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ABSTRACT Hyperspectral images (HSIs) are frequently corrupted by various types of noise, such as

Gaussian noise, impulse noise, stripes, and deadlines due to the atmospheric conditions or imperfect

hyperspectral imaging sensors. These types of noise, which are also called mixed noise, severely degrade

the HSI and limit the performance of post-processing operations, such as classification, unmixing, target

recognition, and so on. The patch-based low-rank and sparse based approaches have shown their ability to

remove these types of noise to some extent. In order to remove the mixed noise further, total variation (TV)-

based methods are utilized to denoise HSI. In this paper, we propose a group low-rank and spatial-spectral

TV (GLSSTV) to denoise HSI. Here, the advantage is twofold. First, group low-rank exploits the local

similarity inside patches and non-local similarity between patches which brings extra structural information.

Second, SSTV helps in removing Gaussian and sparse noise using the spatial and spectral smoothness of

HSI. The extensive simulations show that GLSSTV is effective in removing mixed noise both quantitatively

and qualitatively and it outperforms the state-of-the-art low-rank and TV-based methods.

INDEX TERMS Denoising, hyperspectral image (HSI), mixed noise, group low-rank, spatial-spectral total

variation (SSTV).

I. INTRODUCTION

Hyperspectral imaging is the measurement of light spec-

trum over a large number of narrow wavelengths reflected

from objects. High spectral resolution in HSI provides higher

success rate in the identification of the substances com-

pared to the classical imaging methods. Therefore, hyper-

spectral imaging is used in various fields of science such

as remote sensing, astronomy, mineralogy and fluorescence

microscopy. HSI suffers many types of noise that are intro-

duced in imaging process due to several factors such as

atmospheric effects and imperfect hyperspectral sensors. The

types of noise which are frequently encountered are Gaussian

noise, impulse noise, stripes, which are termed as mixed

noise, seriously corrupts the hyperspectral data and affects

the success of post-processing operations such as classifica-

tion [1], unmixing [2] and target recognition [3].

The two-dimensional (2D) gray-scale image denoising

methods such as K-SVD [4], BM3D [5], NCSR [6] or other
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well-known methods can be utilized to denoise HSI by con-

sidering the each band of HSI as a 2D gray-scale image.

However, band-wise denoising methods do not consider the

spectral correlations between each band of the HSI, which

is the most crucial property of HSI. In literature, many HSI

denoising methods have been proposed [7]–[17]. In [7], Chen

and Qian propose a principal component analysis (PCA) for-

mulation to remove noise from low-energy PCA output chan-

nels which is believed to contain large amount of noise. [8]

employs the sparse representation and low-rank penalty for

redundancy and correlation (RAC). The sparse representation

captures the local RAC in spectral domain and global RAC in

spatial dimension and low-rank penalty captures the global

RAC in spectral dimension. Lu et al. [9] propose a spectral-

spatial adaptive sparse representation which explores the

correlated spectral and spatial information. Besides this,

low-rank approximation based methods which employ robust

principal component analysis (RPCA) have been proposed

for HSI denoising [18], [19]. The RPCA has attracted great

attention due to the success of recovering the subspace

structures possibly with outliers. It is used in many diverse
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applications such as image analysis, web data ranking and

computer vision. In the RPCA model, the lowest rank rep-

resentation of data among all possible solutions is obtained

and outliers are simultaneously removed by introducing a

sparse error matrix to the model. Since HSI has a low-rank

structure and it inevitably contains noise in the form of sparse

and Gaussian noise, RPCA based methods are utilized in

many studies for HSI denoising and restoration [10], [12],

[14], [15]. Zhang et al. [10] divide the HSI into overlap-

ping patches and solve low-rank matrix recovery (LRMR)

for each patch and aggregates the patches to obtain the

clean HSI. LRMR adopts the Go Decomposition (GoDec)

algorithm [20] to obtain the low-rank approximation of the

patches. The noise-adjusted iterative low-rankmatrix approx-

imation (NAILRMA) for Gaussian noise and noise-adjusted

iterative low-rank matrix recovery (NAILRMR) for mixed

noise are proposed in [12] that considers the noise level in

different bands of the HSI. Furthermore, nonconvex low-rank

approximation based denoising methods are also considered

in the literature. The weighted Schatten p-norm low-rank

matrix approximation (WSN-LRMA) [14] utilizes an itera-

tive approach to restore the HSI. Recently, nonconvex low-

rank matrix approximation (NonLRMA) [15] is proposed

for HSI denoising which approximates the rank of HSI in

iterative manner.

Besides this, in order to increase the success of denois-

ing results, spatial and spectral information are investi-

gated simultaneously in various studies. The low-rank spec-

tral non-local approach is used in [11] which includes the

low-rank representation of precleaned image patches and

the application of spectral non-local method to restore the

image. Reference [16] proposes a noise reduction algorithm

using hybrid spatial-spectral wavelet shrinkage that works

in spectral derivative domain and considers the dissimilar-

ity in spatial and spectral dimensions and the algorithm

is applied to denoise HSI. Furthermore, group low-rank

representation (GLRR) is proposed in [21] to exploit the

local similarity in a patch and non-local similarity across

patches in a group simultaneously. GLRR which uses

group low-rank and sparse based denoising scheme denoises

each group individually using LRMR. The low-rank rep-

resentation with spectral difference space (LRRSDS) [22]

denoises HSI by utilizing the LRR of the spectral differ-

ence image. Fan et al. [23] propose a denoising method

based on superpixel segmentation and low-rank represen-

tation (SS-LRR) to capture the spatial information more

effectively.

Furthermore, total variation [24], which is an effective

method in gray-scale image denoising, is used in many stud-

ies to remove noise from HSI [13], [25]–[29]. Yuan et al.

propose a spatial-spectral adaptive TV (SSAHTV) model by

considering the smoothness in spatial and spectral views to

improve the denoising result [25]. Reference [13] employs

a TV regularized low-rank matrix approximation (LRTV) to

restore the HSI in which TV is applied in spatial dimensions.

Spatial-spectral TV (SSTV) model is introduced in [26] to

denoise in spatial and spectral dimensions. The low-rank

constraint SSTV (LSSTV) denoising method is considered

in [29] to utilize the spatial and spectral smoothness and

spectral correlation, simultaneously which is an effective

method in removing the mixed noise from HSI. The spatial-

spectral total variation regularized local low-rank matrix

recovery (LLRSSTV) is proposed in [27]. LLRSSTV utilizes

patch based low-rank approximation and SSTV simultane-

ously to remove the mixed noise efficiently. Reference [28]

applies weighted total variation regularized low-rank model

(LRWTV) for HSI restoration to preserve the spatial struc-

ture. The spectral-spatial weighted TV captures the spatial

and spectral information of HSI to preserve the details.

In [30], spectral difference-induced total variation and low-

rank approximation (SDTVLA) is introduced to remove the

structured noise such as structured stripes and deadlines.

Sun et. al propose a cross TV regularized unidirectional

low-rank tensor approximation (CrTVLRT) method [31] to

explore the spectral-spatial correlation and non-local self-

similarity simultaneously.

Patch based HSI denoising methods by arranging the 3D

subcube to matrix form for removing mixed noise cannot

exploit the full advantage of spatial and spectral informa-

tion. Therefore, tensor based methods are proposed for HSI

denoising [32], [33]. Huang et al. propose a group sparse and

low-rank tensor decomposition (GSLRTD) method [32] to

exploit the spatial and spectral information more effectively.

First, 3D HSI is divided into overlapping 3D tensor cubes,

then these cubes are clustered using k-means algorithm to

form a group tensor. Each group tensor is denoised by SLRTD

and clean HSI is obtained by aggregating all 3D cubes.

Fan et. al propose a spatial-spectral TV regularized low-rank

tensor factorization (SSTV-LRTF) method for mixed noise

removal [33], which prevents the loss of multiway structural

information in HSI.

Inspired by the GLRR [21] and SSTV based methods

[25]–[29], [33] proposed in the literature, we propose a group

low-rank approximation with spatial-spectral total variation

(GLSSTV) method to denoise the HSI in the presence of

mixed noise. Here, group low-rank representation exploits the

local similarity within a patch and non-local similarity across

patches, which brings extra structural information to help

the reconstruction of corrupted patches and SSTV eliminates

the noise further by utilizing the smoothness in spatial and

spectral dimensions simultaneously. Basically, GLSSTV is

related to aforementioned works. However, there are differ-

ences between GLSSTV and the others. GLRR [21] denoises

each group individually to recover the corrupted patches but

mixed noise cannot be removed completely. LLRSSTV [27],

which is a combination of patch-based restoration and SSTV,

do not consider the non-local similarity across patches.

Furthermore, LSSTV [29] utilizes SSTV and low-rank

approximation simultaneously without considering the patch-

based denoising framework.

The simulated experiments on simulated and real datasets

indicate that the proposed denoising scheme is effective
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in removing mixed noise from HSI and outperforms the

state-of-the-art methods proposed in the literature.

The rest of the paper is organized as follows. Section II

gives notations and necessary background for problem for-

mulation. Section III describes the proposed method. The

simulated and real data experiments are given in Section IV.

Finally, Section V concludes the paper. Some suggestions and

future works are given in this section.

II. NOTATIONS AND BACKGROUND

Throughout the paper, we denote the hyperspectral cubes as

Euler script letters, e.g., A. Matrices are denotes as bold-

face capital letters e.g., A, vectors are denoted as bold-

face lowercase letters, e.g., a, and scalars are denoted by

lowercase letters e.g. a. Some norms are used for tensors,

matrix and vectors. Let ai1,i2,...,im denote the (i1, i2, . . . , im)-

element of A. We denote the l1 norm as ‖A‖1 =
∑

i1,i2,...,im
|ai1,i2,...,im |, the Frobenius norm as ‖A‖F =

(
∑

i1,i2,...,im
|ai1,i2,...,im |2)1/2. These norms reduces to matrix

or vector norms if A is a matrix or vector. The nuclear norm

of A is denoted as ‖A‖∗ which is defined as ‖A‖∗ =
∑

i σi
where σi is the ith singular value of A.

A. PATCH BASED LOW-RANK MATRIX RECOVERY MODEL

Hyperspectral images inevitably contain noise in the form

of additive and sparse noise which includes Gaussian noise,

impulse noise, stripes and deadlines. Suppose that the obser-

vation model for HSI is given as

Y = X + S + N (1)

where Y , X , S and N denote the noisy HSI, clean HSI,

sparse noise and Gaussian noise, respectively. The size of

each term ism×n×p. It is known that there exist high spectral

correlation between the bands of HSI, (RPCA) [34], [35] can

be utilized in the patch-based denoising framework [10], [12].

The observation model for a subcube of size M × M × p

centered at location (i, j) can be written as

Y(i,j) = X(i,j) + S(i,j) + N(i,j) (2)

then the observation model is converted to a 2D Casorati

matrix form which means that each band of subcube is con-

verted to M2 × 1 vector and then each vector is stacked

column-wise to obtain the Casorati matrix. The observation

model for subcube centered at location (i, j) in matrix form

can be written as

Y(i,j) = X(i,j) + S(i,j) + N(i,j) (3)

where Y(i,j), X(i,j), S(i,j), and N(i,j) are the Casorati matrices

of Y(i,j), X(i,j), S(i,j) and N(i,j), respectively. The size of each

term is M2 × p. The rank-constrained RPCA formulation is

proposed to obtain clean HSI X, which is formulated as:

min
X(i,j),S(i,j)

‖X(i,j)‖∗ + λ‖S(i,j)‖1 (4)

s.t. , ‖Y(i,j) − X(i,j) − S(i,j)‖
2
F ≤ ǫ

rank(X(i,j)) ≤ r

where λ is the regularization parameter and r is defined as

the upper rank value of X(i,j). After all patches are restored,

patches are aggregated to obtain the clean HSI.

B. SPATIAL-SPECTRAL TOTAL VARIATION MODEL

The RPCA based denoising methods are effective in remov-

ing sparse noise from the data. However, Gaussian noise in

the HSI data cannot be removed completely. Furthermore,

if the sparse noise has a structured characteristics then sparse

noise can be regarded as low-rank part which means that

the sparse noise cannot be eliminated efficiently. Therefore,

using the spatial and spectral smoothness property of HSI, TV

is applied either band-by-band [13] or SSTV is applied in spa-

tial and spectral dimensions simultaneously [26], [27], [29]

to remove the Gaussian noise and sparse noise efficiently.

SSTV [26] model is formulated as

‖X‖SSTV = ‖DhXD‖1 + ‖DvXD‖1 (5)

Dh and Dv are horizontal and vertical two dimensional dif-

ference operators applied on spatial dimensions and D is

the one dimensional difference operator applied on spectral

dimension. SSTV is very effective in removing Gaussian and

sparse noise from hyperspectral data. However, it does not

utilize the spectral correlation between the bands of hyper-

spectral data. LSSTV [29] utilizes the spectral correlation

and spatial and spectral smoothness of HSI by using the low-

rank approximation and SSTV simultaneously. It has been

shown that superior performance is achieved in removing the

Gaussian and sparse noise. LLRSSTV [27] employs patch-

based low-rank approximation and SSTV simultaneously.

III. PROPOSED METHOD

A. GROUP LOW-RANK APPROXIMATION WITH

SPATIAL-SPECTRAL TOTAL VARIATION

We propose a novel denoising scheme that will employ group

low-rank approximation and SSTV regularization simulta-

neously, which we call group low-rank approximation with

SSTV regularization (GLSSTV). Group low-rank representa-

tion will provide the local similarity inside a patch and non-

local similarity between patches. SSTV is utilized to remove

the sparse noise and Gaussian noise by considering the spatial

and spectral smoothness of HSI.

First, we define an operatorR(q)(·) that extracts a subcube

of sizeM×M×p centered at location (i, j) and reshapes into

a patch matrix of sizeM2 × p. The total number of patches is

K = ⌊m−s
s

⌋ × ⌊ n−s
s

⌋ where ⌊⋆⌋ rounds ⋆ down to the nearest

integer. Therefore, a patch Y(q) for (q = 1, . . . ,K ) can be

represented as

Y(q) = R(q)(Y) q = 1, . . . ,K (6)

Then, we define a similarity matrix D where each element of

D is calculated based on Euclidean distance between patches

such that

Dqv = ‖Y(q) − Y(v)‖F q, v = 1, . . . ,K (7)
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We sort each row of D in descending order and collect the

(i, j) indices of the k patches that have the lowest Euclidean

distance in each row of D. The (i, j) indices of the k patches

in each group are stored in sets 3q = {3q1 , . . . , 3qk } for

(q = 1, . . . ,K ) which will be used in the reconstruction stage

of the proposed formulation.

At this point, we define an operator T 3q to create a group

for each patch Y(q) for (q = 1, . . . ,K ) such that

T 3q (Y) =











Y(3q1
)

Y(3q2
)

...

Y(3qk
)











kM2×p

q = 1, . . . ,K (8)

Basically, T 3q is a two-step operator. First, it extracts K

subcubes of sizeM×M×p centered at location (i, j) and then

convert them to Casorati matrix form using operator R(q)(·).

Second, K groups are created using the indices provided by

3q for (q = 1, . . . ,K ).

Based on operator T 3q , our proposed rank constrained

group low-rank and SSTV model for HSI denoising as

follows.

min
X ,S

K
∑

q=1

(

‖T 3q (X )‖∗

)

+ λ‖S‖1 + τ‖X‖SSTV

+ β‖Y − X − S‖2F

s.t. rank(T 3q (X )) ≤ r; q = 1, . . . ,K (9)

Here,
∑K

q=1

(

‖T 3q (X )‖∗

)

calculates the group nuclear norm

for each group, λ‖S‖1 accounts for the sparse noise in the

data, τ‖X‖SSTV considers the spatial and spectral smooth-

ness of the HSI and β‖Y − X − S‖2F balances the tradeoff

between noisy and clean data. Replacing the SSTV model in

(5) to (9) leads to following optimization problem.

min
X ,S

K
∑

q=1

(

‖T 3q (X )‖∗

)

+ λ‖S‖1 + +β‖Y − X − S‖2F

+ τ‖DhXD‖1 + τ‖DvXD‖1

s.t. rank(T 3q (X )) ≤ r; q = 1, . . . ,K (10)

We employ Alternating Direction Method of Multipliers

(ADMM) [36] to solve (10). By including auxiliary variables,

we can write

min
J ,X ,S

K
∑

q=1

(

‖T 3q (J )‖∗

)

+ β‖Y − X − S‖2F

+ λ‖S‖1 + τ‖P‖1 + τ‖Q‖1

+ µ‖P − DhXD− B1‖
2
F

+ µ‖Q − DvXD− B2‖
2
F + µ‖J − X − B3‖

2
F

s.t. rank(T 3q (J )) ≤ r; q = 1, . . . ,K (11)

where B1, B2 and B3 are Lagrangian multipliers and J ,

P and Q are the auxiliary variables to decouple the vari-

ables. We can write the individual problems for decoupled

variables as:

J : argmin
rank(T 3q (J ))≤r

K
∑

q=1

‖T 3q (J )‖∗ (12)

+ µ‖J − X − B3‖
2
F

P : argmin
P

τ‖P‖1 + µ‖P − DhXD− B1‖
2
F (13)

Q : argmin
Q

τ‖Q‖1 + µ‖Q − DvXD− B2‖
2
F (14)

S : argmin
S

λ‖S‖1 + β‖Y − X − S‖2F (15)

X : argmin
X

β‖Y − X − S‖2F + µ‖J − X − B3‖
2
F

+ µ‖P − DhXD− B1‖
2
F + µ‖Q − DvXD− B2‖

2
F

(16)

For problem (12), the optimization problem can be divided

into K independent optimization problems. We can write

argmin
rank(T 3q (J ))≤r

‖T 3q (J )‖∗ + µ‖T 3q (J )

−T 3q (X + B3)‖
2
F (17)

for each group (q = 1, . . . ,K ).

Solution to (17) can be obtained using the following

lemma.

Lemma 1 [37]: Consider the singular value decomposi-

tion (SVD) of matrix Q ∈ R
mn×p of rank r

Q = U6V∗, 6 = diag({σi}1≤i≤r ) (18)

where U and V are mn× r and p× r matrices. Then singular

value shrinkage operator obeys

Dρ(R) = argmin
Q

1

2
‖Q − R‖2F + ρ‖Q‖∗ (19)

where Dρ(R) = UDρ(6)V∗ and Dρ is defined as Dρ =

diag({σi − ρ}+)

Therefore, the solution to (17) for each group can be

obtained directly using Lemma 1.

T 3q (J ) = D1/2µ(T 3q (X + B3)) (20)

In order to take the consideration of rank(T 3q (J )) ≤ r ,

we set σ (i) = 0 for i > r for each group.

Then, we reconstruct J from K groups using the indices

provided by 3q such that

J = T
T
3q

(

T 3q (J )
)

(21)

where T T
3q

(·) is inverse operator of T 3q (·).

T T
3q

(·) is a two-step averaging operation. We know that

T 3q (J ) creates groups for each patch J(q) such that

T 3q (J ) =











J(3q1
)

J(3q2
)

...

J(3qk
)











kM2×p

q = 1, . . . ,K (22)
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and also a patch J(q) in a group can be included in C

groups, there will be multiple patches for J(q) denoted

as {J
(l1)
(q) , . . . , J

(lC )
(q) } where (l1, . . . , lC ) is the group indices

for J(q).

In the first step, we average the patches with the same

indices using

J(q) =
1

C

C
∑

t=1

J
(lt )
(q) q = 1, . . . ,K (23)

In the second step, J is calculated by averaging the over-

lapped patches as

J =

K
∑

q=1

RT
(q)(J(q))./

( K
∑

q=1

RT
(q)R(q)

)

(24)

where RT
(q)(·) is inverse operator of R(q)(·) and it converts

J(q) to subcube J(q) and forms an m× n× p image where the

values of J(q) are put in the appropriate position in m× n× p

image and the rest of the image is set to zero.
∑K

q=1R
T
(q)R(q)

is an m× n× pmatrix that averages the overlapped subcubes

formed by
∑K

q=1R
T
(q)(J(q)).

The solutions to subproblems (13), (14) and (15) can be

obtained as

P = Rτ/2µ(DhXD+ B1) (25)

Q = Rτ/2µ(DvXD+ B2) (26)

S = Rλ/2β (Y − X ) (27)

where the soft-thresholding operator R(·) is defined as:

Rτ/2µ(o) =

{

o− τ/2µ, if o > τ/2µ

o+ τ/2µ, if o < τ/2µ.
(28)

Next, we obtain the vectorized form of subproblem (16) to

solve for X

x : argmin
x

β‖y− x − s‖22 + µ‖j− x − b3‖
2
2

+ µ‖p− ∇hx − b1‖
2
2 + µ‖q− ∇vx − b2‖

2
2 (29)

where ∇h = DT ⊗ Dh and ∇v = DT ⊗ Dv. Here, we use

the property of Kronecker productDhXD = (DT ⊗Dh)x and

DvXD = (DT ⊗ Dv)x.

Differentiating (29) with respect to x leads to following

linear system of equations

(β + µ + µ∇T
h ∇h + µ∇T

v ∇v)x

= β(y− s) + µ(j− b3) + µ(p− b1) + µ(q− b2) (30)

which can be solved using LSQR [38]. Then, X can be

obtained by converting vectorized form of x to the tensor

form.

The Lagrange multipliers B1, B2 and B3 are updated as

B1 = B1 + DhXD− P (31)

B2 = B2 + DvXD− Q (32)

B3 = B3 + X − J (33)

We summarize the proposed GLSSTV in Algorithm 1.

Algorithm 1 Algorithm for GLSSTV

Input: Y , M , s, λ, β, τ , µ, r , ǫ, k

Output: X

Initialization: X (0) = J (0) = S(0) = 0, P (0) = Q(0) =

0, B
(0)
1 = B

(0)
2 = B

(0)
3 = 0, x(0) = 0, maxiter = 50,

ǫ = 10−5

1: Step 1: Get T 3q for (q = 1, . . . ,K ) using (8).

2: Step2:

3: for i = 1 to maxiter do

4: for q = 1 to K do

5: T 3q (J
(i)) = D1/2µ(T 3q (X

(i−1) + B
(i−1)
3 ))

6: end for

7: J (i) = T T
3q

(

T 3q (J
(i))

)

8: P (i) = Rτ/2µ(DhX
(i−1)D+ B

(i−1)
1 )

9: Q(i) = Rτ/2µ(DvX
(i−1)D+ B

(i−1)
2 )

10: S(i) = Rλ/2β (Y − X (i−1))

11: Solve (30) for x(i) using LSQR [38]

12: Arrange x(i) to obtain X (i)

13: B
(i)
1 = B

(i−1)
1 + DhX

(i)D− P (i)

14: B
(i)
2 = B

(i−1)
2 + DvX

(i)D− Q(i)

15: B
(i)
3 = B

(i−1)
3 + X (i) − J (i)

16: if ‖x(i) − x(i−1)‖2 < ǫ then

17: break

18: end if

19: end for

20: return X

B. COMPUTATIONAL COMPLEXITY

The computational complexity of GLSSTV is based on SVD

calculations, soft-thresholding operations and least square

solution. If we select a step size of s and a block size ofM for

a HSI with dimensionsm×n×p, there will be K = ⌊m−s
s

⌋×

⌊ n−s
s

⌋ groups and k patches in each group. The size of each

group will be kM2 × p. At each iteration of GLSSTV, SVD

calculation in (20) requires O(KkM2p2) flops assuming that

kM2 > p and soft-thresholding operation needs O(KkM2p).

The soft-thresholding operators in (25), (26) and (27) require

O(3mnp) flops and the least square solution in (30) requires

O(3mn + 5p) flops using LSQR method [38]. Updating the

Lagrange multipliers in (31), (32) and (33) needs O(6mnp)

flops. Therefore, overall complexity of GLSSTV at each

iteration is O(KkM2p2 + KkM2p+ 9mnp+ 3mn+ 5p). The

main computational cost of GLSSTV comes from the SVD

calculation for each group which dominates the computa-

tional complexity of GLSSTV. Moreover, the computational

complexity of GLSSTV is higher compared to the compu-

tational complexities of the algorithms under comparison.

We report the computation times of each algorithm in real

data experiments in Section IV-H.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we perform several simulated data and real

data experiments to verify the effectiveness of GLSSTV for

HSI denoising. We compare GLSSTV with state-of-the-art

HSI mixed denoising methods proposed in the literature.
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We select nine HSI denoising algorithms. These are

LRMR [10] , NAILRMR [12], GLRR [21], TVL1 [39],

SSTV [26], LRTV [13], LSSTV [29], LLRSSTV [27].

LRMR and NAILRMR are well-known patch-based HSI

denoisingmethods which utilizes RPCA. GLRR solves group

low-rank RPCA. TVL1 uses 3D total variation to restore

video sequences. LRTV is a TV regularized low-rank matrix

factorization algorithm in which TV is applied each band of

HSI individually. SSTV combines spatial and spectral total

variation simultaneously. LSSTV combines SSTV with low-

rank constraint. LLRSSTV denoises HSI using local low-

rank patch-based RPCA with SSTV. The codes of LRMR,

NAILRMR, LRTV, LLRSSTV, TVL1 and SSTV are pro-

vided by authors. We implemented the algorithms GLRR an

LSSTV, since they are not available. The optimal parameters

of each of the algorithm is adjusted as it is explained in their

original papers.

FIGURE 1. (a) Pavia city dataset (b) Washington DC Mall dataset.

A. EXPERIMENTS ON SIMULATED DATA

We use two simulated datasets in the simulated data experi-

ments. The first one is Pavia city1 which was collected by the

reflective optics system imaging spectrometer (ROSIS-03).

The size of this dataset is 1400 × 512 × 102. As first bands

of Pavia dataset are noisy, we removed the first 22 bands.

We selected a subscene of size 200×200×80 which is shown

in Fig. 1(a). The second simulated dataset is Washington DC

Mall2 dataset which was collected by the hyperspectral digi-

tal imagery collection experiment (HYDICE) sensor. It has

a size of 1208 × 307 × 191. We selected a subscene of

256 × 256 × 191 which is shown in Fig. 1(b). Before the

simulations, the gray values of each band were normalized to

the range of [0, 1]. After denoising process, the gray values of

each band were stretched to original range. The peak signal-

to-noise ratio (PSNR), structural similarity (SSIM) [40] and

themean spectral angle distance (MSAD) are used to evaluate

the quality of the denoising results of each algorithm. The

mean values of PSNR and SSIM are denoted as MPSNR

1Pavia scenes were provided by Prof. Paolo Gamba from the Telecom-
munications and Remote Sensing Laboratory, Pavia university (Italy)
which can be downloaded at http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes.

2Available at Purdue University Research Repository (https://engineering.
purdue.edu/biehl/MultiSpec/hyperspectral.html)

and MSSIM. These metrics are calculated as:

PSNRl(X̂l,Xl) = 10 log
mn

∑m
i=1

∑n
j=1[X̂l(i, j) − Xl(i, j)]2

SSIMl(X̂l,Xl) =
(2µXl

µ
X̂l

+ C1)(2σX̂lXl
+ C2)

(µ2
Xl

+ µ2

X̂l

+ C1)(σ
2
Xl

+ σ 2

X̂l

+ C2)

MPSNR =
1

p

p
∑

l=1

PSNRl(X̂l,Xl)

MSSIM =
1

p

p
∑

l=1

SSIMl(X̂l,Xl) (34)

Here, Xl and X̂l denotes the original and restored HSI in lth

band.µXl
andµ

X̂l
are the mean intensity values ofXl and X̂l .

σ 2
Xl

and σ 2

X̂l

are the variances of Xl and X̂l , respectively.

σ
X̂lXl

is the covariance between Xl and X̂l . MSAD is cal-

culated as

MSAD =
1

mn

mn
∑

i=1

180

π
× arccos

(X i)T .X̂ i

‖X i‖.‖X̂ i‖
(35)

where X i and X̂ i denote the ith spectral signatures of clean

and denoised HSI, respectively.

In simulations, we added three types of noise to Pavia city

dataset and Washington DC Mall dataset.

1) Zero-mean Gaussian noise was added to all bands.

Each band has different noise intensities. The standard

deviation of the Gaussian noise of each band is selected

randomly from 0 to 0.2. The mean SNR value of all

bands for Pavia city and Washington DC Mall are

5.66 dB and 7.05 dB, respectively.

2) Impulse noise was added to all bands. The percentage

of impulse noise is selected randomly from 0 to 0.2

3) Stripes were simulated on 30% of the bands which

were selected randomly. The number of stripes of each

selected band ranges from 3 to 15 lines.

B. PARAMETER DETERMINATION

The parameters of the GLSSTV need to be carefully tuned to

obtain good denoising results. The parameter λ controls the

sparsity of the sparse noise S , τ adjusts the spatial-spectral

smoothness of the reconstructed X . A large value of τ will

oversmooth the image and too small value of τ will not

exploit the spatial and spectral smoothness of HSI and the

noise cannot be removed efficiently. β controls the quality of

the reconstruction between noisy image Y and reconstructed

image X . µ is the penalty parameter that effects the conver-

gence of the algorithm. In the experiments, we fixed the block

size and step size as M = 20 and s = 10. The rank values

for Pavia dataset and Washington DC Mall dataset are fixed

to r = 3 and r = 5, respectively.

In the first experiment, we analyze the influence of the

parameters λ and τ when other parameters of GLSSTV are

fixed as β = 5 and µ = 1. GLSSTV is solved by varying the

parameters λ and τ between 0.1 and 0.6 in steps of 0.1.
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FIGURE 2. MPSNR and MSSIM values of GLSSTV for Pavia city subscene by
varying parameters λ and τ when β = 5 and k = 4. (a) MPSNR. (b) MSSIM.

FIGURE 3. MPSNR and MSSIM values of GLSSTV for Washington DC Mall
subscene by varying parameters λ and τ when β = 5 and k = 4.
(a) MPSNR. (b) MSSIM.

FIGURE 4. MPSNR and MSSIM values of GLSSTV for Pavia city subscene
by varying parameter β when λ = 0.3, τ = 0.4 and k = 4. (a) MPSNR.
(b) MSSIM.

Figs. 2 and 3 show the MPSNR and MSSIM plots of

Pavia dataset and Washington DC Mall dataset, respectively.

We can see that λ = 0.3 and τ = 0.4 gives goodMPSNR and

MSSIM values for both datasets.

In the second experiment, we analyze the effect of β.

In this case, we fixed the parameters as λ = 0.3 and τ =

0.4. We solve GLSSTV for β values between 1 and 12 in

steps of 1. Figs. 4 and 5 show the MPSNR and MSSIM

plots. We can observe that β = 5 gives maximum MSPNR

and MSSIM values for both datasets. When β is greater

than 5, MPSNR and MSSIM values tend to decrease for both

datasets.

C. EFFECT OF NON-LOCAL LOW-RANK AND

SSTV REGULARIZATION

GLSSTV includes SSTV regularization and non-local low-

rank regularization. We perform experiments to see the effect

of SSTV and non-local low-rank regularization separately.

First, we solve GLSSTV by varying k from 1 to 10 and setting

FIGURE 5. MPSNR and MSSIM values of GLSSTV for Washington DC Mall
subscene by varying parameter β when λ = 0.3, τ = 0.4 and k = 4.
(a) MPSNR. (b) MSSIM.

FIGURE 6. MPSNR and MSSIM values of GLSSTV for Pavia city subscene
by varying parameter k . (a) MPSNR. (b) MSSIM.

FIGURE 7. MPSNR and MSSIM values of GLSSTV for Washington DC Mall
subscene by varying parameter k . (a) MPSNR. (b) MSSIM.

FIGURE 8. MPSNR versus iteration number for GLSSTV with the two
datasets in the simulated experiments. (a) The Pavia city subscene.
(b) The Washington DC Mall subscene.

τ = 0 when all other parameters are fixed. This means

that SSTV regularization is removed in the formulation of

GLSSTV. Second, in order to see the effect of SSTV regu-

larization, GLSSTV is solved for τ = 0.3 by varying k from

1 to 10. Figs. 6 and 7 show the MPSNR and MSSIM plots
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FIGURE 9. Denoising results of band 15 of Pavia city subscene using different denoising methods. (a) Original image.
(b) Noisy image (11.04 dB). The denoising results of (c) LRMR (29.75 dB). (d) GLRR (31.23 dB). (e) NAILRMR (25.47 dB).
(f) LRTV (28.18 dB). (g) TVL1 (33.56 dB). (h) SSTV (33.46 dB). (i) LSSTV (35.47 dB). (j) LLRSSTV (32.64 dB).
(k) GLSSTV (37.01 dB).

FIGURE 10. Magnified results of the region marked with red rectangle in Fig. 9. (a) Original. (b) Noisy. (c) LRMR. (d) GLRR.
(e) NAILRMR. (f) LRTV. (g) TVL1. (h) SSTV. (i) LSSTV. (j) LLRSSTV. (k) GLSSTV.

when k is varied for τ = 0 and τ = 0.3. We can observe

that when k increases, MPSNR and MSSIM decrease after

some k value for τ = 0. This is the expected result since

the similarity within a group may not be guaranteed when

k is large. However, when SSTV regularization is included

in GLSSTV formulation with τ = 0.3, MPSNR increases

and remains almost constant with increasing values of k .

Also MSSIM increase slightly and remain almost constant

for increasing values of k . Therefore, we can select k = 4

for GLSSTV to obtain good denoising results. In order to

prove the convergence of the proposed GLSSTV algorithm,

we give the MPSNR results versus iterations for Pavia and

Washington DC Mall dataset in Fig. 8, respectively. It can be

observed that after 40 iterations GLSSTV become stable.

D. VISUAL COMPARISON

Fig. 9 shows the denoising results of band 15 of Pavia city

subcene and magnified results of the area marked with red

rectangle in Fig. 9 is shown in Fig. 10. This band is corrupted

by three types of noise including Gaussian noise, impulse

noise and stripes. It can be observed from Fig. 10 that LRMR

and GLRR are able to remove the sparse noise however

NAILRMR fails to remove stripes. TVL1 is also not able

to remove mixed noise. LRTV removes mixed noise but it

smooths the details in the image. LSSTV performs better than

SSTV as it can be seen from Figs. 10(h) and 10(i). LLRSSTV

removes sparse and Gaussian noise perfectly but stripes are

not removed very well. The results of GLSSTV is best in this

Pavia subscene which is also validated by the PSNR results

given in caption of Fig. 9.

The denoising results of the algorithms for band 6 of

Washington DC Mall subscene are shown in Fig. 11 and

the magnified results of the region marked with red rect-

angle in Fig. 11 are shown in Fig. 12. Visually, LRMR,

NAILRMR and GLRR are able to remove the mixed noise.

LRTV removes mixed noise whereas it smooths the details
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FIGURE 11. Denoising results of band 6 of Washington DC Mall subscene using different denoising methods. (a) Original
image. (b) Noisy image (11.32 dB). The denoising results of (c) LRMR (34.50 dB). (d) GLRR (34.39 dB). (e) NAILRMR
(34.69 dB). (f) LRTV (33.33 dB). (g) TVL1 (32.57 db). (h) SSTV (33.48 dB). (i) LSSTV (35.01 dB). (j) LLRSSTV (35.74 dB).
(k) GLSSTV (37.1 dB).

FIGURE 12. Magnified results of Fig. 11. (a) Original. (b) Noisy. (c) LRMR. (d) GLRR. (e) NAILRMR. (f) LRTV. (g) TVL1. (h) SSTV.
(i) LSSTV. (j) LLRSSTV. (k) GLSSTV.

TABLE 1. MPSNR and MSSIM values of the denoising results in the simulated experiment. Boldface means the best and underline means the second best.

in the image. TVL1 removes the sparse noise to some extent

but it does not remove it completely. LSSTV is better than

SSTV in removing noise because of an addition of a low-rank

constraint to SSTV formulation. LLRSSTV and GLSSTV

perform best and preserve the details in the image as shown

in Figs. 12(j) and 12(k).

E. QUANTITATIVE EVALUATION

Table 1 reports the quantitative evaluation results of all

algorithms under comparison for Pavia and Washington DC

Mall datasets. The best results of MPSNR, MSSIM and

MSAD values are given in bold and the values with the sec-

ond highest values are underlined. It is clear that GLSSTV
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FIGURE 13. (a) and (b) are PSNR and SSIM values of each band achieved
by different denoising methods in the experiment with the Pavia city
subscene, respectively. (c) and (d) are PSNR and SSIM values of the bands
between 20 and 40, respectively (marked by red rectangle in (a) and (b)).

FIGURE 14. (a) and (b) are PSNR and SSIM values of each band achieved
by different denoising methods in the experiment with the Washington
DC Mall subscene. (c) and (d) are PSNR and SSIM values of the bands
between 20 and 40, respectively. (marked by red rectangle in (a) and (b)).

outperforms the other methods in terms of MPSNR, MSSIM

and MSAD values. PSNR and SSIM values of each

band for Pavia and Washington Mall dataset are shown

in Figs. 13 and 14, respectively. The results can be clearly

seen in the magnified results of the region marked with red

rectangle for corresponding figures. It can be deduced that

GLSSTV performs better in most of the bands. Furthermore,

we show the spectrum of the individual pixels for

two datasets. Figs. 15 and 16 show the spectrum of the

pixels after denoising results. We can observe that, GLSSTV

approximates the spectrum of pixel better than the other

algorithms under comparison.

F. EXPERIMENTS ON REAL DATA

In this section, we perform several real data experiments to

validate the effectiveness of GLSSTV.

1) AVIRIS INDIAN PINES DataSet

AVIRIS Indian Pines dataset3 was acquired by the NASA

airborne visible/infrared imaging spectrometer (AVIRIS)

instrument over the Indian Pines test site in Northwestern

Indiana in 1992. It has 220 spectral bands with spatial size

of 220 × 220. Some bands of Indian Pines dataset are cor-

rupted by atmosphere and water absorption. In the experi-

ment, we use all of the bands of the Indian Pines dataset.

Fig. 17 shows the band 220 of the Indian Pines dataset

and magnified image of region marked with red rectangle

in Fig. 17 is shown in Fig. 18. It can be clearly seen that

LRMR, NAILRMR, GLRR and TVL1 are not able to remove

the noise and do not preserve the details in the image. LRTV

removes the noise but details are lost in the restored image.

LLRSSTV is also good at removing noise but the details

are not restored very well. LSSTV is better than SSTV in

removing noise and both methods preserve the details in the

image. GLSSTV removes the noise and performs the best in

preserving the details in the image.

2) HYDICE URBAN DataSet

In the second real data experiment, we used Hyperspec-

tral Digital Imagery Collection Experiment (HYDICE)

Urban dataset4 for comparison purposes. It has a size of

307 × 307 × 210. We selected a subimage of size

200×200×210. Fig. 19 shows the denoising results of band

139 of the Urban dataset. Band 139 contains sparse noise

and stripes. Only low-rank based methods such as LRMR,

NAILRMR and GLRR are not good at removing stripes.

LRTV removes the sparse noise and stripes but also removes

the details in the image. SSTV and LSSTV removes sparse

noise and stripes to some extent but they do not completely

remove the stripes. LLRSSTV and GLSSTV performs best in

removing the sparse noise and stripes.

Moreover, we show the vertical mean profiles of band

132 in Fig. 23. LRMR, NAILRMR and GLRR are not good at

suppressing the rapid fluctuations whereas TVL1 suppresses

the fluctuations but do not preserve the structure. LRTV,

SSTV and LSSTV also are not good at suppressing the

fluctuations. LLRSSTV and GLSSTV performs similar and

performs best in suppressing the fluctuations.

3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

4http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-
ArticleView/Article/610433/hypercube/
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FIGURE 15. Spectrum of noisy and denoised pixel using different methods for Pavia dataset at location (65,70).

FIGURE 16. Spectrum of noisy and denoised pixel using different methods for Washington DC Mall dataset at location (189,126).

FIGURE 17. Denoising results of Indian Pines dataset for band 220 using different denoising methods. (a) Original image. The denoising results of
(b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV. (h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 18. Magnified results of Fig. 17. (a) Original image. The denoising results of (b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV.
(h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

3) EO-1 HYPERION DataSet

Third set of real experiments are conducted on EO-1 Hyper-

ion DataSet.5 It has a size of 1000 × 400 × 242. The water

5http://www.gscloud.cn/

absorption bands are removed and we selected a subimage

of size 200 × 200 × 166. The Hyperion dataset is mainly

corrupted by stripes, deadlines and Gaussian noise. Fig. 21

shows the denoising results of band 132 of Hyperion dataset.

Magnified region marked with red in Fig. 21 is shown
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FIGURE 19. Denoising results of HYDICE Urban dataset for band 139 using different denoising methods. (a) Original image. The denoising results of
(b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV. (h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 20. Magnified results of Fig. 19. (a) Original image. The denoising results of (b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV.
(h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 21. Denoising results of EO-1 Hyperion dataset for band 132 using different denoising methods. (a) Original image. The denoising results of
(b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV. (h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 22. Magnified results of Fig. 21. (a) Original image. The denoising results of (b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV.
(h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 23. Vertical mean profiles for EO-1 Hyperion dataset for band 132 obtained after denoising using different methods. (a) Original. (b) LRMR.
(c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV. (h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

in Fig. 22. SSTV, LSSTV and GLSSTV remove the Gaussian

noise and stripes while preserving the details in the image.

LLRSSTV is also good at removing sparse and Gaussian

noise but some stripes are still left in the denoised image. The

other comparedmethods are not very good at removingmixed

noise from the image.
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TABLE 2. Classification accuracy results (mean accuracy (%)± standard deviation) of the indian pines dataset using different denoising methods.

TABLE 3. Computation times of the algorithms for real data experiments. Boldface means the best and underline means the second best.

G. CLASSIFICATION EXPERIMENT

Classification accuracy results are another performance mea-

sure for HSI denoising algorithms. We investigated the clas-

sification accuracy results using support vector machine

(SVM) classifier [1] with cross-validation for all denoising

results on Indian Pines dataset. Indian pines dataset contains

10249 samples and including 16 classes. We selected 10% of

samples randomly from each class for training and remain-

ing ones are selected as test data. We evaluated the Overall

Accuracy (OA), Average Accuracy (AA), Kappa values and

class accuracies. We repeat the classification process ten

times by selecting different training and test samples for each

trial and average the results. We give only the classification

accuracy results of SSTV and patch-based denosing methods.

LRTV and TVL1 are excluded in the classification experi-

ments, since they perform poorly in classification experiment.

Table 2 shows the classification accuracy results for each

of the denoising results. It can be observed that classifi-

cation accuracy results are increased after denoising pro-

cess. GLSSTV achieves best classification accuracy results

in terms of OA, AA and Kappa.

H. COMPUTATION TIME

There are several parameters that affect the computation time

of GLSSTV. These are block size M , step size s and number

of patches k . Selecting a small s causes high value of K ,

which leads to high computation time. Also, a large value

of M will increase the SVD computation time. In addition,

k affects the computation time. When k increases, the size of

the group increases. Therefore, it leads to high computation

time.

In the simulations, we performed the experiments on a

workstation with a 3.1 GHz Intel 4 core Xeon processor and

16 GB memory using MATLAB. The computation times of

the real data experiments are reported in Table 3. It can be

seen that GLSSTV has a longer computation times compared

to other methods due to the non-local low-rank approach

used in the algorithm. Computation of the low-rank approx-

imation of each group takes the main computational time.

Since SVD for each group is calculated separately, this

computation can be calculated using parallel computation to

reduce the computation time on a computer havingmulti-core

support.

V. CONCLUSION

In this paper, we have proposed a novel HSI denoising

method for mixed noise removal using rank constrained

group low-rank approximation and SSTV. Group low-rank

approximation exploits the local similarity inside a patch

and non-local similarity across patches. Therefore, additional
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structural information is exploited in HSI, which helps

the reconstruction of corrupted patches effectively. More-

over, SSTV removes Gaussian and sparse noise further by

utilizing the spatial and spectral smoothness of HSI. Experi-

ments on simulated datasets show that the proposedmethod is

effective in HSI denoising and outperforms the state-of-the-

art algorithms proposed in the literature in terms of PSNR and

SSIM. Furthermore, in real data experiments, the proposed

method reduces the mixed noise by retaining the fine details

in the image.

GLSSTV performs low-rank approximation based on 2D

matrix form of the 3D subcubes extracted from HSI which

ignores the spatial information inside a patch. Therefore,

as a future work, we will employ SSTV regularized group

low-rank tensor approximation to use the spatial information

effectively.
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