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Abstract—Hyperspectral imaging (HSI) has been extensively
utilized in many real-life applications because it benefits from
the detailed spectral information contained in each pixel. Notably,
the complex characteristics, i.e., the nonlinear relation among the
captured spectral information and the corresponding object of
HSI data, make accurate classification challenging for traditional
methods. In the last few years, deep learning (DL) has been substan-
tiated as a powerful feature extractor that effectively addresses the
nonlinear problems that appeared in a number of computer vision
tasks. This prompts the deployment of DL for HSI classification
(HSIC) which revealed good performance. This survey enlists a
systematic overview of DL for HSIC and compared state-of-the-art
strategies of the said topic. Primarily, we will encapsulate the
main challenges of TML for HSIC and then we will acquaint the
superiority of DL to address these problems. This article breaks
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down the state-of-the-art DL frameworks into spectral-features,
spatial-features, and together spatial–spectral features to system-
atically analyze the achievements (future research directions as
well) of these frameworks for HSIC. Moreover, we will consider the
fact that DL requires a large number of labeled training examples
whereas acquiring such a number for HSIC is challenging in terms
of time and cost. Therefore, this survey discusses some strategies
to improve the generalization performance of DL strategies which
can provide some future guidelines.

Index Terms—Deep learning (DL), feature learning,
hyperspectral image classification (HSIC), hyperspectral imaging
(HSI), spectral–spatial information.

I. INTRODUCTION

H PERSPECTRAL imaging (HSI) is concerned with the ex-
traction of meaningful information based on the radiance

acquired by the sensor at short or long distances without substan-
tial contact with the object of interest [1]. HSI provides detailed
spectral information by sampling the reflective portion of the
electromagnetic spectrum covering a wide range of 0.4–2.4 m
(i.e., visible 0.4–0.7 m to short wave infrared 0.7–2.4 m) region
in hundreds of narrow and contiguous spectral bands. HSI can
also explore the (light) emission properties of objects in the range
of mid to long infrared regions [2].

Despite the detailed information, it brings several challenges
since traditional analysis techniques for monochromatic, RGB,
and multispectral images cannot be directly exploited to extract
meaningful information from hyperspectral ones due to several
reasons, e.g., HSI exhibits the unique statistical and geometrical
properties of high-dimensional spectral/spatial data, i.e., the
volume of a hypercube and hypersphere concentrates on corners
and outside shells, respectively.

HSI has been adopted in several real-world applications, in-
cluding but not limited to the atmosphere, environmental, urban,
agriculture, geological and mineral exploration, coastal zone,
marine, forestry (i.e., track forest health), water quality and sur-
face contamination, inland waters, and wetlands, snow and ice,
biological, medical contexts, and food processing [3]–[8]. There
are also several military applications in camouflage, landmine
detection, and littoral zone mapping. Furthermore, HSI has been
used in space, air, and underwater vehicles to acquire detailed
spectral information for a wide range of uses [9]–[12].

Infield collection and spectral library indexing of ground truth
signatures for any of the said applications are critical for many
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Fig. 1. Various real-world applications of HSI.

Fig. 2. Various HSI-related articles published per year till September 25,
2021 [Source: Google Scholar accessed on September 25, 2021 and the results
(including patents and citations) were sorted by relevance].

reasons. For instance, the spectral information of vegetation is
prejudiced by a wide range of environmental situations that make
it challenging to satisfactorily represent variability without the
collection of site-specific field spectra. But the real potential of
HSI is mostly untapped since it allows it to go deeper than surface
features, considering that usually, each feature has a different
spectrum band. HSI, indeed, can capture more than 200 spectral
bands which help practitioners to discriminate objects that were
not possible before. A few HSI application examples are shown
in Fig. 1, but several other domains (e.g., smart city, Industry
4.0, Intelligent Transportation Systems) can greatly benefit from
such an approach.

Considering the aforementioned limitations, HSI analysis is
categorized into the following main streams: dimensionality
reduction (DR) [13]–[17], spectral unmixing [18]–[26], ob-
ject/change detection [27]–[33] classification [34]–[36], feature
learning for classification [37]–[41], restoration and denois-
ing [42], [43], and resolution enhancement [44], [45]. Fig. 2
shows an exponentially growing trend in the literature published
per year for HSI analysis-related tasks and applications.

In this article, we specifically focus on HSI data classifica-
tion (HSIC), which has achieved a phenomenal interest of the
research community due to its broad applications in the areas of

land use and land cover [46]–[50], environment monitoring and
natural hazards detection [51], [52], vegetation mapping [53],
[54], and urban planning. HSIC methodologies exploit machine
learning algorithms to perform the classification task [55], [56].
These methods are outlined in various comprehensive reviews
published during/in the last decade [34], [57]–[65]. Neverthe-
less, continuous advancements in the field of machine learning
provide improved methods from time to time. Deep learning
(DL) models is one of such revolutionary advancements in
machine learning that improved HSIC accuracy [66]–[68].

This article aims to give an overview of the widely used
DL-based techniques to perform HSIC. Specifically, we will
first summarize the main challenges of HSIC which cannot be
effectively overcome by traditional machine learning (TML),
and later we will enlist the advantages of DL to handle the
aforementioned issues. At a later stage, we will provide a
framework to categorize the corresponding works among the
following.

1) Spectral and spatial feature learning, individually.
2) Spectral–spatial feature learning to systematically review

the achievements in DL-based HSIC.
3) Future research stems to improve the generalization per-

formance and robustness of DL models while considering
the limited availability of reliable training samples.

The remainder of this article is structured as follows. Sec-
tion II introduces the task of HSI classification (HSIC) and
briefly discusses the HSIC paradigm shift from TML (con-
ventional) to DL models, describing HSI data characteristics
along with the advantages and limitations of DL that are faced
while working with HSI. In Sections III and IV, we give an
overview of different forms of HSI representations and basic
machine learning strategies, respectively. Section V describes a
few commonly used types of layers and reviews recent devel-
opments (specifically from 2017 onward) of some intensively
utilized DL frameworks for HSIC. Sections VI–IX presents the
state-of-the-art developments of convolutional neural networks
(CNNs), graph CNN (GCNN), autoencoders (AEs), deep belief
networks (DBNs), and recurrent neural networks (RNNs), re-
spectively. In Section X, we briefly discussed various strategies
to overcome the low generalization performance of HSIC due to
the limited availability of training data. Section XI presents the
experimental results and discussion on results obtained using
different DL strategies. Section XII concludes the article with
a few future research directions related to joint exploitation
of spectral-spatial features of HSI, limited training data, and
computational complexity.

II. HYPERSPECTRAL IMAGE CLASSIFICATION (BACKGROUND

AND CHALLENGES)

A. Traditional to DL Models

The main task of HSIC is to assign a unique label to
each pixel vector of HSI cube based on its spectral or
spectral–spatial properties. Mathematically, an HSI cube can
be represented as X = [x1, x2, x3, . . . , xB ]

T ∈ RB×(N×M),
whereB represents the total number of spectral bands consisting
of (N ×M) samples per band belonging to Y classes, where
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Fig. 3. Remote sensing/hyperspectral image classification-related articles
published per year till September 25, 2021 [Source: Google Scholar accessed
on September 25, 2021 and the results (including patents and citations) were
sorted by relevance].

xi = [x1,i, x2,i, x3,i, . . . , xB,i]
T is the ith sample in the HSI

cube with class label yi ∈ RY . The classification problem can
be considered as an optimization one, in which a mapping
function fc(.) takes the input data X and, after applying some
transformations over it, obtains the corresponding label Y, to
reduce the gap between obtained output and the actual one [69].

Y = fc(X, θ) (1)

where θ is a certain adjustable parameter that may be required
to apply transformations on input data X such that fc : X → Y .

In the literature, substantial work has been done on HSIC and
there is a growing trend in the development of such techniques
as shown in Fig. 3. Most HSIC frameworks seemed to be
influenced by the methodologies used in the computer vision
domain [70]. TML-based HSIC approaches use handcrafted
features to train the classifier. These methods generally rely
on utilizing engineering skills and domain expertise to design
several human-engineered features, for instance, shape, texture,
color, shape, spectral, and spatial details. All these features are
basic characteristics of an image and carry effective information
for image classification. Commonly used handcrafted feature
extraction (FE) and classification methods include texture de-
scriptors such as local binary patterns (LBPs) [71], histogram
of oriented gradients (HOG) [72], global image scale-invariant
transform/global invariant scalable transform (GIST) [73], pyra-
mid HOGs, scale-invariant feature transform (SIFT) [74], ran-
dom forests (RF) [75], kernel-based support vector machine
(SVM) [76], K-nearest neighbors (KNN), and extreme learning
machine (ELM).

Color histograms are simple and effective handcrafted fea-
tures used for an image classification task. They are easy to
compute and invariant to small changes in images, i.e., trans-
lation and rotation. The major drawback of a color histogram
is that it does not provide spatial contextual information, hence
it becomes difficult to distinguish between objects of the same
color but different distribution. Moreover, color histograms are
sensitive to variance in illumination. HOG features represent
the histogram of edge orientations of spatial subregions. It
can effectively extract the edge and local shape details and

has been utilized in various remote sensing-related works [46],
[77]–[79].

SIFT is a broadly used robust feature descriptor applied to
image classification tasks [80]–[83]. The advantage of the SIFT
descriptor is that it is invariant to the changes in image scale,
rotation, illumination, and noise. SIFT is used to extract local
features that describe a specific point in the image. The disad-
vantage of SIFT is that it is mathematically complex, which
increases its computational cost. GIST represents the global
description of important aspects of an image, that is, the scales
and orientations (gradient information) of various subregions of
an image. GIST builds a spatial envelope in terms of different
statistical properties like roughness, openness, and ruggedness,
etc [84]. Texture descriptors such as LBPs are used for remote
sensing image analysis [71], [85]. LBPs are used to describe the
texture around each pixel by choosing pixels from the square
neighborhood and gray level values of all neighborhood pixels
are thresholded with respect to the central pixel.

The color histograms, GIST, and texture descriptors are global
features that represent certain statistical characteristics of an
image like color, texture [86], [87], and spatial structure [73].
HOG and SIFT are local features that describe geometrical
information. Usually they are used to construct bag-of-visual-
words (BoVW) models [48], [52], [83], [88]–[93] and HOG
feature-based models [46], [94]. Some popular feature encoding
or pooling strategies to enhance the performance of BoVW are
Fisher vector coding [71], [95], [96], spatial pyramid match-
ing [97], and probabilistic topic model [93], [98]–[100]. A single
feature is insufficient to represent the whole image information,
and hence a combination of these features is used for image
classification [47], [88], [98], [100]–[107].

Handcrafted features can effectively represent the various
attributes of an image, and hence working well with the data
being analyzed. However, these features may be insubstantial in
the case of real data; therefore, it is difficult to fine-tune between
robustness and discriminability as a set of optimal features
considerably vary between different data. Furthermore, human
involvement in designing the features considerably affects the
classification process, as it requires a high level of domain
expertise to design handcrafted features.

To mitigate the limitations of handcrafted feature designing,
a deep feature learning strategy was proposed by Hinton and
Salakhutdinov [108]. DL-based methods can automatically learn
the features from data in a hierarchical manner, to construct
a model with growing semantic layers until a suitable repre-
sentation is achieved. Such models have shown great potential
for feature representation in remote sensing image classification
[109], [110].

DL architectures can learn the behavior of any data without
any prior knowledge regarding the statistical distribution of the
input data [111] and can extract both linear and nonlinear fea-
tures of input data without any pre-specified information. Such
systems are capable of handling HSI data in both spectral and
spatial domains individually, and also in a coupled fashion. DL
systems possess a flexible architecture in terms of types of layers
and their depth and are adaptive to various machine learning
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strategies like supervised, semi-supervised, and unsupervised
techniques.

B. Hyperspectral Data Characteristics and DL Challenges

Despite the above-discussed DL potentials, there are still
some challenges that need to be considered while applying
DL to HSI data. Most of these challenges are related to the
characteristics of HSI data, i.e., hundreds of contiguous and
narrow spectral channels with very high spectral resolution and
low spatial resolution throughout the electromagnetic spectrum
coupled with limited availability of training data. Although the
pixels with rich spectral information are useful for classification
purposes, however, the computation of such data takes a lot of
time and resources.

Furthermore, processing such high-dimensional data is a
somewhat complex task due to an increased number of parame-
ters. This is known as the curse of dimensionality which consid-
erably influences the classification performance, especially in
the case of supervised learning [112]. Since the size of training
data is not adequate/insufficient and/or not reliable (i.e., the
training samples may not provide any new information to the
model or may have similar patterns/structures) to properly train
the classifier, it may lead the model to overfit. This is known as
the Hughes phenomena [113] which occur when labeled training
data is significantly smaller than the number of spectral bands
present in the data. Lack of labeled HSI data is a major issue
in HSIC as labeling of HSI is a time-consuming and expensive
task because it usually requires human experts or investigation
of real-time scenarios.

In addition to high dimensionality, HSIC suffers from various
other artifacts like high intraclass variability due to unconfined
variations in reflectance values caused by several environmental
interferers and degradation of data caused by instrumental noise
while capturing the data [114]. Furthermore, the addition of
redundant bands due to HSI instruments affects the compu-
tational complexity of the model. Spectral mixing is another
challenge related to the spatial resolution of HSI. HSI pixels
with low to average spatial resolution cover vast spatial regions
on the surface of earth, leading to mixed spectral signatures
which result in high interclass similarity in border regions. As
a result, it becomes difficult to identify the materials based
on their spectral reflectance values [115]. The following are
some main challenges that come across when DL is applied
to HSIC.
� Complex Training Process: Training of deep neural net-

work (DNN) and optimization by tuning parameters is
an NP-complete problem, where the convergence of the
optimization process is not guaranteed [116]–[118]. There-
fore, it is assumed that training of DNN is very diffi-
cult [111], especially in the case of HSI when a large
number of parameters need to be adjusted/tuned. However,
the convergence task becomes somehow easier due to the
advancement of various optimization techniques for deep
CNNs. Among stochastic gradient descent [119] and its
momentum version [120], RMSProp [121], Adam [122],
AdamW [123], diffGrad [124], RAdam [125], gradient

Fig. 4. Hyperspectral cube.

centralization (GC) [126], and AngularGrad [127], respec-
tively, are the successful CNN optimization techniques and
widely used in any classification problems.

� Limited Availability of Training Data: As discussed above,
supervised DNN requires a considerably large amount of
training data; otherwise, their tendency to overfit increases
significantly [128], which leads to the Hughes phenomena.
The high-dimensional characteristic of HSI coupled with
a small amount of labeled training data makes the DNNs
ineffective for HSIC as it demands a lot of adjustments
during the training phase [69].

� Model’s Interpretability: The training procedure of DNNs
is difficult to interpret and understand. The black box kind
of nature is considered as a potential weakness of DNNs
and may affect the design decisions of the optimization
process. However, a lot of work has been done to interpret
the model’s internal dynamics.

� High Computational Burden: One of the main challenges
of DNN is dealing with a big amount of data that in-
volves increased memory bandwidth, high computational
cost, and storage consumption [129]. However, advanced
processing techniques like parallel and distributed archi-
tectures [130], [131] and high-performance computing
(HPC) [115] make it possible for DNNs to process large
amounts of data.

� Training Accuracy Degradation: It is assumed that deeper
networks extract more rich features from data [132]; how-
ever, this is not true for all systems to achieve higher accu-
racy by simply adding more layers, because by increasing
the network’s depth, the problem of exploding or vanishing
gradient becomes more prominent [133] and affects the
convergence of the model [132].

III. HSI REPRESENTATION

Hyperspectral data is represented in the form of a 3-D hyper-
cube, X ∈ RB×(N×M), which contains 1-D spectral and 2-D
spatial details of a sample, where B represents the total number
of spectral bands and N and M are spatial components, i.e.,
width and height, respectively. The HSI cube is shown in Fig. 4.
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A. Spectral Representation

In such representations, each pixel vector is isolated from
other pixels and processed based on spectral signatures only,
which means the pixel is represented only in spectral space
xi ∈ RB , where B can either be the actual number of spectral
channels or just relevant spectral bands extracted after some
DR method. Usually, instead of using original spectral bands,
a low dimensional representation of HSI is preferred for data
processing in order to avoid redundancy and achieve better class
separability, without considerable loss of useful information.

DR approaches for spectral HSI representation can either be
supervised or unsupervised. Unsupervised techniques transform
the high-dimensional HSI into a low-dimensional space without
using the class label information; for example, principal com-
ponent analysis (PCA) and locally linear embedding [134]. On
the other hand, supervised DR methods utilize labeled samples
to learn the data distribution. i.e., to keep data points of the same
classes near to each other and separate the data points of different
classes. For instance, linear discriminant analysis (LDA), local
Fisher discriminant analysis (LFDA) [135], local discriminant
embedding [136], and nonparametric weighted FE [137]. LDA
and LDFA provide better class separability by maximizing the
interclass distance of data points and minimizing the intraclass
distance. However, due to the spectral mixing effect, in which
the same material may appear with different spectra or different
materials may have the same spectral signatures, it becomes
difficult to differentiate among different classes based on the
spectral reflectance values alone.

B. Spatial Representation

To deal with the limitations of spectral representation, another
approach is to exploit the spatial information of the pixels, in
which pixels in each band are represented in the form of a matrix,
xi ∈ RN×M . Due to high spatial correlation, neighboring pixels
have higher probabilities to belong to the same class. Therefore,
in the case of spatial representation, neighboring pixels’ infor-
mation is also considered and the neighborhood of a pixel can be
determined using kernel- or pixel-centric window [138]. Some
common methods to extract spatial information from HSI cube
are morphological profiles (MPs), texture features [like Gabor
filters, gray-level co-occurrence matrix (GLCM), and LBP, etc.]
and DNN-based methods. Morphological profiles are capable
of extracting geometrical characteristics. Few extensions of
MPs include extended morphological profiles (EMPs) [139],
multiple-structure-element morphological profiles [140], and
invariant attribute profiles [141].

The texture of the image provides useful spatial contextual
information of HSI. For instance, a Gabor filter, a texture
analysis technique, can efficiently obtain textural information
at various scales and orientations. Similarly, LBP can provide
rotation-invariant spatial texture representation. The GLCM can
effectively determine the spatial variability of HSI by exploit-
ing the relative positions of neighborhood pixels. The DNNs
can also extract spatial information of HSI by considering the
pixel as an image patch instead of representing it as a spectral
vector. The spatial information contained in HSI can also be

extracted by combining various of the aforediscussed methods.
For instance, [142] combined Gabor filter and differential mor-
phological profiles [143] to extract local spatial sequential (LSS)
features for a RNN-based HSIC framework.

C. Spectral–Spatial Representation

This representation jointly exploits both spectral and spa-
tial information of data. In such approaches, a pixel vector is
processed based on spectral features while considering spatial-
contextual information. The strategies that simultaneously use
both spectral and spatial representations of HSI either concate-
nate the spatial details with spectral vector [62], [144] or process
the 3-D HSI cube to preserve the actual structure and contextual
information [145].

In the literature, all these HSI representations are widely
exploited for HSIC. Most of the DNNs for pixel-wise clas-
sification utilized the spectral representation of HSIs [146],
[147]. However, to mitigate the limitations of spectral represen-
tation, many efforts have been made to incorporate the spatial
information [148], [149]. Recently, joint exploitation of both
spectral and spatial features has gained much popularity and
led to improved classification accuracy [13], [67], [150]–[153].
These HSI feature exploitation approaches, for HSIC, are further
discussed in Section IV.

IV. LEARNING STRATEGIES

DL models can adopt various learning strategies that can be
broadly categorized into the following.

A. Supervised Learning

In a supervised learning approach, the model is trained based
on the labeled training data, which means training data is com-
posed of a set of inputs and their corresponding outputs or
class labels. During the training phase, the model iteratively
updates its parameters in order to predict the desired outputs
accurately. In the testing phase, the model is tested against the
new input/test data in order to validate its ability to predict
the correct labels. If trained sufficiently, the model can predict
the labels of new input data. However, supervised learning of
DNNs requires a lot of labeled training data to fine-tune the
model parameter. Therefore, they are best suited to scenarios
where plentiful labeled data is available. The details of various
supervised learning techniques for DNNs will be explained in
the respective sections.

B. Unsupervised Learning

In contrast to the supervised learning approach, unsupervised
learning techniques learn from the input data with no explicit
labels associated with it. These approaches try to identify the
underlying statistical structure of input representations or pat-
terns in the absence of corresponding labels. As there is no
ground truth available for the training data so it might be difficult
to measure the accuracy of the trained model. However, such
learning strategies are useful in the cases where we want to learn
the inherent structure of such datasets which have a scarcity of
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training data. The PCA is an unsupervised learning technique
that can be used to learn a low-dimensional representation of
the input. Similarly, k-means clustering is another unsupervised
learning method that groups the input data into homogeneous
clusters.

C. Semi-Supervised Learning

The semi-supervised learning (SSL) technique is halfway
between unsupervised and supervised approaches. Semi-
supervised techniques learns from the partially labeled data i.e.,
a small amount of labeled training data can be utilized to label the
rest of the unlabeled data. These techniques effectively utilize
all available data instead of just labeled data; therefore, these
techniques have gained much popularity among the research
community and are being widely used for HSIC [154]–[157].
The details of these methods are briefly described in Section X.

V. DEVELOPMENT OF DNNS (TYPES OF LAYERS)

In the following, we review recent developments of some
widely used DNN frameworks for HSIC. We specifically sur-
veyed the literature published from 2017 onward. DNNs exhibit
a great variety of flexible and configurable models for HSIC that
allow the incorporation of several types of layers. Few widely
used types of layers are explained in the following.

A layer is the key building block of DNN, and the type of
layer has a decisive impact in terms of feature processing. A
layer takes the weighted input, processes it through linear or
nonlinear transformation, and outputs these values to the next
layer. Generally, a layer is uniform, as it has a single activation
function. The first layer of the network is known as the input
layer and the last layer as an output layer. All other layers in the
network, in between the input and output layers, are known as
hidden layers. These layers progressively find different features
in the input data by performing various transformations. The
choice of layer type depends on the task at hand, as some layers
perform better for some tasks than others. The most commonly
used layers for HSIC are explained below.

A. Fully Connected Layers

A fully connected (FC) layer connects every neuron in the
lower layer to every neuron in the upper/next layer. Mostly,
they are used as the last few layers of a model usually after
convolution/pooling layers. FC takes the output of the previous
layer and assigns weights to predict the probabilities for class
labels. Due to a large number of connections, a large number of
parameters need to be adjusted, which significantly increases the
computational overhead. Moreover, due to a large number of pa-
rameters, the model becomes more sensitive to overfitting [49].
However, to mitigate the effect of overfitting, a dropout method
is introduced in [158].

B. Convolutional Layers

The convolutional (CONV) layer convolves the input data or
feature maps from a lower layer with the filters (kernels). The
filter contains weights whose dot product is calculated with the

Fig. 5. Graphical representation of various commonly used activation
functions.

subset of input data by moving it across the width, height, and
depth of the input region. The output of the filter is known as
a feature map. CONV layer provides spatial invariance via a
local connectivity approach in which the neuron in the feature
map connects to a subset of input from the previous layer rather
than connecting to every neuron. This reduces the number of
parameters that need to train. To further reduce the number of
parameters, the CONV layer uses the mechanism of parameter
sharing in which the same weights are used in a particular
feature map.

C. Activation Layers

Activation layers are assumed to be a feature detector stage
of DNNs [159]. FC and CONV layers provide linear repre-
sentations of input data or it can be said that they work simi-
larly to linear regressors and data transformed by these layers
is considered to be at the FE stage [69]. Therefore, to learn
nonlinear features of data, an activation layer must be used after
FC and CONV layers. In the activation layer, feature maps from
previous layers go through an activation function to form an
activation map. Some commonly used activation functions are
sigmoid, hyperbolic tangent (tanh), rectified linear unit (ReLU),
LiSHT [160], and softmax. However, in HSI analysis, softmax
and ReLU are widely employed activation functions [69]. Fig. 5
presents a graphical representation of a few commonly utilized
activation functions.

D. Pooling or Subsampling Layers

The pooling layer, also known as the subsampling or down-
sampling layer, takes a certain input volume and reduces it to
a single value as shown in Fig. 6. This provides invariance to
small distortions in the data. The pooling layer helps the model to
control overfitting as the size of data and model parameters both
are reduced, which also leads to a decrease in the computational
time. The commonly used downsampling operations are max-
pooling, average-pooling, and sum-pooling. Recently, a pool-
ing technique, wavelet-pooling, is introduced in [161], whose
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Fig. 6. Max-pooling and average-pooling operations of downsam-
pling/pooling layer.

performance is commensurable to max-pooling and average-
pooling. Alternatively, [162] proposed another trend in which
the pooling layer is replaced by the CONV layer of increased
filter stride.

VI. CONVOLUTIONAL NEURAL NETWORK

The architecture of the CNN is inspired by the biological
visual system presented in [163]. Following the natural visual
recognition mechanism proposed by Hubel and Wiesel [163],
Neocognitron [164] is regarded as the first hierarchical, position-
invariant model for pattern recognition [165], which can be
considered as the predecessor of CNN [166]. The architecture of
CNN can be divided into two main stages: one is FE network and
the other is a classification based on the feature maps extracted
in the first stage.

The FE network consists of multiple hierarchically stacked
CONV, activation, and pooling layers. The CONV layer extracts
the features from input data by convolving a learned kernel with
it. On each CONV layer, the kernel is spatially shared with
whole input data, which reduces the model’s complexity and
the network becomes easier to train as the number of parameters
that need to be fine-tuned is reduced. Convolved results are then
passed through an activation layer which adds nonlinearities
in the network to extract nonlinear features of the input. This
is achieved by applying a nonlinear function to the convolved
results. Afterward, the resolution of the feature map is reduced
by applying a pooling operation to achieve shift-invariance.
Generally, the pooling layer is added with every CONV layer
followed by the activation function.

The classification stage consisting of FC layers and a Softmax
operator gives the probability of input pattern belonging to a
specific class based on the feature maps extracted at the FE stage.
FC layer connects every single neuron in the previous layer to
every neuron in the current layer. In Refs. [167] and [168], the
authors proposed that the FC layer can be disregarded by using
a global average pooling layer. Softmax is commonly used for
classification tasks [169], [170]; however, many works have also
utilized SVM [171], [172] for this purpose.

In the following, we reviewed three types of CNN archi-
tectures for HSIC: i) Spectral CNN, ii) spatial CNN, and iii)
spectral–spatial CNN. Fig. 7 illustrates the general architecture
of these three frameworks.

A. Spectral CNN Frameworks for HSIC

Spectral CNN models only consider 1-D spectral informa-
tion (xi ∈ RB) as input, where B could either be the original
number of spectral bands or the appropriate number of bands
extracted after some DR method. In [173], a CNN structure
was proposed to mitigate the overfitting problem and achieved a
better generalization capability by utilizing 1× 1 convolutional
kernels and enhanced dropout rates. Moreover, a global average
pooling layer is used in place of a FC layer in order to reduce
the network parameters. To reduce high correlation among HSI
bands, Gao et al. [168] proposed a CNN architecture for HSIC,
which fully utilized the spectral information by transforming the
1-D spectral vector to a 2-D feature matrix, and by cascading
composite layers consisting of 1× 1 and 3× 3 CONV layers,
the architecture achieved the feature reuse capability. Similar
to [173], [168] also utilized the global average pooling layer
to lower the network’s training parameters and to extract high-
dimensional features.

Wu and Prasad [174] presented a hybrid model for HSIC
in which the first few CONV layers are employed to extract
position-invariant middle-level features and then recurrent lay-
ers are used to extract spectral-contextual details. Similarly,
Jin et al. [146] used a hybrid architecture for classifying healthy
and diseased wheat heads. For the input layer, they transform
spectral information into a 2-D data structure. In [175], CNN was
proved to be more effective as compared to SVM and KNN for
the spectral-based identification of rice seed’s variety. A similar
application of CNN was explored in [147], where various vari-
eties of Chrysanthemum were identified using spectral data of
the first five PCs of PCA. PCA is a DR method that is widely used
in many DL applications to handle/preprocess high-dimensional
data. In [176], PCA was utilized to preprocess medical HSI, and
then the fusion of CNN kernels with Gabor kernels using dot
product is used for classification.

The study [177] analyzed another DR technique dynamic
mode decomposition, which converted 3-D HSI data to 2-D
and then this data is fed to vectorized CNN for classification.
To overcome the noise effect in pixel-wise HSIC, a method of
averaged spectra is used in [178], where an averaged spectra of
a group of pixels belonging to bacterial colonies is extracted for
further analysis.

B. Spatial CNN Frameworks for HSIC

Spatial CNN models only consider spatial information, and
to extract the spatial information from HSI data, DR methods
are employed on spectral-domain to lower the dimensionality
of original HSI data. For instance, Li et al. [179] used PCA
to extract the first PC with refined spatial information and
fed it to a fully CNN framework for classification. Similarly,
Haut et al. [180] trained a spatial-based 2-D-CNN with one
PC. In [181], PCA-whitened input data considering three PCs
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Fig. 7. General architecture of spectral CNN, spatial CNN, and spectral-spatial CNN frameworks for HSIC.

is fed to a random patches network as a 2-D-CNN classification
framework. However, the limited training samples with highly
similar spectral feature make DL models prone to overfitting.
To overcome this, Wang et al. [182] proposed a probabilistic
neighborhood pooling-based attention network for HSIC.

The method proposed in [183] cropped the patches from 2-D
input images (i.e., images from the different spectral bands)
to train a 2-D-CNN architecture that learns the data-adaptive
kernels by itself. Furthermore, some authors also proposed the
utilization of handcrafted features along with spectral-domain
reduction. For example, [184] combined the Gabor-filtering
technique with 2-D-CNN for HSIC to overcome the overfitting
problem due to limited training samples. The Gabor filtering
extracts the spatial details, including edges and textures which
effectively reduce the overfitting problem. The work [185] pro-
posed a deformable HSIC network based on the concept of
deformable sampling locations which can adaptively adjust their
size and shape in accordance with HSI’s spatial features. Such
sampling locations are created by calculating 2-D offsets for
every pixel in the input image through regular convolutions
by taking into account three PCs. These offsets can cover the
locations of similar neighboring pixels possessing similar char-
acteristics. Then, structural information of neighboring pixels is
fused to make deformable feature images. Regular convolution

employed on these deformable feature images can extract more
effective complex structures.

C. Spectral–Spatial CNN Frameworks for HSIC

Spectral–spatial pixel-wise HSIC can be achieved by integrat-
ing spatial features into spectral information. For instance, Ran
et al. [186] presented an improved pixel pair feature (PPF)
approach called spatial PPF, which is different from traditional
PPFs with respect to two main aspects: One is the selection of
pixel pair, that is, only the pixel from the immediate neighbor-
hood of central pixel can be used to make a pair, and second, the
label of pixel pair would be as of central pixel. To extract dis-
criminative joint representation, Zhong et al. [187] introduced a
supervised spectral–spatial residual network that uses a series of
3-D convolutions in the respective spectral and spatial residual
blocks. An efficient deep 3-D-CNN framework was proposed
in [188] that simultaneously exploits both spectral and spatial
information for HSIC.

Similarly, to reflect the variations of spatial contexture in
various hyperspectral patches, Li et al. [189] implemented an
adaptive weight-learning technique instead of assigning fixed
weights to incorporate spatial details. Besides this, to make the
convolutional kernel more flexible, Roy et al. [153] explored
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a new architectural design that can adaptively find adjustable
receptive feild and then an improved spectral-spatial residual
network for joint FE. The discriminative power of the extracted
features can be further improved by combining both the max
and min convolutional features before the ReLU nonlinearity
reported in [190] for the classification task. CNNs failed to ex-
ploit rotation equivariance in a natural way; Paoletti et al. [191]
introduced the translation-equivariant representations of input
features which provide extra robustness to the spatial feature
locations for HSIC.

The deeper networks may suffer from the issues of over-
fitting and gradient vanishing problems due to the smaller
number of available labeled training samples and to overcome
this shortcoming the lightweight CNN’s gain good attention in
HSIC communities. The paper [192] introduced an end-to-end
3-D lightweight CNN to tackle the limited numbers of train-
ing samples for HSIC. To reduce the large gap between the
massive trainable parameters and the limited labeled samples,
Jia et al. [193] proposed to extract the spatial–spectral
Schroedinger eigenmaps joint spatial-spectral information, and
then further reduced the dimensionality using compression tech-
nique. Approximately 90% of trainable weights of the total
parameters are used immediately after the flatten operation, i.e.,
in the FC layer, whereas the remaining only 10% weights are
used on the previous convolutional layers of the whole network.
To overcome this, the paper [194] introduced a lightweight bag-
of-feature learning paradigm into an end-to-end spectral-spatial
squeeze-and-excitation residual network for HSIC.

The morphological operations, i.e., erosion and dilation, are
powerful nonlinear feature transformations that are widely used
to preserve the essential characteristics of shape and structural
information of an image. Inspired by these, the paper [195]
introduced a new end-to-end morphological CNN (MorphCNN)
for HSIC, which utilizes both the spectral and spatial features
by concatenating the outputs from spectral and spatial morpho-
logical blocks extracted in a dual-path fashion.

The work [189] proposed a two-stage framework for joint
spectral–spatial HSIC which can directly extract both spec-
tral and spatial features instead of independently concatenating
them. The first stage of the proposed network is composed of
a CNN and softmax normalization that adaptively learns the
weights for input patches and extracts joint shallow features.
These shallow features are then fed to a network of stacked
autoencoder (SAE) to obtain deep hierarchical features and final
classification is performed with a multinomial logistic regression
(MLR) layer. A 3-D-CNN model was introduced in [196] to
jointly exploit spectral–spatial features from HSI, and to validate
its performance, comparison is performed with spectral-based
DBN, SAE, and 2-D-spatial CNN for HSIC. The work [197]
introduced a bilinear fusion mechanism over the two branches of
squeeze operation based on the global and max-pooling whereas
the excitation operation is performed with the fused output of
squeeze operation.

The work [198] proposed a deep multiscale spectral-spatial
FE approach for HSIC which can learn effective discriminant
features from the images with high spatial diversity. The frame-
work utilizes the fully convolutional network (FCN) to extract

deep spatial information and, then, these features are fused
with spectral information by using a weighted fusion strategy.
Finally, pixel-wise classification is performed on these fused
features.

In [199], a dual-channel CNN framework was implemented
for spectral-spatial HSIC. In the proposed approach, 1-D-CNN
is used to hierarchically extract spectral features and 2-D-CNN
to extract hierarchical spatial features. These features are then
combined together for the final classification task. Furthermore,
to overcome the deficiency of training data and to achieve higher
classification accuracy, the proposed framework is supported by
a data augmentation (DA) technique that can increase the train-
ing samples by a factor of 6. In [200], a multiscale 3-D deep CNN
is introduced for end-to-end HSIC, which can jointly learn both
1-D spectral and 2-D multiscale spatial features without any pre-
processing or postprocessing techniques like PCA, etc. In order
to reduce the band redundancy or noise in HSI, [201] explored
a novel architecture for HSIC by embedding a band attention
module in the traditional CNN framework. The study [202]
proposed an HSIC architecture in which PCA-transformed im-
ages are used to obtain multiscale cubes for handcrafted FE by
utilizing multiscale covariance maps which can simultaneously
exploit spectral-spatial details of HSI. These maps are then used
to train the traditional CNN model for classification.

The work [203] combined CNN with metric learning-based
HSIC framework, which first utilizes CNN to extract deep spatial
information using the first three PCs extracted by PCA. Then, in
a metric learning-based framework, spectral and spatial features
are fused for spectral-spatial feature learning by embedding a
metric learning regularization factor for the classifier’s training
(SVM). Similarly, [204] combines multiscale convolution-based
CNN with diversified deep metrics based on determinantal point
process (DPP) [205] priors for (1-D spectral, 2-D spectral-
spatial, and 3-D spectral-spatial) HSIC. Multiscale filters are
used in CNN to obtain multiscale features, and DPP-based
diversified metric transformation is performed to increase the
interclass variance and decrease intraclass variance, and better
HSI representational ability. Final classification maps are ob-
tained by using a softmax classifier.

In a recent work [206], an HSIC framework is proposed to ex-
tract multiscale spatial features by constructing a three-channel
virtual RGB image from HSI instead of extracting the first three
PCs through PCA. The purpose of using a three-channel RGB
image is to utilize existing networks trained on natural images
to extract spatial features. For multiscale FE, these images are
passed to a FCN. These multiscale spatial features are fused
and further joined with PCS-extracted spectral features for final
classification via SVM.

A two-branch (spectral and spatial) DNN for HSIC was
introduced in [207]. The spatial branch consists of a band
selection layer and a convolutional and deconvolutional frame-
work with skip architecture to extract spatial information of
HSI, and in the spectral branch, a contextual DNN is used
to extract spectral features. The paper [208] introduced an
adaptive band selection based semi-supervised 3-D-CNN to
jointly exploit spectral–spatial features, whereas [209] ex-
plored dual-attention based autoencoder–decoder network for
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unsupervised hyperspectral band selection and then joint FE
for land-cover class prediction. Similarly, in [210], spectral–
spatial features are simultaneously exploited in an unsuper-
vised manner using a 3-D convolution AE. The pixel-wise
land-use and land-cover classification using traditional CNNs
is often suffered by the presence of wrong/noisy labels in
the training set and can easily be overfitted to the labeled
noises. To overcome this problem of accurate classification,
Roy et al. [211] proposed a lightweight heterogeneous kernel
convolution (HetConv3D) for HSIC with noisy labels by effec-
tively combining both the spectral and spatial kernel features to
produce discriminative and invariant feature maps for classifi-
cation.

A hybrid 3-D-2-D-CNN architecture was presented by
Roy et al. [212] in which 3-D-CNN is first used to extract joint
spectral–spatial features and then 2-D-CNN is further used to
obtain more abstract spatial contextual features. The study [213]
proposed to use adaptive Markov random field for HSIC. The
CNN first extracts joint spectral–spatial features and then a
smooth Markov Random Field (MRF) prior is placed on class
labels to further refine the spatial details. CNNs are greatly
affected by overfitting and vanishing gradient problems, and
to overcome this, a separable attention network was introduced
by Paoletti et al. [214], where the input feature maps are di-
vided into several groups and split along the channel dimen-
sion and finally an attention mask encodes global contextual
information by combining them. Recently, generalized gradient
centralized 3-D convolution (G2C-Conv3D) was introduced in
[215] to combine both the intensity-level semantic information
and gradient-level detailed information extracted from raw HSIs
during the convolutions operation. To boost the performance of
accurate land-cover types classification, G2C-Conv3D can be
easily plugged into the existing HSIs FE networks.

D. GCN Frameworks for HSIC

GCNs [216] have been garnering increasing attention to re-
searchers in various application fields, owing to their flexible and
diversified network architecture that is capable of processing
nongrid high-dimensional data. Such properties provide new
insight and possibilities in processing hyperspectral data more
effectively and efficiently. In detail, GCNs enable the modeling
of the relations between data (or samples). Accordingly, this
naturally motivates us to use the GCNs to capture the spatial
relations of spectral signatures in HSIs. Due to the GCNs’
limitations in the graph construction [217], particularly for
large graphs (need expensive computational cost), GCNs fail to
classify or identify materials in large-scale hyperspectral scenes
using normal PCs, which leads to relatively less popularity
compared to CNNs in HSIC. For this reason, there have been
some tentative researches using the GCNs in the HSIC task.

For example, a second-order GCN was proposed in [218]
by modeling spatial–spectral relations on manifolds for HSIC
by the attempts to reduce the computational cost on graphs.
Wan et al. [219] first used superpixel segmentation techniques
on HSIs and fed superpixels instead of pixels into GCNs. This
enables the network training of GCNs on a large number of pixels

in HSIs with the application to the land-cover classification task.
Nevertheless, these methods still fail to solve the problem of
GCNs essentially. To this end, Hong et al. [217] proposed a novel
miniGCN. As the name suggests, miniGCN trains the GCNs in
a mini-batch fashion, which is the same as CNN. The proposed
miniGCN not only reduces the computational cost-effectively
but also makes it possible to make a quantitative comparison
and fusion with CNNs, further yielding a FuNet for HSIC.

E. Future Directions for CNN-Based HSIC

In the preceding section, we have reviewed the recent de-
velopments of CNNs for HSIC. Although CNNs-based HSIC
frameworks have achieved great success with respect to clas-
sification performance, there are still many aspects that need
further investigation. For instance, there is a need to further
work on such models that can jointly employ spatial and spectral
information for HSIC. Many of the above-surveyed frameworks
use DR methods to achieve better spectral–spatial representation
but such approaches discard useful spectral information of HSI.
Hence, the development of robust HSIC approaches that can pre-
serve spectral information is required. However, the processing
of such approaches increases the computational burden, and the
training process becomes slower; therefore, parallel processing
of such networks using field-programmable gate arrays (FPGAs)
and graphical processing units (GPUs) is desired in order to
achieve the computationally fast models that can even be suitable
for mobile platforms, without the performance degradation.

Moreover, as the CNNs are becoming deeper and deeper, more
labeled training data is required for accurate classification, and
as discussed before, there is a lack of labeled training data in
HSI. In order to overcome this issue, more research is required
to integrate the CNN with unsupervised or semi-supervised
approaches. Furthermore, we should pay more attention to the
generalization ability of CNNs, particularly for the input data
format (not only limiting to the grid data). GCNs might be a
good solution to combine with CNNs together to develop a more
general CNN-based new framework. Using this, we expect to be
able to further break the performance bottleneck, yielding more
efficient HSIC.

VII. AUTOENCODERS

AE is a popular symmetrical neural network for HSIC due to
its unsupervised feature learning capability. AE itself does not
perform a classification task, instead it gives a compressed fea-
ture representation of high-dimensional HSI data. AE consists of
an input layer, one hidden or encoding layer, one reconstruction
or decoding layer, and an output layer as shown in Fig. 8. AE
is trained on input data in such a manner to encode it into a
latent representation that is able to reconstruct the input. To learn
a compressed feature representation of input data, AE tries to
reduce the reconstruction error that is minimizing the difference
between the input and the output.

The SAE is built by stacking multiple layers of AEs in such
a way that the output of one layer is served as an input of the
subsequent layer. Denoising autoencoder (DAE) is a variant of
AE that has a similar structure as AE except for the input data.
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Fig. 8. A general autoencoder architecture.

In DAE, the input is corrupted by adding noise to it; however,
the output is the original input signal without noise. Therefore,
DAE, different from AE, can recover original input from a noisy
input signal.

To learn high-level representation from data, the work [220]
proposed a combination of multilayer AEs with maximum noise
fraction which reduces the spectral dimensionality of HSI, while
a softmax logistic regression classifier is employed for HSIC.
The study reported in [221] combined multimanifold learn-
ing framework proposed by [222] with counteractive autoen-
coder [223] for improved unsupervised HSIC. The work [224]
jointly exploited spectral–spatial features of HSI through an
unsupervised feature extracting framework composed of recur-
sive autoencoders network. It extracts the features from the
neighborhood of the target pixel and weights are assigned based
on the spectral similarity between target and neighboring pixels.
A two-stream DNN with a class-specific fusion scheme was
introduced in [225], which learns the fusion weights adaptively.
One stream composed of stacked DAE is used to extract spectral
features and the second stream is implemented to extract spatial
information using CNN, while final classification is performed
by fusing the class prediction scores obtained from the classifi-
cation results of both streams.

Another work proposed a hybrid architecture for multifeature-
based spectral–spatial HSIC, which utilizes PCA for DR, guided
filters [226] to obtain spatial information, and sparse AE for
high-level FE. The framework proposed in [227] exploited both
spectral and spatial information for HSIC by adopting batch-
based training of AEs and features are generated by fusing spec-
tral and spatial information via a mean pooling scheme. Another
work [228] developed a spectral–spatial HSIC framework by
extracting appropriate spatial resolution of HSI and utilization
of stacked sparse AE for high-level FE followed by RF for the
final classification task.

Similarly, [229] also used stacked sparse AE for various
types of representation that is spectral–spatial and multifractal
features along with other higher order statistical representations.
A combination of SAE and ELM was proposed in [230] for
HSIC, which segments the features of the training set and trans-
form them via SAE; after transformation, feature subsets are
rearranged according to the original order of the training set and
fed to ELM-based classifiers, while Q-statistics is used for final
classification result. This processing of feature subsets helps to
improve variance among base classifiers [230]. Similarly, in a

recent work, Ahmad et al. [231] implemented a computationally
efficient multilayer ELM-based AE, which learns the features in
three folds, as proposed in [39] for HSIC.

To overcome the issue of high intraclass variability and high
interclass similarity in HSI, Zhou et al. [232] developed an
SAE-based HSIC, which can learn compact and discriminative
features by imposing a local fisher discriminant regularization.
Similarly, in the latest work [233], a k-sparse denoising AE is
spliced with spectral-restricted spatial features that overcome
the high intraclass variability of spatial features for HSIC. The
study [234] proposed an HSIC architecture that first makes
the spectral segments of HSI based on mutual information
measure to reduce the computation time during FE via SAE,
while spatial information is incorporated by using EMPs, and
SVM/RF is used for final classification. Recently, [235] used
SAE for the classification of an oil slick on the sea surface by
jointly exploiting spectral–spatial features of HSI.

A. Future Directions for AE-Based HSIC

In the above section, we have surveyed the recent devel-
opments of AEs-based techniques for HSIC. Although such
frameworks provide powerful predictive performance and show
good generalization capabilities, more sophisticated work is
still desired. Many of the discussed approaches do not fully
exploit abundant spatial information so further techniques need
to be developed that can fully employ joint spatial and spectral
information for HSIC. Moreover, the issue of high intraclass
variability and high inter-class similarity in HSI also hinders
the classification performance. Many of the above-reviewed
works have addressed this issue but further research to overcome
this aforesaid issue is required. One direction could be further
exploring approaches like pretraining, cotraining, and adaptive
neural networks, etc. for AE-based HSIC frameworks.

VIII. DEEP BELIEF NETWORK

DBN [236] is a hierarchical deep DNN that learns the features
from input in an unsupervised, layer-by-layer approach. The
layers in DBN are built using restricted Boltzmann machine
(RBM) composed of a two-layer architecture in which visible
units are connected to hidden units [237], as shown in Fig. 9.

A detailed overview of RBM can be found in [237]. To extract
more comprehensive features from input data, the hidden unit
of one RBM can be fed to the visible units of other RBM.
This type of layer-by-layer architecture builds a DBN, which
is trained greedily and can capture deep features from HSI. The
architecture of three-layer DBN is shown in Fig. 10.

In literature, several works implemented DBN for HSIC. For
instance, Ayhan and Kwan [238] used DBN for land-cover
classification by combining spectral–spatial information and
making a comparison with some other classification approaches.
The usual learning process of DBN involves two steps: One is
unsupervised pretraining with unlabeled samples and the second
is supervised fine-tuning with the help of labeled samples.
However, this training process may result in two problems: First,
multiple hidden units may tend to respond similarly [239] due
to coadaptation [240] and second is linked with the sparsity and
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Fig. 9. Basic architecture of RBM.

Fig. 10. A three-layer DBN architecture.

selectivity of activated neurons i.e., some neurons may always be
dead or always responding [241]. To mitigate these two prob-
lems, Zhong et al. [242] introduced a diversified DBN model
through regularizing the pretraining and fine-tuning process by
imposing a diversity prior to enhancing the DBN’s classification
accuracy for HSI.

To extract efficient texture features for the HSIC, the
work [243] proposed a DBN-based texture feature enhance-
ment framework that combines band grouping and sample band
selection approach with a guided filter to enhance the texture
features, which are then learned by a DBN model, and final
classification results are obtained by a softmax classifier. The
work [244] implemented a parallel layers framework consisting
of Gaussian–Bernoulli RBM which extracts high-level, local
invariant, and nonlinear features from HSI, and a logistic re-
gression layer is used for classification.

To improve the classification accuracy, some works are con-
sidered to jointly exploit the spectral and spatial information
contained in HSI. For instance, Li et al. [245] introduced a
DBN framework with the logistics regression layer and verified
that the joint exploitation of spectral–spatial features leads to
improved classification accuracy. Similarly, Sellami and Farah
[246] proposed a spectral–spatial graph-based RBM method for
HSIC, which constructs the spectral–spatial graph through joint
similarity measurement based on spectral and spatial details,
then an RBM is trained to extract useful joint spectral–spatial

Fig. 11. RNN architecture.

features from HSI, and finally, these features are passed to a
DBN and logistic regression layer for classification.

A. Future Directions for DBN-Based HSIC

In the preceding section, we have reviewed the latest devel-
opments of DBN-based HSIC frameworks. We have observed
that relative to other DNNs, very few works have utilized the
DBNs for HSIC. Therefore, there is a need to further explore the
DBN-based robust techniques that can jointly employ spatial and
spectral features for HSIC. In addition, another research direc-
tion can be the regularization of the pretraining and fine-tuning
processes of DBN to efficiently overcome the issue of dead or
potentially overtolerant (always responding) neurons.

IX. RECURRENT NEURAL NETWORK

The architecture of the RNN, shown in Fig. 11, comprises
loop connections, where the node activation of the next step
depends on the previous step [247]. Therefore, RNNs are capable
of learning temporal sequences. RNN models process the spec-
tral information of HSI data as time sequence considering the
spectral bands as time steps [248]. There are three basic models
of RNN: a) Vanilla, b) long–short-term memory (LSTM), and
c) gated recurrent unit (GRU).

Vanilla is the simplest RNN model and leads to information
degradation while processing high-dimensional data. LSTM
models composed of two states overcome this issue by con-
trolling the information flow through three gates: input, forget,
and output gates. It learns the relevant information over time
by discarding the extraneous information. However, the gate-
controlling strategy makes the LSTM a considerably complex
approach. GRU variant of LSTM enjoys the simplicity of the
Vanilla model and provides high performance similar to LSTM.
GRU is a simpler version of LSTM, which modifies the input
and forget gate as an update (zt) and reset (rt) gate and removes
the output gate. A comparison of LSTM and GRU’s internal
architecture is presented in Fig. 12.

The work [70] proposed an RNN-based HSIC framework with
a novel activation function (parametric rectified tanh) and GRU,
which utilizes the sequential property of HSI to determine the
class labels. In [142], a LSS method-based RNN framework was
introduced, which first extracts low-level features from HSI by
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Fig. 12. Internal architecture of LSTM and GRU.

using Gabor filter and differential morphological profiles [143]
and then fuses these features to obtain LSS features from the
proposed method; these LSS features are further passed to an
RNN model to extract high-level features, while a softmax layer
is used for final classification.

Keeping in view the usefulness of spatial information to
achieve improved classification accuracies, the work [249] pro-
posed a spectral–spatial LSTM-based network that learns spec-
tral and spatial features of HSI by utilizing two separate LSTM-
followed softmax layer for classification, while a decision fusion
strategy is implemented to get joint spectral–spatial classifica-
tion results. Similarly, Sharma et al. [250] proposed a patch-
based RNN with LSTM cells that incorporate multitemporal
and multispectral information along with spatial characteristics
for land-cover classification.

In literature, several works have proposed CNN-based hybrid
RNN architectures (CRNN) for HSIC. For instance, Wu and
Prasad [174] implemented a convolutional RNN in which the
first few CONV layers are employed to extract position invariant
middle-level features, and then recurrent layers are used to
extract spectral–contextual details for HSIC. Similarly, Wu and
Prasad [251] utilized such a model for semi-supervised HSIC
by using pseudo labels. The study [252] suggested an HSIC
framework in which CNN is used to extract spatial features from
HSI, and then these features are passed to a GRU-based fusion
network that performs feature-level and decision-level fusion.

Similarly, Luo, et al. [253] exploited both spectral and spatial
information contained in HSI by combining CNN with par-
allel GRU-based RNN, which simplifies the training of GRU
and improves performance. Bidirectional convolutional LSTM
(CLSTM) was proposed in [152] to jointly exploit spectral–
spatial feature of HSI for classification. Shi and Pun [254]
combined multiscale local spectral–spatial features extracted by
3-D-CNN with a hierarchical RNN, which learns the spatial de-
pendencies of local spectral–spatial features at multiple scales.
Recurrent 2-D-CNN and recurrent 3-D-CNN for HSIC were
proposed in [255], and, along with an interesting comparison
of these frameworks with their corresponding 2-D and 3-D-
CNN models, validates the superiority of recurrent CNN. The
work [256] integrated CNN with CLSTM in which a 3-D-CNN
model is used to capture low-level spectral-spatial features and
CLSTM recurrently analyzes this low-level spectral–spatial in-
formation. Recently, Hang et al. [70] introduced a cascade RNN
for HSIC, which consists of two layers of GRU-based RNN; the

first layer is used to reduce the redundant spectral bands and the
second layer is used to learn the features from HSI; furthermore,
a few convolutional layers are employed to incorporate the rich
spatial information contained in HSI.

A. Future Directions for RNN-Based HSIC

In the above section, we have surveyed the recent develop-
ments of AEs-based techniques for HSIC. Although RNN-based
HSIC frameworks have attracted considerable attention to the
remote sensing community and achieved great success for clas-
sification performance, there are still many aspects that need
further investigation; for instance, the construction of sequential
input data for RNN. Most of the surveyed methods considered
HSI pixel as a sequential point that is the pixel from each spectral
band that forms a data sequence. However, this increases the
length of RNN’s input sequence considerably large, which can
lead to an overfitting issue.

Moreover, processing such large data sequences increases the
computational time and the learning process becomes slower.
Therefore, the use of parallel processing tools needs to be
further investigated to achieve good generalization performance
of RNN-based HSIC. In addition, approaches like a grouping
of spectral bands to decrease the data sequence length and
utilization of the entire spectral signature to better discriminate
between various classes can further be explored to construct the
sequential input of the RNN model. Another interesting future
direction may involve the implementation of RNN-based HSIC
frameworks in a real multitemporal HSI context.

X. STRATEGIES FOR LIMITED LABELED SAMPLES

Although DNNs have been successfully exploited for the task
of HSIC, however, they require a considerably large amount of
labeled training data. However, as discussed earlier, the collec-
tion of labeled HSI is very critical and expensive due to numerous
factors that either demand human experts or exploration of
real-time scenarios. The limited availability of labeled training
data hinders classification performance. To overcome the afore-
said issue, many effective strategies have been proposed in the
literature. In this section, we will briefly discuss some of these
strategies while focusing on active learning (AL) algorithms.

A. Data Augmentation

To combat the issue of limited training samples, DA is proven
to be an effective tool for HSIC. It generates new samples from
the original training samples without introducing additional
labeling costs. DA approaches can be categorized into two main
strategies as i) data wrapping and ii) oversampling [257]. Data
wrapping usually encodes several invariances (translational,
size, viewpoint, and/or illumination) by conducting geometric
and color-based transformations while preserving the labels, and
oversampling-based augmentation methods inflate the training
data by generating synthetic samples based on original data
distributions. Oversampling techniques include mixture-based
instance generation, feature space augmentations [257], and
generative adversarial networks (GANs) [258].
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Referring to HSIC literature, several DA-based frameworks
have been employed to improve the classification performance
by avoiding potential overfitting, which is generally caused
by the limited availability of training data. For instance,
Yu et al. [259] enhanced the training data by using three DA
operations (flip, rotate, and translation), and then this enhanced
data is exploited to train CNN for HSIC. The work [260] pre-
sented a comprehensive comparison of various extensively uti-
lized HSI DA techniques and proposed a pixel-block pair-based
DA that utilized both spectral and spatial information of HSI
to synthesize new instances, to train a CNN model for HSIC.
The work [261] compared the classification performance of a
combination of CNN and AL with and without DA techniques
and demonstrated that the DA leads to higher classification accu-
racies. Similarly, in another comparison [262], DA-based CNN
exhibited a 10% increase in HSIC accuracy when compared to
a PCA-based CNN model.

The above-discussed methods utilize offline DA techniques
that increase the training data by creating new instances dur-
ing/before the training process of a model. Recently, a novel
DA framework for HSI is proposed in [263], which, rather
than inflating the training data, generates the samples at test
time, and a DNN trained over original training data along with
a voting scheme is used for the final class label. To improve
the generalization capability of DNN models, the work [263]
also proposed two fast DA techniques for high-quality data
syncretization. A similar PCA-based online DA strategy is pro-
posed in [264], which also synthesizes new instances during the
inference, instead of training.

B. Semi-Supervised/Unsupervised Learning

SSL approaches learn data distribution by jointly exploiting
both labeled and unlabeled data. These techniques expand the
training data by utilizing unlabeled samples along with labeled
ones in order to construct a relationship between feature space
and class labels. Several SSL-based HSIC frameworks have been
proposed in the literature that can mainly be categorized as
follows: i) Cotraining, ii) self-training, iii) GANs, iv) graph-
based SSL models, and v) semi-supervised SVM. A recent
comprehensive survey on these SSL techniques can be found
in [265]. Moreover, another in-depth survey of SSL approaches
is also presented in [266].

The SSL-based HSIC techniques are briefly summarized in
[267], where authors also made a detailed comparison of these
methods. The method presented in [251] used pseudo or cluster-
labeled samples to pretrain a CRNN for HSIC and small-sized
labeled data is used to fine-tune the network. Similarly, Kang
et al. [155] proposed a semi-supervised HSIC framework that
exploits PCA and extended morphological attribute profiles to
extract pseudo-labeled samples which are fed to a CNN-based
deep feature fusion network.

The work [268] proposed a dual strategy cotraining approach
based on spectral and spatial features of HSI. Similarly, Zhou
et al. [269] separately pretrained two SAEs, one using spectral
and the other using spatial features of HSI, and fine-tuning is
achieved via a cotraining approach. Li et al. [270] proposed

Fig. 13. A general architecture of generative adversarial network (GAN).

a region information-based self-training approach to enhance
the training data. A graph-based self-training framework was
developed in [271], where initial sampling is achieved through
subtractive clustering. Recently, Wu et al. [156] improved the
HSIC performance by pseudo-labeling the unlabeled samples
through a clustering-based self-training mechanism and regu-
lating the self-training by employing spatial constraints.

C. Generative Adversarial Network

GAN proposed by Goodfellow et al. [272] is composed of
two neural networks, one is known as a generator and the
other is known as discriminator (Fig. 13). GANs can learn to
replicate the samples by exploiting the data distribution details.
The work [273] proposed a spectral feature-based GAN for
SSL-based HSIC.

Similarly, He et al. [274] proposed a GAN-based spectral–
spatial HSIC framework. Zhu et al. [275] developed CNN-based
1-D-GAN and 3-D-GAN architectures to enhance the classifi-
cation performance. A 1-D customized GAN is used to generate
the spectral features [276], which is further used by CNN for
FE, and then majority voting is performed HSIC. Very recently,
Feng et al. [277] introduced a spatial–spectral multiclass GAN
(MSGAN) which utilizes two generators to produce spatial
and spectral information with the help of multiple adversarial
objectives. To address the data imbalance problem for HSIC,
Zhong et al. [278] proposed a new semi-supervised model which
combines GAN with conditional random fields.

Similarly, Wang et al. [279] investigated a Caps-TripleGAN
model, which effectively generates new samples using a 1-D
structure Triple GAN (TripleGAN) and classifying the gener-
ated HSI samples using the capsule network (CapsNet). The
work [280] proposed to utilize a 3-D-CNN-based generator
network and a 3-D deep residual network-based discrimina-
tor network for HSIC. To learn high-level contextual features,
combination of both capsule network and convolutional LSTM
(ConvLSTM)-based discriminator model has been proposed in
[281] for HSIC.

The work [282] proposed to address the scarcity of training
examples by utilizing a GAN model where the performance of
the discriminator is further improved by an auxiliary classifier
to produce more structurally coherent virtual training samples.
Besides this, to enhance the model performance, Roy et al. [283]
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proposed a generative adversarial minority oversampling-based
technique for addressing the long-standing problem of class-
wise data imbalanced imposed by HSIC.

D. Transfer Learning

Transfer learning (TL) enhances the performance of a model
by using prior knowledge of a relevant primary task to perform
a secondary task. In other words, information extracted from
the relevant source domain is transferred to the target domain
to learn unseen/unlabeled data. Therefore, TL can be effectively
employed in domains with insufficient or no training data. Based
on the availability of labeled training instances, TL frameworks
can further be categorized as supervised or unsupervised TL.
Generally, both source and target domains are assumed to be re-
lated but not exactly similar. However, they may follow different
distributions as in the case of HSIC where categories of interest
are the same but data in two domains may vary due to different
acquisition circumstances.

In DNN-based HSIC, the model learns features in a hierarchi-
cal manner, where lower layers usually extract generic features,
when trained on various images. Therefore, the features learned
by these layers can be transferred to learn a new classifier for
the target dataset. For instance, Yang et al. [284] pretrained to a
two-branch spectral–spatial CNN model with an ample amount
of training data from other HSIs and then applied the lower
layers of the pretrained model to the target network for the robust
classification of target HSI. To learn the target-specific features,
higher layers of the target network are randomly initialized and
the whole network is fine-tuned by utilizing limited labeled
instances of target HSI. Similarly, Windrim et al. [285] proposed
a suitable method to pretrain and fine-tune a CNN network to
utilize it for the classification of new HSIs. The study [286]
combined DA and TL approaches to combat the shortage of
training data in order to improve HSIC performance.

As discussed before, data in source and target domain may
vary in many aspects; for instance, in the case of HSIs, the dimen-
sions of two HSIs may vary due to the acquisition from different
sensors. Handling such cross-domain variations and transferring
the knowledge between them is known as heterogeneous TL (a
detailed survey of such methods can be found in [287]). In HSIC
literature, several works have been proposed to bridge the gap
for transferring the knowledge between two HSIs, with varying
dimensions and/or distributions.

For example, Lin et al. [288] proposed an effective het-
erogeneous TL-based HSIC framework that works well with
both homogeneous and heterogeneous HSIs, and Li et al. [289]
used an iterative reweighting mechanism-based heterogeneous
TL for HSIC. Similarly, a recent work [290] proposed a band
selection-based TL approach to pretrain a CNN, which retains
the same number of dimensions for various HSIs. Further-
more, Lin et al. [291] proposed an unsupervised TL technique
to classify completely unknown target HSI and de Lima and
Marfurt [292] demonstrate that the networks trained on natural
images can enhance the performance of TL for remote sensing
data classification as compared to the networks trained from
scratch using smaller HSI data.

Fig. 14. A general overview of active learning.

E. Active Learning

AL iteratively enhances the predictive performance of a clas-
sifier by actively increasing the size of training data, for each
training iteration, by utilizing an unlabeled pool of samples.
In each iteration, AL enhances the training dataset by actively
selecting the most valuable instances from the pool of unlabeled
data and an oracle (human- or machine-based) assigns the true
class labels to these instances. Finally, these useful instances
are added to the existing training dataset and the classifier is
retrained on this new training dataset. The process continues
until a stopping criterion, that may be the size of the training
dataset, the number of iterations, or the desired accuracy score,
is achieved. A general framework of AL is illustrated in Fig. 14.

The selection of the most useful/effective samples is made in
such a way that the samples should be informative and represen-
tative of the overall input distribution in order to improve accu-
racy. Based on the criteria of adding new instances to the training
set, AL frameworks can be designated as either stream-based or
pool-based. In stream-based selection, one instance at a time is
drawn from an actual set of unlabeled samples and the model
decides whether to label it or not based on its usefulness. While
in pool-based strategy, samples are queried from a pool/subset of
unlabeled data based on ranking scores computed from various
measures to evaluate the sample’s usefulness.

The work [293] found that streamed-based selection gives
poorer learning rates as compared to pool-based selection as the
former tends to query extra instances. In pool-based selection,
it is important to incorporate diversity in the pool of samples,
in order to avoid redundancy within the pool of samples. Gen-
erally, the following three aspects are focused on while select-
ing/querying the most valuable samples: heterogeneity behavior,
model’s performance, and representativeness of samples. A brief
introduction of these sampling approaches is given below.

1) Heterogeneity-Based Selection: These approaches select
the samples that are more heterogeneous to the already seen
instances with respect to model diversity, classification uncer-
tainty, and contention between a committee of various classifiers.
Uncertainty sampling, expected model change, and query-by-
committee are examples of heterogeneity-based models.
� Uncertainty Sampling: In this approach, the classifier iter-

atively tries to query the label of those samples for which it
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is most uncertain while predicting the label. The selection
of new instances is based on ranking scores against a
specified threshold and the instances with scores closest to
that threshold are queried for labels. One simple example
of such a scheme could be implementing the probabilistic
classifier on a sample in a scenario of binary classification
and querying its label if the predicted class probability is
close to 0.5.

� Query-by-Committee: Such heterogeneity-based app-
roaches perform the sampling process based on the dis-
similarities in the predictions of various classifiers trained
on the same set of labeled samples. A committee of various
classifiers trained on the same set of training data is used
to predict the class labels of unlabeled samples, and the
samples for which classifiers differ more are selected for
querying labels. The committee of different classifiers can
either be built by using ensemble learning algorithms like
Bagging and Boosting [294] or by changing the model
parameters [295]. Generally, a less number of diverse
classifiers is adequate for constructing a committee [294],
[296].

� Expected Model Change: Such a heterogeneity-based ap-
proach chooses the instances which result in a significant
change from the current model in terms of the gradient of
the objective function. Such techniques attempt to query
the label for those instances that are considerably different
from the current model. These sampling techniques only
fit the models which follow gradient-based training proce-
dures/optimization.

2) Performance-Based Selection: Such methods consider
the effect of adding queried samples to the model performance.
They try to optimize the performance of the model by reducing
variance and error. There are two types of performance-based
sampling.
� Expected Error Reduction: This approach is interrelated to

uncertainty sampling in such a way that uncertainty mea-
sures maximize the label uncertainty of the sample to be
queried for the label while expected error reduction reduces
the label uncertainty of the queried sample. Referring to
the already discussed example of the binary classification
problem, the expected error reduction approach would
choose the samples with a probability far away from 0.5
in order to reduce the error rate. Such techniques are also
known as the greatest certainty models [295].

� Expected Variance Reduction: Reducing the variance of
the model is guaranteed to reduce future generalization
error [297]. Therefore, expected variance reduction tech-
niques attempt to indirectly reduce the generalization error
by minimizing the model variance. Such approaches query
the instances that result in the lowest model variance.
The Fisher information ratio is a well-known variance
minimization framework.

3) Representativeness-Based Selection: Heterogeneity-
based models are prone to include outlier and controversial
samples but performance-based approaches implicitly avoid
such samples by estimating future errors. Representative

sampling tends to query such instances that are representative
of the overall input distribution; hence, avoid outliers and
unrepresentative samples. These approaches weigh the dense
input region to a higher degree while the querying process.
Density-weighted techniques like information density are ex-
amples of representativeness sampling approaches that consider
the representativeness of samples along with heterogeneity
behavior, and are also known as hybrid models [295].

Recently, AL has been intensively utilized in HSIC. Liu
et al. [298] proposed a feature-driven AL framework to define
a well-constructed feature space for HSIC. Zhang et al. [299]
proposed a RF-based semi-supervised AL method that ex-
ploits spectral–spatial features to define a query function to
select the most informative samples as target candidates for the
training set.

Spatial information has been intensively exploited in many
AL-based HSIC. For instance, Guo et al. [300] presented an
AL framework that splices together the spectral and spatial
features of superpixels. Similarly, Xue et al. [301] considered the
neighborhood and superpixel information to enhance the uncer-
tainty of queried samples. In recent work, Bhardwaj et al. [302]
exploited the attribute profiles to incorporate spatial information
in an AL-based HSIC framework.

Batch-mode AL frameworks have been widely employed
to accelerate the learning process. Such approaches select a
batch of samples, in each iteration, to be queried for a label.
Therefore, the diversity of the samples is extremely critical in
batch mode AL techniques in order to avoid redundancy. A mul-
ticriteria batch-mode AL method proposed by Patra et al. [303]
defines a novel query function based on diversity, uncertainty,
and cluster assumption measures. These criteria are defined by
exploiting the properties of KNN, SVM, and K-means clus-
tering, respectively, and finally, genetic algorithms are used to
choose the batch of most effective samples. Similarly, Zhang
and Crawford [304] proposed a regularized multimetric batch-
mode AL framework for HSIC that exploits various features
of HSI.

A multiview AL (MVAL) framework was proposed in [305]
that analyzes the object from various views and measures the in-
formativeness of the sample through multiview intensity-based
query criteria. Similarly, Pradhan et al. [306] also exploited the
concept of multiview learning using the Fisher discriminant ratio
to generate multiple views. In another work, Zhang et al. [307]
proposed a novel adaptive MVAL framework for HSIC, which
jointly exploits the spatial and spectral features in each view.
Recently, Li et al. [308] proposed an MVAL technique that
utilizes pixel-level, subpixel-level, and superpixel-level details
to generate multiple views for HSIC. Moreover, the proposed
method exploits joint posterior probability estimation and dis-
similarities among multiple views to query the representative
samples.

In the HSIC literature, several works have combined the AL
and DNN. For instance, Sun et al. [309] joined AE with AL
technique and Liu et al. [310] proposed a DBN-based AL frame-
work for HSIC. Similarly, Haut et al. [311] coupled Bayesian
CNN with AL paradigm for spectral–spatial HSIC. Recently,
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Rochac et al. [261] proposed a CNN-based AL framework to
better exploit the unlabeled samples for HSIC.

Many works integrated AL with TL for HSIC. For example,
Lin et al. [312] proposed an AL-based TL framework that
extracts the salient samples and exploits high-level features to
correlate the source and target domain data. Another work [313]
proposed a stacked sparse AE-based active TL technique that
jointly utilizes both spectral and spatial features for HSIC. An-
other work [314] combined domain adaptation and AL methods
based on multiple kernels for HSIC.

AL-based HSIC offers some sophisticated frameworks to
enhance the generalization capabilities of models. For instance,
Ahmad et al. [35] proposed a fuzziness-based AL method to
improve the generalization performance of discriminative and
generative classifiers. The method computes the fuzziness-based
distance of each instance and estimated class boundary, and
the instances having greater fuzziness values and smaller dis-
tances from class boundaries are selected to be the candidates
for the training set. Recently, Ahmad et al. [315] proposed a
nonrandomized spectral–spatial AL framework for multiclass
HSIC that combines the spatial prior fuzziness approach with
MLR via a splitting and augmented Lagrangian classifier. The
authors also made a comprehensive comparison of the proposed
framework with state-of-the-art sample selection methods along
with diverse classifiers.

XI. EXPERIMENTAL EVALUATION

The most research-oriented works published in the literature
present a comprehensive experimental evaluation to highlight
the pros and cons of the work/s proposed. However, to some
extent, these works may have chosen different experimental
settings; for instance, training, validation, and test samples may
have the same number or percentage but the samples may be
different as these samples are normally chosen randomly. There-
fore, to make a fair comparison among different works proposed
in the literature, one must need to have the same experimental
settings.

These experimental settings include the same samples (geo-
graphical locations should remain the same for all chosen models
no the different ones) and the number of samples should have
been selected for each round of training in the cross-validation
process. Normally, these samples have been chosen randomly,
and thus high likely, they may be different for different models
if the models are executed at different times.

The other issue with most of the literature proposed in recent
years is overlapping between training/test samples, i.e., train-
ing/validation samples have been randomly selected (including
or excluding the above point) for training and validation; how-
ever, the entire dataset has been passed at a testing phase, which
leads to a highly biased model (as the training samples have
already been seen by the model) and produces high accuracy.
Thus, in this work, the training/test samples are though chosen
randomly (because all the models have been executed at the
same time); however, the above point has been taken seriously
and the intersection among these samples remains empty.

Fig. 15. Type associated with the land-cover classes and number of available
samples in the Indian Pines (IP) dataset. Moreover, spatially disjoint training
and test samples for the IP dataset are also presented.

Fig. 16. Type associated with the land-cover classes and number of available
samples in the Kennedy Space Center (KSC) dataset. Moreover, spatially disjoint
training and test samples for the KSC dataset are also presented.

A. Experimental Datasets

The Indian Pines (IP) dataset was gathered by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) [316] over the
Indian Pines test site in North-Western Indiana. It contains 224
spectral bands within a wavelength range of 400–2500 nm. The
24 null and corrupted bands have been removed. The spatial
size of the image is 145× 145 pixels, and it comprises 16
mutually exclusive vegetation classes. The spatial resolution
is 20 m per pixel (MPP). The detailed class description and
ground-truth maps are presented in Fig. 15(a). Moreover, the
disjoint training/test sample maps are presented in Fig. 15(b)
and (c).

The Kennedy Space Center (KSC) dataset was gathered in
1996 by AVIRIS [316], with wavelengths ranging from 400–
2500 nm. The image has 512× 614 pixels and 176 spectral
bands after removal of some low signal-to-noise ratio bands.
The KSC dataset comprises 5202 labeled samples, with a total
of 13 upland and wetland classes. The detailed class description
and ground truth maps are presented in Fig. 16(a). Moreover,
the disjoint training/test sample maps are presented in Fig. 16(b)
and (c).

The University of Pavia (UP) dataset was acquired by the
Reflective Optics System Imaging Spectrometer (ROSIS) sensor
during a flight campaign over the university campus at Pavia,
Northern Italy [317]. It consists of 610× 340 pixels with 103
spectral bands in the wavelength range from 430 to 860 nm
and 2.5 MPP. It comprises nine urban land-cover classes. The
detailed class description and ground-truth maps are presented
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Fig. 17. Type associated with the land-cover classes and number of available
samples in the Pavia University (PU) dataset. Moreover, spatially disjoint
training and test samples for the PU dataset are also presented.

Fig. 18. Type associated with the land-cover classes and number of available
samples in the Houston (UH) dataset.

in Fig. 17(a). Moreover, the disjoint training/test sample maps
are presented in Fig. 17(b) and (c).

The IEEE Geoscience and Remote Sensing Society published
the University of Houston (UH) dataset—collected by the Com-
pact Airborne Spectrographic Imager (CASI)—in 2013 [318],
as part of its data fusion contest. It is composed of 340× 1905
pixels with 144 spectral bands. The spatial resolution of this
dataset is 2.5 MPP with a wavelength ranging from 0.38 to 1.05
μm. Finally, the ground-truth comprises 15 different land-cover
classes. The detailed class description and ground-truth maps are
presented in Fig. 18(a) and disjoint training/test samples maps
are presented in Fig. 18(b) and (c).

The University of Trento (UT) dataset was gathered by the
using AISA eagle sensor over the rural regions in the south
of Trento, Italy. The HSI contains 63 spectral bands within a
wavelength of range 0.42 to 0.99μm [319]. The scene has 600×
166pixels, which comprises of six mutually exclusive vegetation
land-cover classes where the spectral resolution is 9.2 nm, and
the spatial resolution is 1 MPP. In addition, the available samples
are divided into disjoint training and test samples of six classes,
and Fig. 19 lists the information about the per class number of
samples for six different land-covers.

Fig. 19. Type associated with the land-cover classes and number of available
samples in the University of Trento (UT) dataset.

TABLE I
SUMMARY OF THE HSI DATASETS USED FOR EXPERIMENTAL EVALUATION

Table I provides a summary description of each dataset used in
the following experiments, whereas Table II enlists the numbers
of disjoint samples (i.e., train/test samples selected from each
class) used for all the experimental results. Note that the number
of train/test (i.e., percentage) samples and geographical loca-
tions of train/test samples remain the same for all experimental
methods (competing methods).

B. Experimental Results on Disjoint Train/Test Samples

To strengthen the ideas highlighted in this survey and to make
the claims valid, the main contributions made in recent years
include MLR, SVM, MLP, RNN, LSTM, GRU, CNN-1D, CNN-
2D, CNN-3D, and MorphCNN, which have been considered to
compare the experimental results. Some of the representative
works for each of the above methods are as follows: cloud im-
plementation of logistic regression for HSIC [320], [326], [327]
(MLR), classification of hyperspectral remote sensing images
with SVM [321], deep RNNs for HSIC [70], LSTM [322]; on
the properties of neural machine translation: encoder–decoder
approaches [323] (GRU), deep CNNs for HSIC (CNN1D) [217],
deep supervised learning for hyperspectral data classification
through CNNs (CNN2D) [324], 3-D DL approach for remote
sensing image classification (CNN3D)[325], morphological
CNNs for HSIC (MorphCNN) [195], and MLP [69].
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TABLE II
NUMBER OF DISJOINT TRAIN/TEST SAMPLES USED FOR THE EXPERIMENTAL RESULTS

TRS and TES stands for disjoint train and test samples, respectively.

TABLE III
CLASSIFICATION RESULTS OBTAINED BY RF [75], MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324],

CNN-3D [325], HYBRIDSN [212], AND MORPHCNN [195] ON THE DISJOINT TRAIN–TEST DATASET FOR THE PU SCENE

TABLE IV
CLASSIFICATION RESULTS OBTAINED BY RF [75], MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324],

CNN-3D [325], HYBRIDSN [212], AND MORPHCNN [195] ON THE DISJOINT TRAIN–TEST DATASET FOR THE IP SCENE

To some extent, all the aforesaid works are based on con-
volutional and recurrent networks and are evaluated on four
benchmark HSI datasets, namely IP, PU, KSC, Houston Scene,
and the University of Toronto. This survey only pays attention
to the robustness of all these models while considering the
small sample size of training data to classify HSI for joint
spatial–spectral classification.

Here we have enlisted the experimental results with detailed
discussion on the obtained results. The obtained accuracies for
disjoint training and test samples are shown in Tables III–VII
and Figs. 20–24. All the results shown in the Tables and Figures
are obtained using the 10-cross-validation process to compute
the overall, average, and kappa (κ) accuracy for comparison
purposes. For instance, let us assume the case of Pavia University
results, for this particular case; the work [195] has the highest
average, overall, and kappa (κ) accuracies which are 95.51%,

93.95%, and 93.95%, respectively, in comparison with the aver-
age, overall, and kappa (κ) accuracies for other comparative
works; 92.55%, 89.94%, 89.9% for [324], 89.43%, 86.25%,
85.61% for [325], 89.09%, 89.5%, 85.5% for [217], 82.05%,
87.43%, 76.89% for [69], 80.38%, 83.63%, 74.76% for [323],
80.38%, 84.06%, 74.32% for [322], 77.8%, 86.12%, 72.06%
for [321], 77.07%, 83.83%, 70.84% for [70], and 72.23%,
82.12%, 65.44% for [320]. Similar observations can be made
of the other experimental datasets. The higher accuracies are
emphasis in bold in Tables III–VIII.

The comparative methods mostly misclassify the samples
having similar spatial structures (i.e., Meadows and Bare Soil
classes for Pavia University dataset) as shown in Table III and
Fig. 20. Moreover, the overall accuracy for Grapes Untrained is
lower than the other classes due to the reasons mentioned above.
In a nutshell, one can say that higher accuracy can be achieved
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TABLE V
CLASSIFICATION RESULTS OBTAINED BY RF [75], MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324],

CNN-3D [325], HYBRIDSN [212], AND MORPHCNN [195] ON THE DISJOINT TRAIN–TEST DATASET FOR THE UH SCENE

TABLE VI
CLASSIFICATION RESULTS OBTAINED BY RF [75], MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324],

CNN-3D [325], HYBRIDSN [212], AND MORPHCNN [195] ON THE DISJOINT TRAIN-TEST DATASET FOR THE KSC SCENE

Fig. 20. Classification maps obtained by MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324], CNN-3D [325],
and MorphCNN [195] on the disjoint train–test dataset for the UP scene.
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Fig. 21. Classification Maps obtained by MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324], CNN-3D [325]
and MorphCNN [195] on the disjoint train-test dataset for the IP scene.

Fig. 22. Classification maps obtained by MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324], CNN-3D [325],
and MorphCNN [195] on the disjoint train–test dataset for the UH scene.

Fig. 23. Classification maps obtained by MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324], CNN-3D [325],
and MorphCNN [195] on the disjoint train–test dataset for the KSC scene.
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TABLE VII
CLASSIFICATION RESULTS OBTAINED BY RF [75], MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324],

CNN-3D [325], HYBRIDSN [212], AND MORPHCNN [195] ON THE DISJOINT TRAIN–TEST DATASET FOR THE UNIVERSITY OF TRENTO (UT) SCENE

Fig. 24. Classification Maps obtained by MLR [320], SVM [321], MLP [69], RNN [70], LSTM [322], GRU [323], CNN-1D [217], CNN-2D [324], CNN-3D [325],
and MorphCNN [195] on the disjoint train–test dataset for the UT scene.

by increasing the number of labeled training samples. Thus, a
higher number of labeled training samples can produce better
accuracies for all competing methods.

In general, the works [195], [324] outperformed (i.e., stable
results) than the other comparative methods, especially in the
case of less number of labeled training samples. The above leads
to conclude that these works are not sensitive to the number of
training samples. Moreover, as the number of training samples
increases, the accuracies also increase for these methods; how-
ever, other methods can work better with a higher number of
training samples as compared to these methods. A similar trend
has been observed with a higher number of training samples.
Thus, one can conclude that the works [195] and [324] can solve
the limited availability of training samples issues to some extent
while considering disjoint train/test samples.

Moreover, one can conclude that the AE-based models do
not perform well as compared to the other models, although
the unsupervised methods do not require the samples to be
labeled; if there are no constraints, these methods might learn
nothing. Moreover, AE has a symmetric architecture that leads
to the explosion of training parameters, which increases the
difficulty in training. The works [328] and [329] overcome the

abovementioned issues; however, the work [227] does not adopt
the greedy layer-wise approach, thus producing the worst results;
thus, there is room for improvement in such methods.

In a nutshell, the classification results based on CNN are way
better than AE-based methods while considering the limited
availability of labeled training samples. Although the AEs can
learn the internal structure of the unlabeled data, the final feature
representation might not have task-driven characteristics, which
might be the reason for not performing well as compared to the
supervised learning models. Moreover, AL and/or SL takes the
benefits from the selection of the most important samples for
training, which enables the model to focus more attention on
indistinguishable samples for HSIC, whereas few-shot learning
(FSL) benefits from the exploration of the relationship between
samples to find a discriminative decision boundary for HSIC.
TL makes good use of similarity among different HSIs to reduce
the quantity required for training and also reduces the number
of trainable parameters while boosting the models’ robustness.
According to the raw data (i.e., processing the HSI without
extracting/learning the features), DA generates more samples
which bring a diversity of samples.
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TABLE VIII
CLASSIFICATION RESULTS OBTAINED BY CNN-2D [324], CNN-3D [325], G2C-CONV2D [215], AND G2C-CONV3D [215] ON THE DISJOINT TRAIN–TEST FOR IP,

PU, TRENTO, UH, AND KSC DATASETS. THE HIGHER ACCURACIES ARE EMPHAZISED

C. Experiments With Convolutional Feature Extractors

This section revisited several deep hyperspectral FE pro-
cesses, i.e., a traditional convolutional process and a gradient
centralized convolutional process. In this hierarchy, we have
conducted several experiments using several state-of-the-art
works published in recent years. This experiment is specifically
designed to check the performance of the convolutional pro-
cess rather than testing the model’s performance. The baseline
models apply convolutional feature extractors which include a
2-D convolution neural network for HSIC (Conv2D) introduced
by Makantasis et al. [324] and the 3-D convolutional approach
for remote sensing image classification (Conv3D) proposed by
Hamida et al. [325] (a traditional 3-D convolutional feature
extractor), and, recently, Roy et al. [215] introduced gener-
alized gradient centralized 2-D convolution (G2C-Conv2D),
and generalized gradient centralized 3-D convolution (G2C-
Conv3D) [215] to extract the fine-grained spectral–spatial fea-
ture representation. The generalized gradient centralized 3-D
convolution (G2C-Conv3D) operation is designed by using a
weighted combination between the vanilla and gradient cen-
tralized 3-D convolutions (GC-Conv3D) to extract both the
intensity-level semantic information and gradient-level infor-
mation from the HSIs.

All the aforementioned convolutional feature extractors have
been evaluated on five different hyperspectral datasets, namely,
IP, PU, Trento, UH, and KSC datasets. The experimental results
are illustrated in Table VIII. From all these results, one can
easily conclude that the G2C-Conv3D convolutional process
outperformed Conv2D and Conv3D, followed by G2C-Conv2D.
A similar trend has been observed for all datasets except the
Trento dataset on which the 3-D convolutional process slightly
performed better as compared to the traditional Conv2D and
G2C-Conv2D, respectively. The accuracy difference is not that
high as compared to the G2C-Conv3D for other datasets. Most
importantly, the G2C-Conv3D convolution operation is simple
to implement and can easily be plugged into existing CNNs to
boost both the robustness and classification performance.

XII. CONCLUSION

The rich information contained in HSI data is a captivat-
ing factor that constitutes the utilization of HSI technology
in real-world applications. Moreover, advances in machine
learning methods strengthen the deployment potentials of such

technologies. In this article, we surveyed recent developments
of HSIC using state-of-the-art DNNs [for instance, AE, DBN,
RNN, CNN, TL, FSL, active/self learning (AL/SL), and DA] in
a variety of learning schemes (specifically, supervised, semi-
supervised, and unsupervised learning). In addition, we also
analyzed the strategies to overcome the challenges of limited
availability of training data like DA, FSL, TL, and AL. Accord-
ing to the methodologies discussed above, we select some of the
representative works to conduct the experiments on benchmark
HSI datasets.

Although the current HSIC techniques reflect a rapid, remark-
able, and sophistication of the task, further developments are still
required to improve the generalization capabilities. The main
issue of DNN-based HSIC is the lack of labeled data. HSI data
is infamous due to the limited availability of labeled data and
DNNs demand a sufficiently large amount of labeled training
data. Section X discussed some widely used strategies to combat
the aforesaid issue but significant improvements are still needed
to efficiently utilize limited available training data. One direction
to solve this problem could be to explore the integration of
various learning strategies discussed in Section X to cash in
the joint benefits. One more way is to exploit a few-shot or
K-shot learning approaches that can accurately predict the class
labels with only a few labeled samples. Moreover, there is a need
to focus on the joint exploitation of spectral–spatial features
of HSI to complement classification accuracies achieved from
the aforementioned HSIC frameworks. Another future potential
of HSIC is computationally efficient architectures. Therefore,
the issue of the high computational complexity of DNNs is of
paramount importance and it is crucial to implement parallel
HSIC architectures to speed up the processing of DNNs to meet
the computational stipulation of time-critical HSI applications.
In this direction, HPC platforms and specialized hardware mod-
ules like GPUs and FPGAs can be used to implement the parallel
HSIC frameworks. Hence, to assimilate the aforesaid aspects
in the development of a new HSIC framework is to appro-
priately utilize the limited training samples while considering
joint spectral–spatial features of HSI and maintaining the low
computational burden.
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