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Abstract— Due to the unique feature of the three-dimensional 

convolution neural network, it is used in image classification. For 
There are some problems such as noise, lack of labeled samples, 

the tendency to overfitting, a lack of extraction of spectral and 

spatial features, which has challenged the classification. Among 

the mentioned problems, the lack of experimental samples is the 

main problem that has been used to solve the methods in recent 
years. Among them, convolutional neural network-based 

algorithms have been proposed as a popular option for 

hyperspectral image analysis due to their ability to extract useful 

features and high performance. The traditional CNN-based 
methods mainly use the 2D-CNN for feature extraction, which 
makes the interband correlations of HSIs underutilized. The 3D-

CNN extracts the joint spectral–spatial information 

representation, but it depends on a more complex model. To 

address these issues, the report uses a 3D fast learning block 

(depthwise separable convolution block and a fast convolution 
block) followed by a 2D convolutional neural network was 

introduced to extract spectral-spatial features. Using a hybrid 

CNN reduces the complexity of the model compared to using 3D-

CNN alone and can also perform well against noise and a limited 

number of training samples. In addition, a series of optimization 
methods including batch normalization, dropout, exponential 

decay learning rate, and L2 regularization are adopted to alleviate 

the problem of overfitting and improve the classification results. 

To test the performance of this hybrid method, it is performed on 

the Salinas, University Pavia and Indian Pines datasets, and the 
results are compared with 2D-CNN and 3D-CNN deep learning 

models with the same number of layers.  

 
Keywords — convolutional neural network (CNN), deep 

learning, hyperspectral image (HSI) classification, spectral-spatial 

features. 

I. INTRODUCTION 

Information and data related to spectral images have been 

available since the late 1980s, showing the reflective 

wavelengths in the range of 400 to 2400 nm. These images are 

used for distance measurement studies in research fields such 

as agricultural, forestry and environmental monitoring and land 

surface mapping. Using the classification method, 

hyperspectral images can be used to the maximum in the future 

research [1]. Hyperspectral datasets have rich information both 

spatially and spectrally. However, spectral and spatial 

correlations make a lot of such information redundant. One can 

obtain efficient representations using techniques  such as band 

selection [2], multi-modal learning [3] dimensionality  

reduction [4]. Also, advanced methods and technologies in the 

field of machine learning have provided the conditions to 

benefit from hyperspectral image information in various fields 

such as natural language processing[5], medical connection 

prediction [6], remote sensing image processing [4–9], etc. In 

the early stages, traditional classification methods are based on 

spectral information, which generally includes two main  

elements: feature engineering and classifiers  [10]. The function 

of feature engineering is to obtain discriminative features or 

bands and reduce the dimension of HSIs. Two common 

methods in feature engineering are feature selection and feature 

extraction [11].  Feature extraction is aimed at changing high-

dimensional space data to low-dimension space data, so that the 

categories can be easily separated from each other. Typical 

methods of feature extraction include minimum noise fraction 

(MNF) [12], linear discriminant analysis (LDA) [13], principal 

component analysis (PCA) [14], independent component 

analysis (ICA) [11], and so on.  Whereas the function of feature 

selection is to retain the spectral information of the most 

representative bands from the raw HSIs and discard the bands 

that contribute less to the classification. Common methods of 

feature selection include Jeffries-Matusita distance [15], 

spectral angle mapper (SAM) [16], etc. Features generated by 

feature engineering are used as the input of the classifier. 

Representative classifiers include k-nearest neighbor (KNN) 

[17], random forest (RF) [18], support vector machine (SVM) 

[19], etc. However, the traditional classification methods  based 

on spectral information do not make full use of the spatial 

information of HSIs. Nevertheless, the traditional classification 

methods of HSIs, rely on hand-crafted features with limited  

representation ability, which cannot fit the classification task 

well. On the other hand, researchers have exploited spectral-

spatial contextual information and developed a variety of 

classification algorithms. These methods assume that 

neighboring pixels share similar spectral signatures and thus 

belong to the same landcover types. Based on this assumption, 

spectral-spatial feature extraction methods, such as Gabor 

filtering [20], wavelet transformation [21] are proposed to 

improve the discrimination of classes. 

Most recently, deep learning has emerged as the state-of-the-

art machine learning technique with great potential for HSI 

classification [22]. Instead of depending on shallow manually -

engineered features, deep learning techniques can automatically 

learn hierarchical features (from low-level to high-level) from 

raw input data. Such learned features have achieved tremendous 

success in many machine vision tasks. Nowadays, the existing  

classification methods based on the CNN framework provide 

rich solutions for HSI classification tasks [18-31]. In general, 

there are three categories of the convolution operation in the 
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existed CNN HSI classification frameworks including 1D 

CNN, 2D CNN, and 3D CNN respectively.  

The network architecture of 1D CNN is designed to use the 

pixel vector along the radiometric dimension as a training 

sample to extract deep feature, which is called spectral-based 

classification approach conceptually. In [23], it was the first 

time to employ CNN with multiple layers for HSI classification 

directly in the spectral domain. A novel RNN model [24] was 

proposed to effectively analyze hyperspectral pixels as 

sequential data to capture the intrinsic feature, which designed 

a new activation function to train the network without the risk 

of divergence. 

The 2D CNN model for HSI classification is called spatial-

based classification approaches tried to learn spatial features 

[20–22] by utilizing the similar approaches for traditional 

images with the colorful pattern of RGB, which brought out an 

inevitable drawback caused by the ignore the united spectral-

spatial attributes of the specific hypercube. In [27], Hao and 

Wang designed the SRCL model for HSI classification, which 

explored a super-resolution-aided way to construct a spatially 

enhanced image. In [26], a CNN-MRF model was proposed to 

integrate spectral and spatial information in a unified Bayesian 

framework by learning the posterior class distributions. Li and 

Xie [25] introduced a CNN model to reconstruct an enhanced 

image cube by bands selection with a new spatial feature-based 

strategy. 

Since the hyperspectral image is originally 3D hypercube 

with the spectral and spatial continuity, the HSI classification 

methods integrated both spectral and spatial information have 

gained more popularity [23-31]. Handling the hyperspectral 

CNN classification with 3D convolutions is a straightforward 

way, which is also called the spectral-spatial classification 

approach. In this way, 3D regions with joint spatial-spectral 

information can be processed simultaneously. Chen et al. [28] 

used several convolutional and pooling layers of 3D CNN for 

HSI classification. In 2017, a three-dimensional convolutional 

neural network (3D-CNN) was introduced for the classification 

of hyperspectral images [29]. The proposed HSI cube data 

method extracts spectral-spatial properties without relying on 

any preprocessing or post-processing. It also requires fewer 

parameters than other deep learning methods, which are lighter 

in model and easier to teach. This is the main motivating factor 

in the current work.  Feng and Yu [30] proposed a multiclass  

spatial-spectral GAN (MSGAN) method to utilize generators 

for the samples production and the discriminator for the joint 

spatial-spectral feature extraction. In [31], a semi-supervised 

3D convolutional neural network for the spectral-spatial HSIC 

is proposed by engaging adaptive dimensionality reduction 

(ADR) to deal with the problem of the curse of dimensionality.  

In [32] the authors propose a semi-supervised approach to 

exploit multimodal data for better inference. With GCNs, label 

information is allowed to flow from labeled nodes to unlabeled 

nodes. A novel version of GCN called miniGCNs is proposed, 

where regular patches of the original HSI are used for training 

the GCN model, yielding lower computation cost. Recently, a 

series of popular deep learning-based methods have been 

exploited for spatial-spectral classification. In [33],  Pauletti et 

al. proposed a deep and dense 3D-CNN for full use of HSIs  

information. In [34], the input data is fed to CNN in two 

different architectures, and several features are taught to better 

predict the class label for an HSI pixel. Roy et al. Proposed 

HybridSN, which extracts features using CNN 3D-2D layers 

[35]. In [36], a cascaded RNN model was designed to explore 

the redundant and complementary information of HSIs by 

utilizing two RNN layers. In [37], the multi-scale hierarchical 

recurrent neural networks (MHRNNs) was proven to be 

efficient in hyperspectral image classification, which learns the 

multi-scale local feature by 3D CNNs and learns the spatial 

dependency of non-adjacent image patches in the spatial 

domain by RNN. However, there are two main limitations  

revealed with the 3D convolution model. On one hand, with the 

increasing number of the 3D kernels, the complexity and time 

cost get higher, on the other hand, more training examples are 

needed to train a deeper 3D CNN model which is not practical 

as the public hyperspectral image datasets are rather small. 

The CNN model has an advantage over other learning models 

due to its high ability to identify spatial and spectral features 

and is a significant model in the field of HSI classification, but 

this model also has weaknesses, for example, during the process 

of gradient descent, it is easy to make the results converge to 

the local minimum, and the pooling layer will lose a lot of 

useful information, as it is known, the preprocessing stage plays 

a vitally important role in the accuracy of classification models, 

and PCA is known as a preprocessing method among HSI 

classification models and this preprocessing eliminates the non-

linear features of the image. the 2D CNN alone is not able to 

extract good discriminating feature maps from the spectral 

dimensions. Similarly, a deep 3D CNN is more computationally  

complex and this alone seems to perform worse for classes 

having similar textures over many spectral bands. The use of 

2D-CNN and 3D-CNN together leads to maximum accuracy so 

that they make full use of spectral as well as spatial feature 

maps. 

The proposed model presents the following characteristics 

which make it different from the models mentioned above: 

• It uses a 3D fast learning block which makes the model 

more robust and efficient by introducing 3D depthwise 

separable convolution block and the fast convolution 

block. 

• The network parameters are fewer compared to the 

existing methods which reduce the overfitting. 

• It uses many algorithms for optimization, including 

dropout, batch normalization, exponential decay learning 

rate, and L2 regularization, so as to make the network 

more robust and generalized. 

II. MATERIAL AND METHODS 

A. Convolutional Neural Networks 

Recently, the use of deep learning techniques in the 

classification process has received much attention. CNN is the 

same multilayer neural network that consists of different layers 

such as: convolution layer, pooling layer, and fully connected 

layer. The convolution operation is performed on the input data 

in the convolution layer as the primary layer of the CNN model. 

Convolution is a dot product operation between two matrices, 

namely receptive field and kernel (learnable parameters). 

Generally, the kernel is smaller than the size of the input data, 

and the kernel slides are located in the receptive field and the 

feature map will be created according to the input data and 
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available features. the pooling layer is effective in reducing the 

spatial dimension of the feature map. The fully connected layer, 

which consists of neurons and the nature of perceptron, is 

multilayered, and in which all neurons connected to every 

succeeding layer neurons, and the output features are used in 

the mapping. This layer is used to map features into the output. 

The individual neuron’s output for inputs x is calculated as: 

(1) 𝑧 = 𝑓(𝑤 ∗ 𝑧 + 𝑏)  
Here w is the filter weight, and b is biased. f (.) stands for the 

nonlinear activation applied on a weighted sum of input. 

(2) 𝑓(𝑥) = max (0. 𝑥) 

f (.) is a nonlinear function known as the activation function. In 

this section, the ReLU function is used [38]. This function, if 

the value of x is greater than zero, is the output of x, and if the 

value of x is less than or equal to zero, the output is zero. The 

main advantage of using the ReLU nonlinear function is that it 

has a fixed derivative for all inputs greater than zero. This fixed  

derivative accelerates network learning. The main purpose of 

layers is to extract useful features to be used in later layers to 

perform the classification process. But the 2D-CNN model 

consists of three main steps: patch extraction, feature 

extraction, and label identification. According to a 

hyperspectral image, we first extract a small patch with the 

center of each pixel as input. Then, an in-depth learning model 

is developed to acquire the feature maps of these patches. 

Finally, the label for each pixel is categorized based on the 

corresponding patch feature map. For all three models, we 

remove the pooling layers to preserve as much information as 

possible from a single pixel. The three-step processing of the 

2D-CNN model is shown below. Suppose a hyperspectral 

image is the size N×M×D, where N and M are the number of 

rows and columns in the image, and D represents the number of 

spectral bands. Our goal is to predict the label of each pixel of 

the image. the first step in processing the S×S×B patch 

extraction model is for each pixel. Specifically, each patch (e.g., 

spatial context) is built around a pixel, the central point of the 

patch. For pixels near the edge of the image, there may not be 

enough information to make a patch of the expected size. 

Accordingly, we provide a spatial background for these pixels 

by using a mirror padding operation. For the second stage of 

processing, each extracted patch with several channels is treated 

as an image separately. Thus, a deep CNN model with 2D 

convolution layers is applied to extract feature maps for 

patches. The 2D-CNN operation formula in each layer can be 

shown as follows: 

(3) 𝑧𝑥.𝑦𝑙.𝑟 = 𝑓(∑ ∑ ∑ 𝑤𝑖 .𝑗𝑙.𝑟.𝑚 ∗ 𝑧𝑥+𝑖.𝑦+𝑗𝑙−1.𝑚 + 𝑏𝑙.𝑟𝐽𝑙 −1
𝑗=0

𝐼𝑙 −1
𝑖=0𝑚 )  𝑙 represents the layer to be considered, 𝑟 is the number of 

feature maps in layer 𝑙, 𝑧𝑥,𝑦𝑙,𝑟  the output in position (x, y) is the 𝑟th feature map in layer 𝑖. 𝑏𝑙 ,𝑟  is the network bias. f (.) indicates 

the layer activation function. The 𝑚 index is a set of feature 

maps of layer (𝑙 − 1), which are the inputs of layer 𝑙. 𝑤𝑖 ,𝑗𝑙,𝑟 ,𝑚
 is 

a value in position (i, j) where the convolution kernel is related 

to the 𝑟th feature map in the 𝑙-th layer, 𝐼𝑙 and 𝐽𝑙 are the row and 

column sizes of this kernel. As shown in Fig. 1, the operational 

details of the 3D-CNN model are quite similar to those of the 

2D-CNN model. The main difference is that the 3D-CNN 

model has an additional step. In this step, we arrange the hyper-

spectral bands D in ascending order. By doing this, images of 

similar spectral bands are arranged in sequence, maintaining  

their correlations in a spectral context. The patch extraction step 

and the label recognition step of these two models are quite 

similar. For the feature extraction step, a 3D convolution 

operator is applied to the 3D-CNN model instead of the 2D 

convolution operator. The formula for 3D convolution 

operation is as follows: 

(4) 
𝑧𝑥.𝑦.𝑑𝑙.𝑟 = 𝑓(∑ ∑ ∑ ∑ 𝑤𝑖.𝑗.𝑘𝑙.𝑟.𝑚 ∗ 𝑧𝑥+𝑖.𝑦+𝑗.𝑑+𝑘(𝑙−1).𝑚𝐾𝑙 −1

𝑘=0
𝐽𝑙 −1
𝑗=0

𝐼𝑙 −1
𝑖=0𝑚 + 𝑏𝑙.𝑟)  

where 𝐾𝑙  refers to the size of the 3D kernel along the spectral 

dimension and 𝑘 is the number of kernel in layer 𝑙. 𝑤𝑖,𝑗𝑙,𝑟,𝑚
 is a 

value in position (i, j, k) whose convolution kernel is related to 

the 𝑟th feature map in the lth layer. The ReLu function is again 

shown as the activation function f. 

The computational cost of a 3D convolution operation is  

(5) 𝑘 × 𝑘 × 𝑘 × 𝑐𝐺 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 

Where 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 × 𝑐𝐹  and 𝑙𝐺 × 𝑤𝐺 × ℎ𝐺 × 𝑐𝐺   are the input 

and output size, respectively, with l, w and h representing the 

length, width and height; and 𝑐𝐹 , 𝑐𝐺  are the number of channels 

before and after the convolution. The kernel k here is of the 

following size:  𝑘 × 𝑘 × 𝑘 × 𝑐𝐺 × 𝑐𝐹 , where k is the filter side 

length. 

 
Fig. 1. (a) 2D convolution operation, as per equation (3). (b) 3D 

convolution operation as per equation (4). 

 

To classify HSI, the three-dimensional convolution operation 

simultaneously analyzes the input data in both spatial and 

spectral dimensions, and the 2D complexity operation includes 

the input data in the spatial dimension. 3D convolution can store 

the spectral information of the input HSI data, and this is 

especially important for hyperspectral images containing rich  

spectral information, whereas if two-dimensional convolution 

operations are applied to the HSI, significant spectral 

information from They disappear, but for 2D convolution 

operation, it is 2D output, regardless of whether it is applied to 

2D or 3D data. 

B. Proposed Neural Network model 

For HSI analysis, researchers demonstrated that the 

redundancy from inter band correlation is very high. The data 

structure in the spectral dimension can be reduced without the 

significant loss of useful information for subsequent utilization. 

However, an HSI contains hundreds of spectral bands, which 

increases the pressure on the network model to process data and 
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also consumes a lot of computing resources. In recent years, 

many studies on HSI classification use PCA for data 

preprocessing [33-34]. PCA is the most commonly used linear 

dimensionality reduction method. Its goal is mapping high-

dimensional data to corresponding low-dimensional data 

through some linear projection that is, maximizing the variance. 

This method reduces the data dimension while retaining more 

original data features. The core idea of PCA is calculating the 

similarity between different data features, extracting the main  

features according to the strength of the correlation, and 

completing the information fusion [41]. And hence, PCA is 

applied to the original HSI for dimensionality reduction in the 

proposed method. 

As in the original paper [42], the 3D depthwise separable 

convolution is a factorized convolutions which divides the 

normal 3D convolution into a 3D depthwise convolution and a 

1×1×1 convolution called 3D pointwise convolution to 

combine the output of the 3D depthwise convolution later. This 

process significantly reduces the computation and the model 

sizes. Equation (4) becomes 

(6) 𝑣𝑥 .𝑦.𝑑𝑙.𝑟 = 𝑓 (∑ ∑ 𝑤𝑖.𝑗.𝑠𝑙.ℎ ∗ 𝑧𝑥+𝑖.  𝑦+𝑗..𝑑+𝑠(𝑙−1).ℎ + 𝑏𝑙.𝑟𝐽𝑙 −1
𝑗=0

𝐼𝑙 −1
𝑖=0 )  

 

(7) 𝑠 = 𝑐𝑒𝑖𝑙 ( 𝑟𝑚). ℎ = 𝑟 − 𝑠 × 𝑚 − 1  
  

(8) 
𝑧𝑥.𝑦.𝑑𝑙.𝑟 = 𝑓 (∑ 𝑤𝑙.𝑟.𝑚 ∗ 𝑣𝑥 .𝑦.𝑑𝑙.𝑚 + 𝑏𝑙.𝑟𝑚 )  

The computational cost of such decomposition is  

(9) 
𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 + 𝑐𝐹 × 𝑐𝐺 × 𝑙𝐹× 𝑤𝐹 × ℎ𝐹 

where  𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 × 𝑐𝐹  and  𝑙𝐺 × 𝑤𝐺 × ℎ𝐺 × 𝑐𝐺   are the 

input and output size, respectively, with l, w and h representing 

the length, width and height; and 𝑐𝐹 , 𝑐𝐺  are the number of 

channels before and after the convolution. The kernel K here is 

of size  𝑘 × 𝑘 × 𝑘 × 𝑐𝐺 × 𝑐𝐹 , where k is the filter side length. 

Compared with the standard 3D CNN, the computational cost 

becomes: 

(10) 
𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 + 𝑐𝐹 × 𝑐𝐺 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹𝑘 × 𝑘 × 𝑘 × 𝑐𝐺 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹  

 

(11) = 𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 + 𝑐𝐹 × 𝑐𝐺𝑘 × 𝑘 × 𝑘 × 𝑐𝐺 × 𝑐𝐹 = 1𝑐𝐺 + 1𝑘3 

 

The amount of calculation is reduced in Equation (11) by about 

eight to nine times. 

The model proposed in this study combines the 3D CNN and 

2D CNN to extract good spectral and spatial features maps from 

the HSI at a cheap cost. The proposed model uses 3D stacked 

convolution layers (a Conv3D – fast learning block) followed  

by a reducing dimension block which consist of a Conv3D + 

reshaping operation + a Conv3D, and then the output features 

maps from that block is then reshaped and fed to a Conv2D to 

learn more spatial features. The output of the Conv2D layer is 

flattened and passed to the first fully connected layer in which 

a dropout layer was added before the last fully connected layer. 

The 3D fast learning CNN block of the proposed model is with  

much less computational cost and faster than the normal 3D 

CNN block because of the presence of depthwise separable 

convolution and the fast convolution block in the fast learning 

block. The architecture of the proposed method is shown in 

Figure 2. 

This report briefly discusses the proposed convolutional 

neural network architecture. You can see the workflow in Fig. 

1. Cubes of spectral and spatial data are denoted by 𝐼 ∈𝑅𝑁×𝑀×𝐷, so that I is the main image, N is the number of rows, 

M is the number of columns, and D is the number of spectral 

bands in the I image. Each HSI pixel in I has a vector labeled 𝑌 =  (𝑦1 , 𝑦2 , … , 𝑦𝐶 ) ∈ 𝑅(𝑁×𝑀)×𝐶, where C represents the 

number of images classes. In a hyperspectral image, there is a 

high correlation between neighboring bands. Reducing the 

dimension is therefore a widespread preprocessing step 

required for effective classification. To eliminate spectral band 

redundancy, we apply PCA to the primary data of the I spectral 

images. In addition to reducing the number of spectral bands 

from D to B, PCA also preserves spatial dimensions (N×M). 𝑋 ∈ ℛ 𝑁×𝑀×𝐵 the hyperspectral image reduced by PCA. 

 

 
Fig. 2. Hyperspectral image classification architecture using hybrid convolutional neural network. 
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To use image classification techniques, hyperspectral data 

cubes for input are divided into small 3D patches 𝑃 ∈ 𝑅𝑆×𝑆×𝐵 

whose class labels are defined by a central pixel. The number 

of input data patches is initially the same as the size of the 

correct N × M labels. But in the correct labels there is a 

background that after removing the background from the 

correct labels and patches, we enter the data as input to the 

network. The convolution layer consists of a sliding kernel on 

the input image. This kernel contains weights that change 

during the training process to extract important feature maps 

from the input. These features are used during the classification 

process. Patches of hyperspectral data are entered into the 

network for training, after passing through different layers of 

the network, ie applying weights and nonlinear functions to the 

data, a result is obtained at the end of the network. Result 𝑧 the 

output of the network will be different from the desired result 

we expect 𝑦. The difference between the network output results 

and the desired result of these two outputs is a function of the 

network error or cost. In neural networks, certain functions are 

usually used. In this report, the cross -entropy error function and 

mini-batch update are used, which is more suitable for 

calculating the probabilities of the neural network, and the 

following relation is obtained: 

(12) 𝐿0(𝑦. 𝑧) = − 1𝑚 ∑[𝑦𝑖 log𝑧𝑖]𝑚
𝑖=1  

Where 𝑦𝑖  is the real label and 𝑧𝑖 is the output of our model, and 

m is the number of batches. After calculating the error by the 

cost function, we must use the obtained error to modify the 

network parameters, called the optimization process. The 

optimization process is the correction and updating of weights 

to achieve the minimum error. The gradient descent method is 

one of the optimization methods used. Another method used for 

this purpose is the Adam technique (adaptive motion 

estimation) to solve non-convex problems [43]. In this 

particular method, we consider a different learning rate for each 

weight amount in the network from the first and second moment 

of the gradient. After defining the cost function and the 

optimization function, we come to the central part of network 

training, weight correction. Weight correction in neural 

networks is usually done by a method called backpropagation. 

The chain rule is used to correct the weight, and the backward  

propagation is done by calculating the output error and 

returning layer by layer from the output to the input. 

In this method, we have two round trips. In the path, the input 

enters the network and the parameters are applied to it, and 

output is created and the error is calculated. In the return path, 

the obtained error is used to correct the parameters, but the 

parameters are updated from the end to the beginning; That is, 

it starts from the last layer of the network and corrects the 

parameters, and then goes back one layer, and the same process 

continues until the first layer of the network, which is the return 

path. How the parameters are corrected by the error function is 

determined by the optimization function. With the new 

parameters obtained, we calculate the output, and the new 

output will be a new error. We repeat this round trip process 

until we get the least error. Since HSI data is a limited training 

sample, this problem can be somewhat improved with Dropout 

and network overfitting can be prevented [44]. Dropout 

technique in practice, neurons are removed with a probability 

of p or conserved with a chance of 1-p. In each iteration of the 

process, it randomly selects some neurons and removes them 

from the network. In general, the dropout rate between 0.2 and 

0.5 can be the right choice, which is set at 0.4 in this report. 

Finally, the classification is done us ing a possible softmax 

model. The softmax function takes a next C vector of real 

numbers such as Z as input and gives values between [0,1] as 

output whose sum of its components is 1. 

(13) 𝑠(𝑍)𝑖 = 𝑒𝑍𝑖∑ 𝑒 𝑍𝑗𝐶𝑗=1            𝐹𝑜𝑟 𝑖 = 1.2. … . 𝐶 𝑍𝑖 represents the property extracted with the trained model and 

C represents the number of classes. Finally, by maximizing the 

argument, the class label can be predicted. 

 
Fig. 3. A simple demonstration to better understand the concep t of 

backward diffusion and to show the relationship between the output of 
the layers and the weights. 

 

CNN-based HSI classification methods mainly include 2D 

CNN and 3D CNN. Roy et al [35] used three 3D CNN and a 2D 

CNN to build the network. Hamida et al [45] mainly utilized 3D 

CNN in the network. Combining 2D CNN with 3D CNN can 

improve the performance to a certain extent, but selecting the 

appropriate number of network layers is not easy to control. 

The proposed model consists of seven layers. The first to 

third layers, a 3D convolution (C1-C3) is used to extract  

spectral-spatial features, followed by a 2D (C4-C5) convolution 

in the fourth and fifth layers , and two fully connected layer (F1-

F2) in the end of the model. Each neuron in a fully connected 

layer connects to all the neurons in the previous layer and sends 

the output value to the classifier. Though the pooling layer 

(such as the max-pooling layer and the average pooling layer) 

can reduce the dimensions of feature maps and simplify  

calculations because the spatial resolution in the image is 

reduced, the pooling layer is not applied to preserve more 

information. In the first layer, the dimensions of the 3D 

convolution kernel are 8×3×3×3×1 (for example, in Fig. 2, 𝐾11 = 3, 𝐾21 = 3, 𝐾31 = 3), 16×3×3×3×8 (for example, in Fig. 2, 𝐾12 = 3, 𝐾22 = 3, 𝐾33 = 3), 32×3×3×3×16 (for example, in Fig. 

2, 𝐾13 = 3, 𝐾23 = 3, 𝐾33 = 3), in the subsequent first, second, 

and third convolution layers, respectively, where 32×3×3×3×16 

means 32 3D-kernels of dimension 3×3×3 (i.e., two spatial and 

one spectral dimension) for all sixteen3-D input feature maps. 

the output of the first layer contains eight feature maps that are 

used as the input is used in the next layer. In the fourth layer, to 

perform 2D convolution operations, its information needs to be 

a three-dimensional image, by resizing, we prepare the input 

size for 2D convolution operations (in Table I, you can see the 
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deformation performed). After preparing the input of the fourth 
layer, the 2D convolution operation, whose kernel dimensions 

are 3×3 (for example, 𝐾12 = 3, 𝐾22 = 3 in Fig. 2), is applied to 

the input of the forth layer and 64 feature maps for the output 
of the next layer, and 288 is the number of 2D input feature 

maps. The next layer, the dimension of depthwise 2D 

convolution kernel is 128×3×3×64 (i.e., 𝐾15 = 3 and 𝐾25 = 3in 

Fig. 1). 

Finally, by flattening the production of the fifth layer, all the 

neurons are connected to the neurons of the next layer, which is 

considered to be 256. A summary of the proposed model in 

terms of layer type, output map dimensions, and the number of 

parameters is given in Table I. It can be seen that the largest 

number of parameters is in the first dense layer (fully  

connected). The number of neurons in the last layer of Dense is 

16, which is the same number of classes in the Salinas dataset. 

Therefore, the total number of parameters in the proposed 

model depends on the number of classes in a data set. The total 

number of trainable weight parameters in the proposed model 

for the Salinas dataset is 1,033,728. All weights are initially  

initialized randomly; they are then taught using the 

backpropagation algorithm with the Adam optimizer and 

Softmax classification. We train the network for 100 epochs of 

mini-batches with 256 and a learning rate of 0.001 without data 

augmentation. 

 
TABLE I. SUMMARY OF CNN HYBRID PROPOSED M ODEL FOR SA DATA. 

# Parameter Output Shape Layer (type) 

0 (15, 15, 15, 1) InputLayer_1 

224 (13, 13, 13, 8) Conv3D_1 

32 (13, 13, 13, 8) BatchNormalization_1 
0 (13, 13, 13, 8) Activation 

448 (11, 11, 11, 16) DepthwiseConv3D 

64 (11, 11, 11, 16) BatchNormalization_2 

0 (11, 11, 11, 16) Activation 

13856 (9, 9, 9, 32) Conv3D_2 
128 (9, 9, 9, 32) BatchNormalization_3 

0 (9, 9, 9, 32) Activation 

0 (9, 9, 288) Reshape_1 

165952 (7,7, 64) Conv2D_1 

256 (7, 7, 64) BatchNormalization_4 
0 (7,7, 64) Activation 

1280 (5,5, 128) DepthwiseConv2D 

256 (5, 5, 128) BatchNormalization_5 

0 (5,5, 128) Activation 

0 (3200) Flatten_1 
819200 (256) Dense_1 

0 (256)  Dropout_1 

32768 (128) Dense_2 

0 (128)  Dropout_2 

2048 (16) Dense_3 

Total Trainable Parameters : 1,033,728 

 

C. Optimization Methods 

In the field of the hyperspectral classification, the large amount 

of noise in the HSIs, the limited number of labeled samples, the 

complex structure of the model, and the numerous parameters 

of 3-D CNN all lead to the phenomenon of overfitting. To 

prevent overfitting and improve the accuracy, a series of 

optimization methods including batch normalization, dropout, 

exponential decay learning rate, and L2 regularization are 

adopted. 

1) Batch Normalization 

To alleviate the problem of overfitting and accelerate the 

convergence of the network, the optimization method of BN is 

used in the paper. Suppose the input of BN is 𝑋 =[𝑥1,𝑥2 ,… , 𝑥𝑚]. Where, 𝑥𝑚 represents one of the samples, and 

m represents the batch size. The mean 𝜇𝐵 and variance 𝜎𝐵2 of 

the input data can be calculated by (14) and (15), respectively: 

(14) 𝜇𝐵 = 1𝑚 ∑ 𝑥𝑖𝑚
𝑖=1  

(15) 𝜎𝐵2 = 1𝑚 ∑(𝑥𝑖 − 𝜇𝐵)2𝑛
𝑖=1  

Next, each element of the input is normalized, as show in (19). 

Where, 𝜀 represents a constant. 

(16) 𝑥𝑖 = 𝑥𝑖 − 𝜇𝐵√𝜎𝐵2 + 𝜀 

Finally, the final output 𝑦𝑖  is obtained through scaling and 

shifting, as shown in the following equation: 

(17) 𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽 

2) L2 Regularization 

The basic idea of L2 regularization which can alleviate the 

problem of overfitting is to add an L2 norm penalty to the loss 

function as a constraint. The loss function J with L2 

regularization is calculated as follows: 

(18) 𝐿 = 𝐿0 + 𝜆2𝑚 ∑ 𝑤2𝑤  

where, J0 represents the original loss function, 𝜆2𝑚 ∑ 𝑤 2𝑤  is the 

L2 norm penalty,  𝜆 is the hyperparameter that controls the ratio 

of the L2 norm penalty, 𝑚 is the size of the training samples 

and w represents the weights of the model. 

3) Exponential Decay Learning Rate 

The setting of learning rate is very important, which determines 

whether the model converges to the global optimal value and 

affects the running speed. If the learning rate is too large, the 

gradient of the model will oscillate back and forth on both sides 

of the global optimal solution and cannot converge. And if the 

learning rate is too small, the convergence speed of the 

algorithm will be very slow and the training time will increase, 

resulting in the waste of resources. To solve these problems, the 

exponential decay learning rate is used. The core idea of 

exponential decay learning rate is to obtain the sub-optimal 

solution quickly by using a large learning rate at the beginning, 

and then gradually reduce the learning rate as the iteration 

continues, so as to make the gradient converge to the optimal 

value. The equation of exponential decay learning rate 𝜂𝑑  is 

calculated as follows: 

(19) 𝜂𝑑 = 𝜂 × 𝑑𝑟𝑔𝑠𝑑𝑠 
where, 𝜂 represents the initial learning rate, 𝑑𝑟 represents the 

decay rate, 𝑔𝑠  represents the global step and 𝑑𝑠 is the decay 

step. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3099118, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

4) Dropout 

Dropout is adopted to alleviate the problem of overfitting. The 

basic principle of dropout is that the weights of some neurons 

in the hidden layer stop updating according to a certain 

probability in the training process, so as to ease the complex co-

adaptation relationship between neurons. 

D. Data set 

We have used three publicly available HSI data sets, namely, 

Salinas Scene (SA), Pavia University (PU) and Indian Pines 

(IP). The SA data set contains the images with 512×217 spatial 

dimension and 224 spectral bands in the wavelength range of 

360–2500 nm. There are 16 classes in this dataset. The SA data 

set mainly reflects vegetation information and includes a 

variety of features with a regular distribution. Table II lists 16 

challenging land-cover categories and the training and test sets. 

The PU data set with the spatial dimension of 640 × 310 and 

103 spectral bands in the wavelength range of 430–860 nm with  

a spatial resolution of 1.3 meters. The label is divided into nine 

urban classes. The class name and the number of training and 

test sets are detailed in Table III. 

 
TABLE II. SAMPLE SIZE FOR SALINAS. 

Testing Training Class # 

1909 100 Broccoli green weeds 1 1 

3626 100 Broccoli green weeds 2 2 

1876 100 Fallow 3 

1294 100 Fallow rough plow 4 
2578 100 Fallow smooth 5 

3859 100 Stubble 6 

3479 100 Celery 7 

11171 100 Grapes untrained 8 
6103 100 Soil vineyard develops 9 

3178 100 Corn senesced green weeds 10 

968 100 Lettuce romaine, 4wk 11 

1827 100 Lettuce romaine, 5wk 12 

816 100 Lettuce romaine, 6wk 13 
970 100 Lettuce romaine, 7wk 14 

7168 100 Vineyard untrained 15 

1707 100 Vineyard vertical trellis 16 

52529 1600 Total - 

 
TABLE III. SAMPLE SIZE FOR PAVIA UNIVERSITY. 

Testing Training Class # 

6531 100 Asphalt 1 

18549 100 Meadows 2 

1999 100 Gravel 3 

2964 100 Trees 4 
1245 100 Sheets 5 

4929 100 Bare Soil 6 

1230 100 Bitumen 7 

3582 100 Bricks 8 

847 100 Shadows 9 

41876 900 Total - 

 

The PU data sets mainly reflect urban landscape information  

and include small types of features with an utterly irregular 

distribution. The IP data set has images with 145×145 spatial 

dimension and 224 spectral bands in the wavelength range of 

400 to 2500 nm, out of which 24 spectral bands covering the 

region of water absorption have been discarded. The ground 

truth available is designated into 16 classes of vegetation. Table 

IV lists 16 main land-cover categories involved in this studied 

scene, as well as the number of training and testing samples 

used for the classification task. The experiments are 

implemented using the Keras framework on Google Colab. 
 

TABLE IV. SAMPLE SIZE FOR INDIAN PINES. 

Testing Training Class # 

41 5 Alfalfa 1 

1285 143 Corn-notill 2 

747 83 Corn-mintill 3 
213 24 Corn 4 

435 48 Grass-pasture 5 

657 73 Grass-trees 6 

25 3 Grass-pasture-mowed 7 

430 48 Hay-windrowed 8 
18 2 Oats 9 

875 97 Soybean-notill 10 

2210 245 Soybean-mintill 11 

534 59 Soybean-clean 12 

185 20 Wheat 13 
1139 126 Woods 14 

347 39 Buildings-Grass-Trees-Drives 15 

84 9 Stone-Steel-Towers 16 

9225 1024 Total - 

III. RESULTS AND DISCUSSION  

In this section, we introduced three HSI datasets, described 

the structure and process of the model, and evaluated the 

proposed methods using classification criteria such as mean  

accuracy (AA), kappa coefficient (kappa), and overall accuracy 

(OA). 1) Overall accuracy (OA): The percentage of correctly 

classified pixels. 2) Average accuracy (AA): The mean value of 

the OAs measured over each category. 3) Kappa coefficient  

(Kappa): A statistic measurement over the inter-rater agreement 

among qualitative items. 

Randomly equal amounts of data from each set were used for 

training and the remainder for model testing. 10% of the 

training samples are dedicated to validation set. To obtain a 

more convincing estimate of the capabilities of these methods, 

the simulation is repeated 25 times for each data set, finally, the 

mean accuracy of the report is given. 

A. Experiment 1: Comparing accuracy between the proposed 

model and other classification models 

Our first experiment shows a comparison between the 

proposed method and the three different and well-known 

classification methods in HSI with the number of training 

samples of 100 for each class. Table V shows the classification 

results obtained by different classifiers for the Salinas dataset. 

Salinas data have a significant order in terms of spatial 

distribution, and network performance has a structure with  

acceptable overall accuracy. According to Table V, the best 

result is related to the combined method, which achieved an 

overall accuracy of 99.07%, which is 0.66% higher than the 

second accuracy (98.41%) obtained by the HybridSN model.  
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TABLE V. CLASSIFICATION ACCURACY ON THE SALINAS DATASET (100 SAMPLES FROM EACH CLASS FOR TRAINING) 

3D-2D 

CNN 
HybridSN 3D CNN 2D CNN SVM Class 

99.99±0.01 100.0±0.0 99.99±0.01 100.0±0 99.78±0.14 1 
100.0±0.0 100.0±0.0 99.97±0.06 99.99±0.02 99.65±0.17 2 

99.94±0.15 99.87±0.17 99.91±0.13 99.90±0.21 93.56±2.25 3 

99.52±0.57 99.65±0.48 99.50±0.62 99.61±0.44 99.27±0.22 4 

99.55±0.69 99.47±0.49 99.69±0.21 98.67±1.16 97.67±0.75 5 

99.99±0.01 99.83±0.23 99.99±0.02 99.97±0.06 99.65±0.12 6 
99.99±0.00 100.0±0.0 100.0±0 99.96±0.02 99.70±0.14 7 

97.04±1.19 95.11±2.51 92.83±2.74 90.43±2.42 78.29±3.52 8 

99.99±0.00 100.0±0.0 100.0±0 99.95±0.05 99.70±0.10 9 

98.85±0.83 99.47±0.01 98.644±1.08 98.43±0.96 93.70±0.51 10 

100.0±0.0 100.0±0.0 100.0±0 99.72±0.30 93.23±2.18 11 
99.99±0.16 100.0±0.0 99.94±0.09 99.99±0.03 99.88±0.10 12 

100.0±0.0 99.95±0.06 99.98±0.03 99.84±0.24 99.14±0.31 13 

99.56±1.00 99.50±0.35 99.89±0.13 99.84±0.24 95.87±1.39 14 

98.75±0.54 96.77±1.13 95.10±2.39 92.71±3.63 70.77±3.25 15 

99.49±0.56 99.94±0.08 99.89±0.19 99.60±0.31 98.34±0.70 16 

99.07±0.19 98.41±0.57 97.68±0.51 96.76±0.66 90.27±0.57 OA 

98.96±0.21 98.23±0.63 97.41±0.57 96.39±0.73 89.14±0.62 Kappa 

99.54±0.14 99.35±0.17 99.08±0.20 98.66±0.30 94.89±0.38 AA 

 

Classes 8 and 15 are challenging to classify and have lower 

accuracy than other classes. Fig. 4 shows the best results of the 

confusion matrix of all models. It can be seen that classes 8 and 

15 have a percentage of error due to their high similarity, but 

the hybrid model, due to its structure, can have less error in 

classes that are spectrally and spatially complex. Based on the 

measured values from different classes, the stability of the 

proposed network will be obtained. According to Table VI, it is 

shown that the combined method with an overall accuracy of 

98.90% achieved the best result, which is 0.53% higher than the 

second-best accuracy (98.37%) obtained by HybridSN.  

The hybrid model has better classification accuracy in most 

classes compared to other related methods. A comparison 

between the ambiguity matrices is shown in Fig. 5 to illustrate 

the performance of the hybrid model better. If the Class 8 hybrid 

model is used, it has an error of approximately 1.7% with the 

Class 3, and also for other classes that were misclassified, it has 

an error percentage of less than 0.9%. But in different models, 

there are many error classes with an error rate of more than 2%. 

Of course, the SVM model has abysmal performance compared 

to other classification models. 

The training sample percentage of the Indian Pines Scene is 

set to 10% randomly, the patch size is fixed as 15×15. 

According to Table VII the listed value, it can be observed that 

our proposed 3D-2D CNN model achieves the overall accuracy 

of 97.14%, and the second (97.09%) OA is implemented by the 

HybridSN model. The accuracy obtained on this dataset is 

clearly lower than the accuracies obtained on the other two 

datasets using the same method. To explore the reason for this, 

we drew the confusion matrix for methods on this dataset for a 

quantitative analysis, as shown in Fig. 6. According to Fig 6, 

the confusion matrix shows the best accuracy in the 

experiments, the 3D-2D CNN model has achieved higher 

accuracy for classes 1, 4, 7 and 9 where there are very few 

training samples available than other methods.  

The methods compared in the experiment can be divided into 

two ways. The SVM method, which belongs to the traditional 

classification and classifies based on spectral information, does 

not make full use of the spatial information of hyperspectral 

images. While 2D CNN, 3D CNN, HybridSN and 3D-2D CNN 

are all deep learning classification methods. The 2D CNN 

method is based on spatial information classification, while the 

3D CNN, HybridSN and 3D-2D CNN classification methods 

are based on spectral-spatial information. Deep learning-based 

classification methods are usually superior to traditional 

classification methods. Deep learning models have a 

hierarchical structure, which can automatically learn high-level 

semantic information from data. Therefore, they are more 

powerful than conventional methods in extracting features. 

Spectral-spatial information-based classification methods 

perform better than spectral-information-based or spatial 

information-based methods. Because features extracted by 

spectral-spatial information classification methods include not 

only spectral information but also spatial information that can 

contribute to the effective use of features. Hybrid model 

performance can reach the most advanced level because the 

model has a hybrid structure and can extract more specific 

information from hyperspectral images than to other models. 

We also make a visual comparison between different  

classification methods in the form of classification maps, as 

shown in Figs. 7–9. In general, pixelwise classification models 

(e.g., SVM) result in salt and pepper noise in the classification 

maps. As expected, the 3D-2D CNN method obtain smoother 

and more detailed maps in comparison with other competitors, 

mainly due to the effective combination of different features 

that further enhance the HSI representation ability. It should be 

noted, however, that the batchwise input in CNNs could lead to 

losing some edge details to some extent (e.g., 2D-CNN and 3D-

CNN). 
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(b)                                                 (a) 

 
    (d)                                            (c) 

Fig. 4. Comparison of a confusion matrix for classification results on SA data set. (a) 2D-CNN. (b) 3D-CNN. (c) HybridSN. (a) 3D-2D-CNN. 

 

 
(b)                                               (a) 

 
                                    (d)                                      (c) 

Fig. 5. Comparison of a confusion matrix for classification results on PU data set. (a) 2D-CNN. (b) 3D-CNN. (c) HybridSN. (a) 3D-2D-CNN. 
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Fig. 6. Comparison of a confusion matrix for classification results on IP dataset. (a) 2D-CNN. (b) 3D-CNN. (c) HybridSN. (a) 3D-2D-CNN. 

 

 

B. Experiment 2: The sensitivity of the hybrid model to the 

number of training samples 

Experiments that increase the number of training samples per 

every class of dataset. One of the critical factors in the training 

of convolutional neural networks is the number of training 

samples. It is generally clear that a well-known CNN may not 

extract useful features unless there are many training samples 

available. However, having a large number of training samples 

for hyperspectral images is not common, so building robust and 

efficient networks for classification is very important. In this 

section, the effect of the number of training samples on the 

accuracy of the three data sets is also tested. Table VII shows 

the results obtained for the Salinas dataset, where the combined 

method with the lowest number of training samples (50) works 

better than SVM, 2D-CNN, 3D-CNN and HybridSN with 8.73, 

3.11, and 1.82 and 1.42%, respectively. According to Fig. 10. 

(a) the more training samples we provide to models, especially 

neural networks, the better their accuracy. If we focus on the 

results obtained for the Pavia data set with 50 training samples 

(Table IX, the hybrid model works 19.61% better than the SVM 

spectral method, as well as the hybrid model of 2D-CNN, 3D-

CNN and HybridSN spectral-spatial classification) In terms of 

OA, it performs better by 5.07, 4.26 and 2.24%, respectively. 

To better illustrate the accuracy of the model's accuracy with  

different training samples, it is given in Fig. 10. (b). Table X 

shows that if Indian Pines dataset more training samples are 

available, method 3D-2D CNN can be 99% accurate. However, 

with 5% of the training samples, the proposed method obtained 

an accuracy of 93.27%, which is 0.94% higher than the second 

accuracy (HybridSN). 

According to Figures 10. (a)-(b) When the number of training  

samples is small, the model cannot extract useful information  

from the little data available and causes a higher error rate of 

classes that are complex and similar, resulting in poor model 

performance and classification accuracy decreases. Also, as the 

number of training samples increases, the model's ability to 

learn from it improves, indicating that more training samples 

can give more information to the models to extract better 

features. The good performance of HybridSN with limited  

training samples shows the importance of network optimization  

and the potential of 3D-2D-CNN in hyperspectral 

classification. The hybrid method obtained the best accuracy 

with a different number of training samples in three datasets. 
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TABLE VI. CLASSIFICATION ACCURACY ON THE PAVIA UNIVERSITY DATASET (100 SAMPLES FROM EACH CLASS FOR TRAINING) 
3D-2D CNN HybridSN 3D CNN 2D CNN SVM Class 

98.61±0.38 97.58±1.39 96.39±1.90 94.84±1.94 75.37±2.18 1 

99.32±0.53 98.80±0.91 97.70±1.36 97.23±1.40 79.40±1.39 2 

98.46±0.48 96.06±1.51 92.68±2.94 93.66±2.71 70.68±1.83 3 
98.37±0.69 97.39±1.18 97.34±1.40 97.56±0.87 93.90±1.21 4 

99.89±0.15 100.0±0.0 100.0±0 100.0±0 99.92±0.07 5 

98.93±0.40 99.70±0.33 98.46±1.02 97.64±1.94 89.16±1.39 6 

100.0±0.0 99.91±0.09 99.84±0.36 99.58±0.49 86.05±1.95 7 

96.94±1.09 96.41±1.82 95.34±1.72 92.87±3.26 82.53±1.61 8 
99.91±0.11 99.57±0.57 99.56±0.51 99.38±0.57 99.93±0.06 9 

98.90±0.14 98.37±0.41 97.27±0.70 96.55±0.66 82.02±0.74 OA 

98.53±0.20 97.83±0.55 96.38±0.93 95.42±0.87 76.88±0.89 Kappa 
98.94±0.17 98.38±0.21 97.45±0.42 96.94±0.48 86.32±0.52 AA 

 

TABLE VII. CLASSIFICATION ACCURACY ON THE INDIAN PINES DATASET (10% SAMPLES FOR TRAINING) 
3D-2D CNN HybridSN 3D CNN 2D CNN SVM Class 

81.70±7.24 85.05±8.04 39.51±23.69 21.27±15.65 0.0±0.0 1 
93.35±1.50 94.73±1.17 91.16±1.6 87.85±1.97 58.82±2.13 2 

97.99±1.11 97.85±1.44 86.54±6.19 79.94±6.69 27.83±7.10 3 

96.71±4.64 93.80±3.68 58.87±9.26 38.72±13.67 17.73±0.0 4 

97.28±1.82 99.69±0.21 96.08±2.28 93.47±2.76 86.01±2.84 5 

99.03±0.62 98.96±0.87 98.98±0.56 98.44±0.68 93.25±2.84 6 
81.0±21.86 75.2±26.93 56.64±38 36.0±26.70 0.0±0.0 7 

100.0±0.0 99.84±0.22 99.84±0.23 99.24±0.96 99.31±1.42 8 

66.55±7.91 72.88±4.53 20.44±21.64 19.33±17.64 11.76±3.55 9 

97.66±1.24 98.13±1.87 94.89±1.78 90.34±3.39 44.39±7.10 10 

98.96±0.44 98.88±0.57 98.34±0.54 96.28±1.48 85.75±0.01 11 
94.51±3.03 97.19±1.15 81.65±5.7 70.25±8.30 23.97±0.0 12 

98.54±1.21 98.19±1.83 97.81±1.86 93.66±4.71 93.78±2.84 13 

99.75±0.33 99.70±0.22 98.78±0.82 99.05±0.64 96.33±1.42 14 

97.86±1.41 99.42±0.81 86.83±5.83 80.08±12.93 32.95±7.1 15 

92.06±5.35 88.92±7.39 84.71±8.2 72.57±19.87 79.27±0.0 16 

97.14±0.34 97.09±0.19 93.15±1.2 89.36±1.59 68.02±0.0 OA 

96.73±0.39 96.82±0.22 92.14±1.39 87.79±1.84 62.65±0.0 Kappa 

89.06±3.02 94.96±0.57 80.69±5.88 73.53±4.05 53.20±0.0 AA 

 1 

 
Fig. 7. Classification maps results on SA dataset: (a) Ground truth, (b) SVM, (c) 2D CNN, (d) 3D CNN, (e) HybridSN (f) 3D-2D CNN 
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Fig.8. Classification maps results on PU dataset: (a) Ground truth, (b) SVM, (c) 2D CNN, (d) 3D CNN, (e) HybridSN (f) 3D-2D CNN. 

 

 
Fig. 9. Classification maps results on IP dataset: (a) Ground truth, (b) SVM, (c) 2D CNN, (d) 3D CNN, (e) HybridSN (f) 3D-2D CNN. 

 

TABLE VII. COMPARISON OF THE CLASSIFICATION ACCURACY OF SA DATA SET WITH DIFFERENT TRAINING SAMPLES. 

500 200 100 50 Tr-Samples 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

96.57 90.57 91.67 95.81 90.01 91.07 94.89 89.14 90.27 93.96 87.91 89.14 SVM 
99.77 99.24 99.33 99.53 98.66 98.80 98.66 96.39 96.76 97.72 94.17 94.76 2D CNN 

99.83 99.50 99.56 99.59 98.92 99.04 99.08 97.41 97.68 98.43 95.61 96.05 3D CNN 

99.87 99.60 99.65 99.66 99.13 99.23 99.35 98.23 98.41 98.74 96.05 96.45 HybridSN 

99.89 99.66 99.70 99.74 99.18 99.35 99.54 98.96 99.07 99.09 97.63 97.87 3D-2D CNN 

 
TABLE IX. COMPARISON OF THE CLASSIFICATION ACCURACY OF PU DATA SET WITH DIFFERENT TRAINING SAMPLES. 

500 200 100 50 Tr-Samples 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

90.21 83.83 88.01 88.28 81.04 85.52 86.33 76.88 82.02 83.38 72.63 78.53 SVM 
99.73 99.60 99.71 98.57 98.20 98.66 96.94 95.42 96.55 94.34 90.90 93.07 2D CNN 

99.67 99.55 99.67 98.29 97.33 98.01 97.45 96.38 97.27 94.22 91.91 93.88 3D CNN 

99.84 99.77 99.83 99.23 99.04 99.29 98.23 97.56 98.16 96.07 94.59 95.90 HybridSN 

99.84 99.82 99.87 99.51 99.25 99.45 98.94 98.53 98.90 97.97 97.53 98.14 3D-2D CNN 

 
TABLE X. COMPARISON OF THE CLASSIFICATION ACCURACY OF IP DATA SET WITH DIFFERENT TRAINING SAMPLES. 

%30 %20 %10 %5 Tr-Samples 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

65.05 70.13 74.18 56.17 66.20 70.94 53.20 62.65 68.02 45.52 53.84 61.18 SVM 

90.90 96.89 97.28 76.33 89.77 91.09 73.53 87.79 89.36 57.21 74.46 77.92 2D CNN 

94.44 98.20 98.42 88.06 96.31 96.77 80.69 92.14 93.15 64.73 80.76 83.33 3D CNN 

99.32 99.59 99.64 96.27 97.41 98.11 94.96 96.73 97.09 87.28 91.39 92.33 HybridSN 

95.81 98.91 99.04 96.71 97.85 98.85 95.06 96.82 97.14 89.10 92.54 93.27 3D-2D CNN 
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    (b)                                    (a) 

 
            (d)                                    (c) 

Fig. 10. (a) Overall accuracy (%) with different training samples for Salinas data set. (b) Overall accuracy (%) with different samples of training 

for Salinas data set. (c) Display overall accuracy (%) with a percentage of noise added to 100 of the Salinas data set training sample. (d) Display 

overall accuracy (%) with a percentage of noise added to 100 of the Pavia data set training sample. 

 

C. Experiment 3: Add Gaussian noise to hyperspectral images 

Gaussian noise is applied to all available hyperspectral image 

bands with zero mean and different variance on Salinas and 

Pavia datasets and the results are given in Tables XI - XIII. 

(7) 𝑃𝐺(𝑧) = 1𝜎√2𝜋 𝑒−(𝑧−𝜇)22𝜎2  

where z is the pixel intensity, σ is the variance and μ is the mean, 
which is a random amount of noise with a normal distribution 𝑁(0, 𝜎 2). To see the amount of noise added to the image, one 

of the bands of the original image (25) from the Salinas and 

Pavia datasets with noise applied with different variance on the 

same image is shown in Fig. 11 and Fig. 12. As we increase the 

percentage of noise added to the image, it makes the images 

appear dimmer and blurry. 

 
TABLE XI. CLASSIFICATION ACCURACY (%) WITH A PERCENTAGE OF NOISE ADDED TO 100 OF THE SA DATA SET TRAINING SAMPLE. 

Variance = 8 Variance = 6 Variance = 4 Variance = 2 Noise 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

37.18 29.92 35.16 49.21 41.10 46.05 63.72 54.67 58.91 82.46 72.96 75.63 SVM 

83.92 73.59 76.18 90.66 81.48 83.34 95.00 87.48 88.77 97.81 94.28 94.88 2D CNN 

75.06 64.85 68.24 88.29 79.25 81.33 95.05 87.33 88.62 98.29 95.13 95.63 3D CNN 

89.53 84.38 85.89 94.42 87.69 88.94 96.29 91.05 91.97 98.27 94.39 95.39 HybridSN 

93.62 87.73 88.35 95.26 89.08 90.19 96.63 91.12 92.03 98.63 96.12 96.52 3D-2D CNN 

 
TABLE XII. CLASSIFICATION ACCURACY (%) WITH A PERCENTAGE OF NOISE ADDED TO 100 OF THE PU DATA SET TRAINING SAMPLE. 

Variance = 8 Variance = 6 Variance = 4 Variance = 2 Noise 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

54.51 32.09 43.15 60.83 39.25 49.66 65.89 45.92 55.72 76.74 62.20 69.96 SVM 

77.23 62.18 69.93 81.17 69.06 75.97 89.42 82.61 86.68 95.51 93.57 95.16 2D CNN 
74.85 58.94 67.23 82.02 70.22 76.81 90.37 84.75 88.39 96.77 95.31 96.47 3D CNN 

82.04 70.00 76.58 86.12 78.82 82.18 92.21 86.78 89.96 97.72 96.59 97.43 HybridSN 

83.89 71.38 78.16 89.59 81.41 85.77 93.06 88.30 91.10 98.04 97.50 98.13 3D-2D CNN 

 
TABLE XIII. CLASSIFICATION ACCURACY (%) WITH A PERCENTAGE OF NOISE ADDED TO %10 OF THE IP  DATA SET TRAINING SAMPLES. 

Variance = 8 Variance = 6 Variance = 4 Variance = 2 Noise 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

14.11 21.22 36.90 19.45 27.91 41.56 33.79 40.25 50.69 47.81 55.59 62.39 SVM 

31.77 46.67 54.68 40.73 56.79 63.16 57.40 74.08 77.64 70.40 85.89 87.71 2D CNN 

28.30 41.99 51.24 39.40 53.29 60.70 62.33 78.87 81.77 82.44 91.66 92.72 3D CNN 

76.23 78.61 80.62 81.37 88.69 90.14 89.97 93.68 94.09 95.57 95.81 96.21 HybridSN 
79.60 81.86 84.51 86.92 89.26 91.54 91.90 94.33 95.91 97.66 96.70 97.36 3D-2D CNN 
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Fig. 11. Display one of the bands (25) of the hyperspectral image with the percentage of noise added to the Salinas data set. 

 
Fig. 12. Display one of the bands (25) of the hyperspectral image with percentage of noise added in Pavia data set. 

 

According to the results obtained in Tables XI-XII, the 3D-

2D CNN method with a limited number of training samples and 

a high-noise image has a much better performance than other 

methods. In Table XI the best accuracy is related to the 3D-2D 

CNN method with 88.35%, which is 2.46% better than the 

second accuracy, associated with the HybridSN method. As in 

the SA dataset, the 3D-2D CNN method has a high performance 

against noise, in the PU and IP dataset, it performs better with  

other methods. As shown in Figs. 10. (c)-(d) You can see that 

the methods perform poorly with the increasing percentage of 

noise. With the addition of noise to the image, the image pixels  

in different bands practically change. The SVM method, which 

relies only on spectral information of the image, has a low 

accuracy of 50% against high noise. However, deep learning 

models, due to their hierarchical structure, can reduce noise to  

some extent and are resistant to the noise by extracting high-

level features. Although the 3D CNN model extracts spectral 

and spatial features, it is computationally complex. The limited  

training samples of the 3D CNN model are more tendency to 

overfitting.  

D. Experiment 4: The effect of the number of training samples 

on image noise 

According to the results obtained in Tables XIV-XVI, it  

shows that if more training samples  are provided to neural 

network models, they can classify noise images with high 

accuracy. If the number of training samples is reduced, many 

trainable parameters will not be adequately trained and the 

network will have overfitting problems and the classification 

accuracy will be significantly reduced. Because the hybrid 

model has fewer trainable parameters and computational 

complexity than the 3D CNN model, it is less tendency to 

overfitting. On the other hand, the model has a hybrid structure 

and can extract more specific information than the 2D CNN 

model. In Fig. 13 of the a-c diagrams, in the worst-case 

scenario, when we see limitations in training samples and a lot 

of noise is added to the image, all models are overfitting. As can 

be seen in Fig. 13 (b), the 3D-CNN model is overfitting in the 

early epochs of training, one of the reasons being the high 

number of computational complexity compared to other models 

tested. Fig. 13 (c) shows diagrams a and c as expected, and the 

2D-CNN and 3D-2D-CNN models also have overfitting 

problems, but they have been trained in more epochs than the 

3D-CNN model. Fig. 13 (d)-(f) diagrams in the best possible 

case where there are a sufficient number of training samples, 

the models are well trained and have a minimal error, as a result 

of which the models offer high classification accuracy. 
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TABLE XIV. CLASSIFICATION ACCURACY (%) AND NOISE ADDED WITH VARIANCE 6 ON A DIFFERENT NUMBER OF TRAINING SAMPLES OF SA DATA SET. 
500 200 100 50 Tr-Samples 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

56.80 46.31 51.29 53.37 43.93 48.76 49.21 41.10 46.05 44.08 37.43 42.58 SVM 

98.43 95.44 95.96 95.35 88.36 89.57 90.66 81.48 83.34 80.58 72.11 74.91 2D CNN 

96.28 90.00 91.20 92.24 83.87 85.56 88.29 79.25 81.33 79.69 69.27 72.19 3D CNN 

99.25 98.34 98.76 97.07 92.24 93.06 94.42 87.69 88.94 88.94 79.78 81.81 HybridSN 

99.76 99.29 99.37 97.75 94.27 94.88 95.26 89.08 90.19 92.63 83.95 85.53 3D-2D CNN 

 
TABLE XV. CLASSIFICATION ACCURACY (%) AND NOISE ADDED WITH VARIANCE 6 ON A DIFFERENT NUMBER OF TRAINING SAMP LES OF PU DATA SET. 

500 200 100 50 Tr-Samples 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

62.89 41.23 52.67 62.89 41.23 51.63 60.77 38.71 49.02 57.80 37.01 47.86 SVM 

95.78 89.59 92.34 88.37 77.40 82.57 81.17 69.06 75.97 71.55 58.98 68.00 2D CNN 

93.77 87.04 90.43 88.42 76.14 81.28 82.02 70.22 76.81 73.03 57.14 65.67 3D CNN 

96.74 94.34 95.79 90.28 88.05 89.28 86.12 78.82 82.18 78.72 67.05 74.31 HybridSN 

98.29 94.96 96.36 93.73 90.70 91.60 89.59 81.41 85.77 80.07 67.56 74.73 3D-2D CNN 

 

TABLE XVI. CLASSIFICATION ACCURACY (%) AND NOISE ADDED WITH VARIANCE 6 ON A DIFFERENT NUMBER OF TRAINING SAMPLES OF IP DATA SET. 
%30 %20 %10 %5 Tr-Samples 

AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa OA Methods 

24.76 33.35 45.34 23.18 31.96 44.27 19.45 27.91 41.56 15.59 23.54 38.38 SVM 

75.67 90.04 91.31 55.62 72.17 75.92 40.73 56.79 63.16 29.21 42.16 51.36 2D CNN 

74.42 88.71 90.18 53.00 68.90 73.45 39.40 53.29 60.70 27.45 40.22 50.35 3D CNN 

97.27 98.19 98.41 93.85 93.42 95.56 81.37 88.69 90.14 65.95 79.15 81.90 HybridSN 
98.20 99.02 99.14 96.27 97.19 97.41 86.92 89.26 91.54 76.67 81.31 85.72 3D-2D CNN 

 

 

   
 (c)   (b) (a) 

   
  (f)  (e) (d) 

Fig. 13. The a-c error diagrams show the 2D-CNN, 3D-CNN, and 3D-2D-CNN models with a training sample of 100 and a variance of 8, 
respectively. The d-f error diagrams show the 2D-CNN, 3D-CNN, and 3D-2D-CNN models with a training instance of 500, respectively. 

 

E. Experiment 5: The effect of the spatial size of the input cube 

on the classification accuracy 

The classification accuracy of CNN models depends on the 

size of the entrance window. If the size of the input window is 

too small, there is not enough information in the image to 

extract the feature, as a result, some information is lost and the 

ability to classify is reduced. If the size of the input window is 

too large, it may contain pixels of different classes and 

additional noise will enter the input window, resulting in 
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reduced classification accuracy. Therefore, the classification 

function has been analyzed to find the optimal spatial size of 

the input cube. According to Fig. 14, when the spatial window 

of the input is 15×15, the evaluation indicators reach the desired 

values in the two data sets. Therefore, the spatial window of 

15×15 is considered the most appropriate spatial size of the 

input cube in the conditions that the hardware platform allows. 

F. Experiment 5: The effect of dimension reduction on the 

classification accuracy 

In order to determine the number of principal components in 

PCA, we test the classification accuracy on the three datasets 

after the dimensionality reduction with different principal 

components. Among them, due to the large spatial scale of PU 

and SA, only 10, 15, and 20 are considered, while seven cases 

from 10 to 40 are tested in IP. The classification accuracy with  

different numbers of principal components among the three 

datasets is shown in Fig. 15. 

In Fig. 15, according to the final classification accuracy, we set 

the number of reduced spectral bands to 15, 15 and 30 for PU, 

SA and IP, respectively.  

Tables XVII-XIX show a qualitative summary of the 

experiments performed, which is the number of different  

training samples per percentage of noise added to the methods. 

In these tables, the accuracy is more than 90% green, the 

accuracy is 70-90% blue and the accuracy is less than 70% red. 

According to the results of the traditional SVM method, it has 

a lower performance against noise than other models of deep 

learning. Besides, as we increase the number of training 

samples, unlike deep learning models, the SVM method cannot 

extract features from noise data, in practice, its performance 

does not have much effect on classification accuracy by 

increasing training samples. According to the qualitative results 

of the tables, two case can be mentioned for deep learning 

models that have a significant impact on the accuracy of 

classification: 

(1) Number of training samples: In all deep learning models, 

the more training samples, the more we can increase the number 

of network layers and deepen so that the network extracts useful 

and practical spectral-spatial information from data and feature 

maps. But as the number of trainable parameters increases, so 

does the network training time and tendency to overfitting. 

(2) Computational complexity: If the data is too noisy and we 

have limited training samples, a model with less computational 

complexity can provide better performance. According to 

Tables XII and XIII, in the 3D-CNN model, three datasets have 

poor performance due to high noise percentage and limited 

training samples. The 2D-CNN model outperforms the 3D-

CNN because it can extract more distinctive information than 

other models and has much less computational complexity than 

the 3D-CNN model. 

 
Fig. 14. The effect of different input cube sizes on accuracy with 100 

training samples with PU, SA and IP datasets. 

 
Fig. 15. The effect of different input cube sizes on accuracy with 100 

training samples with PU, SA and IP datasets. 

 

TABLE XVII. QUALITATIVE RESULTS OF THE NUMBER OF DIFFERENT 

TRAINING SAMPLES AGAINST THE PERCENTAGE OF NOISE ADDED TO THE 

SA DATA SET. 

500 200 100 Tr-samples 

8 6 4 2 8 6 4 2 8 6 4 2 Methods 

            SVM 
            2D CNN 

            3D CNN 

            HybridSN 

            3D-2D CNN 

 

TABLE XVIII. QUALITATIVE RESULTS OF THE NUMBER OF DIFFERENT 

TRAINING SAMPLES AGAINST THE PERCENTAGE OF NOISE ADDED TO THE 

DATA SET OF PU. 

500 200 100 Tr-samples 

8 6 4 2 8 6 4 2 8 6 4 2 Methods 

            SVM 

            2D CNN 

            3D CNN 
            HybridSN 

            3D-2D CNN 

 
TABLE XIX. QUALITATIVE RESULTS OF THE NUMBER OF DIFFERENT 

TRAINING SAMPLES AGAINST THE PERCENTAGE OF NOISE ADDED TO THE 

DATA SET OF IP. 

%30 %20 %10 Tr-samples 

8 6 4 2 8 6 4 2 8 6 4 2 Methods 

            SVM 

            2D CNN 

            3D CNN 

            HybridSN 

            3D-2D CNN 
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IV. CONCLUSION 

The availability of hyperspectral images is deficient and 

there is limited data. One of the challenges in classifying 

hyperspectral images is designing a model that fits the situation. 

This report presents a hybrid model of 3D and 2D convolution 

for HSI classification. Spatial and spectral features can be used 

to increase classification performance. The hybrid model 

combines spatial-spectral and spatial information obtained from 

3D and 2D convolution, respectively. The combining of 3D-

CNN and 2D-CNN reduces the number of learning parameters 

and is computationally less complex than using 3D-CNN alone. 

Network optimization is better done using Adam optimizer and 

reduces training time. To limit the number of training samples 

and noise, the hybrid model has the best performance compared 

to other models. When we have a sufficient number of training 

samples, we can increase the number of layers of the model and 

deepen the network. All models offer high accuracy in case we 

have enough training samples, still hybrid model has fewer 

parameters and its training time is lower than using only the 3D-

CNN model and compared to the 2D-CNN model due to the 

hybrid structure that it can make the most of all spectral and 

spatial information in HSI data. It is therefore economical to use 

a hybrid model for classification for hyperspectral images. 

Experiments on three datasets were compared with three 

classification methods, which confirms the superiority of the 

proposed method in the case of limited training sample and 

noise. 
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