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ABSTRACT Hyperspectral images (HSIs) are usually corrupted by various noises during the image acqui-

sition process, e.g., Gaussian noise, impulse noise, stripes, deadlines and many others. Such complex noise

severely degrades the data quality, reduces the interpretation accuracy of HSIs, and restricts the subsequent

HSI applications. In this paper, a spatial non-local and local rank-constrained low-rank regularized Plug-

and-Play (NLRPnP) model is presented for mixed noise removal in HSIs. Specifically, we first divide HSIs

into local overlapping patches. Local rank-constrained low-rank matrix recovery is adopted to effectively

separate the low-rank clean HSI patches from the sparse noise and a part of Gaussian noise, and to

significantly preserve local structure and detail information in HSIs. Then the spatial non-local based

denoiser is introduced to promote the non-local self-similarity and obviously depress the Gaussian noise.

Without increasing the difficulty of solving optimization problems, we combine the local and non-local based

methods into the Plug-and-Play framework, and develop an efficient algorithm for solving the proposed

NLRPnPmodel by using the alternating directionmethod of multipliers method. Finally, several experiments

are conducted in both simulated and real data conditions to illustrate the better performance of the proposed

NLRPnP model than the existing state-of-the-art denoising models.

INDEX TERMS Hyperspectral images, denoising, plug-and-play framework, local low-rank matrix

recovery, non-local regularization.

I. INTRODUCTION

Hyperspectral images (HSIs) can provide spectral informa-

tion about hundreds of continuous bands in the same scene,

hence HSIs are widely used in many fields [1], [2]. However,

limited by observation conditions and imaging sensors, HSIs

obtained by hyperspectral imagers are usually corrupted by

a variety of noises, e.g., stripes, deadlines, impulse noise,

Gaussian noise and so on [3]. The various noises concurrently

result in the loss of useful information, and further limit the

accuracy of subsequent processing and application, such as

image classification [4], target detection [5], unmixing [6]

and so on. Therefore, as a pretreatment step, HSI denoising

is a valuable research topic.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiangqiang Yuan .

In HSI data, each spectral channel which includes the

spatial information can be viewed as a grayscale image.

From this perspective, lots of denoisingmethods for grayscale

images can be directly applied to denoise HSI data band

by band. Among these denoising methods, total varia-

tion (TV) regularization [7] is an efficient tool and widely

used in image denoising task. Due to its good perfor-

mance in preserving the spatial piecewise smooth and impor-

tant edge information of images, i.e., the spatial sparsity

in images, TV regularization is introduced to the HSI

denoising problem [8]. Moreover, non-local regularization

is another powerful approach to describe the non-local self-

similarity and the intrinsic geometry structure in images.

For denoising tasks, Manjón et al. [9] use the non-local

mean to propose NLM3D model; Dabov et al. [10] intro-

duce the famous block-matched 3-D filtering (BM3D)model.
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However, besides the spatial information in the spatial

domain, HSI data also contains the spectral information

corresponding to the wavelength. In the spectral domain,

different spectral bands are images from the same scene

under different wavelengths. It means they are highly cor-

relative. This is an important prior knowledge, i.e., low-rank

prior of HSI data. Hence, it is a serious drawback that the

above band-wise processing ignores the low-rank prior in the

spectral domain.

In order to take full advantage of the low-rank prior in HSI

data, early HSI restorationmethod [11] uses principal compo-

nent analysis (PCA) to map HSI data to a series of orthogonal

vectors, and relies on the shrinkage of representation coeffi-

cients to achieve the purpose of denoising. However, it is sen-

sitive to outliers, such as impulse noise, deadlines, stripes and

so on. Therefore, Candes et al. [12] propose robust principal

component analysis (RPCA) method to solve this problem

by using nuclear norm minimization to represent low-rank

prior knowledge and utilizing L1 normminimization to detect

sparse outliers. Subsequently, the RPCA method is intro-

duced into HSI denoising problems, and has achieved satis-

fying results, e.g., low-rank matrix recovery (LRMR) model

[13], noise adjusted iterative low-rank matrix approxima-

tion (NAILRMA) model [14] and so on. Nevertheless, they

lexicographically order 3-D HSIs into 2-D Casorati matrices

whose columns and rows are great different. Then nuclear

norm minimization based algorithms shrink singular values

of the 2-D Casorati matrices equally, resulting in nonnegligi-

ble losses of local details and texture information in denoised

HSIs. For avoiding this shortcoming, one way is to exploit the

local low-rank prior in HSIs [8], [15], [16]. It usually divides

HSIs into local 3-D patches whose Casorati matrices have the

similar columns and rows. Then the RPCA based methods

implemented on the local patches. For instance, Fan et al. [17]

proposed a bilinear low rank matrix factorization (BLRMF)

HSI denoising method, where the bi-nuclear quasi-norm is

employed for constraining the patches low rank characteristic

in HSI. RPCA based methods can reduce not only the infor-

mation loss but also the dependence on the assumption that

the noise is independent and identically distributed (i.i.d.).

Hence, the local RPCA methods [8], [16], [17] can handle on

more complex noises. Another way is to treat the 3-D HSIs

as 3rd-order tensors and directly define the tensor low-rank

property. Usually, low-rank tensor decomposition methods,

such as the Tucker decomposition [18], PARAFAC decompo-

sition [19], tensor singular value decomposition [20] and so

on, are used to approximately represent the low-rank prior of

HSIs in both the spatial and spectral domains. Based on them,

the tensor RPCA based low-rank tensor recovery approach

[12], [21] is introduced into HSI denoising problems and has

achieved better denoising results. Moreover, in [22] and [23],

models employing spatial-spectral deep prior were proposed,

in which both the spatial and spectral information are simul-

taneously assigned to the proposed network.

For sufficiently using both the spatial and spectral prior

information, many researchers attempt to integrate the

different prior information by their according different math-

ematical formulations. For instance, He et al. [8] propose

a LRTV model which uses the band-wised TV regulariza-

tion to represent the spatial sparsity and simultaneously uses

the nuclear norm minimization of HSIs’ Casorati matri-

ces to describe the spectral low-rank prior. Hence, LRTV

model can not only remove the Gaussian noise, but also

depress the sparse noise, such as impulse noise, deadlines and

stripes and so on. Chang et al. [16] design the anisotropic

spatial-spectral TV norm (ASSTV), which can represent the

sparse prior in both the spatial and the spectral domains.

Then, Wang et al. [3] introduce the ASSTV regularization

into low-rank tensor recovery model and propose a LRT-

DTV model, which greatly improves the recovery accuracy.

He et al. [24] combine ASSTV regularization with the local

low-rank matrix recovery model and propose a LLRSSTV

model which can not only remove mixed noise, but also

eliminate structure-related noise partly. However, due to

the difficulty in the model solution and the algorithm

implementation, aforementioned models just can combine

a few regularization terms linearly, e.g., TV-based regular-

ization terms and RPCA based regularization terms. There

are still lots of prior information and their according reg-

ularization terms which can not be integrated into the

above denoising framework, e.g., aforementioned non-local

self-similarities observed in most HSI datasets [25], [26],

[26], [27].

Fortunately, a recent Plug-and-Play (PnP) framework [28]

has reported empirical success on a large variety of image

processing [1], [2], [29], [30]. As a non-convex frame-

work, PnP provides an approach for flexibly integrating the

impressive capabilities of existing denoising priors, such as

image deblurring, denoising and so on. On the other hand,

compared with local or global methods in spatial domain,

non-local methods can not only utilize neighborhood pixels,

but also utilize distant pixels in similar patches. At the same

time, non-local methods go beyond TV-based methods when

dealing with many inverse imaging problems [9], [10], [31],

[32], see Fig. 1 for an example. It can be easily observed

that the HSI band, e.g., the 3rd-band, is heavily polluted

by noise. The latest TV-based methods [3] cannot provide

results with satisfactory detail and texture information, while

the non-local based method [9] can achieve better results.

This motivates us to introduce the non-local based method

into the HSI denoising tasks by the PnP framework. There-

fore, in this paper, we propose a local low-rank regularized

non-local HSI denoising model in the PnP framework. Here,

the local low-rank regularization can preserve the rich details

in HSIs and reduce the dependence on the i.i.d. noise assump-

tion, which is not suitable for the actual noises in HSIs.

As an implicit regularizer, the non-local regularization term

introduced into the PnP framework, adequately expresses

the non-local self-similarity of the underlying HSIs and can

be easy to be solved. By integrating the advantages of the

local low-rankness and non-local self-similarity in HSIs, the

proposed model is expected to be able to effectively maintain
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FIGURE 1. A typical restoration instance on Indian Pines data: (a-b) the
original and noisy band; (c-d) denoised results by TV based model and
non-local model.

FIGURE 2. Flowchart of the proposed method. It includes three stages: A.
local low-rank denoising, B. non-local low-rank denoising and C. iteration
regularization.

the general structure and capture the details in the denoised

HSIs.

The main contributions of this paper are summarized as

follows.

1) A HSI denoising model combined non-local self-

similarity and local low-rank regularization is proposed.

To best of our knowledge, this is the first attempt to

introducing both the non-local self-similarity and local

low-rank prior into the HSI denoising task without

increasing the difficulty of solving the model, compared

to a single local low-rank or non-local low-rank model.

2) According to the elegant framework provided by the PnP

method and the alternating direction method of multipli-

ers (ADMM), we design an algorithm that realizes the

fast solution of the proposed model.

3) Furthermore, in order to verify the performance of

the proposed model, we conducted a lot of simulation

data and real data experiments. Experiments results are

reported to demonstrate the effectiveness of the pro-

posedmodel and the efficiency of the numerical scheme.
The rest of this paper is organized as follows. Section II gives

the related works for the denoising task. The proposed model

is described in Section III and its iteration solution algorithm

is listed in Section IV. SectionV includes experimental results

and discussions. Finally, Section VI concludes the paper.

II. RELATED WORK

A. PROBLEM FORMULATION

In real situation, the observed HSI is corrupted by mixed-

noise, which typically consists of Gaussian noise, stripes,

impulse noise, deadlines and so on [14]. Let 3rd-order tensor

Y ∈ R
m×n×p denotes the observed HSI, where the spatial

information lies in the first two dimensions and the spectral

information lies in the third dimension. Then the degradation

model of the HSI can be formulated as

Y = X + S + N , (1)

where Y,X ,S,N ∈ R
m×n×p; Y denotes the observed HSI;

X represents the clean HSI; S is the sparse noise, which

consists of impulse noise, stripes, deadline and so on; N is

the Gaussian noise; m × n is the spatial size of the HSI, and

p is the number of spectral bands.

Under the framework of degradation model (1), HSI

denoising is a process of separating the mixed noise S,N

from the observed HSI Y , and restoring the clean HSI X .

In mathematical theory, this is a serious ill-posed problem.

The regularization method is an effective and widely used

method for solving such inverse problems. It establishes the

following regularized denoising framework by adding the

prior information of unknown clear HSI andmixed noise, i.e.,

argmin
X

J(X ,S,N ) + β R(X ), (2)

where J(X ,S,N ) is a regular term to describe the distribution

of different noises; R(X ) is a regular term to represent the

prior information of unknown clean HSI; β is a non-negative

regularization parameter used to balance two regular terms.

In denoising framework (2), both prior information and the

formulations of regular terms are important, which determine

the accuracy of the restoration results. Therefore, the research

on HSI denoising mainly focuses on the exploration of prior

information and the improvement of regularization formula-

tions.

B. PLUG-AND-PLAY FRAMEWORK

In the field of image denoising, there have been many stud-

ies using a variety of prior information and their according

regularization terms. However, there are still two difficulties

as following. Firstly, it is difficult to find an appropriate

mathematical tool to reasonably describe the complex prior

information of HSIs. Secondly, if the regularization denois-

ing model (2) contains multiple regular terms, it will be
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hard to be solved theoretically. Recently, a new PnP frame-

work [28] provides an elegant way to overcome the sec-

ond difficulty. Without increasing the difficulty of solving

optimization problems, PnP can flexibly integrate impressive

capabilities of multiple prior and regularization terms in one

denoising model, such as image deblurring, denoising and

so on. Also, it has reported empirical success on a large

variety of image processing, e.g., compressive imaging [33],

compression-artifact reduction [34], nonlinear inverse scat-

tering [35]. Hence, PnP attracts more and more interest.

In the PnP framework, by using variable splitting, the reg-

ularized denoising model (2) can be compactly restated as

follows

argmin
X ,L

J(X ) + β R(L) s.t. X = L.

According to augmented Lagrangian multiplier method,

it can be rewritten as a minimization problem of the aug-

mented Lagrangian function ℓ(L,X ) as following

argmin
L,X

ℓ(L,X )

= argmin
L,X

J(X ) + β R(L)+ < 3,X − L > +λ

2
‖X − L‖2F

= argmin
L,X

J(X ) + β R(L) + λ

2
‖X − L + 3̃‖2F − λ

2
‖3̃‖2F,

(3)

where 3 is the dual variable; 3̃ = 3/λ is the scaled dual

variable; λ is a penalty parameter; ‖·‖2F denotes the Frobenius
norm. Then, the minimization problem (3) can be solved by

ADMM method [36], which consists of iterations until con-

vergence over the following three steps at the k-th iteration

X (k) = argmin
X

ℓ(L(k−1),X , 3̃(k−1)),

L(k) = argmin
L

ℓ(L,X (k), 3̃(k−1)),

3̃(k) = 3̃(k−1) + (X (k) − L(k)). (4)

By plugging (3) in (4), we have

X (k) = argmin
X

J(X ) + λ

2
‖X − (L(k−1) − 3̃(k−1))‖2F,

L(k) = argmin
L

R(L) + λ

2β
‖(X (k) + 3̃(k−1)) − L‖2F,

3̃(k) = 3̃(k−1) + (X (k) − L(k)). (5)

Let Z = X (k) + 3̃(k−1), the minimization problem with

respect to L in (5) can be rewritten as

argmin
L

R(L) + λ

2β
‖L − Z‖2F. (6)

One can find that minimization problem (6) is a classical

denoising model with the input noisy data Z , the positive

parameter λ/β, the prior regularization term R(L) and the

fidelity term 1
2
‖L − Z‖2F.

Let σ 2 = β/λ, we can abstractly denote the solution of

minimization problem (6) as

L∗ = D(Z, σ ), (7)

FIGURE 3. Formulation of the low-rank matrix from an HSI patch.

where D(·, ·) is a denoising operator, which is different

according to different denoising methods. For example, if the

regularizer R(L) is a TV norm, we can use the corresponding

TV-based noise reducer to solve the denoising problem. In the

PnP framework, R(L), as an implicit regularizer, expresses a

kind of prior information about the ideal image and can be

any existing denoiser. This is the main idea of the PnP frame-

work. There are many state-of-the-art noise reducers that can

be incorporated into this framework, such as BM3D [10],

BM4D [31], NLM [32] and so on.

C. LOCAL RPCA

The spectral dimension of HSIs contains imaging results of

the same spatial scene in different spectral bands, so there

is high correlation between the different spectral channels,

i.e., the low-rank characteristic of the spectrum in HSIs.

In [13], the 3-D HSI is unfolded into a 2-D Casorati matrix,

and then the rank of the constrained decomposition matrix is

used to represent the low-rank prior of spectrum. Based on

RPCA method [12], literature [8] uses nuclear norm mini-

mization to approximate the low-rank prior of spectrum, and

establishes the rank-constrained RPCA restoration model as

follows

argmin
X ,S

‖X‖∗ + λ‖S‖1,

s.t. ‖Y − X − S‖2F ≤ ε, rank(X ) ≤ r,

where X ,Y , S are the Casorati matrices of X ,Y,S; r is a

rank-constrained parameter; ε and λ are positive parameters;

‖·‖∗ denotes the nuclear norm and ‖·‖1 denotes the L1 norm.

The RPCA based models have been widely used for the HSI

restoration problems [8], [13], [14], but they significantly lose

the structure, texture and detail information in HSIs due to the

global low-rank constraint.

Subsequently, literatures [10], [24] find that local pixels of

HSIs are more likely to belong to the same surface covering

and their correlations in the spectral dimension are higher.

Therefore, HSIs can be divided into many overlapping small

blocks, and the RPCA based methods can be implemented on

the local blocks to preserve the detail information, as shown

in Fig. 3. Specifically, we define an operator Pi,j : X →
Xi,j. This binary operator is used to extract a block Xi,j ∈
R
m1×n1×p from the HSI X ∈ R

m×n×p, where the spatial size
of m1 × n1 is centralized at pixel (i, j) of HSI data, m1 × n1
is approximately equal to p and (i, j) ∈ [1,m − m1 + 1] ×
[1, n − n1 + 1]. PTi,j is the inverse of Pi,j. Xi,j denotes the
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Casorati matrix of Xi,j. Based on these definitions, we can

get the patch-based local RPCA model

arg min
Xi,j,Si,j

∑

i,j

(

λ
∥

∥Si,j
∥

∥

1
+

∥

∥Xi,j

∥

∥

∗
)

s.t.
∥

∥Yi,j − Xi,j − Si,j
∥

∥

2

F
≤ ε, rank

(

Xi,j

)

≤ r . (8)

III. THE PROPOSED HSI DENOISING MODEL

Despite the good restoration performance of the patch-based

local low-rank models [13], [24], they only explore the local

low-rank property in HSIs and ignore the non-local self-

similarity, which is an very important prior in most HSI

datasets [26], [26], [27]. One can find an illustrative example

of non-local self-similarity of one HSI dataset in Fig. 4.

As presented in Fig. 4, each patch with obvious features has

many similar patches, which can be clustered in one group.

The patches in one group exhibit perfect mutual similarity,

i.e., the non-local self-similarity. Then, the non-local base

methods [10], [21], [31], [37] use this prior to denoise a group

patches together. In addition, it has been shown in [10], [32]

that non-local methods go beyond TV based methods when

dealing with many inverse imaging problems. Also, one can

see Fig. 1 as an example for the denoising task.

FIGURE 4. Simple example of the spatial non-local similarity in the 80th
band image of Washington DC mall HSI dataset, where for each reference
block there exist perfectly similar ones.

Motivated by the advantages of the patch based local

low-rank models and non-local based methods, and without

increasing the difficulty of solving optimization problems,

we combine the two kinds of methods into the PnP frame-

work and propose our non-local regularized local low-rank

PnP (NLRPnP) model for HSI denoising problems. Specif-

ically, let J(·) in (3) be the local RPCA model (8), and the

implicit regularizer R(·) in (3) be a non-local based denoiser

which is BM3D method in this paper. Based on the degra-

dation model of the HSI (1), our denoising model can be

formulated as

arg min
X ,L,S

∑

i,j

(
∥

∥Xi,j

∥

∥

∗ + λ
∥

∥Si,j
∥

∥

1

)

+ β R(L),

s.t. X = L,
∥

∥Yi,j − Xi,j − Si,j
∥

∥

2

F
≤ ε, rank

(

Xi,j

)

≤ r, (9)

where λ and β are regularization parameters. The overview

of the proposed model is shown in Fig. 2.

It is worth noting that the proposed model can fully cap-

ture the local low-rankness and non-local self-similarity of

HSIs, and thus be expected to maintain the general struc-

tures and capture the local details of the HSI effectively.

Specifically, the nuclear norm minimization of local patches

is used to explore the local low-rank prior and to pre-

serve the local details, while the implicit regularizer is used

to constrain the non-local self-similarity of the HSI. The

rank-constrained minimization of L1 norm and nuclear norm

can effectively remove the sparse noise and partly depress

the Gaussian noise. The minimization of Frobenius norm can

eliminate the Gaussian noise. In addition, the patch based

method can reduce the dependence of our model on the i.i.d.

noise assumption, which is not suitable for actual noises

in HSIs.

IV. OPTIMIZATION PROCEDURE

To efficiently solve the proposed NLRPnP denoising model,

we first introduce auxiliary variable J ∈ R
m×n×p. Then our

model (9) can be rewritten as

arg min
X ,L,J ,S

∑

i,j

(∥

∥Xi,j

∥

∥

∗ + λ
∥

∥Si,j
∥

∥

1

)

+ β R(L)

s.t. Xi,j = Ji,j,J = L, rank
(

Xi,j

)

≤ r,

∥

∥Yi,j − Xi,j − Si,j
∥

∥

2

F
≤ ε.

This problem can be efficiently solved by the augmented

Lagrange multiplier (ALM) method, which minimizes the

following augmented Lagrangian function

arg min
X ,L,J ,S

ℓ(X ,S,J ,L)

= arg min
X ,L,J ,S

∑

i,j

(∥

∥Xi,j

∥

∥

∗ + λ
∥

∥Si,j
∥

∥

1

+ < Ŵ
Y
i,j,Yi,j − Xi,j − Si,j >

+ µ

2
‖Yi,j − Xi,j − Si,j‖2F

+ < Ŵ
J
i,j ,Xi,j − Ji,j > +µ

2

∥

∥Xi,j − Ji,j
∥

∥

2

F

)

+ < Ŵ,L − J > +µ

2
‖L − J ‖2F + β R(L),

s.t. rank
(

Xi,j

)

≤ r,

where Ŵ
Y
i,j, Ŵ

J
i,j , Ŵ are the Lagrangian multipliers; µ is the

penalty parameter. The above minimization of the augmented

Lagrangian function can be solved by the ADMMmethod. At

the (k − 1)-th iteration, its solution at the next iteration can

be transformed into following two subproblems

(

X (k),S(k)
)

= argmin
S,X

ℓ

(

X ,S,J (k−1)
)

s.t. rank
(

Xi,j

)

≤ r . (10)
(

J (k),L(k)
)

= argmin
J ,L

ℓ

(

X (k),J ,L
)

. (11)
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A. OPTIMIZATION SUBPROBLEM FOR (X ,S)

With the other parameters fixed, the subproblem (10) for

(X ,S) can be reformulated as

argmin
S,X

ℓ (X ,S,J ) =
∑

i,j

(∥

∥Xi,j

∥

∥

∗ + λ
∥

∥Si,j
∥

∥

1

+ < Ŵ
Y
i,j,Yi,j − Xi,j − Si,j >

+ µ

2
‖Yi,j − Xi,j − Si,j‖2F

+ < Ŵ
J
i,j ,Xi,j − Ji,j > +µ

2

∥

∥Xi,j − Ji,j
∥

∥

2

F

)

s.t. rank
(

Xi,j

)

≤ r . (12)

To solve the subproblem (12), we perform rank-constrained

RPCA method on each patch separately and accumulate a

weighted sum of
(

Xi,j,Si,j
)

to reconstruct(X ,S). The opti-

mization for each
(

Xi,j,Si,j
)

can be reformulated as

argmin
S,X

∥

∥Xi,j

∥

∥

∗ + λ
∥

∥Si,j
∥

∥

1

+ < Ŵ
Y
i,j,Yi,j − Xi,j − Si,j >

+ µ

2
‖Yi,j − Xi,j − Si,j‖2F

+ < Ŵ
J
i,j ,Xi,j − Ji,j > +µ

2

∥

∥Xi,j − Ji,j
∥

∥

2

F

s.t. rank
(

Xi,j

)

≤ r . (13)

We alternately update the two variables Xi,j and Si,j, then

the optimization problem (13) can be separated into two

simpler minimization subproblems.

a)WithSi,j fixed, theminimization subproblem forXi,j can

be deduced from (13) as following

X
(k)
i,j = argmin

Xi,j

∥

∥Xi,j

∥

∥

∗ + 2µ

2

∥

∥

∥

∥

Xi,j −
1

2

(

Yi,j + Ji,j

−Si,j +
Ŵ
Y
i,j + Ŵ

J
i,j

µ
)

∥

∥

∥

∥

∥

2

F

s.t. rank(Xi,j) ≤ r . (14)

For the sake of simplicity, we denote the iteration of Xi,j

in (14) as

X
(k)
i,j = argmin

Xi,j

∥

∥Xi,j

∥

∥

∗ + 1

2
× 2µ

∥

∥Xi,j − Ui,j
∥

∥

2

F
,

s.t. rank(Xi,j) ≤ r,

where Ui,j = 1
2

(

Yi,j + Ji,j − Si,j +
(

Ŵ
Y
i,j + Ŵ

J
i,j

)

/µ

)

.

In [38], the updating of Xi,j has a closed-form solution which

is shown in Lemma 1.

Lemma 1 [38]: SupposingW is a matrix of size m1n1 × p,

and the singular value of matrix W of rank r is decomposed

into

W = UErV
∗,Er = diag

(

{σi}1≤i≤r
)

The singular value shrinkage operator then obeys

SHδ(W) = arg min
rank(X)≤r

δ‖X‖∗ + 1

2
‖X − W‖2F,

where

SHδ(W) = U diag {max ((σi − δ) , 0)}V∗.

Using Lemma 1, it is easy to get

X
(k)
i,j := SH 1

2µ

(

Ui,j

)

, (15)

where Xi,j and Ui,j are Casorati matrices of Xi,j and Ui,j
respectively.

b) With Xi,j fixed, the minimization subproblem for Si,j
can be deduced from (13) as following

argmin
Si,j

λ
∥

∥Si,j
∥

∥

1
+ µ

2
‖Si,j − (Yi,j − Xi,j + Ŵ

Y
i,j/µ)‖2F.

The solution of the above optimization subproblem can be

directly obtained by the soft threshold

S
(k)
i,j = Rλ/µ

(

Yi,j − Xi,j + Ŵ
Y
i,j/µ

)

, (16)

where

R1(x) =











x − 1, if x > 1

x + 1, if x < −1

0, otherwise.

B. OPTIMIZATION SUBPROBLEM FOR (J ,L)

a) With the other parameters fixed, the subproblem (11) for

J can be reformulated as

argmin
J

µ

2
‖J − X + Ŵ/µ‖22

+
∑

i,j

(

µ

2

∥

∥

∥
Xi,j − Ji,j + Ŵ

J
i,j/µ

∥

∥

∥

2

F

)

.

It is a convex function, which has the following closed form

solution

J (k) =



X − Ŵ/µ +
∑

i,j

PTi,j

(

Xi,j + Ŵ
J
i,j/µ

)





./



1 +
∑

i,j

PTi,j Pi,j



 . (17)

b) With the other parameters fixed, let σ = √
β/µ, Ĵ =

J + Ŵ/µ, the subproblem (11) for L can be reformulated as

L(k) = argmin
L

µ

2

∥

∥

∥
L − Ĵ

∥

∥

∥

2

F
+ β R(L)

= argmin
L

µ

2β

∥

∥

∥
L − Ĵ

∥

∥

∥

2

F
+ R(L)

= D(Ĵ , σ ), (18)

where D is defined in (7) and denotes the BM3D denoising

method. Note that the denoiser parameter σ is linked to the

noise level in i.i.d. Gaussian denoising, but in our model

the σ is linked to the general system error between Ĵ and

the ground truth. Thus, in our model σ is treated as a tunable

parameter to obtain an appropriate effect.

VOLUME 8, 2020 50195



H. Zeng et al.: HSI Denoising via Combined Non-Local Self-Similarity and Local Low-Rank Regularization

C. UPDATING THE LAGRANGIAN PARAMETERS

After solving the two subproblems (10) and (11), the

Lagrangian multipliers Ŵ
Y
i,j, Ŵ

J
i,j and Ŵ can be updated in

parallel as










Ŵ = Ŵ + µ(J − L),

Ŵ
Y
i,j = Ŵ

Y
i,j + µ

(

Yi,j − Xi,j − Si,j
)

,

Ŵ
J
i,j = Ŵ

J
i,j + µ

(

Xi,j − Ji,j
)

.

(19)

Summarizing the optimization strategy of step-by-step iter-

ation as above, the solution of the NLRPnP model proposed

by this paper can be obtained in Algorithm 1. Further, we dis-

cuss the complexity of the proposed models. Calculating

Xi,j has a complexity of O
(

pm2
1n

2
1 + p2m1n1

)

, the complex-

ity of updating Si,j is O (m1n1p), the complexity of updat-

ing J is O (mnp+ m1n1p). the complexity of updating L

is O (mnp). Therefore, the total complexity of NLRPnP is

O
(

pm2
1n

2
1 + p2m1n1 + m1n1p+ mnp

)

.

Algorithm 1 HSI Denoising With the NLRPnP Model

Require: m × n × p observed HSI Y , patch size m1 × n1,

stopping criterion ε, regularization parameters λ, β, and

desired rank r .

Ensure: Denoised image X ;

Initialize: X = L = S = J = 0, Ŵ = 0, ŴY
i,j = Ŵ

J
i,j =

0, µ = 10−2, µmax = 106, ρ = 1.5 and k = 0;

Repeat until convergence

Update all
(

Xi,j,Si,j
)

patches by (15) and (16) respec-

tively;

Update (J ,L, ) by (17) and (18) respectively;

Update the Lagrangian multipliers by (19);

Update the penalty parameter by µ := min (ρµ, µmax);

Check the convergence condition:

max
{
∥

∥

∥
Yi,j − X

(k)
i,j − S

(k)
i,j

∥

∥

∥

∞
,

∥

∥

∥
J (k) − L(k)

∥

∥

∥

∞

}

≤ ε.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the NLRPnP method is applied to both sim-

ulation and real experiments for verifying its HSI denoising

performance. In order to comprehensively evaluate the per-

formance of our proposed model, three kinds of denoising

methods are used for the comparison. They are the traditional

image denoisingmethods, e.g., NAILRMA [14], LRMR [13],

LRTV [8]; local or non-local based denoising methods, e.g.,

NLM3D [9], BM3D [10], LLRSSTV [24]; and tensor-based

methods, e.g., LRTA [18], LRTDTV [3], BM4D [31]. In par-

ticular, since the BM3D and BM4Dmethods are only suitable

for removing Gaussian noise, and most of the noise added to

HSIs in the simulation experiment is mixed noise, the mixed

noise is preprocessed by the RPCA method in advance for

fairly comparing the effectiveness of each method.

The parameters of these comparison methods are manually

adjusted to the optimal ones according to their correspond-

ing papers. In addition, in order to facilitate the calculation,

the HSI data is normalized to [0, 1] before performing the

denoising algorithms. After denoising, the denoised HSI data

is converted to the original gray level. All of the simulation

and real experiments are done in MATLAB R2018b on a

laptop of 64GB RAM, Intel (R) Core (TM) i7-8850H CPU,

@2.20GHz.

A. SIMULATED DATA EXPERIMENTS

In this section, simulation experiments are designed and

performed. In order to verify the universality of the pro-

posed model for different data, two HSI datasets, which

have been frequently used to interpret the denoising perfor-

mance of different models [3], [24], are selected to carry

on the simulation experiments. The first dataset is from

the Washington DC Mall of the HYDICE sensor [39], and

the second one is the Indian pines dataset from the USGS

spectral library [39]. From the Washington DC Mall dataset,

we choose a sub-blocks with a size of 256 × 256 × 191

for experiments. And from the USGS Indian pines dataset,

we select a sub-blocks with a size of 145 × 145 × 224 for

experiments. Fig. 6 lists the two selected HSIs.

To simulate the noisy HSI data observed in reality, we add

several types of noise to the two selected HSIs under 8 differ-

ent cases to test the performance of all compared denoising

methods, both in visual quality and quantitative perspective.

We list the details of the 8 noise cases as following:

Case 1): In this case, we add Gaussian noise and impulse

noise with the same intensity to different bands. The mean

value of Gaussian noise is zero and its variance is 0.05. The

percentage of impulse noise is 0.1.

Case 2): In this case, for different bands, the noise inten-

sity of Gaussian and impulse noise is equal too. However,

the noise intensity is stronger than case 1). The variance of

Gaussian white noise is 0.075, and the percentage of impulse

noise is 0.15.

Case 3): In this case, similarly, the same intensity noise is

added to all the bands. However, the noise intensity is stronger

than case 2). Specifically, the variance of Gaussian white

noise is increased to 0.1, while the percentage of impulse

noise is increased to 0.2.

Case 4): In this case, we only add Gaussian white noise

with 0.1 variance to the clean HSI, to verify the removal

performance of the proposed model for a single Gaussian

noise.

Case 5): In practice, the noise intensity in each band is also

different in real HSIs, and the HSIs are not only contaminated

by a single noise. To simulate this case, we also add Gaussian

noise and impulse noise into HSIs. However, the variance of

Gaussian white noise and the percentages of impulse noise in

each band are randomly selected from 0 to 0.2.

Case 6): Based onCase 5), deadlines are additionally added

from band 70 to band 100 in Washington DC Mall dataset,

and from band 111 to band 130 in USGS Indian Pines dataset.

The number of deadlines in each band is randomly selected

from 3 to 10, and the pixel width of deadlines is randomly

generated from 1 to 3.
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FIGURE 5. Each column shows the PSNR, SSIM values of each band of all methods under the 8 noise cases in USGS Indian Pines dataset.

FIGURE 6. Datasets used in the simulated experiment (a) USGS Indian
Pines dataset (R: 46, G: 88, B: 91). (b) HYDICE Washington DC Mall (R: 60,
G: 80, B: 120).

Case 7): Based on Case 5), some stripes are additionally

added from band 60 to band 90 in Washington DC Mall

dataset, and from band 121 to band 140 in USGS Indian

Pines dataset. The number of stripes in each band is randomly

selected from 20 to 40.

Case 8): In this case, the Gaussian noise and impulse noise

in Case 5), deadlines in Case 6) and stripe noise in Case 7)

are simultaneously added to the clean HSIs.

1) VISUAL QUALITY COMPARISON

Since an HSI often has dozens or even hundreds of bands,

only a part of the representative bands is displayed in the

experimental analysis. Firstly, we show different denoised

bands in Washington DC Mall dataset and USGS Indian

Pines dataset in Fig. 7, Fig. 8, Fig. 11 and Fig. 12. Then,

in order to better compare the denoising results of different

models visually, the same area with an obvious contrast of the

selected band is marked with a green box, and then enlarged

in a red box.

As shown in the figures, due to the mixed noise, it is

obvious that the original clear HSIs are greatly polluted in

image recognition and overall quality. After denoising by
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FIGURE 7. Band 3 of the USGS Indian Pines dataset before and after denoising via the different methods under noise case 3. (a) Original image of
band 6, (b) noisy image. Image denoising results of (c) BM3D,(d) LRTA, (e) LRTV, (f) NLM3D, (g) LRMR, (h) BM4D, (i) NAILRMA, (j) LRTDTV, (k) LLRSSTV,
(l) NLRPnP.

FIGURE 8. Band 116 of the USGS Indian Pines dataset before and after denoising via the different methods under noise case 6. (a) Original image of
band 6, (b) noisy image. Image denoising results of (c) BM3D,(d)LRTA, (e) LRTV, (f) NLM3D, (g) LRMR, (h) BM4D, (i) NAILRMA, (j) LRTDTV, (k) LLRSSTV,
(l) NLRPnP.

various methods, most of the noise in HSIs is removed,

but the denoising effect of each method is obviously differ-

ent. Specifically, NAILRMA is more suitable for low inten-

sity Gaussian noise removal. BM3D and BM4D have the

similar denoised images in vision and can achieve better

Gauss noise suppression effect, which is consistent with the

quantitative evaluation index. However, they can not remove

strong impulse noise. In some denoised bands, there is still

a phenomenon of image smoothing and the loss of texture

information is obvious. NLM3D is not good at depressing

mixed noise. Its denoised HSIs are visually distorted, still

include some sparse noise and obvious blurring phenomenon

at the edge zone. Although LRMR can remove the Gaussian

and impulse noise, residual deadlines and strip noise remain

in the denoised HSIs. LLRSSTV achieves a good denoising

effect. However, since the spatial non-local self-similarity of

HSIs is not explored, there are still some deadlines or stripes

residues in the denoised HSIs. LRTDTV also achieves a good

denoising effect. But, compared with our non-local regular-

ized local low-rank PnP method, the denoised results in the

region with rich texture information are not good enough.

In summary, compared with the selected denoised methods,

the proposed method can obtain the best denoising results in

visual comparison.

2) QUANTITATIVE COMPARISON

In order to further compare the effectiveness of the pro-

posed algorithm, the peak signal-to-noise ratio (PSNR) [40],

structural similarity index (SSIM) [41], erreur relative glob-

ale adimensionnelle de synthèse (ERGAS) [42], the mean
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TABLE 1. Quantitative assessment of the denoising results in the simulated experiment of USGS Indian Pines dataset. Boldface means the best and
underline means the second best.

FIGURE 9. The reflectance of special pixel of USGS Indian Pines in (40,10) under noise case 2.

spectral angle distance (MSAD) and feature similarity

(FSIM) [43] index are adopted to give a quantitative assess-

ment. First, the indices in each band of the denoised HSI

are calculated, and then the indices of all bands are averaged

to establish the final numerical evaluation criteria, MPSNR,

MSSIM, MSAD, MERGAS and MFSIM. Larger MPSNR,
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FIGURE 10. Each column shows the PSNR, SSIM values of each band of all methods under the 8 noise cases in Washington DC Mall
dataset.

FIGURE 11. Denoising result of Bnad 112 of Washington DC Mall under noise case 3. (a) Original image of band 6, (b) noisy image. Image denoising
results of (c) BM3D, (d) LRTA, (e) LRTV, (f) NLM3D, (g) LRMR, (h) BM4D, (i) NAILRMA, (j) LRTDTV, (k) LLRSSTV, (l) NLRPnP.

MSSIM andMFSIM, and smallerMERGAS,MSAD indicate

that the better the denoising performance of the correspond-

ing model is.

Under the conditions of 8 noise cases and 10 denoising

methods, Table 2 shows the values of indices for quantitative

assessment in Washignton DC Mall dataset, and Table 1

50200 VOLUME 8, 2020



H. Zeng et al.: HSI Denoising via Combined Non-Local Self-Similarity and Local Low-Rank Regularization

TABLE 2. Quantitative assessment of the denoising results in the simulated experiment of Washington DC Mall dataset. Boldface means the best and
underline means the second best.

FIGURE 12. Denoising result of Bnad 80 of Washington DC Mall under the noise case 6. (a) Original image of band 6, (b) PSNR. Image denoising results
of (c) BM3D, (d) LRTA, (e) LRTV, (f) NLM3D, (g) LRMR, (h) BM4D, (i) NAILRMA, (j) LRTDTV, (k) LLRSSTV, (l) NLRPnP.

shows the ones in USGS Indian Pines dataset. The best values

of each index are labeled in bold. One can obviously see

that our model significantly outperforms other comparison

methods with respective to almost the indices. Taking the

MPSNR as an example, our model achieves nearly 2.5 dB

improvement than the second-best results in USGS Indian

VOLUME 8, 2020 50201



H. Zeng et al.: HSI Denoising via Combined Non-Local Self-Similarity and Local Low-Rank Regularization

FIGURE 13. The reflectance of special pixel of Washington DC Mall in (220,190) under noise case 6.

FIGURE 14. Dataset used in the real data experiment (a) HYDICE urban
dataset used in the simulated experiment (R: 20, G: 90, B: 180). (b) AVIRIS
Indian Pines dataset (R: 1, G: 103, B: 220).

Pines dataset, and 1.5 dB improvement in Washington DC

Mall dataset. Furthermore, Fig. 10 lists the PSNR, SSIM

index for different denoised bands in Washington DC Mall

dataset, and Fig. 5 lists the ones in USGS Indian Pines dataset.

It can be seen that our model has higher PSNR, SSIM values

than other methods in most denoised bands.

In noise case 6, Fig. 13 shows the spectral curves of all

denoising methods at pixel (220,190) inWashington DCMall

dataset. In noise Case 2, Fig. 9 shows the spectral curves

of all denoising methods at pixel (40,10) in USGS Indian

Pines dataset. It is easy to see that spectral curves of noisy

HSIs fluctuate violently. After denoising by various methods,

the fluctuation amplitude of spectral curves is depressed.

Compared with all the contrast methods, the spectral curves

in our denoised HSIs have less spectral distortions. It means

that our model achieves better denoised results in the removal

of mixed noise.

FIGURE 15. Band 139 of the Urban dataset before and after denoising via the different methods. (a) Original image of band 150. Image denoising
results of (b) BM3D, (c) LRTV, (d) NLM3D, (e) LRMR, (f) BM4D, (g) NAILRMA, (h) LRTDTV, (i) LLRSSTV, (j) NLRPnP.
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FIGURE 16. Band 207 of the Urban dataset before and after denoising via the different methods. (a) Original image of band 150. Image denoising
results of (b) BM3D, (c) LRTV, (d) NLM3D, (e) LRMR, (f) BM4D, (g) NAILRMA, (h) LRTDTV, (i) LLRSSTV, (j) NLRPnP.

FIGURE 17. Spectral signatures curve of band 207 estimated by different methods.

B. REAL DATA EXPERIMENTS

In this section, two real datasets are selected to design and

perform experiments, i.e., the HYDICE Urban dataset [44]

and the AVIRIS Indian Pines dataset [39], which are shown

in Fig. 14.

1) HYDICE URBAN DATASET

Fig. 15 and Fig. 16 show the 139th and 207th bands before

denoising and after denoising by various methods, respec-

tively. It is easy to see that LRMR, NAILRMA and NLM3D

do not effectively remove the stripes. In addition, there is no

clear distinction in the denoised HSIs by the three methods.

This is mainly because the stripes and deadlines exist at the

same position in band 104 to band 110 and band 199 to band

210. That is, when the model performing low-rank and sparse

decomposition, stripes are more likely to be considered as

low-rank content and are mistaken for being part of a clean

image. The BM3D and LLRSSTV remove some of the noise

partly. Although LRTDTV and LRTV show better denoising

performance, when they smooth the noise, they also remove

the details and texture information at the same time. Our

method can simultaneously remove complex mixed noise

and preserve spatial texture information compared to other

contrast methods.
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FIGURE 18. Band 108 of the Indian Pines dataset before and after denoising via the different methods. (a) Original image of band 108. Image
denoising results of (b) BM3D, (c) LRTV, (d) NLM3D, (e) LRMR, (f) BM4D, (g) NAILRMA, (h) LRTDTV, (i) LLRSSTV, (j) NLRPnP.

FIGURE 19. Band 219 of the Indian Pines dataset before and after denoising via the different methods. (a) Original image of band 219. Image
denoising results of (b) BM3D, (c) LRTV, (d) NLM3D, (e) LRMR, (f) BM4D, (g) NAILRMA, (h) LRTDTV, (i) LLRSSTV, (j) NLRPnP.

In addition to the above qualitative visual evaluation,

the denoising HSIs are further evaluated by the quantitative

mean profile. The smaller the fluctuation of the mean profile

is, the higher the image quality is. The horizontal average

profile of the band 207 before and after denoising is shown

in Fig. 17. As shown in Fig. 17(a), due to the existence of

mixed noise such as Gaussian noise, stripes and deadlines,

the mean profile curves of the noisy image appear to fluctuate

rapidly. After denoising, we can see that the mean profile

curve of our method is the most stable and its fluctuation is

the smallest. This fact is also consistent with the visual result

shown in Fig. 16.

2) AVIRIS INDIAN PINES DATASET

This dataset is acquired by the NASA airborne visi-

ble/infrared imaging spectrometer (AVIRIS) instrument over

the Indian Pines in Northwestern Indiana in 1992, and it has

145×145 pixels and 220 bands. Fig. 14 shows the panorama

of Indian Pines. It can be seen that it is mainly polluted by
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FIGURE 20. Spectral signatures curve of band 219 with Indian pines estimated by different methods.

the atmosphere, water absorption, stripes and other unknown

noise.

Fig. 18 and Fig. 19 show the denoised images of the band

108 and 219 by different methods, respectively. Fig. 18(a) and

Fig. 19(a) show that the image is completely covered by noise

and the details are completely invisible. After denoising, it is

easy to observe that LRMR, NAILRMR, and BM3D lose

some texture details and distort the denoised images when

the intensity of the noise is large. Although LRTDTV and

LLRSSTV can effectively remove noise, the details of the

red boxes in the denoised images are severely degraded. On

the contrary, our model can maintain more complete texture

information when depressing the mixed noise. Similar to

the experimental analysis of the HYDICE Urban dataset,

the vertical mean profile of the band 108 before and after

denoising by various models is shown in Fig. 20. It can be

clearly observed again that our model has the smoothest mean

profile curve. This is also consistent with the visual results of

Fig. 18 and Fig. 19.

C. DISCUSSION

1) SENSITIVITY ANALYSIS OF PARAMETER λ

From our denoising model (9), it is easy to see that λ is an

important parameter to balance the influence of sparse noise

term and the rest of the regular terms. In RPCA model [12],

the sparsity regularization parameter is set to λ = 1/
√
mn.

In our model, there is the new non-local penalty, and the

low-rank model is performed on patches, therefore, it is dif-

ferent from RPCA. Hence, we set λ to C/
√
mn, where C is a

adjusted parameters. In Washington DCMall dataset, Fig. 23

shows MPSNR and MSSIM values of our model when C

changes in the set { 1, 10, 20, 30, 40, 50, 60, 65, 70, 75,

77, 79, 81, 85, 90, 95, 100 }. It can be easily seen from the

figure that the results of our model are relatively stable in

FIGURE 21. Sensitivity analysis of the rank constraint on the Indian Pines
image.

terms of MPSNR and MSSIM values. Based on the above

discussion, we recommend setting the λ to 0.3 in all simulated

data experiments.

2) SENSITIVITY ANALYSIS OF PARAMETER β

In our model (9), β also is an important parameter used to

balance the influence of non-local term and the rest of the

regular terms. In Washington DCMall dataset, Fig. 24 shows

MPSNR and MSSIM values of our model when β changes in

the set { 0.00001, 0.00005, 0.00009, 0.0002, 0.0003, 0.0005,
0.001, 0.002, 0.005, 0.007, 0.02, 0.05, 0.1 }. we set β to the
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FIGURE 22. Sensitivity analysis of the rank constraint on the Washington
DC image.

FIGURE 23. Sensitivity analysis of the C value. (a) Change in the MPSNR
value, (b) Change in the MSSIM value.

FIGURE 24. Sensitivity analysis of the β value. (a) Change in the MPSNR
value, (b) Change in the MSSIM value.

value 0.005 corresponding to the peak values of MPSNR and

MSSIM.

3) RANK VALUE r SENSITIVITY ANALYSIS

In our model (9), the value of rank r is related to the intensity

of noise and the inherent structure of the image. In order to

verify the influence of the value of rank r on the final results,

we analyze the performance of our model in Washington

DC Mall dataset and USGS Indian Pines dataset. As shown

FIGURE 25. MSSIM values versus the iteration number of NLRPnP with
the USGS Indian Pines dataset in the simulated experiments.

in Fig. 21 and Fig. 22, as the r value increases, theMPSNR of

our model first increases to a peak value, and then decreases.

Therefore, we set r to the value corresponding to the peak

value of MPSNR.

4) CONVERGENCE ANALYSIS OF THE MODEL

Fig. 25 shows the MSSIM value of our NLRPnP method

according to the iterations. After few iterations, the MPSNR

value and the MSSIM value tend to be stable, which reflects

the convergence of our algorithm.

5) COMPUTATIONAL TIME COMPARISON

The running time is an effective way tomeasure the efficiency

of a denoising method. For each iteration of the proposed

method, the computational burden consists of two parts,

i.e., local low-rank and sparse matrix decomposition and

non-local regularized image reconstruction. In order to speed

up the operation efficiency of the algorithm and enhance the

practicability of the proposed model, the algorithm is acceler-

ated by parallel computing of the SVD of all the patches and

the BM3D of all the bands, which occupies the most time in

each iteration. When the algorithm runs on MATLAB 2018b,

the CPU of the computer is Inter core i7@2.20GHz and the

memory is 64GB. For the Washington DC Mall dataset with

size 256 × 256 × 191 and the USGS Indian Pines dataset

with size 145 × 145 × 224, we have averaged the program

running time of 8 groups of experiments under the conditions

of noise case 1-8. The timing function built into MATLAB is

used for timing. The average running time of each model is

shown in Table 3.

6) NOT A SIMPLE COMBINATION

The NLRPnP is not just simple combination of non-local

method, e.g., BM3D, and LLR but is a systematical integra-

tion of BM3D with LLR in the Plug-and-Play framework.

In Fig. 26, we demonstrate the results on USGS Indian Pines

recovered by BM3D and LLR, directly performing BM3D

after LLR, and NLRPnP with the noise case 3. The BM3D

gets the worst performance, because it is designed remove the
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TABLE 3. Running times (in seconds) of the different methods in the simulated data experiments.

FIGURE 26. Band 204 of the Indian Pines dataset before and after denoising via the different methods. (a) Noisy image, image denoising results of
(b) BM3D, (c) LLR, (d) LLR+BM3D, (e) NLRPnP.

Gaussian noise. And the result by directly performing BM3D

after LLR is slightly worse than that by LLR. This direct

combination-processing does not work. Meanwhile, we can

see that the PSNR value of the result by NLRPnP is nearly

6 dB higher than that of simple combination of BM3D and

LLR.

VI. CONCLUSION

In this paper, based on the newly emerged PnP framework, we

have proposed a novel NLRPnP method for HSI denoising.

The HSI is first divided into local overlapping patches. Then,

we adopt the patch-based low-rank matrix approximation to

guarantee the local low-rankness while plugging in non-local

based denoisers to promote the non-local self-similarity. Fur-

thermore, to consider the inner geometry or structure of

mixed noises, we integrate the L1 norm regularization to

the denoising framework, to detect the local sparse noise,

including stripes, impulse noise, and dead pixels. Simulated

and real HSI experiment results confirmed that compared

with competitive methods, the proposed model has certain

advantages in preserving the abundant details and the indices

for quantitative assessment.
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