is selected for the HSI classification

model. In addition, the author designed a new regularization

method called “cutput,” which randomly deletes a certain region

from the original image. Chen et al. [44] proposed a classifi-

cation model based on the integration of deep learning model

and random subspace-based ensemble learning, and used TL

strategy to speed up the learning stage. Cui et al. [45] presented

a multiscale spatial–spectral CNN network to integrate multiple

receiving field fusion features and multiscale spatial features

at different levels. The fused feature is developed by using the

lightweight blocks of multiple reception fields, which contain

various types of dilated convolutions. Li et al. [46] proposed

a seed that uses spatial–spectral feature learning networks to

reflect changes in spatial information and to learn robust adaptive

features. Instead of connecting independent spatial features and

spectral features, this framework combines CNN and SAE to

directly extract joint spatial-spectral features from HSIs. In

[47], a spatial transformation network (STN) was explored to

obtain the best input for CNN-based HSI classification. The

introduction of the STN network is used to translate, rotate,

and scale the original image, and find optimized inputs for

subsequent CNNs. In addition, in order to alleviate overfitting,

the regularization technology of DropBlock is introduced to

obtain better classification accuracy. Hamida et al. [28] proposed

a 3-D CNN-based model, which uses different sizes of 3-D

convolution simultaneously to process the spatial and spectral

components, so as to train the model with fewer parameters.

He et al. [48] proposed a handcrafted feature extraction method

based on the multiscale covariance maps, which has better ro-

bustness and classification performance. Li et al. [49] proposed a

robust 3-D-CapsNet model, which introduces the maximum cor-

rentropy criterion to address the noise and outlier problem. Shi

and Pun [50] presented a multiscale superpixel-based RNN with

SAEs for classification. Sun et al. [51] employed an attention

mechanism to build an end-to-end spectral–spatial attention net-

work (SSAN). Through this network, they attempted to capture

the discriminative spectral–spatial features from the attention

areas of HSI cube. Hang et al. [52] proposed a coupled CNN

model for hyperspectral and LiDAR data fusion, which consists

of an HSI network for spectral–spatial feature learning and a

LiDAR network for elevation feature learning. Zhu et al. [53]

presented an improved capsule network called the convolutional

capsule (Conv-Capsule). Combined with principal component

analysis (PCA) and extended multiattributes profile, this model

effectively extracts spectral–spatial features from HSIs.

Among numerous deep learning models, CNN has demon-

strated its superiority in the spectral and spatial feature extrac-

tion, showing great potential in the HSI classification field. The

key technology of CNN is the local receptive field and sharing
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of weights, but it also has some problems that can be further

optimized. For example, during the process of gradient descent,

it is easy to make the results converge to the local minimum,

and the pooling layer will lose a lot of useful information. In

addition, it is difficult to set the suitable hyperparameters when

extracting features from a single branch network.

In CNN-based methods, using 2-D CNN alone will miss in-

terband information. 3-D CNN extracts the joint spectral–spatial

feature representation from a series of spectral bands. If different

categories in HSIs have a similar texture over many spectral

bands, using 3-D CNN alone seems to perform worse. However,

connecting 3-D CNN and 2-D CNN with different kernels size

makes the network strong enough to extract more abstract spatial

representation. In addition, a multibranch network extracts HSI

features at different levels, which further enriches the extracted

features. Hence, the powerful feature extraction capability of

2D–3D CNN combined with the multibranch feature fusion

method makes the network depend on a small number of training

data. These are motivations for us to propose an HSI classifica-

tion method based on the 2D–3D CNN and multibranch feature

fusion. Centering on the CNN technology, the proposed method

combines 2-D CNN and 3-D CNN with different kernels size

to design three branches of the neural network, which extracts

features at different levels. Then, the three different features are

fused in the spectral dimension. Finally, the fused features are

fed into fully connected layers that are added at the end of the

model in order to perform the final classification task. Moreover,

the new activation function Mish is employed in the network,

and 5% of the data are used for training.

The main contributions of this article are summarized as

follows.

1) A deep network structure based on the 2D–3D CNN and

multibranch feature fusion is proposed for HSI classifica-

tion.

2) The proposed model incorporates network outputs at dif-

ferent levels, which effectively improve the classification

performance.

3) A new activation function Mish is used to replace Relu.

The remaining part of this article is organized as follows.

Section II describes the related theoretical basis. Section III

introduces the proposed neural network model and the specific

implementation steps of the model. The experimental results and

analysis are provided in Section IV. Finally, Section V gives the

conclusion.

II. RELATED THEORY

A. Convolutional Neural Network

CNN is a feedforward neural network. Its artificial neurons

respond to a part of the surrounding cells in the coverage area,

and it has excellent performance for large-scale image process-

ing [54], [55]. CNN contains two core design ideas. One is that

CNN uses the 2-D structure of the image, that is, the pixels in

adjacent areas are usually highly correlated. The other is that

its architecture relies on feature sharing, so each channel (that

is, the output feature map) is generated by convolution using

the same filter in all locations. CNN is mainly composed of four

parts: convolutional layer, activation function, pooling layer, and

fully connected layer.

The calculation function of the convolutional layer is shown

as

ylj =

d∑

i=1

f(xl−1

i ∗ wl
ij + blj) (1)

where the matrix xi
l-1 is the ith feature map of the l-1 layer,

yj
l is the jth feature map of the lth layer, and d represents the

number of the input feature maps. wij
l and bj

l are the weight and

bias parameters, which are randomly initialized. f (·) indicates

a nonlinear activation function, where we utilize Mish in this

article. The symbol ∗ represents the convolution operation.

The pooling layer is usually located after the convolutional

layer to reduce the spatial dimension of the data. A pooling

operation is reducing the number of parameters in the network

and effectively preventing overfitting.

The final part of the network usually connects several fully

connected layers. Each neuron in a fully connected layer con-

nects with all neurons in the previous layer and sends the output

value to the classifier.

All parameters in neural networks are trained by using the

backpropagation algorithm. CNN is flexibly combining the con-

volutional layer, pooling layer, and fully connected layer to-

gether so that the network can accurately extract image features.

CNN-based HSI classification methods mainly include 2-D

CNN and 3-D CNN. Roy et al. [41] used three 3-D CNN and a

2-D CNN to build the network. Hamida et al. [28] mainly utilized

3-D CNN in the network. Combining 2-D CNN with 3-D CNN

can indeed improve the performance to a certain extent, but

selecting the appropriate number of network layers is not easy

to control. Because neither too deep nor too shallow networks

can well extract image features. This article uses 2-D CNN and

3-D CNN with different kernels size to construct a multibranch

network model, which obtains richer and more diverse features.

B. Feature Fusion

In many tasks, feature fusion at different scales is an impor-

tant means to improve classification performance. Low-level

features have large spatial size, which contain more location

and detailed information. Due to the use of fewer convolutional

layers, there are little semantics and much noise in the features.

The high-level features have stronger semantic information, but

the features have a small spatial size and poor ability to perceive

details. How to effectively integrate the two methods, take the

advantage of them, and abandon the bad ones is the key to

improve model performance [56].

The feature fusion methods can be divided into early fusion

and late fusion according to the order of fusion and prediction.

Among them, early fusion methods first fuse multilayer features,

then they train a predictor on the fused features. This type of

method is also called skip connection, which uses the concat or

add operations. Late fusion methods improve the performance

by fusing the detection results of different layers. In this article,

we use concat for feature fusion.
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Fig. 1. Flowchart of the proposed HSI classification model.

III. PROPOSED NEURAL NETWORK MODEL

The flowchart in Fig. 1 depicts the proposed model for HSI

classification using 2D–3D CNN and multibranch feature fu-

sion. This model first uses PCA to reduce the dimension of

the original dataset. And then it inputs the reduced data into

the three-branch network to extract features at different levels

and fuses the three features by concat. Finally, classification is

performed through several fully connected layers and a softmax

layer.

A. PCA Processing of HSI Data

For HSI analysis, researchers demonstrated that the redun-

dancy from interband correlation is very high. The data structure

in the spectral dimension can be reduced without the signifi-

cant loss of useful information for subsequent utilization [57].

However, an HSI contains hundreds of spectral bands, which

increases the pressure on the network model to process data and

also consumes a lot of computing resources.

Recent years, many studies on HSI classification use PCA

for data preprocessing [49], [50], [52], [56]. PCA is the most

commonly used linear dimensionality reduction method. Its

goal is mapping a high-dimensional data to a corresponding

low-dimensional data through some linear projection, that is,

maximizing the variance. This method reduces the data dimen-

sion while retaining more original data features. The core idea of

PCA is calculating the similarity between different data features,

extracting the main features according to the strength of the

correlation, and completing the information fusion [58], [59].

And hence, PCA is applied to the original HSI for dimensionality

reduction in the proposed method.

We record the cube data of the original HSI as H
m,n,l, where

H represents the original HSI data, m is the length, n is the

width, and l is the number of spectral bands. Each pixel in HSI

is composed of a pixel sequence S = {s1, s2, s3, …, sl}. HSIs

contain a large number of spectral bands, which may cause a

huge computational burden. Furthermore, there are plenty of

redundant data in HSI. In the proposed method, we perform

PCA processing on the original HSI. After applying PCA, the

original HSI data H
m,n,l is reduced to H

m,n,p, where the length

and width of the image are unchanged, the depth is reduced from

l to p.

B. Multibranch CNN

Due to the high correlation among the bands of HSIs, a large

number of samples are needed for training in the classification

task. However, it is difficult to obtain large numbers of ground

reference data because such data collection is expensive and

complex. Limited samples in the training set will lead to un-

reliable training parameters and result in overfitting. Therefore,

getting better classification performance with less training data is

a necessary aspect we concern in the proposed network model.

In addition, shallow neural network extracts the shallow edge

information of the image. It has poor ability to express complex

function and its generalization ability is also limited. By learning

a deep nonlinear network structure, the deep neural network can

realize complex function approximation, characterize the dis-

tributed representation of input data, and demonstrate a powerful

ability to learn the characteristics of dataset from a few training

samples.

At present, most classification models only use 2-D CNN or 3-

D CNN for feature extraction. Although 2-D CNN has the ability

to extract the spatial information, it neglects the rich interband

information of HSIs. The excessive use of 3-D CNN will make

the network too bloated, which may decrease the classification

accuracy. In order to mitigate these issues, 2-D CNN and 3-

D CNN are combined to build the multibranch feature fusion

network in this article. We design three neural network branches

by connecting 2-D CNN to 3-D CNN, where each branch has

different numbers of network layers. And the first convolutional

layer in three branches has a different kernel size. Through the

three branches, we extract three different features and fuse them

together to obtain a more discriminative feature representation.

In the proposed network model, a new activation function

Mish is used to further improve the performance. Currently, Relu

is a widely used activation function in most HSI classification

tasks or even in most deep learning fields. However, a new deep
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TABLE I
CONFIGURATION OF DEEP NETWORK USED IN FEATURE LEARNING PROCEDURE

Fig. 2. Image of the activation function Mish.

learning activation function Mish is proposed in [60], which has

the accuracy improvement of 1.671% over Relu in the test. The

calculation equation of Mish is shown as follows:

Mish = x ∗ tanh(ln(1 + ex)) (2)

tanh(x) =
ex − e−x

ex + e−x
(3)

where x is the input of the function, ln (·) is a logarithmic

calculation, and the calculation equation of tanh (·) is shown

in (3). Fig. 2 displays the image of the Mish function.

Being unbounded above is a desirable attribute of Mish be-

cause it avoids saturation, and a slight allowance for negative

values, in theory, leads to better gradient flow instead of a

strict zero boundary in Relu. Meanwhile, Mish is a continuous

function, which guarantees better gradient optimization. The

above characteristics ensure that the model using Mish has better

classification accuracy and generalization performance.

The detailed distribution and parameters of each layer in the

proposed model are described in Table I. As given in Table I, the

first branch combines one layer of 3-D CNN and one layer of

2-D CNN to extract shallow features. In this branch, the kernel

size of 3-D CNN is 7× 7× 7 and the number of kernels is 6, and

the kernel of 2-D CNN is 3 × 3 and the number of kernels is 80.

The second branch adopts two layers of 3-D CNN with 6 5 × 5

× 5 convolution kernels, 12 3 × 3 × 3 convolution kernels, and

one layer of 2-D CNN with 64 3 × 3 convolution kernels. The

third branch is designed to extract deeper semantic features. In

this branch, we use three layers of 3-D CNN, which have 3 × 3

× 3 convolution kernels with 8, 16, and 32 filters, respectively,

and a layer of 2-D CNN with 80 3 × 3 convolution kernels. The

feature cubes extracted from three network branches have the

same length and width, only different depths. Based on the length

and width of the image, the three features are fused to obtain

the mixed feature of the image. Considering that the pooling

layer will lose some information, we do not use this layer in the

network. In addition, the network structure and hyperparameters

we describe above satisfy the four datasets at the same time.

IV. EXPERIMENT AND DISCUSSION

A. Data Description

Four real HSI datasets have been considered in our experi-

ments: The University of Pavia (UP), Indian Pines (IP), Salinas

(SA), and Botswana (BOT). We show the false-color composite,

ground reference maps, as well as the land cover categories of

these datasets in Figs. 3–6.

The first dataset UP, was captured by the reflective optics

system imaging spectrometer sensor, acquired in 2001 over the

UP in northern Italy. The spatial size of the image is 610 ×

340 with a high resolution of 1.3 m per pixel, and the spectral

information consists of 103 bands in the wavelength ranging

from 0.43 to 0.86 µm. The number of different categories

contained in the UP scene is 9.

The second dataset IP was captured by the Airborne Visi-

ble/Infrared Imaging Spectrometer (AVIRIS) sensor in 1992.

The spatial size of the scene is 145 × 145 with a high resolution

of 20 m per pixel, and the spectral information consists of 200

bands in the wavelength ranging from 0.4 to 2.5 µm, after

removing 20 water absorption bands. The ground truth of the

IP scene contains a total of 16 different categories.

The third dataset SA was captured by the AVIRIS sensor in

1998 over the agricultural area described as SV in California,

CA, USA. The spatial size of the data is 512 × 217 with a

high resolution of 3.7 m per pixel, and the spectral information
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Fig. 3. UP dataset. (a) False-color composite. (b) Ground reference map. (c)
Land cover classes in the UP dataset.

Fig. 4. IP dataset. (a) False-color composite. (b) Ground reference map. (c)
Land cover classes in the IP dataset.

consists of 224 bands in the wavelength ranging from 0.4 to 2.5

µm. The available ground truth for the SA contains 16 categories.

The fourth dataset BOT was captured by the NASA EO-1

satellite with the Hyperion sensor over the Okavango Delta,

BOT, South Africa, on May 31, 2001. The spatial size of the

scene is 1476× 256 with a high resolution of 30 m per pixel, and

the spectral information consists of 145 bands in the wavelength

ranging from 400 to 2500 nm, after removing uncalibrate and

noise bands. The ground truth of the BOT scene contains a total

of 14 different categories.

We ran out a test on a computer with a ninth-generation

Intel Core i7 CPU at 3.0 GHz with the RTX 2080ti graphical

processing unit. The operating system is window 10 (64 bit)

home, and the experimental platform is python 3.7. We choose

the optimal learning rate of 0.0005 based on the classification

outcomes.

Fig. 5. SA dataset. (a) False-color composite. (b) Ground reference map. (c)
Land cover classes in the SA dataset.

Fig. 6. BOT dataset. (a) False-color composite. (b) Ground reference map. (c)
Land cover classes in the BOT dataset.
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACY BASED ON 5% SAMPLES FOR TRAINING

For all four datasets, we split the labeled samples into two

subsets, i.e., training sets and testing sets. We randomly select

5% of the original dataset for training, and the remaining 95%

of the data are used as a test. In the training set, we use threefold

cross validation to determine the hyperparameters. In order to

assess the results, three widely used quantitative metrics are

utilized to evaluate the classification performance.

1) Overall accuracy (OA): The percentage of correctly clas-

sified pixels.

2) Average accuracy (AA): The mean value of the OAs

measured over each category.

3) Kappa coefficient (Kappa): A statistic measurement over

the inter-rate agreement among qualitative items.

B. Classification Results

In this section, we report the quantitative and qualitative

results of the proposed method and compare it with the state-of-

the-art methods within 5% of training data. The classification

results are given in Table II, where we mark the data of methods

with the best performance under different conditions in bold.

As displayed in Table II, the proposed method gets better

results in OA, AA, and Kappa compared with the listed methods

in four different HSIs. Among these datasets, UP has only nine

categories, which makes it easier to classify than the other three

datasets. SA has a large spatial size and the maximum numbers

of spectral bands, so the classification performance of the listed

methods on SA is higher. The spatial size of IP is relatively

small but with 16 categories, which results in lower classification

accuracy. Although BOT has the largest spatial size in all HSIs, it

provides the least samples with ground truth. The classification

accuracy in BOT is just higher than IP.

In addition to SVM [61], other methods all combine 1-D

CNN, 2-D CNN, or 3-D CNN to extract the spectral and spa-

tial features of HSI for classification. Among them, inspired

by ResNet, SSRN [27] designs a deeper network model. By

introducing skip connections, the method effectively prevents

overfitting, and the parameters can get well backpropagation.

HybridSN [41] uses several 3-D CNNs to connect a 2-D CNN.

The network is simple and effective, and the extracted features

have strong discrimination. These two methods make good use

of the joint spectral–spatial features of HSI, and the OA of

UP, IP, SA, and BOT reaches a high level of 98.9%, 93.4%,

99.3%, and 94.4%, respectively. MCMs+2-D CNN [48] calcu-

lates the multiscale covariance map of HSI and inputs it into

the 2-D CNN for classification. By using a covariance map, the

spatial and spectral information are simultaneously exploited.

Considering that this model has a very shallow network, there

are no deeper features been extracted, so the classification

performance of this method is lower than the previous two.

The 3D-Conv-Capsule [53] introduces the idea of capsule net-

work into HSI classification, which combines the advantages of

CNN local connections and shared transform matrices with the

characteristics of a dynamic routing algorithm in the capsule

layer. The OA of the network is close to MCMs+2-D CNN,

which are 97.2%, 93.8%, 97.7%, and 95.5% in the four datasets,

respectively. The 1-D auto-CNN [43] and 3-D auto-CNN [43]

emphasize an automatic idea. These two methods find a group

of hyperparameters with the best performance on the validation

set from several candidate hyperparameters. Among them, 1-D

auto-CNN only uses the spectral information of HSI, and the

improved 3-D auto-CNN combines the spectral and spatial

information of HSI for classification. We can clearly see that

the classification performance of 3-D auto-CNN significantly

outperforms 1-D auto-CNN in the four datasets. The methods of

M3D-DCNN [39] and 3-D CNN [28] are relatively similar. They

both use 3-D CNN as the main component in the network. In

comparison, M3D-DCNN uses multiscale convolution kernels

to extract more abundant features. Therefore, the classification

performance of M3D-DCNN is slightly higher than 3-D CNN.

The classification performance gap between the two methods is

more obvious in IP, which is 8.45% of OA. These two methods

have simple network models and shallow network layers, which

cannot fully extract the features with discriminative ability.

Therefore, their classification performance is poor compared

with the aforementioned methods. As a general comment, the

improvement introduced by spectral–spatial models is remark-

able. As an illustration, SVM [61] only relies on the spectral

features, which results in weak classification performance. Com-

pared with other spectral–spatial methods, the spectral infor-

mation alone appears not enough discriminative to carry out

the accurate classification. As observed in Table II, the classi-

fication results of SVM have the greatest number of mistaken

pixels.

The limitations of the spectral-based and spatial-based meth-

ods can be easily overcome by combining the spectral and spatial



GE et al.: HYPERSPECTRAL IMAGE CLASSIFICATION METHOD BASED ON 2D–3D CNN AND MULTIBRANCH FEATURE FUSION 5783

Fig. 7. Classification map of UP. (a) False-color image. (b) Ground truth. (c) SVM. (d) 1-D auto-CNN. (e) 3-D auto-CNN. (f) HybridSN. (g) M3D-DCNN. (h)
SSRN. (i) Proposed method.

Fig. 8. Classification map of IP. (a) False-color image. (b) Ground truth. (c) SVM. (d) 1-D auto-CNN. (e) 3-D auto-CNN. (f) HybridSN. (g) M3D-DCNN. (h)
SSRN. (i) Proposed method.

Fig. 9. Classification map of SA. (a) False-color image. (b) Ground truth. (c) SVM. (d) 1-D auto-CNN. (e) 3-D auto-CNN. (f) HybridSN. (g) M3D-DCNN. (h)
SSRN. (i) Proposed method.

contextual information, where the combination of 2-D CNN

and 3-D CNN is able to significantly reduce the uncertainty

and data variability of image pixels, such as HybridSN method,

which has the best performance in the whole classification of

the four datasets. The proposed method not only extracts the

spatial and spectral features of HSI but also obtains different

image features from shallow to deep through multiple network

branches. Through fusing them together, the network learns

the representative and discriminative features, and the extracted

features achieve small intraclass differences and large interclass

differences. Compared with the best method HybridSN, our

proposed method improves the OA by more than 0.56%, 2.38%,

0.31%, and 1.99% in four datasets, respectively. The proposed

method generates very similar OA, AA, and Kappa values

in all cases, exhibiting better consistency in terms of model

performance on the obtained results.

In addition to the quantitative report, we also visualize clas-

sification maps of different methods. As we can observe in

Figs. 7–10, the contrast areas are marked with red boxes.

The proposed method is able to achieve the best performance

in all considered datasets, visually clean classification maps,

where the number of mistaken pixels is obviously reduced. The

spectral-based methods always result in noisy scatter points in

the classification maps [see Figs. 7(c) and (d), 8(c) and (d), 9(c)

and (d), and 10(c) and (d)], while the spectral–spatial based

methods can well overcome the shortcoming. Obviously, such

as 3D-Conv-Capsule, HybridSN, and so on, which directly use

the neighbor information, as the model input results in smoother

classification maps. Comparing the true ground reference with

the classification maps, the proposed method achieves the best

performance in all considered datasets. The experimental results

demonstrate that our proposed method makes the rich interband

information of HSIs better serve the classification task, and

the extracted features can distinguish different types of pixel

information well.

The comparisons of accuracy and loss convergence for 100

epochs of training and validation sets are portrayed in Fig. 11.

It can be seen that the proposed method converges faster
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Fig. 10. Classification map of BOT. (a) False-color image. (b) Ground truth. (c) SVM. (d) 1-D auto-CNN. (e) 3-D auto-CNN. (f) HybridSN. (g) M3D-DCNN.
(h) SSRN. (i) Proposed method.

Fig. 11. Comparison of the loss and accuracy of each epoch.

than the SSRN but slower than the HybridSN. The proposed

method and SSRN converge at about 50 epochs, while the

HybridSN converges at about 30 epochs. HybridSN method

obtains the fastest convergence for its simple network structure,

which consists of three 3-D convolutional layers and a 2-D

convolutional layer. The SSRN method has a deep network

to learn a large number of parameters, which leads to the

slowest convergence. Although the proposed method does not

use a very deep network, the model is composed of multiple

network branches. Compared with HybridSN, the proposed

method needs to learn more parameters, which causes slower

convergence.

The comparison of confusion matrices on IP is presented in

Fig. 12 in order to further demonstrate the performance of the

proposed method. Although the classification accuracy of the

three methods is higher than 90%, they also demonstrate the

confusion made by the trained network. For instance, in case of

the HybridSN method, the Alfalfa pixels are mixed up with the

Hay-windrowed pixels with almost 50% mistaken pixels among

all the classified ones. In addition, the Corn-mintill pixels, the

Grass-pasture-mowed pixels, and several other categories have

different degrees of confusion. Similarly, the Alfalfa, Corn,

Buildings-Grass-Trees-Drives, Stone-Steel-Towers pixels, and

other categories have mistaken pixels in the SSAN method.

In the proposed method, only the mistaken pixels of the first

categories are relatively high (almost 35%), where the Alfalfa

category is confused with Grass pasture, the mistaken pixels in

other categories are very low. Therefore, the proposed method

shows better classification performance.

In order to determine the number of principal components

in PCA, we test the classification accuracy on the four datasets

after the dimensionality reduction with different principal com-

ponents. Among them, due to the large spatial scale of UP,

SA, and BOT, only 10, 15, and 20 are considered, while seven

cases from 10 to 40 are tested in IP. The classification accuracy

with different numbers of principal components among the four

datasets is shown in Fig. 13.

In Fig. 13, according to the final classification accuracy, we

set the number of reduced spectral bands to 15, 30, 15, and 15

for UP, IP, SA, and BOT, respectively.
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Fig. 12. Comparison of a confusion matrix for classification results on IP dataset. (a) HybridSN. (b) SSRN. (c) Proposed method.

Fig. 13. Classification accuracy versus the number of principal components
among three datasets.

C. Comparison of Different Methods With Different Amounts

of Training Data

The classification accuracy under different quantities of train-

ing data can well reflect the performance of the model’s repre-

sentation ability. We randomly select 3%, 5%, 8%, 10%, 15%,

and 20% of labeled pixels for training and test on the rest of the

data. The classification results are shown in Fig. 14.

In this figure, it can be seen that as the number of train-

ing samples increases, the classification accuracy of almost

all methods is improved. Compared with HybridSN, SSRN

utilizes skip connection to build a deeper network structure

and gets better classification accuracy. The proposed method

combines 2D–3D CNN with different kernels size to extract

different levels of fusion features from the original HSIs, which

performs the best on all training sample proportions and four

datasets.

D. Comparison of the Accuracy of the Proposed Model Using

2-D CNN or 3-D CNN Alone

In order to validate the effectiveness of the combination of 2-D

CNN and 3-D CNN in the proposed method, two extra models

are designed for comparison. We first replace 2-D CNN in three

branches of the proposed model with 3-D CNN, that is, 3-D

CNN alone. Then, we make the output sizes of the three network

TABLE III
COMPARISON OF OA OF ACTIVATION FUNCTIONS MISH AND RELU ON

DIFFERENT DATASETS

branches basically remain the same. Another model using the

2-D CNN alone is simultaneously designed in a similar way.

The comparison results are shown in Fig. 15.

In Fig. 15, with different numbers of training data in four

datasets, the proposed 2D–3D CNN model always shows the

best classification performance. The classification accuracy of

2-D CNN alone and 3-D CNN alone is closer in most cases,

but 2-D CNN alone is slightly lower. Compared with 3-D CNN,

2-D CNN ignores the information between the adjacent spectral

bands of HSI. The lack of interband correlations is directly

reflected in its lower classification accuracy. The experimental

results show that the proposed model extracts more discrim-

inative features through the combination of 2-D CNN and

3-D CNN, which significantly improve the final classification

performance.

E. Comparison of the Influence of Mish and Relu on

Classification Accuracy

This article uses the new activation function Mish in the net-

work, which slightly allows the negative values and has no strict

zero boundary. Meanwhile, Relu is the most commonly used

activation function in deep learning-based HSI classification

tasks. The comparison of the two activation functions is given

in Table III.

It can be seen from Table III that after using Mish instead of

Relu, the classification accuracy is improved to a certain extent.

In UP, IP, SA, and BOT, the accuracy has been increased by

1.8429%, 2.2189%, 1.7803%, and 1.4253%, respectively, with

an average increase of 1.8169%. Being a nonmonotonic and

overall smoothness activation function, Mish shows its capabil-

ity in improving the classification accuracy and generalization

ability, which is a good choice to replace Relu.
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Fig. 14. Classification accuracy under different numbers of training data. (a) UP. (b) IP. (c) SA. (d) BOT.

Fig. 15. Comparison of classification performance among the proposed method using 2D–3D CNN, using only 3-D CNN, and using only 2-D CNN. (a) OA
comparison of UP. (b) AA comparison of UP. (c) Kappa comparison of UP. (d) OA comparison of IP. (e) AA comparison of IP. (f) Kappa comparison of IP. (g) OA
comparison of SA. (h) AA comparison of SA. (i) Kappa comparison of SA. (j) OA comparison of BOT. (k) AA comparison of BOT. (l) Kappa comparison of BOT.
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V. CONCLUSION AND FUTURE WORK

In this article, we propose an HSI classification method that

combines 2D–3D CNN with multibranch feature fusion. Aiming

at the existing problems of HSI classification, the proposed

method optimizes the construction of the CNN-based model,

establishes a multibranch feature fusion structure, and uses a

new activation function Mish. The model first passes the data

into three neural network branches after PCA, fuses the obtained

features extracted from the three network branches, and then

outputs the classification results through several fully connected

layers. The experimental results show that the proposed method

achieves high performance in OA, AA, and Kappa. It obtains

relatively ideal classification results in a small number of training

data. In addition, the new activation function Mish has better

performance in terms of training stability and accuracy than

Relu.

The shortcoming of the proposed method is that the classi-

fication accuracy of the model in IP and BOT is slightly lower

than the other two datasets. And the fully connected layers we

used in the neural network have too much training parameters.

Therefore, exploring a more concise neural network model,

improving the generalization ability, and obtaining satisfac-

tory classification accuracy on various datasets are our future

work.
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