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Abstract: Deep neural networks (DNNs) have promoted much of the recent progress in hyperspectral
image (HSI) classification, which depends on extensive labeled samples and deep network structure
and has achieved surprisingly good generalization capacity. However, due to the expensive labeling
cost, the labeled samples are scarce in most practice cases, which causes these DNN-based methods
to be prone to over-fitting and influences the classification result. To mitigate this problem, we
present a clustering-inspired active learning method for enhancing the HSI classification result, which
mainly contributes to two aspects. On one hand, the modified clustering by fast search and find of
peaks clustering method is utilized to select highly informative and diverse samples from unlabeled
samples in the candidate set for manual labeling, which empowers us to appropriately augment
the limited training set (i.e., labeled samples) and thus improves the generalization capacity of the
baseline DNN model. On the other hand, another K-means clustering-based pseudo-labeling scheme
is utilized to pre-train the DNN model with all samples in the candidate set. By doing this, the
pre-trained model can be effectively generalized to unlabeled samples in the testing set after being
fine tuned-based on the augmented training set. The experiment accuracies on two benchmark HSI
datasets show the effectiveness of the proposed method.

Keywords: hyperspectral image classification; active learning; candidate set; pseudo-labels; clustering

1. Introduction

A hyperspectral image (HSI) contains not only spatial information but also abundant
spectral information. The substances, which are difficultly distinguished in natural images
can be easily recognized in hyperspectral imagery. As a result, HSIs have been widely
applied in resource exploration, mineral detection, environmental investigation and lesion
detection, etc. [1–5].

HSI classification is an essential HSI application which focuses on assigning each
pixel a unique class label. To date, a large number of HSI classification methods have been
proposed from different perspectives, depending on the HSI classification methods whether
using deep learning-based methods to obtain HSI features and classification results, the HSI
classification methods can be roughly divided into the non-deep learning-based method
and the deep learning-based method.
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The non-deep learning-based method has been utilized for HSI classification methods
for decades. Within the non-deep learning-based method, the feature extraction module and
the classifier module are always independently modeled. In addition, pre-defined criteria
are utilized within the shallow-structure feature extraction module to generate the desired
features. The existing non-deep learning-based methods usually include spectral matching-
based methods [6,7], statistic model-based methods [8,9], kernel-based methods [10–12],
sparse representation-based methods [13] and spatial-spectral information-based meth-
ods [14]. Though these methods show advantages in some applications, the features via
non-deep learning-based methods prevent the accuracy in some HSI classification tasks.

The deep learning-based method provides a new way to generate deep structure-
related features. In addition, the generated feature can fit the classifier well, because the
feature extraction module and the classifier module are naturally integrated into one frame-
work within the deep learning-based method. As a result, the deep learning-based method
obtains better HSI performance compared with the non-deep learning-based method and
dominates the recent HSI classification community [15–23], i.e., light-weight spectral-spatial
feature extraction and fusion network [16], spectral-spatial kernel generation network [17],
attention aided CNNs [18], spectral-spatial information based Resnet [19], adaptive hybrid
attention network [20], residual spectral-spatial attention network [21] and spectral-spatial
based deep belief network [23]. In addition to the above methods, other different deep
learning-based methods have been proposed. Hu et al. first utilized convolutional neural
networks (CNNs) [24] for HSI classification based on spectral information only. Work [25]
proposed a two-channel deep convolutional neural network (2D-CNN). Within 2D-CNN, it
learns the spectral and spatial feature separately from those two channels first, and then
concatenates and obtains spectral-spatial features for classification via a fully connected
layer. In [26], the three-channel deep convolutional neural network (3D-CNN) was pro-
posed for HSI classification, which utilized a 3D data cube (containing both spectral and
spatial information) as the input and achieved better results. In addition to the above
methods, the pre-learned convolutional kernels based deep learning methods were also
used in HSI classification tasks, such as PCA-Net [27], MCFSFDP-Net [28] and K-means
Net [29].

Although the deep learning-based method obtains good HSI classification results, one
important premise behind this method is that a large number of labeled training samples
can be provided. However, it is laborious and difficult to obtain large amounts of labeled
pixels within HSI [30]. Instead, only a small amount of labeled data (termed as small
sample problem in the following) can be provided in applications, which easily leads
to over-fitting when training deep neural networks and thus degrades the classification
performance [31]. As a result, how to address the problems has become the research
focus in recent years. A pixel-pair method was proposed to solve the small sample HSI
classification problem, which constructed a new data pair combination to increase the
number of training samples [32]. Limited to the number of training samples, a self-taught
feature learning-based method was proposed to solve the HSI classification task [33].
In addition to the above deep learning feature-based methods, residual networks [34],
dense convolutional networks [35] and capsule networks [36] have been utilized in small
sample HSI classification. Recently, the domain adaption-based method [37], the Siamese
CNN-based method [38] and the attention combined parallel network-based method [39]
were also proposed to address the HSI classification with limited samples, which also
improved the accuracy of the small sample HSI classification result. In addition, for the
increasing sample quantity-based methods, deep convolutional GAN is well suited for
data processing, which can generate fake samples to increase the number of training
samples [40,41]. In [42], generative adversarial networks (GANs) were explored for HSI
classification for the first time, containing two CNN frameworks: one CNN framework is
utilized to discriminate the inputs, and another CNN framework is utilized to generate
so-called fake inputs. The aforementioned CNNs are trained together, the generated fake
inputs are as real as possible, and the discriminative CNN tries to classify the real and
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fake inputs to solve the small sample HSI classification tasks. Although this method can
enhance HSI classification accuracy with limited samples via the generative capacity of
GANs, the quality of the generated samples is often ignored, which limits the improvement
of the classification result.

This paper presents a cluster-inspired active learning method for HSI classification
with limited labeled samples, which mainly contributes to two aspects. Firstly, the modified
clustering by fast search and find of peaks (MCFSFDP) clustering method is utilized to
select highly informative and diverse samples from unlabeled samples in the candidate
set for manually labeling by an expert, which empowers us to appropriately augment the
limited training set (i.e., labeled samples) and thus improve the generalization capacity of
the baseline DNN model. Secondly, another K-means clustering-based pseudo-labeling
scheme is utilized to pre-train the DNN model with the unlabeled samples in the candidate
set. By doing this, the pre-trained model can be effectively generalized to unlabeled samples
in the testing set after being fine-tuned based on the augmented training set.

This paper is organized as follows. In Section 2, the proposed method is described
in detail, including data pre-processing, actively selecting core samples from the candi-
date set via MCFSFDP, the pre-trained DNN model via pseudo-labeling of unlabeled
samples in candidate set generated via K-means, and network training and testing. In
Sections 3 and 4, the results and discussion are presented. In Section 5, the conclusions of
this paper are summarized.

2. The Proposed Method

The cluster inspired active learning method includes four major steps: (1) data pre-
processing, which extracts the spectral information of each pixel as the sample and divides
all the samples into the training set, candidate set and the testing set; (2) actively selecting
core samples from the candidate set via MCFSFDP—the effective MCFSFDP clustering
method is utilized to actively select core samples from unlabeled samples in the candidate
set for manually labeling; (3) the K-means clustering-based pseudo-labeling scheme is
utilized to pre-train the DNN model with samples in candidate set; and (4) fine-tuning
and testing, using core samples and small samples as new augmented training samples to
fine-tune the network and obtain the final classification result of the testing samples. The
flowchart of our proposed method is shown in Figure 1.

Figure 1. The flow chart of the proposed method.

2.1. Data Pre-Processing

In this paper, the HSI used in the classification task is denoted as R. An HSI consists
of 3D data; we only use the spectral information of each pixel as the sample. We randomly
select M pixels from R as limited training samples; in other words, the quantity of the small
sample is denoted by M. These selected training samples include all the categories, and each
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category has almost the same number of pixels. The pixel Pi includes the corresponding
spectral information with a size of h× 1 as the training sample. h denotes the spectral
number of R. {Pi}M

i=1 denotes the limited samples, and the limited samples have these
manually labeled labels.

Then, we extract N pixels from R and their corresponding spectral information
{

Cj
}N

j=1
as unlabeled samples in the candidate set, N denotes the number of samples in the candidate
set, i.e., the number of the candidate samples.

Finally, the rest samples are testing samples. K denotes the number of testing samples.
{Qu}K

u=1 denotes the testing samples. The samples are also denoted as column vectors,
with sizes of h× 1 mathematically.

The samples in the testing set are all used for testing. The core samples are actively
selected for labeling via the active learning method, which are selected from the candidate
samples. In addition, the K-means clustering method will automatically give the samples in
candidate set pseudo-labels for the network pre-training. Here, M plus N is almost equal to
K. The samples in the training set, the candidate set and the testing set are not overlapping.

The sample is extracted from R is shown in Figure 2.

Figure 2. The sample is extracted from image R.

2.2. Actively Selecting Core Samples via MCFSFDP

To actively select the core samples for manually labeling from unlabeled candidate
samples, the clustering-based method may be suitable. In our opinion, clustering by fast
search and find of peaks (CFSFDP) [43] is a representative method. The idea of this method
is that “the cluster centers are determined as those points that not only have higher density
than their neighbors, but also keep a certain distance from the point with higher density
than them”. In this clustering method, the two thresholds, i.e., distance and density, are
important to determine the cluster centers. The points which have higher distances and
densities at the same time can be determined as the cluster centers.

In our opinion, CFSFDP is useful in actively selecting the cluster centers and clustering
process; however, the wild points (i.e., the inter-class points) are important and difficult
to distinguish. To solve this problem, the effective clustering method based on modified
clustering by fast search and find of peaks (MCFSFDP), is proposed to actively select core
samples by choosing the adaptive distance threshold [28]. The MCFSFDP algorithm is
similar to the CFSFDP algorithm in [43], the class center must have two characters, the first
character is “a higher density than their neighbors” and the second is “a relatively large
distance from points with higher densities”. Different from the CFSFDP, the MCFSFDP
chooses the class centers only by larger distance, which can effectively acquire the cluster
centers and the wild points and enhance the quality of the selected samples. The details of
the proposed method are as follows.

The samples
{

Cj
}N

j=1 in candidate set are used for actively selected core samples via
clustering based active learning method; for simplicity, each sample Cj in candidate set is
denoted as point j, which is actually a column vector. For each point j, we calculate the
local density ρj and distance δj from the point with higher density; if point j has the highest
density, the largest distance between j and the other points is denoted as δj.
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The local density ρj of point j is given in Formula (1):

ρj = ∑
k

χ(djk − dc) (1)

Formula (1) represents the number of samples around the point j in a threshold radius
dc. The values of δj and ρj are depended on the Euclidean distance djk, djk is determined
by any pair of the point j and point k. Where χ(djk − dc) = 1 if djk − dc < 0, otherwise,
χ(djk − dc) = 0, here, dc is considered as a cut-off distance. ρj denotes the number of points
which in the radius dc and j is the center point.

δj is the minimum distance between j and any other points with higher density, which
is shown in Formula (2):

δj = min
k:ρk>ρj

(djk) (2)

where ρk denotes the local density of k. For the point with maximum local density, we
usually take δj = maxk(djk). δj is much larger than the typical nearest neighbor distance
only for points that are local or global maxima in the density. The cluster centers are
recognized as points for which the value of δj is anomalously large and the value of ρj is
higher than a value density at the same time.

The distance and density of each point are directly shown in the decision graph. We
provided the decision graph of samples in candidate set with a size of 200× 1 for the
Indian Pines dataset [44], as shown in Figure 3. The Indian Pines dataset is often used in
the hyperspectral image classification task, which was gathered by AVIRIS sensor over
the Indian Pines test site in North-western Indiana and consists of 145× 145 pixels and
224 spectral reflectance bands in the wavelength range 0.4–2.5 µm.

Figure 3. Decision graph of samples in candidate set with a size of 200 × 1 for Indian Pines.

In the threshold determining step, the MCFSFDP is different from CFSFDP [43], the
MCFSFDP is used to select core samples for manually labeling. The distance δ is considered
as the only threshold from the decision graph to select samples. This operation can select
not only the cluster centers but also the wild points to enhance the quality of samples for
increasing the classification result. Because the wild points are in the boundary of any pair
of two clusters, which are usually difficult to distinguish, training this type of sample is
useful for improving the classification result.

For selecting the core samples adaptively, we should select an optimal distance thresh-
old value δA.

nv = f (δv) (3)
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In Formula (3), δv denotes the distance, which contains points, and f (δv) denotes the
mapping relationship of the number nv of points whose distances are larger than or equal
to δv, as shown in Figure 4a.

cv = [nv+1 − nv]/(δv+1 − δv) (4)

Figure 4. The curves for determining the adaptive distance δA in the candidate set of Indian Pines
dataset with sample size of 200 × 1. (a) shows the curve of the point-number over distance δv;
(b) gives the curve of the quotients of differential over distance δv.

In Formula (4), where δv+1 ≥ δv, cv denotes the differential of nv. Formula (5) denotes
the variation quantity of the number points with δv, as shown in Figure 4b. Formula (4) is
the intermediate result of Formulas (3) and (5).

qv =|cv/cv+1| (5)

In the MCFSFDP method, the adaptive distance threshold is denoted as δA, and the
points whose distance are larger than δA are automatically selected as core samples. δv is
an important point that must ensure that the number nv and nv+1 of points are stable, and
at the same time, that the value qv is larger than the value qv+1. At this point, δv is selected
as the adaptive distance δA.

In the Indian Pines dataset, as can be seen from Figure 4a, we can find the distance
range (0.15–0.17), and the nv begins to approach stability. As can be seen from Figure 4b, cv
with the distance value δv in range (0.15–0.17) has a local maxima of 0.15. Therefore, 0.15 is
considered as the adaptive distance δA in the Indian Pines dataset.

With the adaptive distance δA, the points j with the distance value δj > δA are
adaptively chosen as core samples for manual labeling.

Then, the labeled core samples are added into training samples to form the augmented
training set. The number of core samples is denoted as T, and the number of training
samples after expansion is M + T.

{
Bg

}M+T
g=1 denotes the final training dataset.

2.3. K-Means Clustering-Based Pseudo-Labeling Scheme

After selecting the core samples via MCFSFDP, we use K-means clustering to obtain
the pseudo-labels of the samples

{
Cj
}N

j=1 in candidate set. The steps are as follows:

Step 1: Randomly selecting k samples from
{

Cj
}N

j=1 as the initial cluster centers, i.e.,
µ1, . . . , µ f , . . . , µk.
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Step 2: Calculating the distance between each vector Cj with each class center µ f , and
the distance is Euclidean distance. If Cj is closest to µ f , Cj is classified as the category of
cluster center µ f .

labelCj = argmin
1≤ f≤k

∥∥∥Cj − µ f

∥∥∥
2

(6)

Step 3: For all c f samples Cj, which have the same label of µ f in class f, recalculating
the new cluster center through calculating the average value µ′f .

µ′f =
1∣∣∣c f

∣∣∣ ∑
j∈c f

Cj (7)

where c f is the number of samples in class f .
Step 4: Repeating step 2 and step 3 Z times. Z is the iteration times of the K-means

process, which is a parameter. After the computing process, the cluster centers represent
the final average values, i.e., µZ

1 , . . . , µZ
f , . . . , µZ

k . The labels of samples
{

Cj
}N

j=1 in candidate
set belong to {1, . . . , f, . . . , k}, which are all pseudo-labels by K-means clustering.

The candidate samples with pseudo-labels are utilized to pre-train the DNN model.

2.4. Fine-Tuning and Testing

After obtaining the core samples via MCFSFDP and generating the pseudo-labels of
samples

{
Cj
}N

j=1 in candidate set, transfer learning is utilized to train the DNN model. The
samples in candidate set with pseudo-labels are utilized to pre-train the DNN model.

Then, the samples
{

Bg
}M+T

g=1 in augmented training set are used to fine-tune the DNN
model for obtaining the final network classification model.

Finally, testing the network with the samples {Qu}K
u=1 in the testing set is performed.

The schematic diagram of the structure of the DNN model and training process is
shown in Figure 5. We use the back-propagation neural network [45] as the DNN model.
This DNN model contains an input layer, three fully connected layers and a soft-max
layer. The first fully connected layer has 512 hidden nodes, the second fully connected
layer has 2048 hidden nodes and the third fully connected layer has 1024 hidden nodes.
The number of nodes in the soft-max layer varies with the pre-training process and the
fine-tuning process because the number of categories with pseudo-labels in candidate set
in the pre-training process is different from the number of categories with true labels in the
augmented training set in the fine-tuning process.

Figure 5. The schematic diagram of the structure of the DNN model and training process.
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3. Experiments and Analysis

To validate the feasibility and effectiveness of the proposed method, two HSI datasets
were used in the experiments. In this section, we firstly introduce the datasets. Sec-
ondly, the experimental parameter settings are illustrated. Finally, ablation experiments
and comparative experiments are performed to show the HSI classification results of the
proposed method.

3.1. Datasets

In this paper, two widely used public HSI image datasets were adopted in our experiments.
Dataset 1: In order to evaluate the proposed method, the first dataset was the Indian

Pines image, which was imaged by the Airborne Visual Infrared Imaging Spectrometer
(AVIRIS) [44], as shown in Figure 6a. The ground truth is shown in Figure 6b. The size of
this image is 145 × 145 pixels with 224 spectral bands, and the wavelength ranges from
0.4 to 2.5 µm. Among the pixels, only 10,249 pixels are feature pixels, and the remaining
10,776 pixels are background pixels. For the exact purpose of eliminating the bands that
cannot be reflected by water, the number of bands was reduced to 200. In the actual
classification, since background pixels need to be eliminated, there were 16 categories in
total. Each category of image samples number is given in Table 1.

Figure 6. The Indian Pines image in Dataset 1. (a) shows the composite image; (b) shows the ground
truth of the Indian Pines dataset, where the black area denotes the unlabeled pixels.

Table 1. Ground truth of classes and number of their respective samples in the Indian Pines scene.

Class Samples

Number Classes Total Training Candidate Testing

1 Alfalfa 46 6 17 23
2 Corn-notill 1428 26 688 714
3 Corn-mintill 830 12 403 415
4 Corn 237 7 112 118
5 Grass-pasture 483 8 234 241
6 Grass-trees 730 16 349 365
7 Grass-pasture-mowed 28 5 9 14
8 Hay-windrowed 478 13 226 239
9 Oats 20 5 5 10

10 Soybean-notill 972 12 474 486
11 Soybean-mintill 2455 38 1190 1227
12 Soybean-clean 593 11 286 296
13 Wheat 205 7 96 102
14 Woods 1265 15 618 632
15 Building-Grass-Trees 386 12 181 193
16 Stone-Steel-Towers 93 7 40 46

Total 10,249 200 4928 5121
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The samples in training set could be regarded as limited samples with labels. The
samples in candidate set were used for choosing core samples, and the core samples are
added into the training samples as a new augmented training set. The samples in candidate
set were also used for pre-training the DNNs with their pseudo-labels. The samples in
testing set were used for evaluating the effect of the proposed method.

Dataset 2: The second dataset was the Salinas image [44], which was imaged in Salinas
Valley in California through AVIRIS as well, as shown in Figure 7a. The ground truth is
shown in Figure 7b. Differing from the Indian Pines image, whose spatial resolution is
20 m, its spatial resolution reached 3.7 m. As shown in Figure 6, the size of this image is
512 × 217 pixels, with 224 spectral bands. The number of bands was reduced to 204 after
eliminating the low signal-to-noise-ratio (SNR) bands. Among them, 54,129 samples were
used for training and testing in total. The details of each category of samples are given
in Table 2. This dataset was used to test the feasibility and effectiveness of the proposed
approach for classification.

Figure 7. The Salinas scene in Dataset 2. (a) shows the composite image; (b) shows the ground truth
of the Salinas Dataset, where the black area denotes the unlabeled pixels.

Table 2. Ground truth of classes and number of their respective samples in the Salinas scene.

Class Samples

Number Classes Total Training Candidate Testing

1 Broccoli_green_weeds_1 2009 11 994 1004
2 Broccoli_green_weeds_2 3726 16 1847 1863
3 Fallow 1976 12 976 988
4 Fallow_rough_plow 1394 10 687 697
5 Fallow_smooth 2678 11 1328 1339
6 Stubble 3959 19 1961 1979
7 Celery 3579 13 1777 1789
8 Grapes_untrained 11,271 14 5622 5635
9 Soil_vinyard_develop 6203 15 3087 3101

10 Corn_senesced_green_weeds 3278 10 1629 1639
11 Lettuce_romaine_4wk 1068 12 522 534
12 Lettuce_romaine_5wk 1927 13 951 963
13 Lettuce_romaine_6wk 916 10 448 458
14 Lettuce_romaine_7wk 1070 11 524 535
15 Vinyard_untrained 7268 15 3621 3634
16 Vinyard_vertical_trellis 1807 10 894 903

Total 54,129 200 26,868 27,061
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3.2. Experimental Parameter Settings

In the experiment, the samples were randomly selected from the HSI dataset. The
training sample set includes 200 samples. For utilizing the effective cluster-inspired active
learning method, the samples in candidate set were used to obtain the core samples
through the MCFSFDP algorithm for manual labeling, and the pseudo-labels of the samples
in candidate set were generated through the K-means algorithm for the DNN’s pre-training.
The number of cluster centers was set to 10, 20, . . . , 100.

In the experiment, as shown in Figure 5, the DNN framework used three fully con-
nected layers and one soft-max layer. In our algorithm, three fully connected layers, namely,
hidden layers, all adopted Leaky ReLU as the activation function. The number of neuron
nodes in the three hidden layers was 512, 2048 and 1024, respectively. The learning rate
was 0.0001. The batch size was designed as 256.

The code was run on a computer with Intel i9-11900K, NVIDIA 3060 GPU × 2, 128 GB
Memory, and 1TB SSD.

3.3. Experimental Results
3.3.1. Effectiveness of the Core Samples Actively Selected via MCFSFDP

The effectiveness of the core samples generated by the actively selected method is
worthy to be verified. To verify the influence of core samples selected based active learning
method in classification, we compared the accuracy of randomly selected samples based
active learning method with the accuracy of actively selected core sample-based method,
the number of randomly selected samples from candidate set being same as the core
samples. The testing accuracy via the training samples with randomly selected samples
and training samples with core samples via our proposed MCFSFDP in Dataset 1 is shown
in Table 3. Additionally, the testing accuracy for Dataset 2 is shown in Table 4.

Table 3. The testing result of randomly selected samples and core samples via MCFSFDP in Dataset 1.

Class
The Adaptive

Distance
Threshold

The Number of
Selected Core

Samples

Testing Accuracy (%)

Randomly
Selected
Samples

Core
Samples

1

0.15 55

39.1 65.2
2 51.8 57.1
3 47.0 56.1
4 41.5 47.5
5 78.4 66.0
6 94.8 93.2
7 71.4 85.7
8 95.0 90.0
9 20.0 20.0
10 59.5 52.3
11 73.1 77.0
12 32.8 40.2
13 100.0 99.0
14 75.5 80.1
15 35.2 32.6
16 95.7 89.1

OA (%) 65.9 67.8
AA (%) 63.2 65.7
Kappa 61.1 64.2
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Table 4. The testing result of randomly selected samples and core samples via MCFSFDP in Dataset 2.

Class
The Adaptive

Distance
Threshold

The Number of
Selected Core

Samples

Testing Accuracy (%)

Randomly
Selected
Samples

Core
Samples

1

0.12 40

99.0 95.0
2 97.0 99.4
3 45.1 66.5
4 99.7 99.6
5 78.3 94.2
6 99.6 99.1
7 99.2 98.3
8 88.2 82.3
9 94.5 96.8
10 67.5 74.6
11 91.6 99.1
12 97.0 97.0
13 99.0 99.0
14 90.8 90.5
15 45.8 55.8
16 88.0 84.6

OA (%) 83.1 85.6
AA (%) 86.3 89.5
Kappa 81.3 84.0

In the Indian Pines dataset, the adaptive distance threshold is calculated as 0.15, and
we obtain 55 core samples via the MCFSFDP algorithm. The curve for determining the
adaptive distance is shown in Figure 4. The adaptive distance is 0.12, and the number of
core samples is 40 in Dataset 2. The curve for determining the adaptive distance is shown
in Figure 8.

Figure 8. The curve for determining the adaptive distance in the Salinas scene dataset. (a) shows the
curve of the point-number over distance δv; (b) gives the curve of the quotients of differential over
distance δv.

As can be seen from Tables 3 and 4, the testing result for small samples with core
samples is higher than the result for small samples with randomly selected samples.
Specifically in Table 4, the overall accuracy (OA) of small samples with core samples
is shown to be more than 2% greater than the overall accuracy (OA) of randomly selected
samples. Therefore, using the actively selected core samples via MCFSFDP to train the BP
neural network can enhance the testing accuracy of the small sample HSI classification.
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Additionally, the actively selected core sample-based method not only enhances the quantity
but also the quality of the training samples.

The other testing results in the two datasets, i.e., the accuracy of each class, average
accuracy (AA) and Kappa, which are also shown in Tables 3 and 4.

3.3.2. Effectiveness of the Proposed Method-Based on Actively Selected Core Samples

Through the above experiments, we have demonstrated the effectiveness of the actively
selected core samples method in small sample HSI classification. The classification results
prove the effectiveness of the proposed method based on actively selected samples on
two datasets.

In the two datasets, the original training samples set, which has 200 samples with
their labels, is used for training the BP neural network, while the testing samples set is
used for testing the network. In the Indian Pines dataset, the adaptive distance threshold
is calculated as 0.15, and we obtain 55 core samples via the MCFSFDP algorithm. These
core samples are added into the training samples set and we utilize the new augmented
training dataset to train the network. The testing result of the original training samples set
and the augmented training samples set with core samples in Dataset 1 is shown in Table 5,
while the curve for determining the adaptive distance is shown in Figure 4.

Table 5. The testing result of original training samples set and training samples set with core samples
in Dataset 1.

Class
Testing Accuracy (%)

Original Training Samples Set Training Samples Set with Core Samples

1 47.8 65.2
2 47.3 57.1
3 49.6 56.1
4 44.1 47.5
5 29.9 66.0
6 92.6 93.2
7 85.7 85.7
8 93.3 90.0
9 20.0 20.0
10 30.2 52.3
11 69.4 77.0
12 29.4 40.2
13 100.0 99.0
14 74.5 80.1
15 31.1 32.6
16 93.5 89.1

OA (%) 58.9 67.8
AA (%) 58.5 65.7
Kappa 52.8 64.2

The testing accuracy for the Salinas dataset is shown in Table 6, and the curve for
determining the adaptive distance is shown in Figure 8. The adaptive distance is 0.12, and
the number of core samples is 40 in dataset 2, which can also be seen in Tables 3 and 4.
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Table 6. The testing result of original training samples set and training samples set with core samples
in Dataset 2.

Class
Testing Accuracy (%)

Original Training Samples Set Training Samples Set with Core Samples

1 99.1 95.0
2 97.5 99.4
3 55.9 66.5
4 99.7 99.6
5 73.0 94.2
6 99.6 99.1
7 99.2 98.3
8 90.1 82.3
9 96.0 96.8
10 64.2 74.6
11 94.2 99.1
12 98.4 97.0
13 98.7 99.0
14 90.5 90.5
15 30.0 55.8
16 83.5 84.6

OA (%) 81.7 85.6
AA (%) 56.6 89.5
Kappa 80.0 84.0

In Table 5, the testing accuracy (OA) with the original training samples set for Dataset 1
is 58.9% after 13,000 training epochs. In contrast to this, the testing accuracy (OA) with the
augmented training samples set with core samples in Dataset 1 is 67.8% after 13,000 training
epochs. According to the data, the testing accuracy (OA) with the original training samples
set is lower than the testing accuracy with the augmented training samples set with
core samples.

Additionally, in Table 6, the maximal testing accuracy (OA) with the original training
samples set in Dataset 2 is 81.7% after 11,000 training epochs. In contrast to this, the testing
accuracy (OA) with the augmented training samples set with core samples for Dataset
2 is 85.6% after 11,000 training epochs. According to the data, the testing accuracy (OA)
with the original training samples set is also lower than the testing accuracy (OA) with
the training samples set with core samples. Consequently, obtaining the core samples via
MCFSFDP added to the training samples set, which is demonstrated to enhance the small
sample HSI classification accuracy in Dataset 1 and Dataset 2.

The other testing results in the two datasets, i.e., the accuracy of each class, average
accuracy (AA) and Kappa, which are also shown in Tables 5 and 6.

3.3.3. Effectiveness of Pre-Training by Testing Samples with Pseudo-Labels

Through the above experiments, we have proved the effectiveness of active learning in
small sample HSI classification. In order to demonstrate the effectiveness of the proposed
method of pre-training using candidate samples with pseudo-labels via clustering com-
bined with adaptive active learning, we labeled the pseudo-labels for the candidate samples
via the K-means algorithm and utilized these data to pre-train the BP neural network. Then,
the training samples set with core samples is used for fine-tuning the network.

To determine the appropriate number of clusters for pseudo-labels, we observe the test-
ing accuracy of the proposed method with a different number of clusters after 13,000 train-
ing epochs in Dataset 1. The testing accuracy of the proposed method with different
numbers of clusters after 13,000 training epochs in Dataset 1 is shown in Table 7. The test-
ing accuracy of the proposed method with different numbers of clusters after 11,000 training
epochs in Dataset 2 is shown in Table 8.
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Table 7. The testing accuracy of the proposed method with different numbers of clusters in Dataset 1.

The Number of Clusters 10 20 30 40 50 60 70 80 90 100

Testing Accuracy OA (%) 63.7 64.6 65.3 66.2 68.9 66.1 65.8 65.7 66.5 66.6

Table 8. The testing accuracy of the proposed method with different numbers of clusters in Dataset 2.

The Number of Clusters 10 20 30 40 50 60 70 80 90 100

Testing Accuracy OA (%) 85.5 85.9 86.0 85.9 85.9 85.8 85.9 86.8 86.1 85.4

In Table 7, the maximal testing accuracy (68.9%) of the proposed method for Dataset 1
shows that the number of cluster centers is 50 when using 13,000 training epochs. Compared
with the value of Table 5, the testing accuracy of the proposed method is higher than that
of the original training samples set (58.9%) and the training samples set with core samples
67.8%). According to the data, compared with the method of only adaptive active learning,
the testing accuracy of the proposed method significantly improved. Additionally, in
Table 8, the maximal testing accuracy (86.8%) of the proposed method for Dataset 2 shows
that the number of cluster centers is 80 when using 11,000 training epochs. Compared
with the value of Table 6, the testing accuracy of the proposed method is higher than
that of the original training samples set (81.7%) and the training samples set with core
samples (85.6%).

In Tables 7 and 8, due to the different distributions of samples in the two datasets, the
number of clusters in the Indian Pines dataset and the Salinas dataset are different, which
choose 50 clusters and 80 clusters, respectively. Consequently, the proposed cluster-inspired
active learning method is demonstrated to enhance the small sample HSI classification
accuracy and has a better effect than the above method in Tables 3–6 on Dataset 1 and
Dataset 2.

3.3.4. The Proposed Method Compared with the Other Methods

In these experiments, our method is compared with other methods, including ran-
dom based active learning method, K-means based active learning method, minimum
probability-based active learning method, CFSFDP based active learning method [43] and
our MCFSFDP based active learning method [28] and the proposed cluster inspired active
learning method.

Specifically speaking, K-means selected sample-based method utilizes the K-means
algorithm to extracts samples. Minimum probability-based active learning method uses n
minimum probabilities of predicted samples to choose samples. CFSFDP and MCFSFDP
selected sample-based methods are used to increase the number of samples. The classifica-
tion effect is different through Back-Propagation neural network. The testing accuracy (OA)
of these methods compared with the proposed method for Dataset 1 is shown in Table 9.
The testing accuracy (OA) for Dataset 2 is shown in Table 10.

Table 9. The testing accuracy of the proposed method compared with the other methods for Dataset 1.

Dataset 1

Testing Accuracy (%)

Random
Selected
Samples

K-Means
Selected
Samples

Minimum
Probability

Selected
Samples

CFSFDP
Selected
Samples

MCFSFDP
Selected
Samples

Proposed
Method

OA (%) 65.9 59.6 63.9 64.4 67.8 68.9
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Table 10. The testing accuracy of the proposed method compared with the other methods for
Dataset 2.

Dataset 2

Testing Accuracy (%)

Random
Selected
Samples

K-Means
Selected
Samples

Minimum
Probability

Selected
Samples

CFSFDP
Selected
Samples

MCFSFDP
Selected
Samples

Proposed
Method

OA (%) 83.1 82.9 83.8 85.1 85.6 86.8

Through the classification results of different methods for Dataset 1 and 2, it can be
seen that the testing accuracy of the proposed cluster-inspired active learning method
is better than the other methods. Among them, the testing accuracy of K-means-based
active learning method is lowest, and our MCFSFDP based active learning method is the
second-best method.

4. Discussion
4.1. Influence of the Network Training Iterations

The experimental results in Tables 11 and 12 show that adding the core samples into
the training samples set for training the network can obtain better testing accuracy than
using original small samples for Dataset 1 and Dataset 2.

According to the data in Table 11, the number of epochs, which is 13,000, is confirmed
as the best training iteration with core samples, as it obtains the testing accuracy (58.9%) in
the original training samples set for Dataset 1. The testing accuracy of the training samples
set with core samples is 67.8%, which is the best testing accuracy of training samples
with core samples, subsequent experiments still use 13,000 epochs as the best training
iteration. The best testing accuracy in the original training sample set is 60.1% with the
11,000 iterations. In addition, we choose 13,000 epochs as the iteration times in Dataset 1.
The iteration influence curve is shown in Figure 9.

Table 11. The testing accuracy of original training samples set and training samples set with core
samples for Dataset 1.

Dataset Epochs
Testing Accuracy OA (%)

Original Training Set Training Set with
Core Samples

Indian Pines

1000 56.1 61.7
2000 59.2 64.6
3000 58.7 66.1
4000 59.5 66.2
5000 59.7 66.4
6000 56.9 64.8
7000 59.5 66.2
8000 58.8 66.2
9000 59.1 66.6

10,000 58.8 67.6
11,000 60.1 64.9
12,000 59.3 67.6
13,000 58.9 67.8
14,000 59.4 67.7
15,000 58.7 66.9



Remote Sens. 2022, 14, 596 16 of 20

Table 12. The testing accuracy of original training samples set and training samples set with core
samples for Dataset 2.

Dataset Epochs
Testing Accuracy OA (%)

Original Training Set Training Set with
Core Samples

Salinas

1000 71.1 71.8
2000 79.2 78.1
3000 80.6 81.5
4000 81.3 82.8
5000 82.2 84.0
6000 82.9 84.1
7000 82.2 84.7
8000 82.2 84.6
9000 82.4 85.4

10,000 81.4 85.5
11,000 81.7 85.6
12,000 80.9 85.5
13,000 79.6 85.4
14,000 79.1 85.1
15,000 78.5 85.2

Figure 9. The classification accuracy with the training epochs for Dataset 1.

According to the data in Table 12, the number of epochs, which is 6000, is confirmed
as the best training period for attaining the best testing accuracy (82.9%) in the original
training samples set for Dataset 2. The testing accuracy of the training samples set with
core samples is 84.1%, which is higher than that of the original samples set. However, the
testing accuracy of training samples with core samples trained using 11,000 epochs is 85.6%,
it is the best training result, and subsequent experiments use 11,000 epochs as the condition.
The iteration influence curve is shown in Figure 10.
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Figure 10. The classification accuracy with the training epochs for Dataset 2.

4.2. Influence of the Number of Clusters and Iterations

As can be seen from Tables 13 and 14, the testing accuracy of the proposed method is
influenced by the number of clusters via K-means and the network training epochs.

In Table 13, the best accuracy is shown to be 68.9%, when we choose 13,000 iterations
and 50 clusters for Dataset 1. The best testing accuracy, as shown in Table 14, is 86.8% with
the best parameters, which are 11,000 iterations and 80 clusters. Therefore, Tables 9 and 10
demonstrate the two best accuracies as the final results for Dataset 1 and Dataset 2.

Table 13. The testing accuracy of the proposed method with different numbers of clusters and
iterations for Dataset 1.

Dataset
Epochs

The Number of Clusters Testing Accuracy OA (%)

10 20 30 40 50 60 70 80 90 100

Indian Pines

1000 60.8 61.8 63.3 64.3 66.6 63.8 62.2 62.6 62.6 63.7
2000 62.8 62.7 63.3 62.9 67.0 65.4 64.6 64.4 64.3 65.7
3000 62.4 63.3 62.8 63.6 68.1 63.7 64.7 65.1 66.1 65.7
4000 61.1 64.7 64.2 65.6 67.9 63.7 64.1 65.1 66.2 66.6
5000 62.2 64.6 64.1 64.9 67.7 64.8 62.9 65.4 66.2 66.6
6000 62.5 62.9 64.2 63.2 67.6 65.3 65.1 65.3 66.7 66.3
7000 63.7 64.3 64.4 64.8 67.3 64.8 65.4 65.9 66.8 67.5
8000 65.5 63.4 64.5 65.4 67.8 66.5 65.8 64.9 65.5 66.0
9000 63.2 62.9 57.4 65.6 67.9 64.8 64.9 64.9 65.7 67.9

10,000 64.1 63.4 65.0 66.9 68.1 64.6 64.8 65.7 64.9 66.8
11,000 63.0 65.2 61.9 63.8 68.4 65.9 65.7 66.3 65.9 67.2
12,000 63.4 64.2 65.8 65.8 68.4 65.3 65.1 65.5 65.7 67.3
13,000 63.7 64.6 65.3 66.2 68.9 66.1 65.8 65.7 66.5 66.6
14,000 63.9 63.7 64.8 66.9 67.6 65.9 64.9 66.8 65.1 67.4
15,000 63.4 64.4 66.1 66.8 68.3 65.3 65.2 64.8 64.1 66.8
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Table 14. The testing accuracy of the proposed method with different numbers of clusters and
iterations for Dataset 2.

Dataset
Epochs

The Number of Clusters Testing Accuracy OA (%)

10 20 30 40 50 60 70 80 90 100

Salinas

1000 78.4 78.2 78.1 77.7 78.6 77.1 77.7 78.2 77.1 77.4
2000 79.9 79.8 79.8 78.9 80.1 80.2 79.7 80.8 80.7 79.4
3000 80.6 82.2 81.3 79.7 82.1 81.7 80.9 81.9 83.6 80.2
4000 82.0 84.2 82.4 80.7 83.7 83.2 82.5 84.3 84.6 80.8
5000 83.4 85.1 84.1 81.9 84.4 84.3 83.7 85.3 84.8 83.1
6000 84.4 85.4 84.5 82.2 85.1 84.9 84.4 85.2 84.9 83.6
7000 84.6 85.6 85.2 83.9 85.5 85.3 84.7 85.8 85.6 84.4
8000 84.9 85.7 85.3 84.2 85.9 85.8 85.2 86.1 85.8 84.8
9000 85.3 86.1 85.7 84.4 86.1 85.7 85.3 86.4 85.9 85.1

10,000 85.6 86.2 85.8 85.1 86.3 85.8 85.4 86.7 85.9 84.8
11,000 85.5 85.9 86.0 85.5 85.9 85.8 85.9 86.8 86.1 85.4
12,000 85.7 86.2 85.5 85.2 86.3 85.6 86.0 86.1 86.2 85.0
13,000 85.3 85.8 85.7 85.3 86.0 85.6 86.3 86.6 86.3 84.5
14,000 85.6 85.5 85.8 84.7 85.9 85.2 86.3 86.4 85.9 85.8
15,000 85.9 85.7 85.7 84.9 85.6 85.3 86.2 86.4 86.5 86.2

5. Conclusions

In this paper, we present a cluster-inspired active learning method for HSI classifi-
cation, which mainly contributes to two aspects. On one hand, the modified clustering
by fast search and find of peaks (MCFSFDP) clustering method is utilized to select highly
informative and diverse samples from samples in candidate set for manual labeling, which
empowers us to appropriately augment the limited training set (i.e., labeled samples)
and thus improve the generalization capacity of the baseline DNNs model. On the other
hand, another K-means clustering-based pseudo-labeling scheme is utilized to pre-train the
DNN model with all samples candidate set. By doing this, the pre-trained model can be
effectively generalized to testing samples after being fine-tuned based on the augmented
training set. The experimental results demonstrate that the proposed method is useful in
selecting core samples with high quality to expand the data and improve the small sample
HSI classification accuracy effectively.
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