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Abstract

In this paper, a novel nonlinear technique for hyperspectral image classification is proposed. Our

approach relies on sparsely representing a test sample in terms of all training samples in a feature space

induced by a kernel function. For each test pixel in the feature space, a sparse representation vector is

obtained by decomposing the test pixel over a training dictionary, also in the same feature space, by

using a kernel-based greedy pursuit algorithm. The recovered sparse representation vector is then used

directly to determine the class label of the test pixel. Projecting the samples into a high-dimensional

feature space and kernelizing the sparse representation improves the data separability between different

classes, providing a higher classification accuracy compared to the more conventional linear sparsity-based

classification algorithms. Moreover, the spatial coherency across neighboring pixels is also incorporated

through a kernelized joint sparsity model, where all of the pixels within a small neighborhood are jointly

represented in the feature space by selecting a few common training samples. Several kernel greedy

optimization algorithms are suggested in this paper to solve the kernel versions of the single-pixel and

multi-pixel joint sparsity-based recovery problems. Experimental results on several hyperspectral images

show that the proposed technique outperforms the linear sparsity-based classification technique, as well

as the classical Support Vector Machines and sparse kernel logistic regression classifiers.

This paper is partially supported by ARO Grant 58110-MA-II and NSF Grant CCF-0728893.
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I. INTRODUCTION

Hyperspectral imaging sensors capture digital images in hundreds of continuous narrow spectral bands,

spanning the visible to infrared spectrum. Each pixel in a hyperspectral image (HSI) is represented by

a vector whose entries correspond to various spectral-bandresponses. Different materials usually reflect

electromagnetic energy differently at specific wavelengths. This enables discrimination of materials based

on their spectral characteristics. One of the most important applications of HSI is image classification,

where pixels are labeled to one of the classes based on their spectral characteristics, given a small set of

training data for each class. Various techniques have been developed for HSI classification. Among the

previous approaches, the support vector machine (SVM) [1],[2] has proven to be a powerful tool to solve

supervised classification problems and has shown good performances in hyperspectral classification, as

well [3], [4]. Variations of SVM-based algorithms have alsobeen proposed to improve the classification

accuracy. These variations include semi-supervised learning, which exploits both labeled and unlabeled

samples [5], post-processing of the individually-labeledsamples based on certain decision rules [6],

[7], and incorporating spatial information directly in theSVM kernels [8], [9]. Multinomial logistic

regression [10] is another widely used classifier, which fitsthe posterior probability to the logistic function.

A fast algorithm for sparse multinomial logistic regression has been developed [11] and successfully

adopted in semi-supervised HSI segmentation [12]. More recent HSI classification techniques can be

found in [13]–[19].

Recently, sparse representation has also been proposed to solve many computer vision tasks [20]–[25],

where the usage of sparsity as a prior often leads to state-of-the-art performance. Sparse representation

has also been applied to HSI target detection and classification [26], relying on the assumption that

hyperspectral pixels belonging to the same class lie in the same low-dimensional subspace. Thus, an

unknown pixel can be sparsely represented by a few training samples from a given dictionary and the

corresponding sparse representation vector encodes the class information.

It is well known that for the classical HSI image classification and target detection algorithms, the

kernel methods can significantly improve their performance[27], [28], since the kernel-based algorithms

implicitly exploit the higher-order structure of the givendata which may not be captured by the linear

models. Therefore, if the dataset is not linearly separable, kernel methods [29]–[32] can be applied to

project the data into a nonlinear feature space in which the data becomes more separable. In practical

implementation, the kernel trick [1] is often used in order to avoid explicitly evaluating the data in the

feature space.
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In this paper, we propose a new HSI classification algorithm based on kernel sparse representation by

assuming that a test pixel can be linearly represented by a few training samples in the feature space.

The proposed approach is different from the previous kernelregression approaches in [29], [30], where

a function is learned as a sparse linear combination of basiswhich are in the form of kernel functions.

Therefore, the target vector for fitting consists of the observations of the function value at the training

points and the dictionary is the kernel matrix. In our proposed approach, a kernel sparse representation

vector is obtained by decomposing the test pixel represented in a high dimensional feature space over

a structured dictionary consisting of training samples from all of the classes in the same feature space.

The contextual correlation between pixels within a small spatial neighborhood is also incorporated into

the kernel sparse representation through a joint sparsity model [33], where all neighboring pixels are

simultaneously represented by a linear combination of a fewcommon training samples in the feature

space. Each pixel, although sharing the same common support, might have weighting coefficients taking

on different values. In this way, the smoothness across neighboring spectral pixels is enforced directly in

the classification stage, and no post-processing steps are performed. Efficient kernel-based optimization

algorithms are also discussed in this paper for the recoveryof the kernel sparse representations for both

single-pixel and multi-pixel joint sparsity models.

Notation-wise, vectors and matrices are denoted by lower- and upper-case bold letters, respectively.

For a vectorααα ∈ R
N and an index setΛ ⊆ {1, . . . ,N} with |Λ|= t, αααΛ ∈ R

t is the portion ofααα indexed

on Λ. For a matrixSSS∈ R
N1×N2, index setsΛ1 ⊆ {1, . . . ,M} with |Λ1| = t1, and Λ2 ⊆ {1, . . . ,N2} with

|Λ2| = t2, SSSΛ1,: ∈ R
t1×N2 is a submatrix ofSSS consisting of thet1 rows in SSS indexed onΛ1, SSS:,Λ2 ∈ R

N1×t2

consists of thet2 columns inSSS indexed onΛ2, andSSSΛ1,Λ2 ∈ R
t1×t2 is formed by the rows and columns of

SSS indexed onΛ1 andΛ2, respectively.

The remainder of this paper is structured as follows. Section II briefly introduces the sparsity-based HSI

classification technique. Section III then defines the sparsity models in the feature space and describes

how to solve the kernel sparse recovery problems. Experimental results are discussed in Section IV, and

conclusions are drawn in Section V.

II. SPARSITY-BASED HSI CLASSIFICATION

This section briefly introduces the sparsity-based algorithm for HSI classification, and more details

can be found in [26]. It is assumed that the spectral signatures of pixels belonging to the same class

approximately lie in the same low-dimensional subspace. Thus, an unknown test samplexxx∈ R
B, where

B is the number of spectral bands, can be written as a sparse linear combination of all of the training
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pixels as

xxx=AAAααα, (1)

whereAAA=
[

aaa1 aaa2 · · · aaaN

]

∈RB×N is a structured dictionary whose columns{aaai}i=1,2,...,N areN training

samples (referred to as atoms) from all classes, andααα ∈ R
N is an unknown sparse vector. The index set

on whichααα have nonzero entries is the support ofααα. The number of nonzero entries inααα is called the

sparsity levelK of ααα and denoted byK = ‖ααα‖0. Given the dictionaryAAA, the sparse coefficient vectorααα

is obtained by solving

α̂αα = argmin‖xxx−AAAααα‖2 subject to ‖ααα‖0 ≤ K0, (2)

where K0 is a preset upper bound on the sparsity level. The problem in (2) is NP-hard, which can

be approximately solved by greedy algorithms, such as Orthogonal Matching Pursuit (OMP) [34] or

Subspace Pursuit (SP) [35]. Both OMP and SP algorithms are used to locate the support of the sparse

vectorα̂αα, but the difference between these two algorithms is in the way the atoms are selected from the

dictionary. The OMP algorithm augments the support set by one index at each iteration untilK0 atoms

are selected or the approximation error is within a preset threshold. The SP algorithm maintains a set of

K0 indices. At each iteration, the index set is refined by addingK0 new candidates to the current list and

then discardingK0 insignificant ones from the list of 2K0 candidates. With the backtracking mechanism,

SP is able to find theK0 most significant atoms. The class label ofxxx is determined by the minimal

residual betweenxxx and its approximation from each class sub-dictionary:

Class(xxx) = arg min
m=1,...,M

‖xxx−AAA:,Ωmα̂ααΩm‖2 , (3)

whereΩm⊂ {1,2, . . . ,N} is the index set associated with the training samples belonging to themth class.

In HSI, pixels within a small neighborhood usually consist of similar materials and, thus, their

spectral characteristics are highly correlated. The spatial correlation between neighboring pixels can

be incorporated through a joint sparsity model [26], [33] byassuming the underlying sparse vectors

associated with these pixels share a common sparsity pattern as follows. Let{xxxt}t=1,...,T be T pixels in

a spatial neighborhood centered atxxx1. These pixels can be compactly represented as

XXX =
[

xxx1 xxx2 · · · xxxT

]

=
[

AAAααα1 AAAααα2 · · · AAAαααT

]

=AAA
[

ααα1 ααα2 · · · αααT

]

︸ ︷︷ ︸

SSS

=AAASSS. (4)

In the joint sparsity model, the sparse vectors{αααt}t=1,...,T share the same supportΛ and, thus,SSS is a

sparse matrix with only|Λ| nonzero rows. The row-sparse matrixSSS can be recovered by solving the
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following optimization problem

ŜSS= argmin‖XXX−AAASSS‖F subject to ‖SSS‖row,0 ≤ K0, (5)

where‖SSS‖row,0 denotes the number of non-zero rows ofSSS and ‖·‖F denotes the Frobenius norm. The

problem in (5) can be approximately solved by the simultaneous versions of OMP (SOMP) [33] or

SP (SSP). The label of the center pixelxxx1 is then determined by the minimal total residual:

Class(xxx1) = arg min
m=1,...,M

∥
∥
∥XXX−AAA:,ΩmŜ̂ŜSΩm,:

∥
∥
∥

F
, (6)

where‖·‖F denotes the Frobenius norm.

III. K ERNEL SPARSEREPRESENTATION

If the classes in the dataset are not linearly separable, then the kernel methods can be used to project

the data into a feature space, in which the classes become linearly separable [1]. The kernel function

κ : RB×R
B 7→ R is defined as the inner product

κ(xxxi ,xxx j) = 〈φ(xxxi),φ(xxx j)〉 . (7)

Commonly used kernels include the radial Basis Function (RBF) kernelκ(xxxi,xxx j) = exp
(

−γ‖xxxi−xxx j‖
2
)

with γ > 0 controlling the width of the RBF, and order−d homogeneous and inhomogeneous polynomial

kernelsκ(xxxi ,xxx j) = (xxxi ·xxx j)
d andκ(xxxi ,xxx j) = (xxxi ·xxx j +1)d, respectively. In this section, we describe how the

sparsity models in Section II can be extended to a feature space induced by a kernel function.

A. Pixel-wise Sparsity in Feature Space

Let xxx∈ R
B be the data point of interest andφ(xxx) be its representation in the feature space. The kernel

sparse representation of a samplexxx in terms of training atomsaaai ’s can be formulated as

φ(xxx) =
[

φ(aaa1) · · · φ(aaaN)
]

︸ ︷︷ ︸

AAAφ

[

α′1 · · · α′N
]T

︸ ︷︷ ︸

ααα′

=AAAφααα′, (8)

where the columns ofAAAφ are the representations of training samples in the feature space andααα′ is assumed

to be a sparse vector.

Similar to the linear sparse recovery problem in (2),ααα′ can be recovered by solving

α̂αα′ = argmin
∥
∥φ(xxx)−AAAφααα′

∥
∥

2 subject to ‖ααα′‖0≤ K0. (9)

The problem in (9) can be approximately solved by kernelizing the OMP and SP algorithms (denoted

by KOMP and KSP, respectively).

In KOMP and KSP, essentially each dot product operation in OMP/SP is replaced by the kernel trick

in (7). Let KKKAAA ∈R
N×N be the kernel matrix whose(i, j)th entry isκ(aaai ,aaa j), andkkkAAA,xxx ∈ R

N be the vector
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whose ith entry is κ(aaai ,xxx). Using the feature representations, the correlation (dot product) between a

pixel φ(xxx) and a dictionary atomφ(aaai) is then computed by

ci = 〈φ(xxx) ,φ(aaai)〉= κ(xxx,aaai) = (kkkAAA,xxx)i , (10)

the orthogonal projection coefficient ofφ(xxx) onto a set of selected dictionary atoms{φ(aaan)}n∈Λ is given

as

pppΛ =
(

(KKKAAA)Λ,Λ

)−1
(kkkAAA,xxx)Λ , (11)

and the residual vector betweenφ(xxx) and its approximation from{φ(aaan)}n∈Λ =
(
AAAφ
)

:,Λ is then expressed

as

φ(rrr) = φ(xxx)−
(
AAAφ
)

:,Λ

(

(KKKAAA)Λ,Λ

)−1
(kkkAAA,xxx)Λ . (12)

Note that the feature representation of the residual vectorφ(rrr) in (12) cannot be evaluated explicitly.

However, the correlation betweenφ(rrr) and an atomφ(aaai) can be computed by

ci = 〈φ(rrr) ,φ(aaai)〉= (kkkAAA,xxx)i− (KKKAAA)i,Λ

(

(KKKAAA)Λ,Λ

)−1
(kkkAAA,xxx)Λ . (13)

The details of the KOMP and KSP algorithms are summarized in Algorithms 1 and 2, respectively.

The step for computing the residual vector (12) is incorporated into the computation of the correlation

vector in Step (1) of both KOMP and KSP.

Once the sparse vector̂ααα′ is recovered, the residual between the test sample and themth-class

reconstruction in the high-dimensional feature space is then computed by

rm(xxx) =
∥
∥
∥φ(xxx)−

(
AAAφ
)

:,Ωm
α̂αα′Ωm

∥
∥
∥

=
〈

φ(xxx)−
(
AAAφ
)

:,Ωm
α̂αα′Ωm

,φ(xxx)−
(
AAAφ
)

:,Ωm
α̂αα′Ωm

〉1/2

=
(

κ(xxx,xxx)−2α̂αα′TΩm
(kkkAAA,xxx)Ωm

+ α̂αα′TΩm
(KKKAAA)Ωm,Ωm

α̂αα′Ωm

)1/2
,

(14)

wherekkkAAA,xxx andKKKAAA are as defined in the initialization step in Algorithms 1 and 2, andΩm is the index

set associated with themth class. The class label ofxxx is determined as

Class(xxx) = arg min
m=1,...,M

rm(xxx). (15)

B. Joint Sparsity in Feature Space

The joint sparsity model in (4) can also be extended to the feature space as follows:

XXXφ =
[

φ(xxx1) · · · φ(xxxT)
]

=
[

AAAφααα′1 · · · AAAφααα′T
]

=AAAφ

[

ααα′1 · · · ααα′T
]

︸ ︷︷ ︸

SSS′

=AAAφSSS
′,

(16)

August 12, 2011 DRAFT

Page 6 of 34Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7

Input: B×N dictionaryAAA=
[

aaa1 aaa2 · · · aaaN

]

, test samplexxx, kernel functionκ, and a stopping criterion

Initialization: compute kernel matrixKKKAAA ∈R
N×N whose(i, j)th entry isκ(aaai ,aaa j), and vectorkkkAAA,xxx ∈R

N

whoseith entry isκ(aaai ,xxx). Set index setΛ0 to be index corresponding to the largest entry inkkkAAA,xxx and

iteration countert = 1.

while stopping criterion has not been metdo

(1) Compute the correlation vectorccc=
[

c1 · · · cN

]T
by

ccc= kkkAAA,xxx− (KKKAAA):,Λt−1

(

(KKKAAA)Λt−1,Λt−1

)−1
(kkkAAA,xxx)Λt−1

(2) Select the new index asλt = arg max
i=1,...,N

|ci|

(3) Update the index setΛt = Λt−1
⋃
{λt}

(4) t← t +1

end while

Output: Index setΛ = Λt−1, the sparse representation̂ααα′ whose nonzero entries indexed byΛ are

α̂αα′Λ = (KKKΛ,Λ)
−1(kkkAAA,xxx)Λ

Algorithm 1: Kernelized Orthogonal Matching Pursuit (KOMP)

where the vectors{ααα′t}t=1,...,T share the same support. The row-sparse matrixSSS′ is recovered by solving

ŜSS
′
= argmin

∥
∥XXXφ−AAAφSSS

′
∥
∥

F subject to ‖SSS′‖row,0≤ K0. (17)

In this paper, we propose kernelized SOMP (KSOMP) and kernelized SSP (KSSP) to approximately

solve the above joint sparse recovery problem in (17).

In KSOMP, at every iteration, the atom that simultaneously yields the best approximation to all theT

pixels (or residuals after initialization) is selected. Specifically, letCCC ∈ R
N×T be the correlation matrix

whose(i, j)th entry is the correlation betweenφ(aaai) andφ(rrr j), whereφ(rrr j) is the residual vector ofφ(xxx j).

The new atom is then selected as the one associated with the row of CCC, which has the maximalℓp-norm

for somep≥ 1. The KSOMP algorithm is summarized in Algorithm 3.

Similarly, KSSP is a simultaneous version of KSP where theK0 atoms that best simultaneously

approximate all of theT residuals in terms of theℓp-norm are chosen. The KSSP algorithm is summarized

in Algorithm 4.

Once the matrix̂SSS
′

is recovered, the total residual between theT neighboring pixels and their approx-

August 12, 2011 DRAFT

Page 7 of 34 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8

Input: B×N dictionary AAA =
[

aaa1 aaa2 · · · aaaN

]

, test samplexxx, kernel functionκ, sparsityK0, and a

stopping criterion

Initialization: compute kernel matrixKKKAAA ∈R
N×N whose(i, j)th entry isκ(aaai ,aaa j), and vectorkkkAAA,xxx ∈R

N

whoseith entry isκ(aaai ,xxx). Set index setΛ0 =
{

K0 indices corresponding to theK0 largest entries in

kkkAAA,xxx

}

and iteration countert = 1.

while stopping criterion has not been metdo

(1) Compute the correlation vectorccc= kkkAAA,xxx− (KKKAAA):,Λt−1

(

(KKKAAA)Λt−1,Λt−1

)−1
(kkkAAA,xxx)Λt−1

∈ R
N

(2) Find the index setI =
{

K0 indices corresponding to theK0 largest entries in|ccc|
}

(3) Update the candidate index setΛ̃t = Λt−1
⋃

I

(4) Computeppp=
(

(KKKAAA)Λ̃t ,Λ̃t

)−1
(kkkAAA,xxx)Λ̃t

∈ R
2K0

(5) Update the index setΛt =
{

K0 indices inΛ̃t corresponding to theK0 largest entries in|ppp|
}

(6) t← t +1

end while

Output: Index setΛ = Λt−1, the sparse representation̂ααα′ whose nonzero entries indexed byΛ are

α̂αα′Λ = (KKKΛ,Λ)
−1(kkkAAA,xxx)Λ

Algorithm 2: Kernelized Subspace Pursuit (KSP)

imations from themth-class training samples is computed by

rm(xxx1) =

(
T

∑
i=1

(

κ(xxxi ,xxxi)−2ŜSS
′T
Ωm,i (KKKAAA,XXX)Ωm,i

+ŜSS
′T
Ωm,i (KKKAAA)Ωm,Ωm

ŜSS
′

Ωm,i

)
)1/2

, (18)

whereKKKAAA,XXX andKKKAAA are as defined in Algorithms 3 and 4, andΩm∈ {1,2, . . . ,N} is the index set associated

with the mth class. The label for the center pixelxxx1 is then determined by the total residual

Class(xxx1) = arg min
m=1,...,M

rm(xxx1). (19)

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the proposed algorithms on classification of several

hyperspectral datasets. For each image, we solve the sparserecovery problems in (2), (5), (9), and (17)

for each test sample, and then determine the class by the minimal residual (the results are denoted

by OMP/SP, KOMP/KSP, SOMP/SSP, and KSOMP/KSSP, respectively). The classification results are

then compared visually and quantitatively to those obtained by the classical SVM classifier and sparse
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Input: B×N dictionary AAA =
[

aaa1 · · · aaaN

]

, B×T data matrixXXX =
[

xxx1 · · · xxxT

]

, kernel functionκ,

and a stopping criterion

Initialization: compute the kernel matricesKKKAAA in Algorithm 1 (Initialization) andKKKAAA,XXX ∈ R
N×T whose

(i, j)th entry is κ(aaai ,xxx j). Set index setΛ0 = arg max
i=1,...,N

∥
∥
∥(KKKAAA,XXX)i,:

∥
∥
∥

p
with some p≥ 1 and iteration

countert = 1.

while stopping criterion has not been metdo

(1) Compute the correlation matrix

CCC =KKKAAA,XXX− (KKKAAA):,Λt−1

(

(KKKAAA)Λt−1,Λt−1

)−1
(KKKAAA,XXX)Λt−1,:

∈ R
N×T

(2) Select the new index asλt = arg max
i=1,...,N

‖CCCi,:‖p, p≥ 1

(3) Update the index setΛt = Λt−1
⋃
{λt}

(4) t← t +1

end while

Output: Index setΛ = Λt−1, the sparse representationŜSS
′

whose nonzero rows indexed byΛ areŜSS
′

Λ,: =

(KKKΛ,Λ)
−1(KKKAAA,XXX)Λ,:

Algorithm 3: Kernelized Simultaneous Orthogonal Matching Pursuit (KSOMP)

multinomial kernel logistic regression (KLR). For SVM and KLR classifiers, we use a spectral-only

kernel (denoted by SVM/KLR), as well as a composite kernel [8] (denoted by SVMCK/KLRCK). The

composite kernel takes into account the spatial correlation between neighboring pixels by combining

the spectral and spatial information via a weighted kernel summation, and SVMCK has been shown to

outperform the spectral-only SVM in HSI classification [9].The parameters for KLR, KLRCK, SVM,

and SVMCK are obtained by cross-validation.

The first hyperspectral image in our experiments is the Airborne Visible/Infrared Imaging Spectrom-

eter (AVIRIS) image Indian Pines [36]. The AVIRIS sensor generates 220 bands across the spectral

range from 0.2 to 2.4µm. In the experiments, the number of bands is reduced to 200 byremoving

20 water absorption bands. This image has spatial resolution of 20 m per pixel and spatial dimension

145× 145. It contains 16 ground-truth classes. For each class, werandomly choose around 10% of

the labeled samples for training and use the remaining 90% for testing, as seen in Table I and Fig. 1.

Radial Basis Function (RBF) kernels are used in all kernel-based classifiers (i.e., SVM, SVMCK, KLR,
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Input: B×N dictionary AAA =
[

aaa1 · · · aaaN

]

, B×T data matrixXXX =
[

xxx1 · · · xxxT

]

, kernel functionκ,

and a stopping criterion

Initialization: compute the kernel matricesKKKAAA in Algorithm 1 (Initialization) andKKKAAA,XXX ∈ R
N×T whose

(i, j)th entry isκ(aaai ,xxx j). Set index setΛ0 =
{

K0 indices corresponding to theK0 largest numbers in
∥
∥
∥(KKKAAA,XXX)i,:

∥
∥
∥

p
, p≥ 1, i = 1, . . . ,N

}

, and set iteration countert = 1.

while stopping criterion has not been metdo

(1) Compute the correlation matrix

CCC =KKKAAA,XXX− (KKKAAA):,Λt−1

(

(KKKAAA)Λt−1,Λt−1

)−1
(KKKAAA,XXX)Λt−1,:

∈ R
N×T

(2) Find the index setI =
{

K0 indices corresponding to theK0 largest numbers in‖CCCi,:‖p, p≥ 1,

i = 1, . . . ,N
}

(3) Update the candidate index setΛ̃t = Λt−1
⋃

I

(4) Compute the projection coefficientsPPP=
(

(KKKAAA)Λ̃t ,Λ̃t

)−1
(KKKAAA,XXX)Λ̃t ,:

∈ R
2K0×T

(5) Update the index setΛt =
{

K0 indices inΛ̃t corresponding to theK0 largest numbers in‖PPPi,:‖p,

p≥ 1, i = 1, . . . ,N
}

(6) t← t +1

end while

Output: Index setΛ = Λt−1, the sparse representationŜSS
′

whose nonzero rows indexed byΛ areŜSS
′

Λ,: =

(KKKΛ,Λ)
−1(KKKAAA,XXX)Λ,:

Algorithm 4: Kernelized Simultaneous Subspace Pursuit (KSSP)

KLRCK, KOMP, KSP, KSOMP, and KSSP). Since this image consists of large homogenous regions, a

large spatial window of size 9×9 (T = 81) is used in classifiers with a composite kernel and the joint

sparsity models (4) and (16).

The classification accuracy for each class, overall accuracy (OA), average accuracy (AA), and theκ

coefficient measure [37] on the test set are shown in Table II.The OA is computed by the ratio between

correctly classified test samples and the total number of test samples, and the AA is the mean of the 16

class accuracies. The classification maps on labeled pixelsare presented in Fig. 2. One can clearly see

from Table II that the KSOMP and KSSP algorithms associated with the kernelized joint sparsity model

yield the best classification performance for most of the classes. Incorporating the contextual correlation
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and operating in the feature space both have significantly improved the classification accuracy.

TABLE I

THE 16 GROUND-TRUTH CLASSES INAVIRIS I NDIAN PINES.

Class Samples

No Name Train Test

1 Alfalfa 6 48

2 Corn-notill 144 1290

3 Corn-min 84 750

4 Corn 24 210

5 Grass/Pasture 50 447

6 Grass/Trees 75 672

7 Grass/Pasture-mowed 3 23

8 Hay-windrowed 49 440

9 Oats 2 18

10 Soybeans-notill 97 871

11 Soybeans-min 247 2221

12 Soybean-clean 62 552

13 Wheat 22 190

14 Woods 130 1164

15 Building-Grass-Trees-Drives 38 342

16 Stone-steel Towers 10 85

Total 1043 9323

(a) (b)

Fig. 1. (a) Training and (b) test sets for Indian Pines.

Now we examine the effect of the sparsity levelK0 and the RBF kernel parameterγ in the proposed

algorithms on the classification performance on Indian Pines. We use the same training and test set in

Table I, and a 9×9 window for KSOMP and KSSP, and then varyK0 from 5 to 80 andγ from 2−3 to
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TABLE II

CLASSIFICATION ACCURACY (%) FOR INDIAN PINES.

Class SVM SVMCK KLR KLRCK OMP KOMP SOMP KSOMP SP KSP SSP KSSP

1 81.25 95.83 64.58 75.00 68.75 72.92 85.42 97.92 68.75 72.92 81.25 91.67

2 86.28 96.67 89.46 96.43 65.97 86.36 94.88 97.21 74.65 87.91 95.74 97.98

3 72.80 90.93 70.67 95.47 60.67 77.47 94.93 96.67 63.20 78.53 92.80 97.73

4 58.10 85.71 67.14 86.19 38.57 62.86 91.43 93.33 40.00 62.86 82.38 96.67

5 92.39 93.74 90.60 96.42 89.49 90.38 89.49 95.75 89.04 90.60 93.29 94.85

6 96.88 97.32 98.07 98.66 95.24 97.17 98.51 99.55 95.98 96.88 98.81 98.96

7 43.48 69.57 17.39 82.61 21.74 21.74 91.30 60.87 21.74 21.74 82.61 17.39

8 98.86 98.41 98.86 97.95 97.05 98.18 99.55 100 99.09 98.64 99.77 100

9 50.00 55.56 16.67 50.00 33.33 55.56 0 0 61.11 55.56 0 0

10 71.53 93.80 74.97 93.80 68.20 77.61 89.44 94.60 70.72 79.33 91.27 94.37

11 84.38 94.37 84.87 95.54 75.96 85.68 97.34 99.28 77.94 86.90 97.43 98.33

12 85.51 93.66 81.16 91.85 54.53 77.90 88.22 95.65 61.23 78.44 89.13 97.46

13 100 99.47 100 100 100 100 100 100 100 100 99.47 100

14 93.30 99.14 95.02 96.56 92.87 95.70 99.14 99.83 95.62 95.96 99.05 99.91

15 64.91 87.43 61.70 88.01 41.23 55.85 99.12 91.81 48.25 55.56 97.95 97.08

16 88.24 100 57.65 88.24 94.12 92.94 96.47 91.76 92.94 94.12 92.94 94.12

OA 84.52 94.86 84.78 95.10 74.78 85.26 95.28 97.33 78.10 86.09 95.34 97.46

AA 79.24 90.73 73.05 89.55 68.61 78.02 88.45 88.39 72.52 78.50 87.12 86.03

κ 0.823 0.941 0.826 0.944 0.712 0.832 0.946 0.970 0.749 0.841 0.947 0.971

212 in KOMP, KSP, KSOMP, and KSSP. The OA on the test set are shown in Fig. 3. One can observe

from Figs. 3(a) and (b) that for the pixel-wise kernel sparsity model,γ = 512 leads to the highest OA at

all sparsity levels. For a fixedγ, the performance of KOMP and KSP generally improves asK0 increases,

and tends to saturate asK0 reaches 30-50. For KSOMP and KSSP, as shown in Figs. 3(c) and (d), the

same tendency cannot be observed. However, the kernel jointsparsity model is more stable than the

pixel-wise model, as for a large range of sparsity levelK0 and sufficiently largeγ, the overall accuracy

is always around 96% with a small variance.

The next two hyperspectral images used in our experiments, University of Pavia and Center of Pavia,

are urban images acquired by the Reflective Optics System Imaging Spectrometer (ROSIS). The ROSIS

sensor generates 115 spectral bands ranging from 0.43 to 0.86 µm and has a spatial resolution of 1.3-

meters per pixel [9]. The University of Pavia image consistsof 610×340 pixels, each having 103 bands,

with the 12 most noisy bands removed. There are nine ground-truth classes of interests, as shown in
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Classification maps for Indian Pines using (a) SVM, (b) SVMCK, (c) KLR, (d) KLRCK, (e) OMP, (f) KOMP, (g) SOMP,

(h) KSOMP, (i) SP, (j) KSP, (k) SSP, and (l) KSSP.

Table III. For this image, we follow the same experiment settings for the training and test sets as used

in [7], in which about 9% of labeled data are used as training and the rest are used for testing, as shown

in Table III and Fig. 4.

The classification accuracies and theκ coefficients on the test set using various techniques are shown

in Table IV, and the classification maps for all labeled pixels are presented in Fig. 5. Again, the RBF

kernel is used for all kernel-based algorithms. This urban image lacks the large spatial homogeneity and,

therefore, a smaller neighborhood of size 5×5 is optimal for algorithms using a composite kernel, and the

linear and kernel joint sparsity models. Similar to the Indian Pines image, the proposed KSOMP/KSSP

algorithms achieve better or comparable performance when compared with the SVMCK classifier for
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Fig. 3. Effect of sparsity levelK0 and RBF kernel parameterγ on Indian Pines using (a) KOMP, (b) KSP, (c) KSOMP, and

(d) KSSP.

most of the classes. KSOMP and KSSP yield the best accuracy infive and three classes out of the total

nine classes, respectively, and KSSP has the highest OA, AA,and κ coefficient. The accuracy for the

second class representing Meadows, which contains more than 45% of the samples in the entire test set,

for KSOMP and KSSP is 5%-9% lower than that for SVMCK and KLRCK.

In what follows, we examine how the number of training samples affects the classification performance

for various algorithms on the Indian Pines and University ofPavia images. The algorithm parameters

are fixed to be the same as those used to generate the results inTables II and IV. For Indian Pines, in

each test, we randomly choose 1% to 30% of the labeled data in each class as the training samples and

the remaining samples as the test ones. The classification accuracy plots under various conditions are
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TABLE III

THE 9 GROUND-TRUTH CLASSES INUNIVERSITY OF PAVIA .

Class Samples

No Name Train Test

1 Asphalt 548 6304

2 Meadows 540 18146

3 Gravel 392 1815

4 Trees 524 2912

5 Metal sheets 265 1113

6 Bare soil 532 4572

7 Bitumen 375 981

8 Bricks 514 3364

9 Shadows 231 795

Total 3921 40002

(a) (b)

Fig. 4. (a) Training and (b) test sets for University of Pavia.

shown in Fig. 6(a) for Indian Pines, where thex-axis denotes the percentage of training samples from

the total available labeled samples, and they-axis is the OA on the test set. The accuracies are averaged

over five runs at each percentage level to avoid any bias induced by random sampling. For the University

of Pavia image, we create a balanced dictionary by randomly choosingL = 10,20,30,50,100, and 200

training samples per class from the entire training set shown in Fig. 4(a). The classification accuracy

plots using the sparsity-based algorithms are shown in Fig.6(b), where thex-axis denotes the number

of training samples per class, and they-axis is the overall classification accuracy on the test set.Again,
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TABLE IV

CLASSIFICATION ACCURACY (%) FOR UNIVERSITY OF PAVIA .

Class SVM SVMCK KLR KLRCK OMP KOMP SOMP KSOMP SP KSP SSP KSSP

1 84.30 79.85 82.96 74.40 68.23 76.09 59.33 94.23 69.78 76.67 69.59 89.56

2 67.01 84.86 83.34 85.91 67.04 69.61 78.15 76.74 67.90 70.92 72.31 79.98

3 68.43 81.87 64.13 61.71 65.45 72.12 83.53 79.23 69.20 73.39 74.10 85.45

4 97.80 96.36 96.33 96.22 97.29 98.11 96.91 95.12 96.77 98.15 95.33 98.66

5 99.37 99.37 99.19 99.10 99.73 99.73 99.46 100 99.64 99.82 99.73 99.91

6 92.45 93.55 80.05 84.45 73.27 87.66 77.41 99.50 78.96 89.70 86.72 95.76

7 89.91 90.21 84.51 85.32 87.26 88.07 98.57 99.80 88.18 88.28 90.32 97.96

8 92.42 92.81 83.17 93.37 81.87 89.51 89.09 98.78 83.68 87.54 90.46 96.43

9 97.23 95.35 89.81 96.48 95.97 93.96 91.95 29.06 94.59 95.22 90.94 98.49

OA 79.15 87.18 83.56 84.77 73.30 78.33 79.00 85.67 74.86 79.18 78.39 87.65

AA 87.66 90.47 84.83 86.33 81.79 86.10 86.04 85.83 83.19 86.63 85.50 93.58

κ 0.737 0.833 0.784 0.799 0.661 0.725 0.728 0.815 0.681 0.735 0.724 0.840

the accuracies are averaged over five runs at eachL. It is obvious that in most cases the OA increases

monotonically as the number of training samples increases.For University of Pavia, the performance

at L = 50 is almost the same as that atL = 100 for all classifiers. The SVMCK classifier consistently

outperforms all of the other classifiers when the number of training samples is small. It should also

be pointed out that during the training stage of algorithms using a composite kernel (i.e., SVMCK and

KLRCK), in order to extract the spatial features for each training sample, one requires knowledge of the

neighboring pixels or the location of the training sample, which may not be available in the training set.

Moreover, the proposed sparsity-based algorithms rely on the approximation accuracy from each class

sub-dictionary. Therefore, if the size of the sub-dictionary is too small, the training samples may not be

sufficient to faithfully represent the subspace associatedwith each class, leading to a lower classification

accuracy than the discriminative classifier SVM.

The third image in our experiments, Center of Pavia, is the other urban image collected by the ROSIS

sensor over the center of the Pavia city. This image consistsof 1096×492 pixels, each having 102 spectral

bands after 13 noisy bands are removed. The nine ground-truth classes and the number of training and

test samples for each class are shown in Table V and illustrated in Fig. 7. For this image, about 5%

of the labeled data are used as training samples. The classification results are summarized in Table VI,

and the classification maps are shown in Fig. 8. KLRCK achieves a 100% accuracy on the first class of

water, which occupies 66% of the test set, and thus yields thebest OA. The KSOMP and KSSP work
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5. Classification maps for University of Pavia using (a)SVM, (b) SVMCK, (c) KLR, (d) KLRCK, (e) OMP, (f) KOMP,

(g) SOMP, (h) KSOMP, (i) SP, (j) KSP, (k) SSP, and (l) KSSP.

very well on the other classes, except that KSSP fails at the ninth class (Shadow).

In general, one can observe from the experimental results onthese three images that the incorporation

of contextual information improves the classification performance (e.g., SP vs. SSP, KSP vs. KSSP, SVM

vs. SVMCK, etc). Moreover, operating in the feature space also significantly improve the accuracy (e.g.,

SP vs. KSP, SSP vs. KSSP, etc).

V. CONCLUSIONS

In this paper, we propose a new HSI classification technique based on sparse representations in a

nonlinear feature space induced by a kernel function. The spatial correlation between neighboring pixels

is incorporated through a joint sparsity model. Experimental results on AVIRIS and ROSIS hyperspectral

images show that in most cases the proposed algorithm outperforms the conventional classifiers and the

linear sparsity-based classification algorithms.
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TABLE V

THE 9 GROUND-TRUTH CLASSES INCENTER OFPAVIA AND THE TRAINING AND TEST SETS.

Class Samples

No Name Train Test

1 Water 745 64533

2 Trees 785 5722

3 Meadow 797 2094

4 Brick 485 1667

5 Soil 820 5729

6 Asphalt 678 6847

7 Bitumen 808 6479

8 Tile 223 2899

9 Shadow 195 1970

Total 5536 97940

TABLE VI

CLASSIFICATION ACCURACY (%) FOR CENTER OFPAVIA .

Class SVM SVMCK KLR KLRCK OMP KOMP SOMP KSOMP SP KSP SSP KSSP

1 99.19 97.46 99.63 100 98.91 98.13 99.32 99.07 98.20 98.09 97.79 99.26

2 77.74 93.08 93.18 95.39 86.75 92.76 92.38 95.30 86.98 91.17 92.82 91.23

3 86.74 97.09 96.18 95.89 96.04 97.04 95.46 97.09 96.61 97.28 97.80 97.71

4 40.38 77.02 81.76 89.80 81.22 88.84 85.66 89.68 84.16 86.86 78.52 95.26

5 97.52 98.39 96.25 98.59 94.40 94.89 96.37 97.56 94.01 95.76 95.81 97.45

6 94.77 94.32 93.91 96.67 91.94 96.13 92.83 98.31 92.92 95.82 96.52 97.41

7 74.37 97.50 95.22 97.31 93.18 95.40 94.68 98.80 93.80 95.57 95.96 97.82

8 98.94 99.83 99.52 98.41 98.62 99.34 99.69 99.93 98.79 99.24 99.79 99.90

9 100 99.95 99.90 99.49 98.07 99.39 98.68 100 99.34 99.39 98.83 71.42

OA 94.63 96.81 97.99 98.92 96.68 97.19 97.66 98.53 96.40 97.08 96.93 97.82

AA 85.52 94.96 95.06 96.84 93.24 95.77 95.01 97.30 93.87 95.47 94.87 94.16

κ 0.899 0.943 0.963 0.980 0.940 0.949 0.958 0.973 0.935 0.947 0.945 0.960
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Fig. 6. Effect of dictionary size for (a) Indian Pines and (b)University of Pavia.
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(a) (b)

Fig. 7. (a) Training and (b) test sets for Center of Pavia.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 8. Classification maps for Center of Pavia using (a) SVM,(b) SVMCK, (c) KLR, (d) KLRCK, (e) OMP, (f) KOMP,

(g) SOMP, (h) KSOMP, (i) SP, (j) KSP, (k) SSP, and (l) KSSP.
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