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ABSTRACT Hyperspectral images (HSIs) are usually corrupted by various noises during the image acqui-
sition process, e.g., Gaussian noise, impulse noise, stripes, deadlines and many others. Such complex noise
severely degrades the data quality, reduces the interpretation accuracy of HSIs, and restricts the subsequent
HSI applications. In this paper, a spatial non-local and local rank-constrained low-rank regularized Plug-
and-Play (NLRPnP) model is presented for mixed noise removal in HSIs. Specifically, we first divide HSIs
into local overlapping patches. Local rank-constrained low-rank matrix recovery is adopted to effectively
separate the low-rank clean HSI patches from the sparse noise and a part of Gaussian noise, and to
significantly preserve local structure and detail information in HSIs. Then the spatial non-local based
denoiser is introduced to promote the non-local self-similarity and obviously depress the Gaussian noise.
Without increasing the difficulty of solving optimization problems, we combine the local and non-local based
methods into the Plug-and-Play framework, and develop an efficient algorithm for solving the proposed
NLRPnP model by using the alternating direction method of multipliers method. Finally, several experiments
are conducted in both simulated and real data conditions to illustrate the better performance of the proposed
NLRPnP model than the existing state-of-the-art denoising models.

INDEX TERMS Hyperspectral images, denoising, plug-and-play framework, local low-rank matrix

recovery, non-local regularization.

I. INTRODUCTION

Hyperspectral images (HSIs) can provide spectral informa-
tion about hundreds of continuous bands in the same scene,
hence HSIs are widely used in many fields [1], [2]. However,
limited by observation conditions and imaging sensors, HSIs
obtained by hyperspectral imagers are usually corrupted by
a variety of noises, e.g., stripes, deadlines, impulse noise,
Gaussian noise and so on [3]. The various noises concurrently
result in the loss of useful information, and further limit the
accuracy of subsequent processing and application, such as
image classification [4], target detection [5], unmixing [6]
and so on. Therefore, as a pretreatment step, HSI denoising
is a valuable research topic.
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In HSI data, each spectral channel which includes the
spatial information can be viewed as a grayscale image.
From this perspective, lots of denoising methods for grayscale
images can be directly applied to denoise HSI data band
by band. Among these denoising methods, total varia-
tion (TV) regularization [7] is an efficient tool and widely
used in image denoising task. Due to its good perfor-
mance in preserving the spatial piecewise smooth and impor-
tant edge information of images, i.e., the spatial sparsity
in images, TV regularization is introduced to the HSI
denoising problem [8]. Moreover, non-local regularization
is another powerful approach to describe the non-local self-
similarity and the intrinsic geometry structure in images.
For denoising tasks, Manjon et al. [9] use the non-local
mean to propose NLM3D model; Dabov et al. [10] intro-
duce the famous block-matched 3-D filtering (BM3D) model.
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However, besides the spatial information in the spatial
domain, HSI data also contains the spectral information
corresponding to the wavelength. In the spectral domain,
different spectral bands are images from the same scene
under different wavelengths. It means they are highly cor-
relative. This is an important prior knowledge, i.e., low-rank
prior of HSI data. Hence, it is a serious drawback that the
above band-wise processing ignores the low-rank prior in the
spectral domain.

In order to take full advantage of the low-rank prior in HSI
data, early HSI restoration method [11] uses principal compo-
nent analysis (PCA) to map HSI data to a series of orthogonal
vectors, and relies on the shrinkage of representation coeftfi-
cients to achieve the purpose of denoising. However, it is sen-
sitive to outliers, such as impulse noise, deadlines, stripes and
so on. Therefore, Candes et al. [12] propose robust principal
component analysis (RPCA) method to solve this problem
by using nuclear norm minimization to represent low-rank
prior knowledge and utilizing L; norm minimization to detect
sparse outliers. Subsequently, the RPCA method is intro-
duced into HSI denoising problems, and has achieved satis-
fying results, e.g., low-rank matrix recovery (LRMR) model
[13], noise adjusted iterative low-rank matrix approxima-
tion (NAILRMA) model [14] and so on. Nevertheless, they
lexicographically order 3-D HSIs into 2-D Casorati matrices
whose columns and rows are great different. Then nuclear
norm minimization based algorithms shrink singular values
of the 2-D Casorati matrices equally, resulting in nonnegligi-
ble losses of local details and texture information in denoised
HSIs. For avoiding this shortcoming, one way is to exploit the
local low-rank prior in HSIs [8], [15], [16]. It usually divides
HSIs into local 3-D patches whose Casorati matrices have the
similar columns and rows. Then the RPCA based methods
implemented on the local patches. For instance, Fan et al. [17]
proposed a bilinear low rank matrix factorization (BLRMF)
HSI denoising method, where the bi-nuclear quasi-norm is
employed for constraining the patches low rank characteristic
in HSI. RPCA based methods can reduce not only the infor-
mation loss but also the dependence on the assumption that
the noise is independent and identically distributed (i.i.d.).
Hence, the local RPCA methods [8], [16], [17] can handle on
more complex noises. Another way is to treat the 3-D HSIs
as 3rd-order tensors and directly define the tensor low-rank
property. Usually, low-rank tensor decomposition methods,
such as the Tucker decomposition [18], PARAFAC decompo-
sition [19], tensor singular value decomposition [20] and so
on, are used to approximately represent the low-rank prior of
HSIs in both the spatial and spectral domains. Based on them,
the tensor RPCA based low-rank tensor recovery approach
[12], [21] is introduced into HSI denoising problems and has
achieved better denoising results. Moreover, in [22] and [23],
models employing spatial-spectral deep prior were proposed,
in which both the spatial and spectral information are simul-
taneously assigned to the proposed network.

For sufficiently using both the spatial and spectral prior
information, many researchers attempt to integrate the
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different prior information by their according different math-
ematical formulations. For instance, He et al. [8] propose
a LRTV model which uses the band-wised TV regulariza-
tion to represent the spatial sparsity and simultaneously uses
the nuclear norm minimization of HSIs’ Casorati matri-
ces to describe the spectral low-rank prior. Hence, LRTV
model can not only remove the Gaussian noise, but also
depress the sparse noise, such as impulse noise, deadlines and
stripes and so on. Chang ef al. [16] design the anisotropic
spatial-spectral TV norm (ASSTV), which can represent the
sparse prior in both the spatial and the spectral domains.
Then, Wang et al. [3] introduce the ASSTV regularization
into low-rank tensor recovery model and propose a LRT-
DTV model, which greatly improves the recovery accuracy.
He et al. [24] combine ASSTV regularization with the local
low-rank matrix recovery model and propose a LLRSSTV
model which can not only remove mixed noise, but also
eliminate structure-related noise partly. However, due to
the difficulty in the model solution and the algorithm
implementation, aforementioned models just can combine
a few regularization terms linearly, e.g., TV-based regular-
ization terms and RPCA based regularization terms. There
are still lots of prior information and their according reg-
ularization terms which can not be integrated into the
above denoising framework, e.g., aforementioned non-local
self-similarities observed in most HSI datasets [25], [26],
[26], [27].

Fortunately, a recent Plug-and-Play (PnP) framework [28]
has reported empirical success on a large variety of image
processing [1], [2], [29], [30]. As a non-convex frame-
work, PnP provides an approach for flexibly integrating the
impressive capabilities of existing denoising priors, such as
image deblurring, denoising and so on. On the other hand,
compared with local or global methods in spatial domain,
non-local methods can not only utilize neighborhood pixels,
but also utilize distant pixels in similar patches. At the same
time, non-local methods go beyond TV-based methods when
dealing with many inverse imaging problems [9], [10], [31],
[32], see Fig. 1 for an example. It can be easily observed
that the HSI band, e.g., the 3rd-band, is heavily polluted
by noise. The latest TV-based methods [3] cannot provide
results with satisfactory detail and texture information, while
the non-local based method [9] can achieve better results.
This motivates us to introduce the non-local based method
into the HSI denoising tasks by the PnP framework. There-
fore, in this paper, we propose a local low-rank regularized
non-local HSI denoising model in the PnP framework. Here,
the local low-rank regularization can preserve the rich details
in HSIs and reduce the dependence on the i.i.d. noise assump-
tion, which is not suitable for the actual noises in HSIs.
As an implicit regularizer, the non-local regularization term
introduced into the PnP framework, adequately expresses
the non-local self-similarity of the underlying HSIs and can
be easy to be solved. By integrating the advantages of the
local low-rankness and non-local self-similarity in HSIs, the
proposed model is expected to be able to effectively maintain
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(b) Nosiy image

(a) Original image

(¢) TV based local (d) .Non-local model

model

FIGURE 1. A typical restoration instance on Indian Pines data: (a-b) the
original and noisy band; (c-d) denoised results by TV based model and
non-local model.
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FIGURE 2. Flowchart of the proposed method. It includes three stages: A.
local low-rank denoising, B. non-local low-rank denoising and C. iteration
regularization.

the general structure and capture the details in the denoised
HSIs.
The main contributions of this paper are summarized as
follows.
1) A HSI denoising model combined non-local self-
similarity and local low-rank regularization is proposed.
To best of our knowledge, this is the first attempt to
introducing both the non-local self-similarity and local
low-rank prior into the HSI denoising task without
increasing the difficulty of solving the model, compared
to a single local low-rank or non-local low-rank model.
2) According to the elegant framework provided by the PnP
method and the alternating direction method of multipli-
ers (ADMM), we design an algorithm that realizes the
fast solution of the proposed model.
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3) Furthermore, in order to verify the performance of
the proposed model, we conducted a lot of simulation
data and real data experiments. Experiments results are
reported to demonstrate the effectiveness of the pro-
posed model and the efficiency of the numerical scheme.

The rest of this paper is organized as follows. Section II gives
the related works for the denoising task. The proposed model
is described in Section III and its iteration solution algorithm
is listed in Section I'V. Section V includes experimental results
and discussions. Finally, Section VI concludes the paper.

Il. RELATED WORK

A. PROBLEM FORMULATION

In real situation, the observed HSI is corrupted by mixed-
noise, which typically consists of Gaussian noise, stripes,
impulse noise, deadlines and so on [14]. Let 3rd-order tensor
Y € R™"*P denotes the observed HSI, where the spatial
information lies in the first two dimensions and the spectral
information lies in the third dimension. Then the degradation
model of the HSI can be formulated as

V=X+S+N, (1)

where YV, X, S, N' e R™"*P; Y denotes the observed HSI;
X represents the clean HSI; S is the sparse noise, which
consists of impulse noise, stripes, deadline and so on; N is
the Gaussian noise; m x n is the spatial size of the HSI, and
p is the number of spectral bands.

Under the framework of degradation model (1), HSI
denoising is a process of separating the mixed noise S, N’
from the observed HSI ), and restoring the clean HSI &X'.
In mathematical theory, this is a serious ill-posed problem.
The regularization method is an effective and widely used
method for solving such inverse problems. It establishes the
following regularized denoising framework by adding the
prior information of unknown clear HSI and mixed noise, i.e.,

argn}énJ(X,S,N)—i-ﬂR(X), )

where J(X, S, N) is aregular term to describe the distribution
of different noises; R(X) is a regular term to represent the
prior information of unknown clean HSI; B is a non-negative
regularization parameter used to balance two regular terms.
In denoising framework (2), both prior information and the
formulations of regular terms are important, which determine
the accuracy of the restoration results. Therefore, the research
on HSI denoising mainly focuses on the exploration of prior
information and the improvement of regularization formula-
tions.

B. PLUG-AND-PLAY FRAMEWORK

In the field of image denoising, there have been many stud-
ies using a variety of prior information and their according
regularization terms. However, there are still two difficulties
as following. Firstly, it is difficult to find an appropriate
mathematical tool to reasonably describe the complex prior
information of HSIs. Secondly, if the regularization denois-
ing model (2) contains multiple regular terms, it will be
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hard to be solved theoretically. Recently, a new PnP frame-
work [28] provides an elegant way to overcome the sec-
ond difficulty. Without increasing the difficulty of solving
optimization problems, PnP can flexibly integrate impressive
capabilities of multiple prior and regularization terms in one
denoising model, such as image deblurring, denoising and
so on. Also, it has reported empirical success on a large
variety of image processing, e.g., compressive imaging [33],
compression-artifact reduction [34], nonlinear inverse scat-
tering [35]. Hence, PnP attracts more and more interest.

In the PnP framework, by using variable splitting, the reg-
ularized denoising model (2) can be compactly restated as
follows

argminJ(X) + BR(L) s.t. X = L.
X. L
According to augmented Lagrangian multiplier method,

it can be rewritten as a minimization problem of the aug-
mented Lagrangian function £(L, X) as following

inf(L, X
argrglg ( )

. A
= arggn)r(ﬂ(?() +BRUL)+ <A X —L > +§||X — L3

. A ~ A~
argminJ(X) + RO + 71X — L+ Al - 5||A||%,
3)

where A is the dual variable; A=A /A is the scaled dual
variable; A is a penalty parameter; || - ||12; denotes the Frobenius
norm. Then, the minimization problem (3) can be solved by
ADMM method [36], which consists of iterations until con-
vergence over the following three steps at the k-th iteration

x® — argm)in((ﬁ(k_l), X, 1~\(k_1)),
LP = arg mﬁinﬁ(ﬁ, x| A*=Dy,
A — A®=D (X(k) _ ﬁ(k)). )

By plugging (3) in (4), we have

A ~
XO = argminJ(X) + 21X — (£47D — AT,

A ~
£® = argminR(L) + ﬁll(?f“‘) + A — L2,

AW — Ak=D 4y ® _ o)y )

Let Z = X% 4 A®=D_ the minimization problem with
respect to £ in (5) can be rewritten as

. A 2
arg mén R(L) + 28 I£— Zlz. 6)
One can find that minimization problem (6) is a classical
denoising model with the input noisy data Z, the positive
parameter A/, the prior regularization term R(L) and the
fidelity term %L — Z|12.
Let 02 = B/A, we can abstractly denote the solution of
minimization problem (6) as

L* =D(Z,0), (N
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FIGURE 3. Formulation of the low-rank matrix from an HSI patch.

where D(:, ) is a denoising operator, which is different
according to different denoising methods. For example, if the
regularizer R(£) is a TV norm, we can use the corresponding
TV-based noise reducer to solve the denoising problem. In the
PnP framework, R(L), as an implicit regularizer, expresses a
kind of prior information about the ideal image and can be
any existing denoiser. This is the main idea of the PnP frame-
work. There are many state-of-the-art noise reducers that can
be incorporated into this framework, such as BM3D [10],
BM4D [31], NLM [32] and so on.

C. LOCAL RPCA

The spectral dimension of HSIs contains imaging results of
the same spatial scene in different spectral bands, so there
is high correlation between the different spectral channels,
i.e., the low-rank characteristic of the spectrum in HSIs.
In [13], the 3-D HSI is unfolded into a 2-D Casorati matrix,
and then the rank of the constrained decomposition matrix is
used to represent the low-rank prior of spectrum. Based on
RPCA method [12], literature [8] uses nuclear norm mini-
mization to approximate the low-rank prior of spectrum, and
establishes the rank-constrained RPCA restoration model as
follows

arg min || X MMIS|,
gmin X[l + A5
st |lY —X — S||E < e, rank(X) < r,

where X, Y, S are the Casorati matrices of X', ), S; r is a
rank-constrained parameter; ¢ and A are positive parameters;
|| - ||+ denotes the nuclear norm and || - ||; denotes the L norm.
The RPCA based models have been widely used for the HSI
restoration problems [8], [13], [14], but they significantly lose
the structure, texture and detail information in HSIs due to the
global low-rank constraint.

Subsequently, literatures [10], [24] find that local pixels of
HSIs are more likely to belong to the same surface covering
and their correlations in the spectral dimension are higher.
Therefore, HSIs can be divided into many overlapping small
blocks, and the RPCA based methods can be implemented on
the local blocks to preserve the detail information, as shown
in Fig. 3. Specifically, we define an operator P;; : X —
& j. This binary operator is used to extract a block &;; €
R™>M>P from the HSI & € R™*"*P_ where the spatial size
of m; x nj is centralized at pixel (i, j) of HSI data, m; x n
is approximately equal to p and (i,j) € [1,m —m; + 1] x
[1,n — n; + 1]. PZ]. is the inverse of P;;. X;; denotes the
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Casorati matrix of &;;. Based on these definitions, we can
get the patch-based local RPCA model

arg min Y (. |Siy]; + [ Ais],)
‘X‘l,]vsl,j i,j
S.t. H)),J — .X,J — ””12: < g, rank (Xi,j) <r. (8)

lll. THE PROPOSED HSI DENOISING MODEL

Despite the good restoration performance of the patch-based
local low-rank models [13], [24], they only explore the local
low-rank property in HSIs and ignore the non-local self-
similarity, which is an very important prior in most HSI
datasets [26], [26], [27]. One can find an illustrative example
of non-local self-similarity of one HSI dataset in Fig. 4.
As presented in Fig. 4, each patch with obvious features has
many similar patches, which can be clustered in one group.
The patches in one group exhibit perfect mutual similarity,
i.e., the non-local self-similarity. Then, the non-local base
methods [10], [21], [31], [37] use this prior to denoise a group
patches together. In addition, it has been shown in [10], [32]
that non-local methods go beyond TV based methods when
dealing with many inverse imaging problems. Also, one can
see Fig. 1 as an example for the denoising task.

L4

Group 1 Ciroup 2

gt g

Group 3 Group <

FIGURE 4. Simple example of the spatial non-local similarity in the 80th
band image of Washington DC mall HSI dataset, where for each reference
block there exist perfectly similar ones.

Motivated by the advantages of the patch based local
low-rank models and non-local based methods, and without
increasing the difficulty of solving optimization problems,
we combine the two kinds of methods into the PnP frame-
work and propose our non-local regularized local low-rank
PnP (NLRPnP) model for HSI denoising problems. Specif-
ically, let J(-) in (3) be the local RPCA model (8), and the
implicit regularizer R(-) in (3) be a non-local based denoiser
which is BM3D method in this paper. Based on the degra-
dation model of the HSI (1), our denoising model can be
formulated as

arg xrf‘é?sizj (1%, + 2 [Sisl,) + BR),

st. X =L, y,‘,j — .)(l/ — 5””12: < g, rank (.X,/) <r, 9

where A and B are regularization parameters. The overview
of the proposed model is shown in Fig. 2.

It is worth noting that the proposed model can fully cap-
ture the local low-rankness and non-local self-similarity of
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HSIs, and thus be expected to maintain the general struc-
tures and capture the local details of the HSI effectively.
Specifically, the nuclear norm minimization of local patches
is used to explore the local low-rank prior and to pre-
serve the local details, while the implicit regularizer is used
to constrain the non-local self-similarity of the HSI. The
rank-constrained minimization of L; norm and nuclear norm
can effectively remove the sparse noise and partly depress
the Gaussian noise. The minimization of Frobenius norm can
eliminate the Gaussian noise. In addition, the patch based
method can reduce the dependence of our model on the i.i.d.
noise assumption, which is not suitable for actual noises
in HSIs.

IV. OPTIMIZATION PROCEDURE

To efficiently solve the proposed NLRPnP denoising model,
we first introduce auxiliary variable J € R™*"*P. Then our
model (9) can be rewritten as

arg min

X,L,j,sz (| %, + 2 [ Sijll,) + BREL)

ij
s.t. Xi,j = ji’j, J = L, rank (X,-,j) <r,
|Yij— i — Si,j“é =&

This problem can be efficiently solved by the augmented
Lagrange multiplier (ALM) method, which minimizes the
following augmented Lagrangian function

arg X’rB’i‘r},S L0XxX,S8,7,L)

3 (1%l + Il

L]

= arg min
X.L.T.S

+ < F?j Vij— Xij—Sij >

"
+ S IV — Xy = Sijl3

+ < F;Z Xij—TJij> +% | % — «ﬁj”é)

Y <T.L-T> +%|I£—J||12:+ﬂR(£),
s.t. rank (X;;) <,

where Fi)’}j, Fl{ , ' are the Lagrangian multipliers; w is the

penalty parameter. The above minimization of the augmented
Lagrangian function can be solved by the ADMM method. At
the (k — 1)-th iteration, its solution at the next iteration can
be transformed into following two subproblems

(X(k)’s(k)) _ mggiy (X, S, j<k—1>>
s.t.rank (&) < r. (10)

(j<k>, .c“") = argmin ¢ (X(k), J, L) . (11)
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A. OPTIMIZATION SUBPROBLEM FOR (X, S)
With the other parameters fixed, the subproblem (10) for
(X, S) can be reformulated as

argmin¢ (X, 8,.7) =3 (| 4], + 2 |51,
: ~
+ < F,Jj Vij—Xij—Sij>
+ S0y = iy — Sull
+ < T Ay = Ty = +5 |2 - Tl7)
s.t. rank (X,-,j) <r. (12)

To solve the subproblem (12), we perform rank-constrained
RPCA method on each patch separately and accumulate a
weighted sum of (Xi,j, Si,j) to reconstruct(X’, S). The opti-
mization for each (Ajj, S;j) can be reformulated as

arg fgm;{»l |l +* [Sigy
+ < F?; Vij— Xij— Sij >
+ %“yi,j - Xij— SiliE

ij’
s.t. rank (X,;j) <r. (13)

T R RN TR A

We alternately update the two variables A; ; and S; j, then
the optimization problem (13) can be separated into two
simpler minimization subproblems.

a) With S; ; fixed, the minimization subproblem for A ; can
be deduced from (13) as following

2p
2
2

X% = argmin |, Xy
= agmin [ ], 5| = 5 O+ Ty
Y+
—Sij A L
H F
s.t.rank(X; ;) <r. (14)

For the sake of simplicity, we denote the iteration of Xj;
in (14) as

) . 1 2
iy = angrmin [, 5 2w | g — Ui
s.t.rank(X; ;) <,

where ui,j = % gyi’j + \71"]' — Si,j + (F?j + Fg) //L)
In [38], the updating of A&; ; has a closed-form solution which
is shown in Lemma 1.

Lemma 1 [38]: Supposing W is a matrix of size mjn; X p,
and the singular value of matrix W of rank r is decomposed
into

W = UE, V¥, E, = diag ({0}, <i<,)

The singular value shrinkage operator then obeys

1
SH5(W) = in §||X —IX — W2,
s(W) arg min [ ||*+2|I &
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where
SHs(W) = U diag {max ((o; — §), 0)} V*.
Using Lemma 1, it is easy to get
k) . _
X, = SHz% (Uij), (15)

where X;; and U;; are Casorati matrices of A;; and f;;
respectively.

b) With A ; fixed, the minimization subproblem for S, ;
can be deduced from (13) as following

n

argngip)\ ISij], + SISty = iy — iy + F%/M)ll%-
L]

The solution of the above optimization subproblem can be
directly obtained by the soft threshold

k
S =Ry (M = Xy +T/m). (16)
where
x—A, ifx>A
Rax)={x+ A, ifx<-A
0, otherwise.

B. OPTIMIZATION SUBPROBLEM FOR (7, L)
a) With the other parameters fixed, the subproblem (11) for
J can be reformulated as

.M 2
argmin — - X+T
g in 3 7 +/wlls

iz T, 17
5 (¢l winf)
ij

It is a convex function, which has the following closed form
solution

JO=x—r/m+ 3P (X,-,,» + F?Z/“)
I

./ 1+ZPEJ.P,»J- . a7
ij

b) With the other parameters fixed, let o = /8/u, j =
J + '/ i, the subproblem (11) for £ can be reformulated as

Lo = argmﬂin% HE . jHi + BR(L)
- won e e

=D(J, o), (18)

where D is defined in (7) and denotes the BM3D denoising
method. Note that the denoiser parameter o is linked to the
noise level in i.i.d. Gaussian denoising, but in our model
the o is linked to the general system error between J and
the ground truth. Thus, in our model o is treated as a tunable
parameter to obtain an appropriate effect.
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C. UPDATING THE LAGRANGIAN PARAMETERS

After solving the two subproblems (10) and (11), the
Lagrangian multipliers F?j, Fg and I' can be updated in
parallel as

'=T+wJ - L),
F?j = F?; +u(Vij— Xj—Sij). (19)
Uy =T+ (X = ).

Summarizing the optimization strategy of step-by-step iter-
ation as above, the solution of the NLRPnP model proposed
by this paper can be obtained in Algorithm 1. Further, we dis-
cuss the complexity of the proposed models. Calculating
X;j has a complexity of O (pm3n? + p*myn;), the complex-
ity of updating S;; is O (mn1p), the complexity of updat-
ing J is O (mnp 4+ min1p). the complexity of updating £
is O (mnp). Therefore, the total complexity of NLRPnP is
@ (pm%n% +p*miny + minp + mnp).

Algorithm 1 HSI Denoising With the NLRPnP Model
Require: m x n x p observed HSI ), patch size m; x ny,
stopping criterion ¢, regularization parameters A, 8, and
desired rank r.
Ensure: Denoised image X';
Initialize: ¥ = L =8 =7 =0,T =0, =7, =
0, 0 = 1072, ptmax = 10°, p = 1.5 and k = 0;
Repeat until convergence
Update all (X,, Si,j) patches by (15) and (16) respec-
tively;
Update (7, £, ) by (17) and (18) respectively;
Update the Lagrangian multipliers by (19);
Update the penalty parameter by p := min (o0, Umax);
Check the convergence condition:

R -
> » o o

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, the NLRPnP method is applied to both sim-
ulation and real experiments for verifying its HSI denoising
performance. In order to comprehensively evaluate the per-
formance of our proposed model, three kinds of denoising
methods are used for the comparison. They are the traditional
image denoising methods, e.g., NAILRMA [14], LRMR [13],
LRTYV [8]; local or non-local based denoising methods, e.g.,
NLM3D [9], BM3D [10], LLRSSTV [24]; and tensor-based
methods, e.g., LRTA [18], LRTDTV [3], BM4D [31]. In par-
ticular, since the BM3D and BM4D methods are only suitable
for removing Gaussian noise, and most of the noise added to
HSIs in the simulation experiment is mixed noise, the mixed
noise is preprocessed by the RPCA method in advance for
fairly comparing the effectiveness of each method.

The parameters of these comparison methods are manually
adjusted to the optimal ones according to their correspond-
ing papers. In addition, in order to facilitate the calculation,
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the HSI data is normalized to [0, 1] before performing the
denoising algorithms. After denoising, the denoised HSI data
is converted to the original gray level. All of the simulation
and real experiments are done in MATLAB R2018b on a
laptop of 64GB RAM, Intel (R) Core (TM) i7-8850H CPU,
@2.20GHz.

A. SIMULATED DATA EXPERIMENTS

In this section, simulation experiments are designed and
performed. In order to verify the universality of the pro-
posed model for different data, two HSI datasets, which
have been frequently used to interpret the denoising perfor-
mance of different models [3], [24], are selected to carry
on the simulation experiments. The first dataset is from
the Washington DC Mall of the HYDICE sensor [39], and
the second one is the Indian pines dataset from the USGS
spectral library [39]. From the Washington DC Mall dataset,
we choose a sub-blocks with a size of 256 x 256 x 191
for experiments. And from the USGS Indian pines dataset,
we select a sub-blocks with a size of 145 x 145 x 224 for
experiments. Fig. 6 lists the two selected HSIs.

To simulate the noisy HSI data observed in reality, we add
several types of noise to the two selected HSIs under 8 differ-
ent cases to test the performance of all compared denoising
methods, both in visual quality and quantitative perspective.
We list the details of the 8 noise cases as following:

Case 1): In this case, we add Gaussian noise and impulse
noise with the same intensity to different bands. The mean
value of Gaussian noise is zero and its variance is 0.05. The
percentage of impulse noise is 0.1.

Case 2): In this case, for different bands, the noise inten-
sity of Gaussian and impulse noise is equal too. However,
the noise intensity is stronger than case 1). The variance of
Gaussian white noise is 0.075, and the percentage of impulse
noise is 0.15.

Case 3): In this case, similarly, the same intensity noise is
added to all the bands. However, the noise intensity is stronger
than case 2). Specifically, the variance of Gaussian white
noise is increased to 0.1, while the percentage of impulse
noise is increased to 0.2.

Case 4): In this case, we only add Gaussian white noise
with 0.1 variance to the clean HSI, to verify the removal
performance of the proposed model for a single Gaussian
noise.

Case 5): In practice, the noise intensity in each band is also
different in real HSIs, and the HSIs are not only contaminated
by a single noise. To simulate this case, we also add Gaussian
noise and impulse noise into HSIs. However, the variance of
Gaussian white noise and the percentages of impulse noise in
each band are randomly selected from O to 0.2.

Case 6): Based on Case 5), deadlines are additionally added
from band 70 to band 100 in Washington DC Mall dataset,
and from band 111 to band 130 in USGS Indian Pines dataset.
The number of deadlines in each band is randomly selected
from 3 to 10, and the pixel width of deadlines is randomly
generated from 1 to 3.
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FIGURE 5. Each column shows the PSNR, SSIM values of each band of all methods under the 8 noise cases in USGS Indian Pines dataset.

FIGURE 6. Datasets used in the simulated experiment (a) USGS Indian
Pines dataset (R: 46, G: 88, B: 91). (b) HYDICE Washington DC Mall (R: 60,
G: 80, B: 120).

Case 7): Based on Case 5), some stripes are additionally
added from band 60 to band 90 in Washington DC Mall
dataset, and from band 121 to band 140 in USGS Indian
Pines dataset. The number of stripes in each band is randomly
selected from 20 to 40.

VOLUME 8, 2020

Case 8): In this case, the Gaussian noise and impulse noise
in Case 5), deadlines in Case 6) and stripe noise in Case 7)
are simultaneously added to the clean HSIs.

1) VISUAL QUALITY COMPARISON
Since an HSI often has dozens or even hundreds of bands,
only a part of the representative bands is displayed in the
experimental analysis. Firstly, we show different denoised
bands in Washington DC Mall dataset and USGS Indian
Pines dataset in Fig. 7, Fig. 8, Fig. 11 and Fig. 12. Then,
in order to better compare the denoising results of different
models visually, the same area with an obvious contrast of the
selected band is marked with a green box, and then enlarged
in a red box.

As shown in the figures, due to the mixed noise, it is
obvious that the original clear HSIs are greatly polluted in
image recognition and overall quality. After denoising by
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c) PSNR=26.154 (d )PSNR =26.025 (

a) Original image (b) N0|sy image

e) PSNR=33.998 (f) PSNR=21.268

(g) PSNR=33.385 (h) PSNR=26.976 (i) PSNR=24.623 (i) PSNR=34.683 (k) PSNR=33.815 (I) PSNR=38.776

FIGURE 7. Band 3 of the USGS Indian Pines dataset before and after denoising via the different methods under noise case 3. (a) Original image of
band 6, (b) noisy image. Image denoising results of (c) BM3D,(d) LRTA, (e) LRTV, (f) NLM3D, (g) LRMR, (h) BM4D, (i) NAILRMA, (j) LRTDTV, (k) LLRSSTV,
(1) NLRPnP.

(a) Original imaée (b) Noisy imagé

(9) PSNR=32.480 (h) PSNR=30.251 (i) PSNR=22.910 (j) PSNR=36.559 (k) PSNR=30.354 (I) PSNR=39.348

FIGURE 8. Band 116 of the USGS Indian Pines dataset before and after denoising via the different methods under noise case 6. (a) Original image of
band 6, (b) noisy image. Image denoising results of (c) BM3D,(d)LRTA, (e) LRTV, (f) NLM3D, (g) LRMR, (h) BM4D, (i) NAILRMA, (j) LRTDTV, (k) LLRSSTV,

() NLRPnP.

various methods, most of the noise in HSIs is removed,
but the denoising effect of each method is obviously differ-
ent. Specifically, NAILRMA is more suitable for low inten-
sity Gaussian noise removal. BM3D and BM4D have the
similar denoised images in vision and can achieve better
Gauss noise suppression effect, which is consistent with the
quantitative evaluation index. However, they can not remove
strong impulse noise. In some denoised bands, there is still
a phenomenon of image smoothing and the loss of texture
information is obvious. NLM3D is not good at depressing
mixed noise. Its denoised HSIs are visually distorted, still
include some sparse noise and obvious blurring phenomenon
at the edge zone. Although LRMR can remove the Gaussian
and impulse noise, residual deadlines and strip noise remain
in the denoised HSIs. LLRSSTV achieves a good denoising
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effect. However, since the spatial non-local self-similarity of
HSIs is not explored, there are still some deadlines or stripes
residues in the denoised HSIs. LRTDTV also achieves a good
denoising effect. But, compared with our non-local regular-
ized local low-rank PnP method, the denoised results in the
region with rich texture information are not good enough.
In summary, compared with the selected denoised methods,
the proposed method can obtain the best denoising results in
visual comparison.

2) QUANTITATIVE COMPARISON

In order to further compare the effectiveness of the pro-
posed algorithm, the peak signal-to-noise ratio (PSNR) [40],
structural similarity index (SSIM) [41], erreur relative glob-
ale adimensionnelle de synthese (ERGAS) [42], the mean

VOLUME 8, 2020



H. Zeng et al.: HSI Denoising via Combined Non-Local Self-Similarity and Local Low-Rank Regularization

IEEE Access

TABLE 1. Quantitative assessment of the denoising results in the simulated experiment of USGS Indian Pines dataset. Boldface means the best and
underline means the second best.

Noise Level Evalua- BM3D NLM3D LRTA LRTV  BM4D NAI- LRMR LR- LLR- NLR-
Case tion index LRMA TDTV  SSTV PnP
Case 1 MPSNR 34.084 25.184 34319 42522 35.793  29.402 39.800 42.799 41.631 45977
G=0.05 MSSIM 0.978 0.768 0.937 0.992 0.989 0.860 0.966 0.996 0.972 0.998
P=0.1 MFSIM 0.978 0.777 0.945 0.990 0.992 0.866 0.966 0.995 0.972 0.996
ERGAS 47.561 131426  47.031 19.032 40.226  80.189 23.856 18.944 19456 11.815
MSAD 1.528 5.001 1.786 0.706 1.355 3.023 0.988 0.685 0.781 0.391
Case 2 MPSNR 30.889  22.593 31.283  39.833 32764  26.504 36.396  40.339  37.598  43.287
G=0.075 MSSIM 0.962 0.640 0.887 0.983 0.981 0.808 0.934 0.992 0.935 0.996
P=0.15 MFSIM 0.960 0.690 0.902 0.977 0.985 0.826 0.935 0.989 0.938 0.993
ERGAS 68.332  177.256  66.114 25287 56366  112.551 35360 24.391 30953 16.217
MSAD 2.223 6.974 2.520 0.976 1.940 4.285 1.443 0.888 1.242 0.585
Case 3 MPSNR 28.676  20.712 29.031  37.187 30.498  24.313 33752 37.776 34522 40.259
G=0.1 MSSIM 0.945 0.520 0.833 0.968 0.972 0.769 0.892 0.984 0.887 0.993
P=0.2 MFSIM 0.942 0.612 0.857 0.957 0.977 0.798 0.898 0.979 0.894 0.986
ERGAS 88.071  220.815 85230 33.852 72744 145.637 48.006  32.048 43.960 23.130
MSAD 2.897 8.893 3.224 1.313 2.517 5.545 1.933 1.161 1.767 0.869
Case 4 MPSNR 29.733  31.782 30.658  39.533  32.134  37.451 36.474  40.300 36.654  41.051
MSSIM 0.951 0.935 0.870 0.980 0.979 0.939 0.931 0.991 0.925 0.994
Gaussian MFSIM 0.946 0.916 0.888 0.974 0.983 0.938 0.929 0.988 0.925 0.988
ERGAS 77.665  62.489 70.763  26.098 60.241  31.419 35.125 24729 34426 21.354
MSAD 2.487 2.068 2.706 1.040 2.090 1.221 1.440 0.932 1.378 0.728
Case 5 MPSNR 28779  23.713 29.499  37.028 30.673  28.170 33.977  38.569 35.652  39.375
Gaussian MSSIM 0.946 0.694 0.863 0.973 0.975 0.841 0.893 0.987 0.904 0.987
+ MFSIM 0.944 0.718 0.883 0.968 0.980 0.857 0.900 0.983 0.910 0.984
impulse ERGAS 88.129  162.831 81.718 42777 71.677 101.763 48901  29.702 58.268  38.407
MSAD 2.948 6.355 3.068 1.803 2.476 3.961 2.018 1.068 2.503 1.461
Case 6 MPSNR 28715  23.492 29.415  36.879 30.582 27.824 337769  38.463 35281  38.809
Gaussian MSSIM 0.946 0.684 0.862 0.970 0.974 0.839 0.892 0.987 0.906 0.986
+impulse ~ MFSIM 0.943 0.711 0.882 0.966 0.980 0.853 0.899 0.983 0911 0.983
+deadline  ERGAS 88.864 166.535  82.559 42.503 72495 105.784 50.486  30.050 63.738 44913
MSAD 2.942 6.537 3.072 1.785 2.465 4.103 2.095 1.091 2.713 1.724
Case 7 MPSNR 28.748  24.106 29.439  36.961 30.630 28.139 337787  38.441 35426 39.147
Gaussian MSSIM 0.946 0.803 0.861 0.970 0.974 0.841 0.891 0.985 0.902 0.987
+impulse ~ MFSIM 0.943 0.794 0.881 0.964 0.980 0.856 0.898 0.982 0.908 0.983
+stripe ERGAS 88.463  152.609  82.226 39.613 72.026 101.968 49.938  29.960 57.622 37.886
MSAD 2.955 5.401 3.084 1.624 2.480 3.977 2.079 1.083 2.477 1.472
Case 8 MPSNR 28.678  23.938 29.355  36.765 30.531 27.778 33.595 38311 35.118 38.495
Gaussian MSSIM 0.946 0.797 0.861 0.971 0.974 0.837 0.890 0.984 0.904 0.987
+impulse ~ MFSIM 0.943 0.789 0.880 0.966 0.980 0.851 0.897 0.980 0.909 0.982
+deadline  ERGAS 89.208 155480  83.072 42.531 72.883 106.225 51.567 30.385 66.425 45.976
+stripe MSAD 2.958 5.526 3.096 1.772 2.482 4.133 2.157 1.109 2.836 1.792
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FIGURE 9. The reflectance of special pixel of USGS Indian Pines in (40,10) under noise case 2.

spectral angle distance (MSAD) and feature similarity
(FSIM) [43] index are adopted to give a quantitative assess-
ment. First, the indices in each band of the denoised HSI
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are calculated, and then the indices of all bands are averaged
to establish the final numerical evaluation criteria, MPSNR,
MSSIM, MSAD, MERGAS and MFSIM. Larger MPSNR,
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FIGURE 10. Each column shows the PSNR, SSIM values of each band of all methods under the 8 noise cases in Washington DC Mall
dataset.

(@)

() PSNR=30.181 (h) PSNR=27.112 (i) PSNR=20.850 (j) PSNR=28.480 (k) PSNR=30.917 () PSNR=32.085
FIGURE 11. Denoising result of Bnad 112 of Washington DC Mall under noise case 3. (a) Original image of band 6, (b) noisy image. Image denoising
results of () BM3D, (d) LRTA, (e) LRTV, (f) NLM3D, (g) LRMR, (h) BM4D, (i) NAILRMA, (j) LRTDTV, (k) LLRSSTV, (I) NLRPnP.

MSSIM and MFSIM, and smaller MERGAS, MSAD indicate Under the conditions of 8 noise cases and 10 denoising
that the better the denoising performance of the correspond- methods, Table 2 shows the values of indices for quantitative
ing model is. assessment in Washignton DC Mall dataset, and Table 1
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TABLE 2. Quantitative assessment of the denoising results in the simulated experiment of Washington DC Mall dataset. Boldface means the best and
underline means the second best.

Noise Level Evalua- BM3D NLM3D LRTA LRTV BM4D NAI- LRMR LR- LLR- NLR-
Case tion index LRMA TDTV  SSTV PnP
Case 1 MPSNR 31.413 23.712 35.788 36.256 34.737 27.346 37.490 36.193 39475  40.240
G=0.05 MSSIM 0.879 0.547 0.962 0.949 0.955 0.819 0.955 0.955 0.968 0.978
P=0.1 MFSIM 0.922 0.787 0.978 0.966 0.971 0.928 0.977 0.973 0.984 0.987

ERGAS 111.382  299.442  70.182 63.012 78.872 191.150  53.102 62.601 41.148  38.432

MSAD 3.767 12.699 2.451 2.406 2.781 8.015 2.563 2.695 2.011 1.778

Case 2 MPSNR 29.299 21.115 33.236 33.970 32.222 24212 34.343 34123 36.035 37.512
G=0.075 MSSIM 0.825 0.417 0.932 0914 0.927 0.739 0.917 0.928 0.934 0.963

P=0.15 MFSIM 0.882 0.738 0.962 0.942 0.952 0.896 0.959 0.955 0.967 0.978

ERGAS 139.244 426203  90.453 82.724 101.402  285.845  76.745 79.934  60.359  52.697

MSAD 4.883 17.346 3.324 3.242 3.726 11.670 3.668 3.506 2.938 2.321

Case 3 MPSNR 27.926 19.128 31.264 32.067 30.435 21.925 31.943 32.431 33.357  34.956
G=0.1 MSSIM 0.782 0.318 0.897 0.876 0.898 0.665 0.872 0.896 0.892 0.934
P=0.2 MFSIM 0.849 0.694 0.944 0.917 0.932 0.866 0.937 0.934 0.945 0.963

ERGAS 161.101  550.276  110.605 100.841  121.782  381.207 100.822 97.598 81.418  69.340

MSAD 5.783 21.400 4.183 3.992 4.574 15.124 4.797 4.334 3.955 3.010

Case 4 MPSNR 28.488 28.492 32.715 33.734 31.358 36.950 35.146 32.843  35.344  36.868
MSSIM 0.789 0.740 0.921 0.908 0.908 0.943 0.924 0.905 0.924 0.954

Gaussian ~ MFSIM 0.855 0.812 0.957 0.938 0.940 0.971 0.960 0.942 0.960 0.972

ERGAS 151.617  156.377  93.139 85.166 109.026  54.374 67.259 92.667 65.540  55.726

MSAD 5.497 6.455 3.640 3.383 4224 2.626 3.313 3.989 3.225 2.566

Case 5 MPSNR 31.652 22.038 32.885 33.359 32.834 25.692 33.013 32.671 35.681  36.183
Gaussian ~ MSSIM 0.919 0.456 0.931 0.901 0.946 0.776 0.884 0.904 0.918 0.946
+ MFSIM 0.949 0.751 0.960 0.935 0.964 0911 0.943 0.942 0.955 0.967

impulse ERGAS 109.698  387.000  97.882 96.372 96.578 265.887  94.408 97.950  93.572  76.849

MSAD 3.917 16.027 3.644 4.290 3.517 10.914 4.608 4.428 6.021 3.759

Case 6 MPSNR 29.723 21.998 32.787 33.245 32.106 25.647 32.874 33.693 35407 35.856
Gaussian ~ MSSIM 0.860 0.453 0.931 0.901 0.936 0.774 0.884 0.921 0.921 0.950

+impulse ~ MFSIM 0.909 0.750 0.960 0.934 0.957 0.909 0.943 0.951 0.957 0.969
+deadline  ERGAS 132.040  387.352  98.848 96.969 103.078  265.972  95.402 88.388  89.029  67.595

MSAD 4.709 16.168 3.654 4377 3.708 11.006 4.711 4.150 5.524 3.127

Case 7 MPSNR 29.732 23.215 32.786 33.237 32.120 25.644 32.808 32,627  35.596  36.074
Gaussian ~ MSSIM 0.860 0.563 0.930 0.899 0.936 0.775 0.883 0.904 0.918 0.951

+impulse ~~ MFSIM 0.908 0.756 0.960 0.934 0.957 0.910 0.943 0.941 0.955 0.970

+stripe ERGAS 131.907 322774  98.618 97.794 102.834  266.217  95.793 98.625 94.856  68.253

MSAD 4.783 13.613 3.720 4.410 3.788 10.951 4.723 4.492 6.067 3.076

Case 8 MPSNR 29.676 23.194 32.685 33.155 32.030 25.606 32.670 32536 35.063  35.663
Gaussian ~ MSSIM 0.859 0.561 0.930 0.898 0.936 0.773 0.882 0.902 0.916 0.949

+impulse ~ MFSIM 0.908 0.755 0.959 0.931 0.957 0.908 0.942 0.940 0.953 0.968
+deadline  ERGAS 132727 3227763  99.743 99.675 103.834  266.496  96.967 99.981  98.295  69.804

+stripe MSAD 4.776 13.693 3.735 4.636 3.783 11.052 4.842 4.629 6.243 3.263

(9) PSNR=30.512 (h) PSNR=29.225 (i) PSNR=25.618 (j) PSNR=29.848 (k) PSNR=32.117 () PSNR=32.932

FIGURE 12. Denoising result of Bnad 80 of Washington DC Mall under the noise case 6. (a) Original image of band 6, (b) PSNR. Image denoising results
of (c) BM3D, (d) LRTA, (e) LRTV, (f) NLM3D, (g) LRMR, (h) BM4D, (i) NAILRMA, (j) LRTDTV, (k) LLRSSTV, (I) NLRPnP.

shows the ones in USGS Indian Pines dataset. The best values methods with respective to almost the indices. Taking the
of each index are labeled in bold. One can obviously see MPSNR as an example, our model achieves nearly 2.5 dB
that our model significantly outperforms other comparison improvement than the second-best results in USGS Indian
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FIGURE 13. The reflectance of special pixel of Washington DC Mall in (220,190) under noise case 6.

2 =
FIGURE 14. Dataset used in the real data experiment (a) HYDICE urban
dataset used in the simulated experiment (R: 20, G: 90, B: 180). (b) AVIRIS
Indian Pines dataset (R: 1, G: 103, B: 220).
Pines dataset, and 1.5 dB improvement in Washington DC
Mall dataset. Furthermore, Fig. 10 lists the PSNR, SSIM
index for different denoised bands in Washington DC Mall

(a) Original image (b) BM3D

(f) BM4D (g) NAILRMA

(h) LRTDTV

dataset, and Fig. 5 lists the ones in USGS Indian Pines dataset.
It can be seen that our model has higher PSNR, SSIM values
than other methods in most denoised bands.

In noise case 6, Fig. 13 shows the spectral curves of all
denoising methods at pixel (220,190) in Washington DC Mall
dataset. In noise Case 2, Fig. 9 shows the spectral curves
of all denoising methods at pixel (40,10) in USGS Indian
Pines dataset. It is easy to see that spectral curves of noisy
HSIs fluctuate violently. After denoising by various methods,
the fluctuation amplitude of spectral curves is depressed.
Compared with all the contrast methods, the spectral curves
in our denoised HSIs have less spectral distortions. It means
that our model achieves better denoised results in the removal
of mixed noise.

() LLRSSTV (i) NLRPnP

FIGURE 15. Band 139 of the Urban dataset before and after denoising via the different methods. (a) Original image of band 150. Image denoising
results of (b) BM3D, (c) LRTV, (d) NLM3D, (e) LRMR, (f) BM4D, (g) NAILRMA, (h) LRTDTV, (i) LLRSSTV, (j) NLRPnP.
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a) Original image b) BM3D c) LRTV (d) NLM3D (e) LRMR

f) BM4D ) NAILRMA ) LRTDTV i) LLRSSTV (i) NLRPnP

FIGURE 16. Band 207 of the Urban dataset before and after denoising via the different methods. (a) Original image of band 150. Image denoising
results of (b) BM3D, (c) LRTV, (d) NLM3D, (e) LRMR, (f) BM4D, (g) NAILRMA, (h) LRTDTV, (i) LLRSSTV, (j) NLRPnP.
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FIGURE 17. Spectral signatures curve of band 207 estimated by different methods.

B. REAL DATA EXPERIMENTS This is mainly because the stripes and deadlines exist at the
In this section, two real datasets are selected to design and ~ same position in band 104 to band 110 and band 199 to band
perform experiments, i.e., the HYDICE Urban dataset [44] 210. That is, when the model performing low-rank and sparse
and the AVIRIS Indian Pines dataset [39], which are shown decomposition, stripes are more likely to be considered as

in Fig. 14. low-rank content and are mistaken for being part of a clean

image. The BM3D and LLRSSTV remove some of the noise
1) HYDICE URBAN DATASET partly. Although LRTDTV and LRTV show better denoising
Fig. 15 and Fig. 16 show the 139th and 207th bands before ~ performance, when they smooth the noise, they also remove
denoising and after denoising by various methods, respec- the details and texture information at the same time. Our

tively. It is easy to see that LRMR, NAILRMA and NLM3D method can simultaneously remove complex mixed noise
do not effectively remove the stripes. In addition, there is no and preserve spatial texture information compared to other
clear distinction in the denoised HSIs by the three methods. contrast methods.
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a) Original image b) BM3D

f) BM4D g) NAILRMA

c) LRTV

(d) NLM3D (e) LRMR

(h) LRTDTV

(i) LLRSSTV i) NLRPnP

FIGURE 18. Band 108 of the Indian Pines dataset before and after denoising via the different methods. (a) Original image of band 108. Image
denoising results of (b) BM3D, (c) LRTV, (d) NLM3D, (e) LRMR, (f) BM4D, (g) NAILRMA, (h) LRTDTV, (i) LLRSSTV, (j) NLRPnP.

a) Original image b) BM3D

f) BM4D (g) NAILRMA

c) LRTV

(d) NLM3D (e) LRMR

(h) LRTDTV

(i) LLRSSTV (i) NLRPnP

FIGURE 19. Band 219 of the Indian Pines dataset before and after denoising via the different methods. (a) Original image of band 219. Image
denoising results of (b) BM3D, (c) LRTV, (d) NLM3D, (e) LRMR, (f) BM4D, (g) NAILRMA, (h) LRTDTV, (i) LLRSSTV, (j) NLRPnP.

In addition to the above qualitative visual evaluation,
the denoising HSIs are further evaluated by the quantitative
mean profile. The smaller the fluctuation of the mean profile
is, the higher the image quality is. The horizontal average
profile of the band 207 before and after denoising is shown
in Fig. 17. As shown in Fig. 17(a), due to the existence of
mixed noise such as Gaussian noise, stripes and deadlines,
the mean profile curves of the noisy image appear to fluctuate
rapidly. After denoising, we can see that the mean profile
curve of our method is the most stable and its fluctuation is

50204

the smallest. This fact is also consistent with the visual result
shown in Fig. 16.

2) AVIRIS INDIAN PINES DATASET

This dataset is acquired by the NASA airborne visi-
ble/infrared imaging spectrometer (AVIRIS) instrument over
the Indian Pines in Northwestern Indiana in 1992, and it has
145 x 145 pixels and 220 bands. Fig. 14 shows the panorama
of Indian Pines. It can be seen that it is mainly polluted by
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FIGURE 20. Spectral signatures curve of band 219 with Indian pines estimated by different methods.
the atmosphere, water absorption, stripes and other unknown 48 a4
noise. =
Fig. 18 and Fig. 19 show the denoised images of the band & 23 -
108 and 219 by different methods, respectively. Fig. 18(a) and E“ 1 é /—m\
Fig. 19(a) show that the image is completely covered by noise " Airs
and the details are completely invisible. After denoising, it is
easy to observe that LRMR, NAILRMR, and BM3D lose 42 T T 5 41
. . . . 5 6 7 8 9 5 13 7 k] 8
some texture details and distort the denoised images when r '
the intensity of the noise is large. Although LRTDTV and (a) Case 1 (b) Case 2
LLRSSTV can effectively remove noise, the details of the
red boxes in the denoised images are severely degraded. On 45 45
the contrary, our model can maintain more complete texture :2 i h :2 1 (/o/"\—o
information when depressing the mixed noise. Similar to 30 %30 1
the experimental analysis of the HYDICE Urban dataset, ;3 i gii
the vertical mean profile of the band 108 before and after 35 A5
10 - 10
denoising by various models is shown in Fig. 20. It can be s 5
clearly observed again that our model has the smoothest mean g > 2 e s Y = e
profile curve. This is also consistent with the visual results of r r
Fig. 18 and Fig. 19. (c) Case 3 (d) Case 8

C. DISCUSSION

1) SENSITIVITY ANALYSIS OF PARAMETER A

From our denoising model (9), it is easy to see that A is an
important parameter to balance the influence of sparse noise
term and the rest of the regular terms. In RPCA model [12],
the sparsity regularization parameter is set to A = 1//mn.
In our model, there is the new non-local penalty, and the
low-rank model is performed on patches, therefore, it is dif-
ferent from RPCA. Hence, we set A to C//mn, where C is a
adjusted parameters. In Washington DC Mall dataset, Fig. 23
shows MPSNR and MSSIM values of our model when C
changes in the set { 1, 10, 20, 30, 40, 50, 60, 65, 70, 75,
77,79, 81, 85, 90, 95, 100 }. It can be easily seen from the
figure that the results of our model are relatively stable in

VOLUME 8, 2020

FIGURE 21. Sensitivity analysis of the rank constraint on the Indian Pines
image.

terms of MPSNR and MSSIM values. Based on the above
discussion, we recommend setting the A to 0.3 in all simulated
data experiments.

2) SENSITIVITY ANALYSIS OF PARAMETER

In our model (9), B also is an important parameter used to
balance the influence of non-local term and the rest of the
regular terms. In Washington DC Mall dataset, Fig. 24 shows
MPSNR and MSSIM values of our model when g changes in
the set { 0.00001, 0.00005, 0.00009, 0.0002, 0.0003, 0.0005,
0.001, 0.002, 0.005, 0.007, 0.02, 0.05, 0.1 }. we set 8 to the
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FIGURE 22. Sensitivity analysis of the rank constraint on the Washington
DC image.
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FIGURE 23. Sensitivity analysis of the C value. (a) Change in the MPSNR
value, (b) Change in the MSSIM value.
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FIGURE 24. Sensitivity analysis of the $ value. (a) Change in the MPSNR
value, (b) Change in the MSSIM value.

value 0.005 corresponding to the peak values of MPSNR and
MSSIM.

3) RANK VALUE r SENSITIVITY ANALYSIS

In our model (9), the value of rank r is related to the intensity
of noise and the inherent structure of the image. In order to
verify the influence of the value of rank » on the final results,

we analyze the performance of our model in Washington
DC Mall dataset and USGS Indian Pines dataset. As shown

50206

0 10 20 30
lterations

FIGURE 25. MSSIM values versus the iteration number of NLRPnP with
the USGS Indian Pines dataset in the simulated experiments.

in Fig. 21 and Fig. 22, as the r value increases, the MPSNR of
our model first increases to a peak value, and then decreases.
Therefore, we set r to the value corresponding to the peak
value of MPSNR.

4) CONVERGENCE ANALYSIS OF THE MIODEL

Fig. 25 shows the MSSIM value of our NLRPnP method
according to the iterations. After few iterations, the MPSNR
value and the MSSIM value tend to be stable, which reflects
the convergence of our algorithm.

5) COMPUTATIONAL TIME COMPARISON

The running time is an effective way to measure the efficiency
of a denoising method. For each iteration of the proposed
method, the computational burden consists of two parts,
i.e., local low-rank and sparse matrix decomposition and
non-local regularized image reconstruction. In order to speed
up the operation efficiency of the algorithm and enhance the
practicability of the proposed model, the algorithm is acceler-
ated by parallel computing of the SVD of all the patches and
the BM3D of all the bands, which occupies the most time in
each iteration. When the algorithm runs on MATLAB 2018b,
the CPU of the computer is Inter core 17@2.20GHz and the
memory is 64GB. For the Washington DC Mall dataset with
size 256 x 256 x 191 and the USGS Indian Pines dataset
with size 145 x 145 x 224, we have averaged the program
running time of 8 groups of experiments under the conditions
of noise case 1-8. The timing function built into MATLAB is
used for timing. The average running time of each model is
shown in Table 3.

6) NOT A SIMPLE COMBINATION

The NLRPnP is not just simple combination of non-local
method, e.g., BM3D, and LLR but is a systematical integra-
tion of BM3D with LLR in the Plug-and-Play framework.
In Fig. 26, we demonstrate the results on USGS Indian Pines
recovered by BM3D and LLR, directly performing BM3D
after LLR, and NLRPnP with the noise case 3. The BM3D
gets the worst performance, because it is designed remove the
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TABLE 3. Running times (in seconds) of the different methods in the simulated data experiments.

HSI Data BM3D NLM3D LRTA LRTV BM4D NAILRMA LRMR LRTDTV  LLRSSTV  NLRPnP
Washington DC Mall ~ 89.4 520.3 30.5 99.2 456.6 58.7 154.9 185.2 318.2 172.6
USGS Indian Pines 332 206.0 21.6 36.5 147.4 20.2 52.8 89.5 118.6 60.2

(a) 12.878 dB

(o) 13.778 dB

(c) 35.893 dB

(d) 33.723 dB (e) 41.912 dB

FIGURE 26. Band 204 of the Indian Pines dataset before and after denoising via the different methods. (a) Noisy image, image denoising results of

(b) BM3D, (c) LLR, (d) LLR+BM3D, () NLRPnP.

Gaussian noise. And the result by directly performing BM3D
after LLR is slightly worse than that by LLR. This direct
combination-processing does not work. Meanwhile, we can
see that the PSNR value of the result by NLRPnP is nearly
6 dB higher than that of simple combination of BM3D and
LLR.

VI. CONCLUSION

In this paper, based on the newly emerged PnP framework, we
have proposed a novel NLRPnP method for HSI denoising.
The HST is first divided into local overlapping patches. Then,
we adopt the patch-based low-rank matrix approximation to
guarantee the local low-rankness while plugging in non-local
based denoisers to promote the non-local self-similarity. Fur-
thermore, to consider the inner geometry or structure of
mixed noises, we integrate the L; norm regularization to
the denoising framework, to detect the local sparse noise,
including stripes, impulse noise, and dead pixels. Simulated
and real HSI experiment results confirmed that compared
with competitive methods, the proposed model has certain
advantages in preserving the abundant details and the indices
for quantitative assessment.
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