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Abstract

Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a

specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm,

contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the

learning-based feature extraction algorithm can characterize information better than the pre-defined feature

extraction algorithm. On the other hand, spatial contextual information is effective for hyperspectral image

classification. Contextual deep learning explicitly learns spectral and spatial features via a deep learning architecture

and promotes the feature extractor using a supervised fine-tune strategy. Extensive experiments show that the

proposed contextual deep learning algorithm is an excellent feature learning algorithm and can achieve good

performance with only a simple classifier.

Keywords: Hyperspectral image classification; Contextual deep learning; Multinomial logistic regression (MLR);

Supervised classification

1 Introduction
Due to the advance of optical sensing technology, hyper-

spectral image (HSI) can record rich spectral and spatial

information of the observed scene [1]. The tremendous

amount of spatial and spectral information in HSI guar-

antees superior identifiability for classification, which is a

crucial part of tons of applications. Therefore, in the last

decade, there is increasing interest in the research of HSI

classification.

The traditional pixel-wise HSI classification [2] is based

on the fact that different materials have different spec-

tral reflectance and identify each material based on its

spectral curve, in other words, classify each pixel by its

digital numbers from different bands. In particular, HSI

classification methods based on a support vector machine

(SVM) have shown good performances [3, 4]. However,

the collection of reliable training samples is extremely

difficult and expensive, and the small ratio between the

small number of training samples and the large number

of spectral bands causes Hughes phenomenon [5] fre-

quently. To address this issue, kernel methods [6–8] which
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are more robust to the curse of dimensionality have been

extensively used. Although kernel methods can provide

enhanced classification results, they usually suffer from

high computational complexity.

Pixel-wise classification methods process each pixel

independently without considering the spatial informa-

tion, but spatial contextual information of HSI is as impor-

tant as the spectral information [9]. In fact, spatial adja-

cent pixels usually share similar spectral characteristics

and have the same label, and using spatial information

can reduce the uncertainty of samples and suppress salt-

and-pepper noise of classification results [10]. Therefore,

it is necessary to jointly exploit both spectral and spatial

information of HSI to improve classification performance.

In general, there are three categories of HSI spectral-

spatial classifiers. First, many spectral-spatial classifi-

cations extract spatial and spectral features from HSI

before performing classification. Spatial features based on

morphological filters [10–13] are widely used in HSI

classification; for example, Ghamisi et al. exploit spa-

tial information using extended multi-attribute profiles

(EMAPs) [14]. In order to use spatial features, some

researches extract spatial features and spectral fea-

tures, then use spatial and spectral information in a
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concatenation strategy; for example, Zhang et al. [15]

integrate spectral-spatial features into one feature vector.

There are lots of works that use spatial and spectral fea-

tures by combination, such as composite kernel methods

that fuse spatial features with other features [8, 16, 17].

However, all those spatial features are handcrafts, which

demanded human knowledge. Furthermore, more fea-

tures mean higher dimensionality and make HSI classifi-

cation a more time-consuming task.

Second, some spectral-spatial classifications take spa-

tial information into the classifier during classification.

Simultaneous orthogonal matching pursuit (SOMP) and

simultaneous subspace pursuit (SSP) [18] incorporate the

spatial correlation between neighboring samples through

a classifier based on joint sparsity representation. Li et al.

[19] exploited a classifier based on the marginal proba-

bility distribution using both spectral and spatial infor-

mation by loopy belief propagation (MPM-LBP). Many

researches use spatial information under the framework

of statistical learning theory (SLT) [20], which is com-

posed of an empirical estimation of the training error and

a regularizer, and include spatial information in the reg-

ularizer, such as including contextual information with

Markov random fields (MRFs) [21–23]. This kind ofmeth-

ods gives neighboring samples the right of decision and

can improve classification.

Third, several classification methods attempt to use

spatial dependencies after classification in a decision

rule or by spatial regularization. Tarabalka [24] pro-

posed a spectral-spatial classification scheme based on

the pixel-wise SVM classification, followed by majority

voting within the watershed regions. Li et al. [25] pro-

posed a classification algorithm, augmented Lagrangian-

multilevel logistic with a multilevel logistic (MLL) prior

(LORSAL-MLL), which adopted an MLL prior to model

the spatial information in the classification map from

LORSAL algorithm. All those spectral-spatial classifica-

tions significantly improve classification results and can

be used in succession.

In this paper, we focus on the first category spectral-

spatial classification, which extracts spectral and spatial

features before classification. Since learning-based fea-

tures are successfully used in many areas, such as deep

architecture for face recognition [26], deep belief net-

work for speech recognition [27], unsupervised feature

learning for scene classification [28, 29], and feature learn-

ing for PolSAR data classification [30], we investigate

learning-based features in HSI classification. Lin et al.

and Hinton et al. [31, 32] first capture spatial features

via principal component analysis (PCA), then connect

spatial features with spectral features, and input the con-

nected features into an auto-encoder to get classification

results. However, our feature extraction method reduces

dimensionality of spectral features and extracts spatial

features simultaneously by a unified structure. Further-

more, our algorithm is a supervised feature representation

which maximizes the difference between classes and min-

imizes the difference within the class, and it is considered

to be more functional and discriminative for classifica-

tion. Experiments on public hyperspectral data sets have

demonstrated the effectiveness of the proposed method.

The remainder of this paper is organized as follows.

Section 2 introduces relevant works, deep learning model.

In Section 3, a classification framework is introduced,

and every individual part of the proposed framework is

depicted in detail by some mathematical explanations. In

Section 4, some results together with relevant analyses

and discussions are reported. At last, the conclusions are

summarized.

2 Deep learning
Deep learning [33] based methods are widely used in

machine learning and make machine learning approach

its original goal: artificial intelligence (AI). This is because

deep learning takes an example by neocortex, which is

the most powerful learning machine as far as we know.

Deep learning learns hierarchical representation, and the

higher layer represents increasingly abstract concepts and

is increasingly invariant to transformations and scales.

Recent advances [26] in deep learning application, such as

computer simultaneous interpretation by Microsoft, have

proven that deep learning is feasible in many machine

learning tasks and can achieve great performance, so that

more and more experts from the AI area believe that deep

learning gives machine learning the second wave.

One of the most fundamental deep learning primitives,

stacked auto-encoders (SAE), is used in many areas. Our

method of feature learning belongs to the SAE family, and

we will present the principle of SAE in detail.

2.1 Auto-encoder

The auto-encoder [34] is the major component of SAE,

as shown in Fig. 1, which is an unsupervised neural net-

work that tries to force its output to equal its input. The

architecture of the auto-encoder includes an input layer,

a hidden layer, and an output layer. Suppose we have an

input vector x, we can get the code r by the parameters

weightW 1 and bias b1,

r = f
(

W 1x + b1
)

, (1)

and decode it by parametersW 2, b2,

z = f
(

W 2r + b2
)

, (2)

and f(·) is the activation function and can be a sigmoid

function or tanh function.
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Fig. 1 Stacked auto-encode and auto-encoder. The blue part constitutes a SAE, and every dashed box is an auto-encoder

The loss function or energy function J(θ) measures the

reconstruction z when given input x,

J(θ) =
1

2M

M
∑

m=1

∥

∥

∥
z(m) − x(m)

∥

∥

∥

2

2
, (3)

where M is the number of training samples. The objec-

tive is finding the parameters θ =
(

W 1, b1,W 2, b2
)

which can minimize the difference between the out-

put and the input over the whole training set X =
{

x(1), x(2), . . . , x(m), . . . , x(M)
}

, and this can be efficiently

implemented via the stochastic gradient descent algo-

rithm.

2.2 Stacked auto-encoders

A SAE [35] consists of multiple auto-encoders in which

the code of each auto-encoder is the input of the succes-

sive auto-encoder. A SAE contains one input layer at the

bottom, more than one hidden layer in the middle, and

one output layer at the top. We can get a representation or

feature of the input data from every layer; the higher the

layer is, the more abstract the feature is.

Suppose a training sample x and the corresponding label

y. There are two steps to train a SAE, pre-training and

fine-tuning [27]. The pre-training step is an unsupervised

learning process which encodes the input in a hierarchical

way, and fine-tuning is a supervised process which uses

the label to optimize the whole network.

In the pre-training step, train an auto-encoder for the

training sample x and get the code r(1), and then train

the next auto-encoder for the code r(1), get the code r(2),

use the code from the subjacent auto-encoder as the input

of the next auto-encoder, and repeat until all subsequent

hidden layers r(l) are obtained, for l = 1, · · · , L, L is the

number of hidden layers in SAE.

After finishing the pre-training step, we use fine-tuning

to optimize the whole network. Fine-tuning treats all lay-

ers of SAE as a single neural network model; in each

iteration, it improves all the parameters from the last itera-

tion, and it can improve the result of layer-wise training by

a supervised strategy. Fine-tuning is performed by adding

a final layer that represents the desired output. For classi-

fication, the output is the label of the input sample. Then,

the back propagation (BP) algorithm can be used to adjust

or fine-tune the network weights in the same way as the

feed-forward neural network.

Suppose we have a set of training samples

X =
{

x(1), x(2), . . . , x(m), . . . , x(M)
}

, and the correspond-

ing labels are y =
{

y(1), y(2), . . . , y(m), . . . , y(M)
}

, where

x(m) =
(

x
(m)
1 , x

(m)
2 , . . . , x

(m)
N

)T
, y(m) ∈ {1, · · · ,K}, for

m = 1, 2, . . . ,M, M is the number of training samples, N

is the unit number of the input layer, and K is the number

of classes. The objective is to minimize the difference

between the desired output and the real output, so the

loss function for sample x(m) is defined as:

J
(

W , b; x(m), y(m)
)

=
1

2

∥

∥

∥
y(m) − z(m)

∥

∥

∥

2

2
, (4)

The energy function J(W , b) over the whole training set is

defined as:

J(W , b) =
1

M

M
∑

m=1

J
(

W , b; x(m), y(m)
)

. (5)

We minimize energy function J(W , b) to decrease the

difference between the output z and the true label y over

all the training samples. All the parameters are initial-

ized randomly and updated by stochastic gradient descent

(SGD), and each iteration of gradient descent updates the

parametersW (l), b(l) in layer l as follows:

W (l) := W (l) − α
∂

∂W (l)
J(W , b) (6)

b(l) := b(l) − α
∂

∂b(l)
J(W , b), (7)

where α is the decay parameter. The gradients in Eqs. (6)

and (7) can be efficiently implemented using the back
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propagation (BP) algorithm. The process of training SAE

using gradient descent with the BP algorithm executes the

coding procedure illustrated in Algorithm 1.

Algorithm 1 Training SAE using SGD with BP algorithm

coding procedure

Input:

Training set X =
{

x(1), x(2), . . . , x(m), . . . , x(M)
}

;

The corresponding labels y ∈
{

y(1), y(2), . . . , y(m),

. . . , y(M)
}

;

Output:

ParametersW , b of SAE;

1: For l = 1, 2, · · · , L, L is the number of hidden layers

2: Computing all the hidden layers r(l,m) over the

whole training set using Eqs. (1), (2), and (3);

3: End For

4: Compute the output layer z(m);

5: Compute energy function J(W , b) over the whole

training set:

J(W , b) =
1

M

M
∑

m=1

J
(

W , b; x(m), y(m)
)

;

6: Set ∂

∂W (l) J(W , b) = 0, ∂

∂b(l) J(W , b) = 0

7: Form = 1, · · · ,M

8: For i = 1, 2, · · · , nL+1, nL+1 is the unit number in

the output layer

9: δ
(L+1)
i = −(∇J)f′

(

z
(m)
i

)

;

10: End For

11: For l = L, L − 1, · · · , 1

12: For i = 1, 2, · · · , nl, nl is the unit number in

layer l

13: δ
(l)
i =

(

(W (l))Tδ
(l+1)

)

f′
(

r
(l,m)
i

)

;

14: End For

15: End For

16: Compute the desired partial derivatives:

• ∂

∂b(l) J(W , b) = δ
(l+1)

• ∂

∂W (l) J(W , b) = δ
(l+1)

(

r(l,m)
)T

;

17: End For

18: Update the parameters:

• W (l) := W (l) − α ∂

∂W (l) J(W , b)

• b(l) := b(l) − α ∂

∂b(l) J(W , b);

19: Repeat line 4 to 18 untilW , bmeet the requirement;

SAE is a hybrid learning method, which includes both

supervised and unsupervised steps. From optimization

viewpoint, the unsupervised step, i.e., pre-training, can

provide a relatively accurate initialization compared with

random initialization, and from regularization viewpoint,

it can provide a prior about the training data (Y Ben-

gio, I Goodfellow, A Courville: Deep Learning (2015),

unpublished).

Each hidden layer in SAE is a representation of the

input data. If the number of hidden units is larger than

the dimensionality of input, the hidden layer projects

the input data to a space with higher dimensionality,

which will be able to discover correlations. Otherwise,

the hidden layer is a compressed representation, which

reduces dimensionality and eliminates redundancy. Cur-

rently, there is no theory about how to define the numbers

of hidden layers and the numbers of hidden units, and

since the BP algorithm can be extended to apply to an arbi-

trary number of layers, we can build a SAE with arbitrary

depth by the BP algorithm.

There are many constraints that can be imposed into the

deep network; a sparse SAE is imposing a sparsity con-

straint on the hidden units, and then the auto-encoder

will discover sparse features of the input data, just like the

result of sparse representation.

3 Proposedmethod
Imaging spectrometers onboard satellites collect hyper-

spectral images with hundreds of spectral bands in a

narrow bandwidth with fixed sample intervals. However,

not all channels are essentially useful for a specific appli-

cation. Hence, in order to get a better classification map,

it is necessary to extract an informative representation of

the original spectral signature. We proposed a novel deep

network, called contextual deep learning (CDL), which

can extract effective spectral-spatial features from HSI

directly and is especially effective for HSI classification.

The framework of this contextual deep structure con-

tains one input layer, three kinds of hidden layers, and one

output layer. The first hidden layer merges spectral infor-

mation from adjacent pixels to add spatial information in

the processing pixels, the next (one or more) hidden layers

learn the spectral feature elaborately, and the last hid-

den layer is another spatial information which integrates a

layer to smooth the information from the neighborhood.

Suppose that a pixel or sample x in hyperspectral image

is x = (x1, x2, . . . , xn0)
T , n0 is the number of the spectral

bands, and r(l) =
(

r
(l)
1 , r

(l)
2 , . . . , r

(l)
nl

)T
is the output of hid-

den layer l or a representation from hidden layer l, and

nl is the number of the units in layer l. We will detail all

pivotal layers in the following subsections.

3.1 Spatial information extraction

The objective of the first hidden layer in contextual deep

network is incorporating spatial contextual information

within the neighbor into the processing pixel. Suppose

that U(x) is the neighborhood of pixel x, and p is the

length of the side of square window, which means there
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are p2 pixels in U(x), then the output in the first hidden

layer is given as:

r(1) = f
(

W (1)U(x) + b(1)
)

, (8)

where f (·) is the activation function, here is f (·) = 1,

and the weight W (1) is used to decide how much spatial

information to add. We carry on this operation for all the

samples to get the first hidden layer of the contextual deep

network, with the sample neighborhood as input. This

layer is a new representation of the input HSI with spatial

information in every pixel.

The weightW (1) is initialized via a 2-D Gauss filter, and

because the input data have been normalized, we force the

bias b(1) = 0. The only parameter in W (1) is the vari-

ance of the 2-D Gauss filter, and we decide this parameter

according to the spatial resolution of HSI.

3.2 Spectral feature mining

After finishing spatial information integration, we add

more hidden layers to explore spectral features. The

effects of spectral feature layers are reducing the

redundancy spectral information, explore the correla-

tion behind the input spectrum, and make the features

more representative. We have already obtained r(1) =
(

r
(1)
1 , r

(1)
2 , . . . , r

(1)
n1

)T
from the first hidden layer; suppose

there are n2 units in the second hidden layer, nl units in

the lth hidden layer. The output r(l) =
(

r
(l)
1 , r

(l)
2 , . . . , r

(l)
nl

)T

of layer l can be computed by the following equation:

r(l) = f
(

W (l)r(l−1) + b(l)
)

, (9)

where l = 2, 3, · · · , L − 1, W (l) is the weight matrix for

projecting the units from layer l−1 to layer l, and b(l) is the

bias. Here, we choose sigmoid function as the activation

function of the layers for spectral feature mining.

Suppose we have a set of training samples

X =
{

x(1), x(2), . . . , x(m), . . . , x(M)
}

, then the

corresponding output in layer l is R(l) =

{

r(l,1), r(l,2), . . . , r(l,m), . . . ,h(l,M)
}

and the correspond-

ing labels are y =
{

y(1), y(2), . . . , y(m), . . . , y(M)
}

, where

x(m) =
(

x
(m)
1 , x

(m)
2 , . . . , x

(m)
n0

)T
, y(m) ∈ {1, · · · ,K}, for

m = 1, 2, . . . ,M, N is the unit number of the input layer,

and K is the number of classes.

In order to initialize W (l), we reconstruct r(l−1,m) using

r(l,m) as in Eq. (2) and minimize the average sum-of-

squares error between r(l−1,m) and its reconstruction

z(l−1,m) function :

J
(

W (l), b(l)
)

=
1

2M

M
∑

m=1

∥

∥

∥
r(l−1,m) − z(l−1,m)

∥

∥

∥

2

2
. (10)

In order to get better representation, we impose a sparse

constraint on the output of spectral hidden layers; in other

words, we want most of the hidden units to be 0. The

average activation of hidden unit i is defined as:

ρ̂i =
1

M

M
∑

m=1

r
(l,m)
i . (11)

We would like to enforce the average activation equal to

a sparsity parameter ρ, which is close to zero. To achieve

this, Kullback-Leibler (KL) divergence is used to penalize

ρ̂i deviating from ρ:

KL(ρ||ρ̂i) = ρ log
ρ

ρ̂i
+ (1 − ρ) log

1 − ρ

1 − ρ̂i
. (12)

The overall cost function with a sparse term is:

J
(

W (l), b(l)
)

= J
(

W (l), b(l)
)

+ β

nl
∑

i=1

KL(ρ||ρ̂j), (13)

where β is the parameter to control sparsity. The objective

is finding the parameters W (l), b(l) which can minimize

the cost function over the whole training set, and this

can be efficiently implemented via the stochastic gradient

descent algorithm.

3.3 Feature smoothness

When we finish the spectral feature mining layers, we can

use all units in layer L − 1 as the spatial-spectral features.

(a) (b) (c) (d) (e)

Fig. 2 Indian Pines data set. From left to right are a false-color image from bands 50, 27, and 17, b the ground truth, c training samples using around

10 % of labeled samples per class, d test samples, and e color indexing
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Table 1 Classification accuracy ( %) for the Indian Pines image

using 10 % training samples as shown in Fig. 3

Class Train Test SAE-LR LORSAL-MLL SOMP MPM-LBP CDL-MLR

1 5 49 93.33 100.0 100.0 100.0 100.0

2 143 1291 84.66 87.46 95.05 99.70 99.21

3 83 751 84.39 81.23 96.24 100.0 98.89

4 23 211 73.08 88.41 97.93 100.0 100.0

5 50 447 93.47 97.49 98.68 100.0 99.78

6 75 672 93.41 97.34 98.36 99.73 99.73

7 3 23 100.0 100.0 100.0 100.0 100.0

8 49 440 95.11 97.98 100.0 100.0 100.0

9 2 18 100.0 100.0 100.0 100.0 100.0

10 97 871 85.78 83.64 95.44 98.48 99.89

11 247 2221 83.46 86.31 91.80 98.74 99.22

12 61 553 81.62 91.79 91.71 99.35 98.99

13 21 191 98.52 100.0 100.0 100.0 100.0

14 129 1165 91.77 97.04 98.00 99.92 99.69

15 38 342 81.79 86.18 97.07 98.93 99.43

16 10 85 98.88 100.0 100.0 100.0 100.0

OA 86.85 87.18 92.60 97.50 98.23

AA 89.95 90.83 94.14 98.28 98.70

κ 0.8495 0.8536 0.9155 0.9715 0.9799

However, in order to smoothen the feature and suppress

outliers in the spatial domain, we develop another layer.

This layer uses the neighborhood of the unit from layer

L − 1 as the input and computes the output by:

r(L) = f
(

W (L)U
(

r(L−1)
)

+ b(L)
)

. (14)

As in Eq. (8), the parameter W (L) is initialized via a 2-

D Gauss filter, and we decide this parameter according to

the spatial resolution of HSI.

3.4 Output layer

After finishing all the hidden layers, we add an output

layer on the top of the deep network. In order to supervise

the learning of spectral-spatial features, our output layer

is a multinomial logistic regression (MLR), also known as

softmax regression, which is an extended version of logis-

tic regression to solve multi-class classification problems.

The output label z for sample x is given by:

z = g

(

1
∑K

k=1 e
(W (L+1))T r(L)

)

. (15)

The function g(·) returns to the position of the max com-

ponent of input vector. Like all classifiers, the weight

W (L−1) can be decided by minimizing a cost func-

tion which minimizes the average sum-of-squares error

between the results z and the corresponding labels y over

all training samples.

3.5 Fine-tuning

After building all layers in a greedy layer-wise way, we

use the fine-tuning approach in SAE to adjust all the

parameters in our contextual deep learning by minimizing

the following energy function using the coding procedure

illustrated in Algorithm 1:

JCDL(W , b) = min
1

M

M
∑

k=1

1

2

∥

∥

∥
z(m) − y(m)

∥

∥

∥

2
+

λ

2

L
∑

l=1

∥

∥

∥
W (l)

∥

∥

∥

2

F
,

(16)

where JCDL(W , b) is an energy function, M is the number

of training samples, the first term is an average sum-of-

squares error term within all the samples, and the second

term is the Frobenius norm that prevents over-fitting.

4 Experiments and performance comparisons
In this section, we evaluate the proposed method and

other contrastive methods on several hyperspectral data

sets which are all available online1. We use MATLAB

2014a on a computer with Intel Core i7 4.0 GHz CPU and

32 GB memory. For better comparison, please refer to the

electronic versions of all the figures in these experiments.

(a) (b) (c) (d) (e)

Fig. 3 Classification maps and overall classification accuracy (OA) for Indian Pines data set using around 10 % of all labeled samples. a SAE-LR,

b LORSAL-MLL, c SOMP, dMPM-LBP, and e CDL-MLR
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(a) (b)

Fig. 4 a The curve of OA obtained by different training sample percentages for the Indian Pines data set. b Distribution of the OA obtained by 30

different random realizations for the Indian Pines data set with 10 % training samples

4.1 Parameter setting

In the following experiments, the proposed contextual

deep learning (CDL) algorithm with multinomial logis-

tic regression (MLR) as output layer is compared to

other widely used spectral-spatial classification methods,

including stacked auto-encode with logistic regression

(SAE-LR) [31], simultaneous orthogonal matching pursuit

(SOMP) [18], augmented Lagrangian-multilevel logistic

(LORSAL-MLL) [25], and maximizer of the posterior

marginal by loopy belief propagation (MPM-LBP) [19].

SAE-LR processes HSI with principal component analy-

sis (PCA) and uses blocks from PCA processed HSI as

spatial features, then strings with spectral features as the

input of SAE with LR as output layer. LORSAL-MLL uses

logistic regression via splitting and augmented Lagrangian

algorithm and encodes the spatial information by a mul-

tilevel logistic prior. SOMP utilizes spatial information by

a simultaneous versions of OMP. MPM-LBP uses LBP to

include spatial information. All comparing methods are

respectively implemented using the parameters given in

relevant references aforementioned.

Furthermore, the following quality metrics are used to

evaluate the performance of all methods. Overall accuracy

(OA) refers to the percentage which is correctly classi-

fied over all test samples, average accuracy (AA) shows

the average value of classification accuracy for all classes,

and Kappa coefficient (κ) is a statistical measurement of

producer’s accuracy or user’s accuracy for classification

result.

4.2 AVIRIS data set: Indian pines

This is a challenging scene with low spatial resolution, as

shown in Fig. 2a. This data was gathered by AVIRIS sen-

sor over north-western Indiana and consists of 145×145

pixels. After removing bands of water absorption, there

are 200 spectral bands that cover from the visible light to

SWIR with 20 m spatial resolution. There are 16 classes in

the available ground truth, including two-thirds agricul-

ture and one-third forest or other perennial vegetation.

First of all, we evaluate the classification accuracy of

the proposed approach. We randomly selected 10 % per

class for training and the remaining 90 % for testing in

(a) (b) (c) (d) (e)

Fig. 5 Salinas data set. From left to right are a false-color image from bands 52, 25, and 10, b the ground truth, c training samples, d test samples,

and e color indexing
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Table 2 Classification accuracy ( %) for the Salinas image using

1 % training samples as shown in Fig. 6

Class Train Test SAE-LR LORSAL-MLL SOMP MPM-LBP CDL-MLR

1 20 1989 100.0 100.0 99.90 100.0 100.0

2 37 3689 99.38 99.65 99.97 99.92 96.65

3 20 1956 92.61 95.56 92.77 96.20 99.95

4 14 1380 98.79 98.08 95.76 98.64 98.98

5 27 1651 97.86 96.82 99.49 98.64 98.78

6 40 3919 99.87 100.0 99.32 99.97 99.27

7 36 3543 99.38 99.94 100.0 99.94 100.0

8 113 11,158 83.32 80.10 86.61 88.64 96.62

9 62 6141 99.37 98.94 98.81 99.58 99.92

10 33 3245 96.07 94.54 95.21 92.27 98.57

11 11 1057 95.86 89.83 97.53 96.54 96.78

12 19 1908 99.48 95.11 99.95 98.27 98.37

13 9 907 94.84 95.30 97.73 96.47 98.58

14 11 1059 98.37 96.45 95.00 97.97 98.87

15 73 7195 78.34 78.28 71.31 88.83 95.64

16 18 1789 97.85 99.20 99.94 99.28 99.48

OA 95.12 91.56 92.00 95.12 98.26

AA 96.94 94.86 95.58 96.94 98.72

κ 0.9715 0.9058 0.9456 0.9456 0.9806

all those methods; the numbers of the training and test

sets are shown in Table 1. SAE-LR uses the first six prin-

cipal components to get spatial features, and the window

size is 7×7; in the SAE, we have used 180 units in the

first hidden layer and 100 units in the second hidden layer.

SOMP uses a 9×9 square window, and LORSAL-MLL and

MPM-LBP use the parameters for this data in the origi-

nal papers. For CDL-MLR, we use four hidden layers; the

first one is a spatial information layer with a window size

of 7×7, with 50 units in next hidden layer, 80 units in the

third hidden layer, and 7×7 square window in the last hid-

den layer. According to the previous studies, the number

of hidden nodes is more important than the number of

hidden layers. Considering computational complexity, we

operated tons of experiments under various unit numbers

within 100 and chose a set which can give steady perfor-

mance. Classification results of AVIRIS Indian Pines data

using different algorithms are shown in Fig. 3; sub-figures

from left to right are results from SAE-LR, LORSAL-MLL,

SOMP,MPM-LBP, and CDL-MLR, respectively. The accu-

racy of all classification methods for each class along with

the overall accuracy and the kappa coefficient is given in

Table 1.

Due to the low spatial resolution of this data set, the

presence of mixed pixels are the leading challenge for clas-

sification. Results confirm that the spectral-spatial classi-

fication using learning-based feature extraction is able to

improve the classification accuracy considerably; that is

because spatial features can help to significantly prevent

salt-and-pepper noise in the result of pixel-wise classifica-

tion. However, how much spatial information to use is a

tricky problem, and too much spatial information would

suppress small structures and cause terrible classification

results. For this data set, considering the low spatial reso-

lution, we use a smaller spatial window. Table 1 shows the

accuracy of different methods wherein the first column is

the class label. From the table, for this challenging classi-

fication scenario, the best result is from CDL-MLR with

OA = 98.23 %, AA = 98.70 %, and κ = 0.9799.

Next, we perform experiments to examine the effect of

the number of training samples. All the parameters are

fixed except the numbers of training samples per class.

The classificationOA is plotted under various percentages

of samples in Fig. 4a, where the x-axis denotes the per-

centage of training samples per class and the y-axis is OA

averaged over five times. From the figure, we can tell that

OA monotonically increases with the size of the training

set for every algorithm. The CDL method always outper-

forms other methods and even more significantly when

there is a small training set. When the number of train-

ing samples is more than 20 % of each class in the ground

truth, the OA is tending towards stability.

Finally, we compare the stability of all classification

methods. We randomly choose 10 % of the labeled sam-

ples as the training set and randomly execute 30 tests

(a) (b) (c) (d) (e)

Fig. 6 Classification maps and overall classification accuracy (OA) for Salinas using only 1 % of all labeled samples. a SAE-LR, b LORSAL-MLL, c SOMP,

dMPM-LBP, and e CDL-MLR
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(a) (b)

Fig. 7 a The curve of OA obtained by different window sizes for the Salinas data set. b The curve of OA obtained by different layers for the Salinas

data set with different training sample percentages

for all algorithms. The functions of probability density of

OA are presented in Fig. 4b. From the figure, the average

classification rate is the highest for CDL-MLR, which is

consistent with the results in Fig. 3. Furthermore, the low-

est variance is from CDL-MLR, underlining its improved

robustness against a particular choice of training samples.

4.3 AVIRIS data set: Salinas

As shown in Fig. 5, this data was acquired by the AVIRIS

sensor over Salinas Valley, California, and consists of

512 × 217 pixels. There are 224 spectral bands covering

from the visible light to SWIR with 3.7 m spatial resolu-

tion. After discarding water absorption bands, 204 bands

were left. Salinas ground truth contains 16 classes and

includes vegetables, bare soils, and vineyard fields.

We randomly selected only 1 % per class for training

and the remaining 99 % for testing in all those methods;

the numbers of the training and test sets are shown in

Table 2. SAE-LR uses the first six principal components

to get spatial features, and the window size is 7×7. In

the SAE, we have used 200 units in the first hidden layer

and 120 units in the second hidden layer. SOMP uses a

9×9 square window, and LORSAL-MLL and MPM-LBP

use the parameters for this data in the original papers.

For CDL-MLR, we use four hidden layers; the first one

is a spatial information layer with a window size of 7×7,

with 150 units in next hidden layer, 100 units in the third

hidden layer, and a 7×7 square window in the last hid-

den layer. Classification results of Salinas data are shown

in Fig. 6. Sub-figures from left to right are results from

SAE-LR, LORSAL-MLL, SOMP, MPM-LBP, and CDL-

MLR, respectively. The accuracy of all classifications for

each class along with the overall accuracy and the kappa

coefficient is given in Table 2. From the table, for this

challenging classification scenario, the best result is from

CDL-MLR with OA = 98.26 %, AA = 98.72 %, and

κ = 0.9806.

Next, we perform experiments to examine the effect of

the window size of the spatial layer. All the parameters

are fixed except the window size. The classification OA is

plotted under various percentages of samples in Fig. 7a,

where the x-axis denotes the window size and the y-axis

(a) (b) (c) (d) (e)

Fig. 8 University of Pivia data set. From left to right are a false-color image from bands 58, 29, and 3, b the ground truth, c training samples, d test

samples, and e color indexing
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Table 3 Classification accuracy ( %) for the University of Pavia

image using 9 % training samples as shown in Fig. 9

Class Train Test SAE-LR LORSAL-MLL SOMP MPM-LBP CDL-MLR

1 597 6034 96.88 100.0 100.0 99.99 100.0

2 1681 16,971 98.30 98.50 97.21 99.00 99.89

3 189 1910 91.09 96.27 92.47 98.81 99.44

4 276 2788 99.15 91.03 74.39 98.24 100.0

5 121 1224 99.85 98.45 93.36 97.20 99.89

6 453 4576 96.44 97.24 99.54 98.61 99.63

7 120 1210 94.12 97.94 96.76 99.18 99.89

8 331 3351 93.27 99.94 99.58 99.90 100.0

9 85 862 100.0 100.0 100.0 97.45 100.0

OA 97.12 98.95 97.84 98.83 99.86

AA 96.57 97.28 93.96 97.36 99.64

κ 0.9615 0.9819 0.9628 0.9799 0.9976

is the averaged OA over five times. From the figure, we

can tell that every curve of OA monotonically increases

with the window size, but when the window size is too

big, the OA does not increase anymore; that is because the

deep network gives the outside pixels in the window zero

weights.

At last, we investigate the effect of every layer and show

the results in Fig. 7b. First, we use only one hidden layer

for extracting spectral features, then two hidden layers,

then two hidden layers with a spatial feature layer, and last,

all four layers. We use 0-1-1-0 to express that we use the

second and the third layers. The classification OA is plot-

ted under various percentages of samples in Fig. 7b, where

the x-axis denotes the percentage of training samples per

class and the y-axis is averaged OA over five times. From

the figure, we can see the contribution of each layer, and

the first hidden layer (blue line) for spatial feature mining

is very effective and enhances the average OA in a big step.

4.4 ROSIS urban data: University of Pavia

As shown in Fig. 8, this data set was collected by the

ROSIS sensor over Pavia, northern Italy, and consists

610×340 pixels. There are 103 spectral bands with 1.3 m

spatial resolution. The available ground truth contains

nine classes and includes vegetables, soils, and buildings.

For this data, we randomly pick 9 % labeled samples in

each class as training samples and the remainder as test

samples. Numbers of training and test sets can be seen in

Table 3. SAE-LR uses the first four principal components

as bands for spatial feature extraction, and the window

size is 9×9. In the SAE, we have used 180 units in the

first hidden layer and 100 units in the second hidden layer.

SOMP, LORSAL-MLL, and MPM-LBP use the parame-

ters for this data in the original papers. For CDL-MLR,

we use four hidden layers, the first one with a window

size of 19×19, with 50 units in the next hidden layer, 80

units in the last hidden layer, and a 19×19 square window

in the last hidden layer. The classification results using

different algorithms are shown in Fig. 9. The accuracy

of all classifications for each class along with the over-

all accuracy and the kappa coefficient is given in Table 3.

The best result from the table is from CDL-MLR with

OA = 99.86 %.

4.5 Discussion

Overall, the experiments suggest that incorporation of

spatial information improves the classification perfor-

mance, and the proposed CDL-MLR is competitive with

some of the best available spectral-spatial methods for

hyperspectral image classification.

In our algorithm, the most important part is the fea-

ture representation which affects the performance of HSI

classification. We use a deep learning algorithm to learn

the spectral and spatial features, and the number of hid-

den units is an important parameter. Currently, there is

no theory analysis about how to decide on this parameter.

Such analysis is beyond the scope of this work and better

left for consideration of specific applications.

5 Conclusions
In this paper, we introduced a novel feature mining algo-

rithm, contextual deep learning, which is especially effec-

tive for HSI classification. Learning both the spatial and

(a) (b) (c) (d) (e)

Fig. 9 Classification maps and overall classification accuracy (OA) for the University of Pivia image using around 9 % of all labeled samples. a SAE-LR,

b LORSAL-MLL, c SOMP, dMPM-LBP, and e CDL-MLR
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spectral features through contextual deep learning, the

accuracy of the classifier can be improved dramatically.

Compared with other classification methods, the major

advantage of the proposed method is that it is able to

obtain high-quality spectral and spatial features, using

just a few training samples and a simple classifier, and

outstanding classification results can be achieved. Thus,

the proposed method will be quite useful in real applica-

tions due to its superior accuracy. Since tons of unlabeled

data are available in HSI classification, a topic of future

research is to investigate how to use unlabeled samples in

this deep network and develop a semisupervised feature

learning method for HSI classification.

Endnote
1Available online: http://www.ehu.es/ccwintco/index.

php?title=Hyperspectral_Remote_Sensing_Scenes.
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