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ABSTRACT Recently, convolutional neural networks (CNNs) have been introduced for hyperspectral

image (HSI) classification and shown considerable classification performance. However, the previous CNNs

designed for spectral-spatial HSI classification lay stress on the learning for the spatial correlation of HSI

data and neglect the channel responses of feature maps. Furthermore, the lack of training samples remains

the major challenge for CNN-based HSI classification methods to achieve better performance. To address

the aforementioned issues, this paper proposes a new end-to-end pre-activation residual attention net-

work (PRAN) for HSI classification. The pre-activation mechanism and attention mechanism are introduced

into the proposed network, and a pre-activation residual attention block (PRAB) is designed, which allows

the proposed network to carry adaptively feature recalibration of channel responses and learn more robust

spectral-spatial joint feature representations. The proposed PRAN is equipped with two PRABs and several

convolutional layers with different kernel sizes, which enables the PRAN to extract high-level discriminative

features. Experimental results on three benchmark HSI datasets reveal that the proposed method is provided

with competitive performance over several state-of-the-art HSI classification methods, especially when the

training set size is relatively small.

INDEX TERMS Hyperspectral image classification, convolutional neural network, pre-activation mecha-

nism, attention mechanism.

I. INTRODUCTION

Hyperspectral images (HSIs) are composed of hundreds

of continuous spectral channels with spectral resolution

of nanometer order. Compared with ordinary remote sens-

ing images, HSIs contain more abundant spectral and spa-

tial information, which makes the accurate identification

of ground materials possible [1]. Therefore, hyperspectral

remote sensing technology has been widely used in many

fields, including agriculture [2], environmental earth sci-

ences [3], military surveillance [4]. Furthermore, HSI clas-

sification has become a very hot research topic in the remote

sensing analysis field.

Most traditional methods only incorporate spectral infor-

mation to achieve HSI classification, such as k-nearest
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neighbor [5], support vector machine (SVM) [6], [7],

multinomial logical regression [8], [9], extreme learning

machine [10] and so on. Although those methods can make

full use of spectral information, the final classification accu-

racy is unsatisfactory due to obvious intra-class differences

and unobvious inter-class differences of hyperspectral data

on the spectral domain. Besides, the curse of dimensionality,

namely the Hughes phenomenon [11], makes it a challenge

for those methods to achieve better classification perfor-

mance.

In order to enhance the classification performance, many

spectral-spatial classification methods have been proposed,

which can extract both spectral and spatial features of hyper-

spectral data. For instance, Benediktsson et al. [12] adopted

multiple morphological operations to design spectral-spatial

classifier. Yu et al. [13] integrated the subspace-based

SVM classification method with an adaptive Markov
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random field (MRF) approach to model the spectral and

spatial information. In [14], [15], sparse representation was

introduced to analyze and process HSI. Zhou et al. [16]

developed a spectral-spatial feature learning method, which

exploited spectral and spatial features in a hierarchical fash-

ion and adopted kernel-based extreme learning machine to

classify image pixels. In [17], the 3-dimensional (3-D) dis-

crete wavelet transform was combined with MRF for HSI

classification. A new discriminative low-rank Gabor filter

method [18] was proposed to classify hyperspectral data and

provided with excellent performance in terms of both accu-

racy and computation time.

The above-mentioned methods only extract hand-crafted

features and highly depend on domain knowledge, though

they can improve the accuracy of HSI classification. On the

contrary, deep learning methods can automatically learn hier-

archical feature representation from the raw data in an end-

to-end manner, thus avoiding the process of hand-crafted

features extraction. In recent years, deep learning has

attracted increased attention for its remarkable performance

in many fields, such as image classification [19], [20], target

detection [21], [22], and natural language processing [23].

Motivated by these successful applications, many efforts have

been made to classify hyperspectral data based on the deep

learning. Chen et al. [24] first introduced the stacked autoen-

coder, a deep learning framework, to extract spectral and

spatial features of the HSI. After that, Liu et al. [25] com-

bined the stacked denoising autoencoders and superpixel-

based spatial constraints to improve the HSI classification

performance. In [26], a stacked sparse autoencoder was pro-

posed to adaptively construct features from unlabeled data

by learning a feature mapping function. Moreover, the ref-

erence [27] proposed a compact and discriminative stacked

autoencoder for HSI classification. In [28] and [29], the deep

belief network was also introduced for HSI classification.

Li et al. [30] adopted 1-D convolution layers and proposed an

adaptive spatial-spectral feature learning network. Although

the aforementioned deep models [24]–[30] can extract deep

hierarchical features, the input sample must be flattened into

a 1-D vector in order to satisfy the input requirement, which

results in that they cannot make full use of the spatial infor-

mation of HSIs. Moreover, limited labeled samples of the

HSI make those deep learning models be plagued by small

sample size problem, which causes great challenges for HSI

classification.

To solve the above problems, many researchers designed

2-D CNN model to extract discriminative spatial features

from 3-D image cubes [31]–[38]. For instance, to learn

the joint spectral-spatial features from HSI, Yang et al. [33]

proposed a two-branch CNN and trained the model through

transfer learning. Lee et al. [35] proposed a contextual deep

CNN (DCNN), where a multi-scale filter bank was uti-

lized to achieve the joint exploitation of the spatial-spectral

information. The [36] combined CNN with MRF to clas-

sify HSIs. Song et al. [37] adopted residual connection and

proposed a deep feature fusion network (DFFN), which can

fuse the outputs from different hierarchical layers. To learn

the spectral-spatial features, Ma et al. [38] designed a deep

deconvolution network with skip architecture. Though those

CNN-based HSI classification methods can utilize the spatial

context information, they only convolve feature maps on the

spatial dimension and neglect the spectral correlations, which

are very important for HSI classification. For the reason that

all the convolutional layers in their architectures applied 2-D

convolutional operations.

Considering the limitation of 2-D convolution layers, some

3-D CNN models were proposed to classify hyperspectral

data [39]–[41]. The 3-D convolutional operations can con-

volve feature maps on both spatial dimension and spectral

dimension simultaneously, and then enables the 3-D CNN

extract spectral correlation and joint spectral-spatial corre-

lation information. Paoletti et al. [42] proposed a deep 3-D

CNNarchitecture and obtained high classification accuracies.

In [43], a spectral-spatial residual network (SSRN)was devel-

oped and the SSRN can consecutively learn discriminative

features from abundant spectral signatures and spatial con-

texts in an HSI. A pyramidal residual network [44] were also

developed to capture the spectral and spatial features simul-

taneously. Wang et al. [45] proposed a fast dense spectral-

spatial convolution framework, which extracted spectral

and spatial features separately by designing dense spectral

block, dense spatial block and reducing dimension layer.

Furthermore, a multiscale deep middle-level feature fusion

network [46] was proposed to extract more discriminative

features by fusingmultiscale deepmiddle-level features. Very

recently, Chen et al. [47] explored the automatic design

of CNN for HSI classification for the first time and devel-

oped a 3D Auto-CNN model. Those CNN-based methods

effectively improve the classification accuracy of HSIs and

perform well on small training set. However, they attach

importance to learn the spatial correlation of HSI data and

neglect the channel responses of features, which are also

crucial for the HSI classification. Moreover, to deal with the

gradient vanishing/explosion problem and mitigate the over-

fitting problem caused by limited training samples, residual

connection is widely used in many existing CNN-based HSI

classification methods such as the DCNN [35], DFFN [37]

and SSRN [43]. However, the residual blocks in their network

adopt post-activation mechanism, which means the activation

function ReLU is after convolutional operation. The ReLU

will forcibly convert the signal to 0 if the signal is nega-

tive, which may cause the loss of some informative residual

features.

To address the above issues, this paper builds a novel resid-

ual network with attention mechanism for spectral-spatial

HSI classification. The main contributions of this paper can

be summarized as follows.

1) To deal with the gradient vanishing/explosion problem

and enhance the classification performance of pro-

posed network, residual connections and batch nor-

malization (BN) are adopted in the proposed network.

Different from the previous networks used in
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FIGURE 1. Framework of proposed HSI classification method.

HSI classification, we introduce the pre-activation

mechanism into the residual block to learn more robust

spectral and spatial feature representation, thus achieve

better generalization performance.

2) To learn more robust spectral-spatial feature represen-

tations from input image patches, we introduce atten-

tion mechanism into the residual block and construct a

pre-activation residual attention block (PRAB), which

can adaptively recalibrate channel feature responses by

explicitly modelling interdependencies between chan-

nels.

3) A pre-activation residual attention network (PRAN)

is proposed to improve HSI classification outcomes

on small training sample size. The proposed PRAN

contains two PRABs, which allow the network to better

learn hierarchical features. Note that the experimental

results on three real HSIs demonstrate the competitive

advantage of proposed PRAN in terms of accuracy over

several state-of-the-art HSI classification methods.

The remainder of this paper is organized as follows. Section 2

introduces the proposed HSI classification method in detail.

In section 3, the performance of proposedmethod is evaluated

by carrying comparisons with several state-of-the-art HSI

classification method, and the experimental results on three

benchmark HSI datasets are analyzed and discussed. Finally,

section 4 concludes this paper and suggests some future

works.

II. PROPOSED METHOD

The framework of proposed method is showed in Figure 1.

As can be observed, the PRAN includes three convolutional

layers, two PRABs, a global average pooling (GAP) layer and

a fully connection (FC) layer.

HSI dataset can be denoted as D ∈ RH×W×B, where H ,

W and B denote the height, width and band number of the

HSI, respectively. In order to extract spectral-spatial features,

we adopt 3-D image patches centered on labeled pixels as

the input samples of the proposed PRAN, and the label of

image patch is the label of corresponding center pixel. The

size of the image patch is S×S×B, where S×S denotes the

neighborhood spatial size. Suppose the HSI dataset contains

N labeled pixels, then the image patch set can be denoted

as X = {x1, x2, . . . , xN } ∈ RS×S×B, where xi is the ith

image patch. The corresponding ground-truth label set can

be denoted as Y = {y1, y2, . . . , yN }, where yi ∈ {1, 2, . . . ,Q}

is the label of xi and Q is the number of land-cover classes.

The patch set X is divided into training set, validation set and

test set. Correspondingly, the Y is divided into three groups.

Before training the PRAN, hyperparameters (such as learning

rate, batch size, and patch size) are configured. The PRAN

is trained for 200 epochs. In each epoch, the training set is

divided into some mini-batches and the mini-batch data is fed

into the network one by one. In the training process, the pre-

diction label vectors of training set are obtained through

forward propagation of the model, then cross entropy loss

function is adopted to compute the difference between pre-

dicted label vectors and the corresponding one-hot label vec-

tors which converted by the ground-truth labels. After that,

the learned parameters of the PRAN are updated through back

propagation algorithm. In addition, during training stage, the

validation set is classified and the classification accuracy

is computed every few epochs, so as to monitor the model

performance. In this way, we can select the trained model

with the highest accuracy. Finally, the test set is adopted for

evaluating the performance of trained PRAN.

A. RESIDUAL CONNECTION AND PRE-ACTIVATION

MECHANISM

The residual block is adopted as the key component

of proposed PRAN, the architecture of which is shown

in Figure 2(a). As can be seen, the residual block is com-

posed of two convolutional layers and a residual connection

(also known as skip connection). Through skip connection,

the low-level features and high-level features can be aggre-

gated in an addition manner. In this way, the residual block

can mitigate the gradient vanishing/explosion problem which

usually exist in deep network. Each residual block can be

calculated as follows:

H (x) = f (F(x) + x) (1)

where x and H (·) denote the input and output of residual

block, respectively, F refers to a residual learning function

and F(x) denotes the output of convolutional layer before

summation operation, f denotes the activation function.
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FIGURE 2. Architecture of normal residual block (a) and pre-activation
residual block (b).

To obtain better performance, we apply BN and pre-

activation mechanism in the residual block of proposed net-

work. As shown in Figure 2(b), the pre-activation architecture

is implemented by moving BN and ReLU activation func-

tion before convolution operation. The pre-activation residual

block can be calculated as

H (x) = F(x) + x (2)

As shown in Figure 2(a), the activation function f in (1) is

ReLU, which means

f (x) = max (0, x) (3)

The ReLU will forcibly converts the signal to 0 if the signal

is negative, which may cause the loss of some informative

residual features in normal residual block. If make the f an

identity mapping, the (1) will be equivalent to (2). The iden-

tity mapping enables signals be propagated directly between

any two units, which means the features learned by the resid-

ual learning function will not be lost. In this way, the pre-

activation mechanism makes it easier to train the network,

and enhances the generalization performance of the network.

B. PRE-ACTIVATION RESIDUAL ATTENTION BLOCK

Due to that the data with all spectral bands are directly used

as the inputs of proposed network, it is inevitable to carry

redundant information which may degrade the classification

accuracy. To address this issue, we adopt the Squeeze-and-

Excitation (SE) block [48] to adaptively recalibrate channel

feature responses by explicitly modelling interdependencies

between channels, thus it can be regarded as a channel atten-

tion mechanism. We add the attention mechanism into the

pre-activation residual block and propose a pre-activation

residual attention block (PRAB).

The details of PRAB are depicted in Figure 3. The attention

mechanism is added after convolution operation, but before

summation operation. It allows the PRAB to perform fea-

ture recalibration, thus selectively emphasizes informative

FIGURE 3. Architecture of pre-activation residual attention block.

features and suppress the less important features. Assume

the size and number of the input feature maps of attention

mechanism is s × s × d and c, where c and d denote the

size of channel dimension and depth dimension, respectively.

Each feature map is first processed by a 3-D global average

pooling (GAP) layer to squeeze global spatial information,

thus c 1× 1× 1 channel feature tensors are generated. Then,

the feature tensors are input into a 1×1×1 3-D convolutional

layer to reduce the channel dimensionality. Specifically, after

convolution operation, the channel dimension of the feature

tensor becomes c/r , where r is a reduction ratio. In the pro-

posed network, r is set to 4. Next, a ReLU function is applied

to improve nonlinearity of channel responses and another

1 × 1× 1 3-D convolutional layer is adopted to increase the

channel dimension and generates c feature tensors. Lastly,

a sigmoid function is employed, and the output is multiplied

with the feature maps from pre-activation residual to rescale

the final output of attention mechanism to cs× s× d feature

maps. In this way, channel weights are assigned to each

feature map, thus achieve adaptively recalibrating features.

Furthermore, an attention mechanism is provided with 2∗c2/r

parameters, which are derived from the two 3-D convolu-

tional layers within it. Note that the proposed PRAN only

contains two attention blocks, which cause increasing very

few parameters for the network.

C. ARCHITECTURE OF PROPOSED NETWORK

Taking Indian Pines dataset as an example and the 7×7×200

image patches are used as the input samples, the details of

proposed PRAN are shown in Figure 4. Each convolutional

layer is followedwith BN and ReLU except that in the PRAB.

Referring to SSRN, the proposed PRAN first puts particular

emphasis on learning spectral features from raw input data,

then puts particular emphasis on learning spatial features,

thus extracts discriminative spectral-spatial joint features.
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FIGURE 4. Architecture of proposed pre-activation residual attention network. The cuboids in mainstream refer to features, other cuboids refer to
convolution kernels. ‘‘1 × 1 × 7, 24’’ means 24 convolution kernels with size 1 × 1 × 7, and ‘‘7 × 7 × 97, 24’’ means 24 feature cuboids with size
7 × 7 × 97. Other parameters have similar meanings, and no further elaboration is needed.

Finally, the joint features are processed by GAP and FC

operation. The FC operation can adaptively generate feature

vector, the length of which is equal to the number of land-

cover classes in the HSI data. Because there are 16 land-cover

classes in Indian Pines dataset, the length of output vector is

16 in Figure 4. In addition, it is noted that the stride of the

first convolutional layer is (1, 1, 2), so the channel dimension

of the input samples is reduced from 200 to 97. All the other

convolutional layers in the proposed PRAN is equipped with

the stride of (1, 1, 1). In PRAB, all convolutional layers

use padding to keep the sizes of feature cuboids unchanged.

Due to without using padding, the spatial size or channel

dimension is reduced when feature cuboids are processed by

the convolutional layers outside the PRAB.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATA SETS

1) INDIAN PINES

This image was captured by Airborne Visible/Infrared Imag-

ing Spectrometer (AVIRIS) over the Indian Pines test site in

North-western Indiana in 1992. It contains 16 classes and

145 × 145 pixels with the spatial resolution of 20m per

pixel. There are 224 spectral bands in the wavelength range

from 400 to 2500 nm. After discarding 20 water absorption

bands, the remaining 200 bands are adopted for classification.

Figure 5 shows the pseudo color image and ground-truth

image of this data. As reported in Table 1, 20%, 10%, and

70% of labeled samples are randomly selected for training,

validation (val), and test sets, respectively.

2) PAVIA UNIVERSITY

This image was captured by Reflective Optics System Imag-

ing Spectrometer in Northern Italy in 2001. It contains

FIGURE 5. Pseudo color image and ground-truth map of Indian Pines
data.

9 land-cover classes and 610 × 340 pixels with the spatial

resolution of 1.3m per pixel. After discarding the noisy bands,

the remaining 103 bands are adopted for experiments, which

covers the wavelength range from 430 to 860 nm. Figure 6

shows the pseudo color image and ground-truth image of this

data. As reported in Table 2, 10%, 10%, and 80% of labeled

samples are randomly selected for training, validation, and

test sets, respectively.

3) SALINAS

This image was collected by the AVIRIS sensor over Sali-

nas Valley, California. It contains 16 land-cover classes and

512 × 217 pixels with the spatial resolution of 3.7m per

pixel. We discarded the 20 water absorption bands and only

204 bands are persevered for experiments. The pseudo color

VOLUME 7, 2019 176591
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TABLE 1. Number of training, validation and test samples in Indian Pines
dataset.

FIGURE 6. Pseudo color image and ground-truth map of Pavia University
data.

TABLE 2. Number of training, validation and test samples in Pavia
University dataset.

image and ground-truth image are shown in Figure 7. For this

dataset, the ratio of training samples, validation samples, and

test samples is 1:1:8, the details are reported in Table 3.

FIGURE 7. Pseudo color image and ground-truth map of Salinas data.

TABLE 3. Number of training, validation and test samples in Salinas
dataset.

B. EXPERIMENTAL SETUP

The overall accuracy (OA), average accuracy (AA), and

kappa coefficient (κ) are used to evaluate the classification

performance of proposed method. Among them, OA denotes

the ratio of the number of samples correctly classified to the

total number of all labeled samples. AA denotes the average

of classification accuracy of all classes. The kappa coefficient

is used to assess the agreement of classification for all the

classes. The greater the κ value is, the better the overall

classification effect is.

We repeat all experiments for 10 times with randomly

selected training samples so as to obtain the mean and stan-

dard deviation of OA, AA, and κ . In the training process, for

all three datasets, learning rate, batch size and total epochs

are 0.0003, 32 and 200, respectively. The RMSProp optimizer

is adopted to optimal the learnable parameters of proposed

network. All experiments are conducted on a computer with
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TABLE 4. Classification results (OA) of proposed method with different
patch size.

RAM 8G and NVIDIA GeForce GTX 1050Ti GPU (4G

of ROM). The experimental results are divided into three

parts. First, we analyze the effect of size of input image

patches on the performance of proposed method. Second, the

effectiveness of PRAB is verified. Finally, the performance

of proposed method is evaluated by comparing with other

classification methods.

C. EFFECT OF PATCH SIZE

To analyze the effect of patch size for the performance of

proposed method, we carried the experiments on all three

datasets and compared the classification results of proposed

method with different patch size, as shown in Table 4. It can

be observed that, as the patch size increases, the OA value

first increases rapidly and then decreases slightly for Indian

Pines dataset. And for the other two datasets, the OA value

first increases rapidly and then becomes stable. The reason is

that small patch size (3 × 3) makes the spatial information

is not fully utilized, thus causes unsatisfactory classifica-

tion accuracies. And larger patch size enables the proposed

method to extract more discriminative features and achieve

better classification results. However, when the image patch

exceeds a certain size, it will lead to redundant information

or noise, which cannot cause the improvement on accuracy

and may even degrade the accuracy. The optimal patch size is

7× 7, 7× 7 and 9× 9 for Indian Pines, Pavia University and

Salinas datasets, respectively. Considering the larger patch

size leads to higher computational cost, the patch size is to

7 × 7 for all the three datasets.

D. EFFECT OF PRE-ACTIVATION RESIDUAL ATTENTION

BLOCK

To verify the effectiveness of the attention mechanism and

PRAB, we compare the proposed PRAN with the deep

residual network (DRN) and pre-activation residual network

(PRN). Among them, the DRN is obtained by replacing

the PRABs in PRAN with normal residual blocks, and the

difference between PRN and PRAN is that the PRN does not

adopt attention mechanism, while the PRAN is provided with

attention mechanism. Table 5 reports the classification results

of the DRN, PRN and PRAN on all three datasets. It is obvi-

ous that proposed PRAN achieved better classification results

than the DRN for all three datasets, which demonstrates the

superiority of the PRAB. Furthermore, compared with the

PRN, the PRAN improves the classification accuracies of all

three datasets, because the attention mechanism selectively

TABLE 5. Effect of prab on all three datasets.

strengthens informative channels and suppresses less useful

channels, thus results in the proposed PRAN can learn dis-

criminative spectral and spatial features simultaneously. For

the reason that the accuracy is very high (higher than 99%),

the improvements of accuracy caused by the PRAN are not so

obvious. Note that all the accuracies are the averaged results

over 10 repeated experiments with randomly selected training

samples, small improvements demonstrate the effectiveness

of PRAB to some extent.

E. COMPARISON OF DIFFERENT CLASSIFICATION

METHODS

We compare our method with the SVM [7] and several

state-of-the-art CNN-based methods, including DCNN [35],

DFFN [37] and SSRN [43]. For SVM-based method, only

single RBF kernel is adopted, the optimal kernel parameter γ

and the penalty parameterC are tuned by grid search method.

Additionally, the original data is processed by principal com-

ponent analysis (PCA), then training patches (patch size is

25 × 25) centered with labeled pixels are extracted. The

patches are transformed into one-dimension data to training

the SVM. The DCNN and DFFN are 2-D CNN, and the

SSRN is a 3-D CNN. All of them used residual connections

to design deep architectures and improve their performance

in HSI classification. The architectures of those three CNN

models are deeper than PRAN. Among them, the number

of layers with weights in DCNN and SSRN is 10 and 12,

respectively. In DFFN, there is more than 20 layers with

weights. In addition, both the DCNN and SSRN adopt 3D

image patches extracted from original HSI as the inputs.

As for the DFFN, PCA is applied over the hyperspectral

data to reduce the dimensions and obtain major spectral

information, then input image patches are extracted from

the dimension-reduced data. The optimal hyperparameters

of DCNN, DFFN and SSRN are set as corresponding refer-

ences. For fair comparison, the local response normalization

in DCNN is replaced by BN. The division of datasets is

according to Tables 1-3.

Tables 6-8 report the classification results of different

methods on three datasets. As we can see, the accuracies

obtained by SVM classifier are the lowest for all three

VOLUME 7, 2019 176593
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TABLE 6. Classification results of different methods on Indian Pines dataset.

TABLE 7. Classification results of different methods on Pavia University dataset.

datasets. Because it requires 1-D input data, which causes

the loss of spatial information. In addition, it cannot extract

deep hierarchical features due to its shallow structure. All

CNN-based comparison methods achieve high classification

accuracies. The main reason is that they are equipped with

deep architecture, which enables them to learn high-level

discriminative features of HSIs. In addition, the residual con-

nection adopted in those methods effectively alleviates the

overfitting of deep architecture. However, most convolutional

layers in the DCNN are composed of 1 × 1 convolutional

kernels, which leads to the limited ability to extract spatial

correlation features. Instead, many 3×3 convolutional layers

are stacked in the DFFN, SSRN and PRAN, thus these meth-

ods can extract more informative spatial correlation features

and achieve higher accuracies.

Compared with the DFFN, the PRAN consistently pro-

vides excellent performance for all three datasets. For exam-

ple, the PRAN achieves 1.44% and 0.69% increase of mean

OA for Indian Pines and Pavia University data, respectively.

For Salinas data, the OA/AA/κ obtained by the DFFN are

slightly higher than those obtained by the PRAN, but the

gap is extremely small (only 0.03% in mean OA). Note

that samples of the classes Asphalt, Grass-pasture-mowed,

Oats, Wheat in Indian Pines datasets are very few, the PRAN

performs obviously better in these classes than the DFFN.

It demonstrates that the PRAN can extract discriminative

features more robustly than the DFFN. As for the SSRN,

the PRAN performs marginally better than it for all three

datasets, but the improvements are not that clear, simply

because the classification accuracy is very high (higher than
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TABLE 8. Classification results of different methods on Salinas dataset.

FIGURE 8. Classification maps of different methods on Indian Pines data: (a) SVM. (b) DCNN. (c) DFFN. (d) SSRN. (e) PRAN.

99.8% in both OA and AA). Moreover, the SSRN is equipped

with deeper architecture than PRAN, which means the com-

putational cost of the former is higher than that of the latter.

From another point of view, though the architecture of PRAN

is shallower, it does not cause the PRAN to possess worse

generalization performance than the SSRN. Not only that,

it makes the PRAN easier to train and faster in HSI classi-

fication.

Figures 8-10 visualize the classification results of different

methods which close to the corresponding mean OA on all

three datasets. For all three datasets, there exist many mis-

classified pixels in the classification maps generated by the

SVM and DCNN. And the SVM causes more misclassified

pixels, which is consistent with the above quantitative results.

The DFFN, SSRN and our proposed methods bring about

very little noise in the corresponding classification maps

especially for Pavia University and Salinas datasets.

In order to further evaluate the robustness and general-

ization ability of proposed method, the classification results

obtained by proposed method are compared with those

obtained by comparison methods under different training set

size. Figure 11 displays the OA obtained by different meth-

ods on Indian Pines, Pavia University, and Salinas datasets,

respectively. Note that the percentages of training samples

are reported in Figure 11, and 10% of all samples are used for

validation set, the rest samples are used for test set. All results

are the average over 10 repeated experiments with randomly

selected training samples. As we can see, the accuracies of all

methods increase as the numbers of training samples increase.

Moreover, the proposed PRAN consistently provides compet-

itive performances over the other compared methods under

all different training set size. In particular, the smaller the

training set is, the more obvious the superiority of proposed

method over all compared methods is.

Furthermore, we select 4/8 training samples per class for

each dataset and classify all three datasets with the PRAN,

DFFN and SSRN. It should be noted that 4 training samples

per class means only 64, 36, and 64 samples are used for
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FIGURE 9. Classification maps obtained by different methods for Pavia University data: (a) SVM. (b) DCNN. (c) DFFN. (d) SSRN. (e) PRAN.

FIGURE 10. Classification maps obtained by different methods for Salinas data: (a) SVM. (b) DCNN. (c) DFFN. (d) SSRN.
(e) PRAN.

TABLE 9. Classification results of 4 training samples per class.

training for Indian Pines, Pavia University and Salinas

datasets, respectively. In other words, the number of training

samples is less than 1% of the total number of all labeled

samples. In the same way, the percentage of validation set is

10% and the rest samples are adopted to evaluate the model

performance. Tables 9 and Table 10 display the corresponding

classification results in detail. Here, we take the classification

results (OA) of Pavia University as an example. When 4 sam-

ples per class are selected to train the network, compared with

DFFN and SSRN, the PRAN improves 10.11% and 9.37% in

OA (see Table 9), respectively. And in Table 10, when 8 sam-

ples per class are used for training, the OA obtained by PRAN
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FIGURE 11. Classification results (OA) obtained by different methods under different training set sizes on: (a) Indian Pines image; (b) Pavia
University image; (c) Salinas image.

TABLE 10. Classification results of 8 training samples per class.

is 2.30% and 6.67% higher than that obtained by DFFN and

SSRN, respectively. In the other two datasets, compared with

the DFFN and SSRN, the PRAN also obviously improves the

classification results of both 4 training samples per class and

8 training samples per class. The above experimental results

further demonstrate the superiority of the proposed method

under small training sample size.

Table 11 reports the training time (s) of proposed PRAN

and comparison methods. As can be observed, both the

DCNN and DFFN take less time for training than SSRN and

PRAN. It is because the DCNN and DFFN adopt the 2-D

convolutional layer as the basic element while the SSRN and

PRAN adopt the 3-D convolutional layer as the basic element.

Although the computational cost of the DFFN is lower than

the PRAN, the DFFN requires input image patches with large

size (such as 25 × 25 for Indian Pines dataset), otherwise

the classification will degrade. Larger patch size means more

noise may appear in the image patches, thus causes worse

classification performance. Therefore, it may face challenges

to adopt DFFN for HSI classification, especially when the

spatial distribution of land cover is complicated and confused.

Fortunately, the PRAN is almost free from this constraint.

Despite the classification accuracy of the DFFN is pretty

close to PRAN when training set is relatively large, the supe-

riority of PRAN gradually increases as the training samples

decreases (see Figure 11). The training time of SSRN is

roughly 2 times longer than the PRAN due to its deeper

TABLE 11. Training time of different methods on all three datasets.

architecture. Therefore, the PRAN is evidently faster than

SSRN when used for HSI classification.

To sum up this section, in terms of classification accu-

racy and classification speed, the PRAN is able to provide

competitive performance over these compared state-of-the-

art methods.

IV. CONCLUSION

In this paper, we propose a pre-activation residual atten-

tion network, that incorporates both spectral and spatial

information, for hyperspectral image classification. Specif-

ically, different from previous CNN-based HSI classifica-

tion methods, the proposed method adopts pre-activation

mechanism to enhance the generalization performance of

the network. Moreover, to extract more robust spectral-

spatial features, attention mechanism is introduced to build

a pre-activation residual block, which allows the proposed

network to adaptively recalibrate channel feature responses

and effectively exploit discriminative features. Experimental

VOLUME 7, 2019 176597



H. Gao et al.: Hyperspectral Image Classification With Pre-Activation Residual Attention Network

results on three benchmark HSI datasets demonstrate that the

competitive advantage of proposed method when compared

with SVM and several state-of-the-art methods (including

DCNN, DFFN and SSRN), especially under small training

set.

Despite the superiority of the proposed method, it has large

number of parameters needed to be learned due to the use

of 3-D convolution kernels, thus results in high computational

cost. Therefore, the future research will try to develop new

approach, such as replacing 3-D convolution with octave con-

volution, to decrease the computational cost without degrad-

ing the classification accuracy. Furthermore, on account of

insufficient training samples in HSIs, we will combine the

proposedmethodwith advanced data augmentation technique

to further improve classification performance.
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