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25 Abstract

27 In this paper, a novel nonlinear technique for hyperspeatage classification is proposed. Our
29 approach relies on sparsely representing a test samplems @&f all training samples in a feature space
30 induced by a kernel function. For each test pixel in the feaBpace, a sparse representation vector is
32 obtained by decomposing the test pixel over a training aletry, also in the same feature space, by
33 using a kernel-based greedy pursuit algorithm. The reeaveparse representation vector is then used
35 directly to determine the class label of the test pixel. €tipg the samples into a high-dimensional
36 feature space and kernelizing the sparse representatigmoves the data separability between different
38 classes, providing a higher classification accuracy coatptarthe more conventional linear sparsity-based
classification algorithms. Moreover, the spatial coheyeamross neighboring pixels is also incorporated
41 through a kernelized joint sparsity model, where all of thes|s within a small neighborhood are jointly
represented in the feature space by selecting a few comratning samples. Several kernel greedy
44 optimization algorithms are suggested in this paper toestihe kernel versions of the single-pixel and
multi-pixel joint sparsity-based recovery problems. Expental results on several hyperspectral images
47 show that the proposed technique outperforms the lineasitpdased classification technique, as well

as the classical Support Vector Machines and sparse kemistit regression classifiers.
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. INTRODUCTION

Hyperspectral imaging sensors capture digital images mdreds of continuous narrow spectral bands,
spanning the visible to infrared spectrum. Each pixel in pangpectral image (HSI) is represented by
a vector whose entries correspond to various spectral-tespbnses. Different materials usually reflect
electromagnetic energy differently at specific waveleagitis enables discrimination of materials based
on their spectral characteristics. One of the most impormgplications of HSI is image classification,
where pixels are labeled to one of the classes based on pregitral characteristics, given a small set of
training data for each class. Various techniques have beeelaped for HSI classification. Among the
previous approaches, the support vector machine (SVM]21has proven to be a powerful tool to solve
supervised classification problems and has shown goodrpefes in hyperspectral classification, as
well [3], [4]. Variations of SVM-based algorithms have alseen proposed to improve the classification
accuracy. These variations include semi-supervised iteg@rwhich exploits both labeled and unlabeled
samples [5], post-processing of the individually-labetsinples based on certain decision rules [6],
[7], and incorporating spatial information directly in tf8/M kernels [8], [9]. Multinomial logistic
regression [10] is another widely used classifier, whichtfigsposterior probability to the logistic function.
A fast algorithm for sparse multinomial logistic regressibas been developed [11] and successfully
adopted in semi-supervised HSI segmentation [12]. Morene&iS| classification techniques can be
found in [13]-[19].

Recently, sparse representation has also been proposelyémnsany computer vision tasks [20]-[25],
where the usage of sparsity as a prior often leads to stateeedirt performance. Sparse representation
has also been applied to HSI target detection and clasgificé26], relying on the assumption that
hyperspectral pixels belonging to the same class lie in #meslow-dimensional subspace. Thus, an
unknown pixel can be sparsely represented by a few trairémgpges from a given dictionary and the
corresponding sparse representation vector encodesabe icformation.

It is well known that for the classical HSI image classifioatiand target detection algorithms, the
kernel methods can significantly improve their performaj@, [28], since the kernel-based algorithms
implicitly exploit the higher-order structure of the givelata which may not be captured by the linear
models. Therefore, if the dataset is not linearly separdt@enel methods [29]-[32] can be applied to
project the data into a nonlinear feature space in which #ta decomes more separable. In practical
implementation, the kernel trick [1] is often used in orderatvoid explicitly evaluating the data in the

feature space.
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In this paper, we propose a new HSI classification algoritla®seld on kernel sparse representation by
assuming that a test pixel can be linearly represented byvariening samples in the feature space.
The proposed approach is different from the previous kemegrlession approaches in [29], [30], where
a function is learned as a sparse linear combination of bhasish are in the form of kernel functions.
Therefore, the target vector for fitting consists of the obsgons of the function value at the training
points and the dictionary is the kernel matrix. In our prambspproach, a kernel sparse representation
vector is obtained by decomposing the test pixel repredeint& high dimensional feature space over
a structured dictionary consisting of training samplesrifrall of the classes in the same feature space.
The contextual correlation between pixels within a smalditish neighborhood is also incorporated into
the kernel sparse representation through a joint sparsitgem[33], where all neighboring pixels are
simultaneously represented by a linear combination of a demmon training samples in the feature
space. Each pixel, although sharing the same common syppigtit have weighting coefficients taking
on different values. In this way, the smoothness acrosshbeiing spectral pixels is enforced directly in
the classification stage, and no post-processing stepsegi@ped. Efficient kernel-based optimization
algorithms are also discussed in this paper for the recosktiye kernel sparse representations for both
single-pixel and multi-pixel joint sparsity models.

Notation-wise, vectors and matrices are denoted by lowad- @wpper-case bold letters, respectively.
For a vectorn € RN and an index sef\ C {1,...,N} with |A| =t, a, € R' is the portion ofa indexed
on A. For a matrixSe RNNzindex sets\; C {1,...,M} with |[A;] =t;, andA; C {1,...,N,} with
A2 =t, Sy, € R"M is a submatrix ofS consisting of thet; rows in Sindexed onAg, S 5, € RN*®
consists of the, columns inSindexed onA\,, andSy, A, € R"*% is formed by the rows and columns of
Sindexed on/\; and A\, respectively.

The remainder of this paper is structured as follows. Sedtibriefly introduces the sparsity-based HSI
classification technique. Section Il then defines the $tyansodels in the feature space and describes
how to solve the kernel sparse recovery problems. Expetahessults are discussed in Section IV, and

conclusions are drawn in Section V.

II. SPARSITY-BASED HSI| CLASSIFICATION

This section briefly introduces the sparsity-based algorifor HSI classification, and more details
can be found in [26]. It is assumed that the spectral sigeatof pixels belonging to the same class
approximately lie in the same low-dimensional subspacesThn unknown test sampkec R, where

B is the number of spectral bands, can be written as a spaesa leombination of all of the training
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pixels as
x=Ad, @)

whereA= [al a, --- ay|€R®Nisastructured dictionary whose columf@s};_; ,  areN training
samples (referred to as atoms) from all classes,caadRN is an unknown sparse vector. The index set
on whicha have nonzero entries is the supportoof The number of nonzero entries énis called the
sparsity levelK of a and denoted bK = |ja||,. Given the dictionanA, the sparse coefficient vectar

is obtained by solving

a =argmin/|x—Aa|, subjectto |a], <Ko, (2)

where Kq is a preset upper bound on the sparsity level. The problen)ns( NP-hard, which can
be approximately solved by greedy algorithms, such as @dhal Matching Pursuit (OMP) [34] or
Subspace Pursuit (SP) [35]. Both OMP and SP algorithms a¥d teslocate the support of the sparse
vectord, but the difference between these two algorithms is in thg tha atoms are selected from the
dictionary. The OMP algorithm augments the support set by iodex at each iteration untdy atoms
are selected or the approximation error is within a pregeistiold. The SP algorithm maintains a set of
Ko indices. At each iteration, the index set is refined by ad#ipgew candidates to the current list and
then discardind(y insignificant ones from the list ofk) candidates. With the backtracking mechanism,
SP is able to find th&kg most significant atoms. The class labelhofs determined by the minimal

residual between and its approximation from each class sub-dictionary:

Clasgx) =arg _min [IX—A.q,0q,|,, €)
whereQn, C {1,2,...,N} is the index set associated with the training samples béigrtg thenth class.

In HSI, pixels within a small neighborhood usually consi$tsimilar materials and, thus, their
spectral characteristics are highly correlated. The sbatirrelation between neighboring pixels can

be incorporated through a joint sparsity model [26], [33] dssuming the underlying sparse vectors

300y

a spatial neighborhood centeredxat These pixels can be compactly represented as

X:[Xl X - XT}:{A“l Aa, --- Adr

:A{a1 a, - GT] =AS (4)

S

sparse matrix with onlyyA| nonzero rows. The row-sparse matfxcan be recovered by solving the
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following optimization problem
S=argmin|X —AS|. subject to [|S)|,on0 < Ko, (5)
where S|, , denotes the number of non-zero rows®and |-||- denotes the Frobenius norm. The

problem in (5) can be approximately solved by the simultaiseversions of OMP (SOMP) [33] or
SP (SSP). The label of the center pixelis then determined by the minimal total residual:

. ©®)

where||-||- denotes the Frobenius norm.

I1l. KERNEL SPARSEREPRESENTATION

If the classes in the dataset are not linearly separabla,ttfeekernel methods can be used to project
the data into a feature space, in which the classes becomalinseparable [1]. The kernel function

K :RBx RB— R is defined as the inner product

K(%,Xj) = (@(%), 0(X;)) - ()
Commonly used kernels include the radial Basis FunctionHRIBernelk(x,X;) = exp(—VHXi —xj||2)
with y > 0 controlling the width of the RBF, and orded homogeneous and inhomogeneous polynomial
kernelsk (X, X;) = (X -xj)d andk(X;,X;) = (X - Xj + 1)¢, respectively. In this section, we describe how the

sparsity models in Section Il can be extended to a featureespaluced by a kernel function.

A. Pixel-wise Sparsity in Feature Space

Let x € RB be the data point of interest amgix) be its representation in the feature space. The kernel
sparse representation of a samyli terms of training atoms;’s can be formulated as
T
o0 = g@) - o@]|a - o] =AM, ®)
A o
where the columns dA, are the representations of training samples in the feapaeesand’ is assumed

to be a sparse vector.
Similar to the linear sparse recovery problem in @),can be recovered by solving
@’ = argmin||p(x) —Ax’||, subjectto [ja’[|, < Ko. 9)
The problem in (9) can be approximately solved by kerneizimle OMP and SP algorithms (denoted
by KOMP and KSP, respectively).
In KOMP and KSP, essentially each dot product operation inRIBP is replaced by the kernel trick
in (7). LetKa € RN*N be the kernel matrix whosg, j)th entry isk (a;,a;), andkax € RN be the vector
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whoseith entry isk (a;,X). Using the feature representations, the correlation (dotlyct) between a

pixel @(x) and a dictionary atong(g;) is then computed by

¢ = (0(x),0(@)) = K(X,a) = (Kax); , (10)
the orthogonal projection coefficient gfx) onto a set of selected dictionary atofiga,)},., is given

as

P = ((Kann)  Kaxlp. (1)

and the residual vector betwee(x) and its approximation frorf@(@y) },., = (Ag). , is then expressed

as
@) = 90— (Ao).» (Kaln)  (ax)p. 12)

Note that the feature representation of the residual vepfor in (12) cannot be evaluated explicitly.

However, the correlation betweegir) and an atonp(a;) can be computed by

6 = (0(), 0(@) = (Kn) — (Ka)ir (Kalpn)  (Kn)y (13)
The details of the KOMP and KSP algorithms are summarizedIgo#thms 1 and 2, respectively.
The step for computing the residual vector (12) is incorfamdanto the computation of the correlation
vector in Step (1) of both KOMP and KSP.
Once the sparse vectd is recovered, the residual between the test sample andnthelass

reconstruction in the high-dimensional feature spaceeés ttomputed by

() = [0~ (Ay). o, 6,
= (00— (). G, 90— (AY) g, G5,) 14

m

~ ~ ) 1/2
= (k(xX) — 285, (Kax)g, +68, (Ka)g, 0,80, ) -
wherekax andKp are as defined in the initialization step in Algorithms 1 andh@d Qy, is the index

set associated with th&th class. The class label ®&fis determined as

Clasgx) = argm:rpinM Fm(X). (15)

7777

B. Joint Sparsity in Feature Space
The joint sparsity model in (4) can also be extended to thafesspace as follows:
Xo=[o0) - oixr)| = [Ags - Agf]
=Aga; o ap| =AS,

(16)
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>

Input: Bx N dictionaryA= [al a, - aN} , test sample&, kernel functiork, and a stopping criterig

Initialization: compute kernel matriKa € RN*N whose(i, j)th entry isk (a;,a;), and vectokax € RN
whoseith entry isk (a,X). Set index sef\ to be index corresponding to the largest entrkig and
iteration countet = 1.

while stopping criterion has not been

T
(1) Compute the correlation vector= |:C1 CN:| by

1
C=kax—(Ka).r_, ((KA)/\I,I./\t,l) (Kax)n, |,

(2) Select the new index ag = arg max |ci
|

=1..N
(3) Update the index set; = Ar_1U{A¢}
@At—t+1

end while

Output: Index setA = A1, the sparse representationn whose nonzero entries indexed By are
A = (Kan) ™ (Kax),

Algorithm 1: Kernelized Orthogonal Matching Pursuit (KOMP)

8 = argmin|[Xe—AgS||.  subject to [|S]| o0 < Ko. 17)
In this paper, we propose kernelized SOMP (KSOMP) and kizewISSP (KSSP) to approximately
solve the above joint sparse recovery problem in (17).

In KSOMP, at every iteration, the atom that simultaneousfydg the best approximation to all tie
pixels (or residuals after initialization) is selected.e8ifically, letC € RN*T be the correlation matrix
whose(i, j)th entry is the correlation betweeta;) andq(r;), whereq(r;) is the residual vector ap(x;).
The new atom is then selected as the one associated withwhefi©, which has the maximal,-norm
for somep > 1. The KSOMP algorithm is summarized in Algorithm 3.

Similarly, KSSP is a simultaneous version of KSP where Kgeatoms that best simultaneously
approximate all of th@ residuals in terms of thé,-norm are chosen. The KSSP algorithm is summarized
in Algorithm 4.

Once the matriX8 is recovered, the total residual between Theeighboring pixels and their approx-
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Input: B x N dictionary A = [al a, --- ayn|, test sample, kernel functionk, sparsityKo, and &

stopping criterion

Initialization: compute kernel matriKa € RN*N whose(i, j)th entry isk (a;,a;), and vectokax € RN

whoseith entry isk (&;,X). Set index sef\o = {KO indices corresponding to th€, largest entries i

=}

kA7x} and iteration counter= 1.
while stopping criterion has not been
(1) Compute the correlation vector=Kax — (Ka). 5, , ((KA)AHJ\H) 71(kA=X)/\t71 eRN
(2) Find the index sef = {KO indices corresponding to th&, largest entries irjc|}
(3) Update the candidate index sgt=A;_ U1
(4) Computep = ((Ka)z,4,) k), € B
(5) Update the index set; = {KO indices in/\; corresponding to th&, largest entries irjp|}
B)t«t+1

end while

Output: Index setA = A1, the sparse representation whose nonzero entries indexed By are
A = (Kan) ™ (Kax),

Algorithm 2: Kernelized Subspace Pursuit (KSP)

imations from themth-class training samples is computed by

- 1/2
A T A T A
() = (_zi (K06 %) 285, (Kax)g, + 55, <KA>Qm,Qmsam,i)> , (18)
1=
whereKa x andKp are as defined in Algorithms 3 and 4, ad € {1,2,...,N} is the index set associated

with the mth class. The label for the center pixal is then determined by the total residual

Clasgx;) = arg rpinM Fm(X1). (19)
m=

7777

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of thpqa®d algorithms on classification of several
hyperspectral datasets. For each image, we solve the sgameery problems in (2), (5), (9), and (17)
for each test sample, and then determine the class by themalimesidual (the results are denoted
by OMP/SP, KOMP/KSP, SOMP/SSP, and KSOMP/KSSP, respégtivehe classification results are

then compared visually and quantitatively to those obthibg the classical SVM classifier and sparse
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1 9
2
3
g Input: B x N dictionary A = [al aN}, B x T data matrixX = [Xl XT:|' kernel functionk,
? and a stopping criterion
8
10 Initialization: compute the kernel matric& in Algorithm 1 (Initialization) andKax € RN*T whose
g (i,j)th entry isk(a,X;). Set index set\; = arg T%H(KA’X)‘ H with some p > 1 and iteratior
i=1,.., lip
13 countert = 1.
14 . . - -
15 while stopping criterion has not been
13 (1) Compute the correlation matrix
18 -1 y
19 C=Kax—(Ka)., ((KA),\H‘/\H> (Kax)y, . € RMT
3(1) (2) Select the new index ag = arg max ICi:ll,, p=1
I=4..,
22 (3) Update the index set; = A1 U {\}
23
24 @Att+1
i~ end while
27
28 ~ ~
29 Output: Index setA = A;_3, the sparse representatiSnwhose nonzero rows indexed byareS, . =
30 _
31 (Kan) ™ (Kax)a.
gé Algorithm 3: Kernelized Simultaneous Orthogonal Matching Pursuit (K80
34
35 . . - . - Iy
36 multinomial kernel logistic regression (KLR). For SVM and_R classifiers, we use a spectral-only
g; kernel (denoted by SVM/KLR), as well as a composite kerngl(@noted by SVMCK/KLRCK). The
Zg composite kernel takes into account the spatial correlatietween neighboring pixels by combining
41 the spectral and spatial information via a weighted kermehraation, and SVMCK has been shown to
42
43 outperform the spectral-only SVM in HSI classification [Fhe parameters for KLR, KLRCK, SVM,
j‘é and SVMCK are obtained by cross-validation.
46 The first hyperspectral image in our experiments is the AmboVisible/Infrared Imaging Spectrom-
47
48 eter (AVIRIS) image Indian Pines [36]. The AVIRIS sensor geates 220 bands across the spectral
gg range from 0.2 to 2.4m. In the experiments, the number of bands is reduced to 206eimpving
g; 20 water absorption bands. This image has spatial respolatfid20 m per pixel and spatial dimension
53 145x 145. It contains 16 ground-truth classes. For each classtawdomly choose around 10% of
54
55 the labeled samples for training and use the remaining 90%e&iing, as seen in Table | and Fig. 1.
g? Radial Basis Function (RBF) kernels are used in all kerasield classifiers (i.e., SVM, SVMCK, KLR,
58
59 August 12, 2011 DRAFT
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Input: B x N dictionary A = [al aN}, B x T data matrixX = |:X1 XT:|' kernel functionk,

and a stopping criterion

Initialization: compute the kernel matric& in Algorithm 1 (Initialization) andKax € RN*T whose
(i,])th entry isk (a,X;). Set index sef\o = {KO indices corresponding to th€, largest numbers in
o

while stopping criterion has not been

,p>1,i= 1,...,N}, and set iteration countér= 1.
p

(1) Compute the correlation matrix

C=Kax—(Ka)._, ((KA)/\I,l./\t,J N (Kax)p, ,. € RNT
(2) Find the index sef = {KO indices corresponding to th€ largest numbers ifiCi.[|,, p=> 1,
i—1... N}
(3) Update the candidate index s&t=A_1J I
(4) Compute the projection coefficierfes= ((KA)Aty;\)il(KA,x);\h: € R%KoxT
(5) Update the index sét; = {KO indices inA; corresponding to th&, largest numbers itﬂPiy;Hp,
p>1,i :1,...,N}
6)t«t+1

end while

Output: Index set\ = /A;_1, the sparse representatié‘nwhose nonzero rows indexed lzsyareé;\; =
(K/\,/\)il(KA,X)/\,;

Algorithm 4: Kernelized Simultaneous Subspace Pursuit (KSSP)

KLRCK, KOMP, KSP, KSOMP, and KSSP). Since this image cossidgtlarge homogenous regions, a
large spatial window of size 99 (T = 81) is used in classifiers with a composite kernel and the join
sparsity models (4) and (16).

The classification accuracy for each class, overall acguf@d\), average accuracy (AA), and the
coefficient measure [37] on the test set are shown in TablEhk. OA is computed by the ratio between
correctly classified test samples and the total number ofstanples, and the AA is the mean of the 16
class accuracies. The classification maps on labeled pixelpresented in Fig. 2. One can clearly see
from Table Il that the KSOMP and KSSP algorithms associatith e kernelized joint sparsity model

yield the best classification performance for most of thegs#a. Incorporating the contextual correlation
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1 11
2
4 and operating in the feature space both have significantydwed the classification accuracy.
5
6 TABLE |
; THE 16 GROUND-TRUTH CLASSES INAVIRIS INDIAN PINES.
9
10 Class Samples
1;' No | Name Train | Test
13 1 | Alfalfa 6 48
14 2 | Corn-notill 144 | 1290
ig 3 | Corn-min 84 750
17 4 | Corn 24 210
18 5 | Grass/Pasture 50 | 447
;g 6 | Grass/Trees 75 672
21 7 | Grass/Pasture-mowed 3 23
22 8 | Hay-windrowed 49 | 440
23
24 9 | Oats 2 18
25 10 | Soybeans-notill 97 871
26 11 | Soybeans-min 247 | 2221
g; 12 | Soybean-clean 62 552
29 13 | Wheat 22 190
30 14 | Woods 130 | 1164
g; 15 | Building-Grass-Trees-Driveg§ 38 342
33 16 | Stone-steel Towers 10 85
34 Total 1043 | 9323
35
36
37
38
39
40
41
42
43
44
45
46
47
48
a b
.8 (@) (b)
30 Fig. 1. (a) Training and (b) test sets for Indian Pines.
51
52
gj Now we examine the effect of the sparsity le¥l and the RBF kernel parameteiin the proposed
55 algorithms on the classification performance on Indian ®ivée use the same training and test set in
56
57 Table 1, and a % 9 window for KSOMP and KSSP, and then vafy from 5 to 80 andy from 273 to
58
59 August 12, 2011 DRAFT
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12
TABLE 1l
CLASSIFICATION ACCURACY (%) FOR INDIAN PINES.

Class|| SVM | SVMCK | KLR | KLRCK | OMP | KOMP | SOMP | KSOMP SP KSP | SSP | KSSP
1 81.25 95.83 64.58 75.00 | 68.75| 72.92 | 85.42 97.92 68.75| 72.92 | 81.25| 91.67
2 86.28 96.67 89.46 96.43 65.97 | 86.36 | 94.88 97.21 74.65| 87.91| 95.74| 97.98
3 72.80| 90.93 70.67| 95.47 | 60.67 | 77.47 | 94.93 96.67 | 63.20 | 78.53 | 92.80 | 97.73
4 58.10 85.71 67.14 | 86.19 38.57| 62.86 | 91.43 93.33 40.00 | 62.86 | 82.38 | 96.67
5 92.39| 93.74 | 90.60 | 96.42 89.49| 90.38 | 89.49 95.75 | 89.04 | 90.60 | 93.29 | 94.85
6 96.88 | 97.32 98.07| 98.66 | 95.24| 97.17 | 98.51 99.55 95.98 | 96.88 | 98.81 | 98.96
7 43.48 69.57 17.39 82.61 21.74 | 21.74 | 91.30 60.87 21.74 | 21.74| 82.61| 17.39
8 98.86| 98.41 98.86| 97.95 | 97.05| 98.18 | 99.55 100 99.09| 98.64 | 99.77 | 100
9 50.00 55.56 16.67 50.00 | 33.33| 55.56 0 0 61.11 | 55.56 0 0
10 71.53 93.80 74.97 93.80 | 68.20| 77.61 | 89.44 94.60 70.72 | 79.33| 91.27 | 94.37
11 84.38| 94.37 84.87| 9554 | 7596 | 85.68 | 97.34 99.28 77.94| 86.90 | 97.43 | 98.33
12 85.51 93.66 81.16 91.85 | 54.53| 77.90 | 88.22 95.65 61.23 | 78.44 | 89.13 | 97.46
13 100 99.47 100 100 100 100 100 100 100 100 | 99.47| 100
14 93.30| 99.14 | 95.02| 96.56 | 92.87| 95.70 | 99.14 99.83 | 95.62 | 95.96 | 99.05 | 99.91
15 64.91 87.43 61.70| 88.01 | 41.23| 55.85 | 99.12 91.81 48.25 | 55.56 | 97.95| 97.08
16 88.24 100 57.65| 88.24 | 94.12| 92.94 | 96.47 91.76 | 92.94| 94.12 | 92.94 | 94.12
OA 84.52| 94.86 84.78| 95.10 | 74.78 | 85.26 | 95.28 97.33 | 78.10| 86.09 | 95.34 | 97.46

AA 79.24| 90.73 73.05| 89.55 | 68.61| 78.02 | 88.45 88.39 | 7252 | 78.50 | 87.12 | 86.03
K 0.823| 0941 | 0.826| 0.944 | 0.712| 0.832 | 0.946 0.970 | 0.749| 0.841 | 0.947 | 0971

Page 12 of 34

22 in KOMP, KSP, KSOMP, and KSSP. The OA on the test set are shawfig. 3. One can observe

from Figs. 3(a) and (b) that for the pixel-wise kernel spgrsiodel,y =512 leads to the highest OA at

all sparsity levels. For a fixed the performance of KOMP and KSP generally improve&amcreases,
and tends to saturate &g reaches 30-50. For KSOMP and KSSP, as shown in Figs. 3(c) dndhe

same tendency cannot be observed. However, the kernelgparsity model is more stable than the

pixel-wise model, as for a large range of sparsity leKgland sufficiently largey, the overall accuracy

is always around 96% with a small variance.

The next two hyperspectral images used in our experimemtweksity of Pavia and Center of Pavia,

are urban images acquired by the Reflective Optics Systergitmeéspectrometer (ROSIS). The ROSIS

sensor generates 115 spectral bands ranging from 0.43 éouth8nd has a spatial resolution of 1.3-

meters per pixel [9]. The University of Pavia image consit§10x 340 pixels, each having 103 bands,

with the 12 most noisy bands removed. There are nine grownkl-tlasses of interests, as shown in
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35 (i) @ (k) o

37 Fig. 2. Classification maps for Indian Pines using (a) SVM.JWMCK, (c) KLR, (d) KLRCK, (e) OMP, (f) KOMP, (g) SOMP,
(h) KSOMP, (i) SP, (j) KSP, (k) SSP, and (I) KSSP.

42 Table lll. For this image, we follow the same experimentisgtt for the training and test sets as used
in [7], in which about 9% of labeled data are used as trainimg) the rest are used for testing, as shown
45 in Table Il and Fig. 4.

47 The classification accuracies and theoefficients on the test set using various techniques anersho
49 in Table IV, and the classification maps for all labeled mxate presented in Fig. 5. Again, the RBF
kernel is used for all kernel-based algorithms. This urlmaage lacks the large spatial homogeneity and,
52 therefore, a smaller neighborhood of size B is optimal for algorithms using a composite kernel, and the
54 linear and kernel joint sparsity models. Similar to the &mdPines image, the proposed KSOMP/KSSP

algorithms achieve better or comparable performance wioempared with the SVMCK classifier for
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Fig. 3. Effect of sparsity leveKy and RBF kernel parametgron Indian Pines using (a) KOMP, (b) KSP, (c) KSOMP, and
(d) KSSP.

most of the classes. KSOMP and KSSP yield the best accurayeimnd three classes out of the total
nine classes, respectively, and KSSP has the highest OA,aAdk coefficient. The accuracy for the
second class representing Meadows, which contains monedsi of the samples in the entire test set,
for KSOMP and KSSP is 5%-9% lower than that for SYMCK and KLRCK

In what follows, we examine how the number of training samtfects the classification performance
for various algorithms on the Indian Pines and UniversityPalvia images. The algorithm parameters
are fixed to be the same as those used to generate the restiiblés 1l and IV. For Indian Pines, in
each test, we randomly choose 1% to 30% of the labeled datacim @ass as the training samples and

the remaining samples as the test ones. The classificatmuraay plots under various conditions are
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TABLE 1l

THE 9 GROUND-TRUTH CLASSES INUNIVERSITY OF PAVIA .

Class Samples
No | Name Train | Test
1 | Asphalt 548 6304
2 | Meadows 540 | 18146
3 | Gravel 392 | 1815
4 | Trees 524 | 2912
5 | Metal sheets|| 265 | 1113
6 | Bare solil 532 | 4572
7 | Bitumen 375 981
8 | Bricks 514 | 3364
9 | Shadows 231 795
Total 3921 | 40002

@) (b)

Fig. 4. (a) Training and (b) test sets for University of Pavia

shown in Fig. 6(a) for Indian Pines, where thaxis denotes the percentage of training samples from
the total available labeled samples, and yrexis is the OA on the test set. The accuracies are averaged
over five runs at each percentage level to avoid any bias @dlbg random sampling. For the University

of Pavia image, we create a balanced dictionary by randommbpsingL = 10,20,30,50,100, and 200
training samples per class from the entire training set shiowFig. 4(a). The classification accuracy
plots using the sparsity-based algorithms are shown in &{ig), where thex-axis denotes the number

of training samples per class, and tpaxis is the overall classification accuracy on the testAgain,
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TABLE IV

CLASSIFICATION ACCURACY (%) FORUNIVERSITY OF PAVIA .

Class|| SVM | SVMCK | KLR | KLRCK | OMP | KOMP | SOMP | KSOMP | SP KSP | SSP | KSSP
1 84.30| 79.85 | 8296 | 74.40 | 68.23| 76.09 | 59.33 94.23 69.78 | 76.67 | 69.59 | 89.56
2 67.01| 84.86 | 83.34 8591 | 67.04| 69.61 | 78.15 76.74 | 67.90| 70.92 | 72.31| 79.98
3 68.43| 81.87 | 64.13| 61.71 | 65.45| 72.12 | 83.53 79.23 | 69.20 | 73.39 | 74.10| 85.45
4 97.80| 96.36 | 96.33| 96.22 | 97.29| 98.11 | 96.91 95.12 | 96.77 | 98.15| 95.33 | 98.66
5 99.37 99.37 | 99.19| 99.10 | 99.73| 99.73 | 99.46 100 99.64 | 99.82 | 99.73 | 99.91
6 92.45| 9355 | 80.05| 84.45 | 73.27| 87.66 | 77.41 99.50 78.96 | 89.70 | 86.72 | 95.76
7 89.91| 90.21 | 8451 | 8532 | 87.26| 88.07 | 98.57 99.80 88.18 | 88.28 | 90.32 | 97.96
8 9242 | 9281 | 83.17| 93.37 | 81.87| 89.51 | 89.09 98.78 83.68 | 87.54 | 90.46 | 96.43
9 97.23| 9535 | 89.81| 96.48 | 9597 | 93.96 | 91.95 29.06 | 94.59| 95.22 | 90.94 | 98.49

OA 79.15| 87.18 | 83.56| 84.77 | 73.30| 78.33 | 79.00 85.67 | 74.86| 79.18 | 78.39 | 87.65

AA 87.66| 90.47 | 84.83| 86.33 | 81.79| 86.10 | 86.04 85.83 | 83.19| 86.63 | 85.50 | 93.58

K 0.737| 0.833 | 0.784| 0.799 | 0.661| 0.725 | 0.728 0.815 | 0.681| 0.735| 0.724 | 0.840

the accuracies are averaged over five runs at €adhis obvious that in most cases the OA increases
monotonically as the number of training samples increaBes.University of Pavia, the performance
at L = 50 is almost the same as thatlat= 100 for all classifiers. The SVMCK classifier consistently
outperforms all of the other classifiers when the number aihing samples is small. It should also
be pointed out that during the training stage of algorithreimg a composite kernel (i.e., SYMCK and
KLRCK), in order to extract the spatial features for eaclnirey sample, one requires knowledge of the
neighboring pixels or the location of the training sampléjclk may not be available in the training set.
Moreover, the proposed sparsity-based algorithms relyhenapproximation accuracy from each class
sub-dictionary. Therefore, if the size of the sub-dictignia too small, the training samples may not be
sufficient to faithfully represent the subspace associaiéitd each class, leading to a lower classification
accuracy than the discriminative classifier SVM.

The third image in our experiments, Center of Pavia, is tiemotrban image collected by the ROSIS
sensor over the center of the Pavia city. This image consist®@96x 492 pixels, each having 102 spectral
bands after 13 noisy bands are removed. The nine grourtd-ttasses and the number of training and
test samples for each class are shown in Table V and illestrat Fig. 7. For this image, about 5%
of the labeled data are used as training samples. The otas®ifi results are summarized in Table VI,
and the classification maps are shown in Fig. 8. KLRCK acliev@00% accuracy on the first class of
water, which occupies 66% of the test set, and thus yieldbést OA. The KSOMP and KSSP work
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26 @) (h) (i) 0) ) 0)

28 Fig. 5. Classification maps for University of Pavia using 8JM, (b) SVMCK, (c) KLR, (d) KLRCK, (e) OMP, (f) KOMP,
30 (g) SOMP, (h) KSOMP, (i) SP, (j) KSP, (k) SSP, and (I) KSSP.

33 very well on the other classes, except that KSSP fails at i class (Shadow).

35 In general, one can observe from the experimental resultbase three images that the incorporation
of contextual information improves the classification perfance (e.g., SP vs. SSP, KSP vs. KSSP, SVM
38 vs. SVMCK, etc). Moreover, operating in the feature spase algnificantly improve the accuracy (e.qg.,

40 SP vs. KSP, SSP vs. KSSP, etc).

43 V. CONCLUSIONS

45 In this paper, we propose a new HSI classification technicageth on sparse representations in a
47 nonlinear feature space induced by a kernel function. Thdéalorrelation between neighboring pixels
48 is incorporated through a joint sparsity model. Experimergsults on AVIRIS and ROSIS hyperspectral
50 images show that in most cases the proposed algorithm dotper the conventional classifiers and the

52 linear sparsity-based classification algorithms.
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TABLE V
THE 9 GROUND-TRUTH CLASSES INCENTER OFPAVIA AND THE TRAINING AND TEST SETS.
Class Samples

No | Name Train | Test

1 | Water 745 | 64533

2 | Trees 785 | 5722

3 | Meadow || 797 | 2094

4 | Brick 485 1667

5 | Sail 820 | 5729

6 | Asphalt 678 6847

7 | Bitumen| 808 | 6479

8 | Tile 223 | 2899

9 | Shadow 195 1970

Total 5536 | 97940

TABLE VI
CLASSIFICATION ACCURACY (%) FOR CENTER OFPAVIA .

Class| SVM | SYMCK | KLR | KLRCK | OMP | KOMP | SOMP | KSOMP | SP | KSP | SSP | KSSP
1 99.19| 97.46 | 99.63 100 98.91| 98.13 | 99.32 | 99.07 | 98.20| 98.09 | 97.79 | 99.26
2 77.74| 93.08 93.18| 95.39 86.75| 92.76 | 92.38 95.30 | 86.98 | 91.17| 92.82| 91.23
3 86.74| 97.09 | 96.18| 95.89 | 96.04| 97.04 | 9546 | 97.09 | 96.61| 97.28 | 97.80 | 97.71
4 40.38 77.02 81.76| 89.80 | 81.22| 88.84 | 85.66 89.68 | 84.16 | 86.86 | 78.52| 95.26
5 97.52 98.39 96.25| 98.59 94.40 | 94.89 | 96.37 97.56 | 94.01| 95.76 | 95.81| 97.45
6 94.77| 94.32 | 9391| 96.67 | 91.94| 96.13 | 92.83 | 9831 | 92.92| 95.82| 96.52 | 97.41
7 74.37 97.50 95.22| 97.31 | 93.18 | 95.40 | 94.68 98.80 93.80 | 95.57 | 95.96 | 97.82
8 98.94| 99.83 | 99.52| 98.41 | 98.62| 99.34 | 99.69 | 99.93 | 98.79| 99.24 | 99.79 | 99.90
9 100 99.95 99.90| 99.49 | 98.07 | 99.39 | 98.68 100 99.34 | 99.39| 98.83| 71.42
OA 94.63 96.81 97.99 | 98.92 96.68 | 97.19 | 97.66 98.53 | 96.40 | 97.08 | 96.93 | 97.82
AA 85.52 94.96 95.06| 96.84 | 93.24 | 95.77 | 95.01 97.30 93.87 | 95.47 | 94.87 | 94.16
K 0.899 0.943 0.963| 0.980 0.940| 0.949 | 0.958 0.973 | 0.935| 0.947 | 0.945| 0.960
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Fig. 6. Effect of dictionary size for (a) Indian Pines andUhiversity of Pavia.
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(a) Training and (b) test sets for Center of Pavia.
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44 Fig. 8. Classification maps for Center of Pavia using (a) S\{(b), SVMCK, (c) KLR, (d) KLRCK, (e) OMP, (f) KOMP,
(g) SOMP, (h) KSOMP, (i) SP, (j) KSP, (k) SSP, and (l) KSSP.

59 August 12, 2011 DRAFT



