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Abstract—This paper introduces a new supervised Bayesian ap-
proach to hyperspectral image segmentation with active learning,
which consists of two main steps. First, we use a multinomial logis-
tic regression (MLR) model to learn the class posterior probability
distributions. This is done by using a recently introduced logistic
regression via splitting and augmented Lagrangian algorithm.
Second, we use the information acquired in the previous step to
segment the hyperspectral image using a multilevel logistic prior
that encodes the spatial information. In order to reduce the cost
of acquiring large training sets, active learning is performed based
on the MLR posterior probabilities. Another contribution of this
paper is the introduction of a new active sampling approach,
called modified breaking ties, which is able to provide an unbi-
ased sampling. Furthermore, we have implemented our proposed
method in an efficient way. For instance, in order to obtain the
time-consuming maximum a posteriori segmentation, we use
the α-expansion min-cut-based integer optimization algorithm.
The state-of-the-art performance of the proposed approach is
illustrated using both simulated and real hyperspectral data sets in
a number of experimental comparisons with recently introduced
hyperspectral image analysis methods.

Index Terms—Active learning, graph cuts, hyperspectral image
segmentation, ill-posed problems, integer optimization, mutual
information (MI), sparse multinomial logistic regression (MLR).

I. INTRODUCTION

W ITH THE recent developments in remote sensing in-

struments, hyperspectral images are now widely used

in different application domains [1]. The special characteristics

of hyperspectral data sets bring difficult processing problems.

Obstacles, such as the Hughes phenomenon [2], come out as the

data dimensionality increases. These difficulties have fostered

the development of new classification methods, which are able

to deal with ill-posed classification problems. For instance,

several machine learning techniques are applied to extract rele-

vant information from hyperspectral data sets [3]–[5]. However,
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although many contributions have been made to this area, the

difficulty in learning high-dimensional densities from a limited

number of training samples (an ill-posed problem) is still an

active area of research.

Discriminative approaches, which learn the class distribu-

tions in high-dimensional spaces by inferring the boundaries

between classes in feature space [6]–[8], effectively tackle the

aforementioned difficulties. Specifically, support vector ma-

chines (SVMs) [9] are among the state-of-the-art discriminative

techniques that can be applied to solve ill-posed classification

problems. Due to their ability to deal with large input spaces

efficiently and to produce sparse solutions, SVMs have been

used successfully for supervised and semisupervised classifi-

cations of hyperspectral data using limited training samples

[1], [3], [10]–[15]. On the other hand, multinomial logistic

regression (MLR) [16] is an alternative approach to deal with

ill-posed problems, which has the advantage of learning the

class probability distributions themselves. This is crucial in

the image segmentation step. As a discriminative classifier,

MLR directly models the posterior densities instead of the

joint probability distributions. The distinguishing features of

discriminative classifiers have been reported in the literature be-

fore [7], [8], [17]. For instance, effective sparse MLR (SMLR)

methods are available in the literature [18]. These ideas have

been applied to hyperspectral image classification [5], [19],

[20], yielding good performance.

Another well-known difficulty in supervised hyperspectral

image classification is the limited availability of training data,

which are difficult to obtain in practice as a matter of cost

and time. In order to effectively work with limited training

samples, several methodologies have been proposed, including

feature extraction methods such as principal component anal-

ysis (PCA), linear discriminant analysis (LDA), discriminant

analysis feature extraction, multiple classifiers, and decision

fusion [21], among many others [1]. Active learning, which

is another active research topic, has been widely studied in

the literature [22]–[28]. These studies are based on different

principles, such as the evaluation of the disagreement between a

committee of classifiers [25], the use of hierarchical classifica-

tion frameworks [24], [27], unbiased query by bagging [28], or

the exploitation of a local proximity-based data regularization

framework [26].

In this paper, we use active learning to construct small train-

ing sets with high training utility, with the ultimate goal of sys-

tematically achieving noticeable improvements in classification

results with regard to those found by randomly selected training

sets of the same size. Since active learning is intrinsically

biased sampling, an issue to be investigated in our experiments

0196-2892/$26.00 © 2011 IEEE
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is whether the considered classifier (in this paper, the MLR)

would be able to cope with the class imbalance problem that

might be inferred during the active learning strategy. Another

trend to improve classification accuracy is to integrate spatial

contextual information with spectral information for hyper-

spectral data interpretation [1], [5], [13], [29]. These methods

exploit, in a way or another, the continuity (in probability

sense) of neighboring labels. In other words, it is very likely

that, in a hyperspectral image, two neighboring pixels have the

same label.

In this paper, we introduce a new supervised Bayesian

segmentation approach which exploits both the spectral and

spatial information in the interpretation of remotely sensed

hyperspectral data sets. The algorithm implements two main

steps: 1) learning stage, using the MLR via variable splitting

and augmented Lagrangian (LORSAL) [30] algorithm to infer

the class distributions, and 2) segmentation stage, which infers

the labels from a posterior distribution built on the learned class

distributions and on a multilevel logistic (MLL) prior [31]. The

computation of the maximum a posteriori (MAP) segmentation

amounts at maximizing the posterior distribution of class labels.

This is a hard integer optimization problem, which we solve

by using the powerful graph-cut-based α-expansion algorithm

[32]. It yields exact solutions in the binary case and very

good approximations when there are more than two classes.

Furthermore, we aim at significantly exploiting the efficiency of

the labeled samples by means of active learning, thus reducing

the size of the required training set and taking full advantage

of the MLR posterior probabilities. In this paper, different

strategies are used to implement active learning in addition to

random sampling (RS): 1) the mutual information (MI) between

the MLR regressors and the class labels [22], [23]; 2) a criterion

called breaking ties (BT) [33]; and 3) our proposed version

called modified BT (MBT), which is also intended to guarantee

unbiased samplings among the classes.

The remainder of this paper is organized as follows.

Section II formulates the hyperspectral image segmentation

problem. Section III describes the proposed approach.

Section IV presents the active learning algorithms considered

in this paper. Section V reports segmentation results based on

both simulated and real hyperspectral data sets in several ill-

posed scenarios. Comparisons with state-of-the-art algorithms

are also included and thoroughly described in this section.

Finally, Section VI concludes with a few remarks and hints at

plausible future research lines.

II. PROBLEM FORMULATION

Let S ≡ {1, . . . , n} denote a set of integers indexing the n
pixels of a hyperspectral image; let L ≡ {1, . . . ,K} be a set

of K labels; let x = (x1, . . . ,xn) ∈ R
d×n denote an image of

d-dimensional feature vectors; let y = (y1, . . . , yn) ∈ Ln be

an image of labels; and let DL ≡ {(x1, y1), . . . , (xL, yL)} ∈
(Rd × L)L be a training set where L denotes the total number

of available labeled samples. With the aforementioned defini-

tions in place, the goal of classification is to assign a label

yi ∈ L to each pixel i ∈ S , based on the vector xi, resulting in

an image of class labels y. We call this assignment a labeling.

On the other hand, the goal of segmentation is to compute,

based on the observed image x, a partition S = ∪iSi of the set

S such that the pixels in each element of the partition share

some common properties (i.e., they represent the same type

of land cover). Notice that, given a labeling y, the collection

Sk = {i ∈ S|yi = k} for k ∈ L is a partition of S . Also, given

the segmentation Sk for k ∈ L, the image {yi|yi = k if i ∈
Sk, i ∈ S} is a labeling. Therefore, we can assume that there is

a one-to-one relationship between labelings and segmentations.

Nevertheless, in this paper, we will refer to the term classi-

fication when there is no spatial information involved in the

processing stage, while we will refer to segmentation when the

spatial prior is being considered.

In a Bayesian framework, inference is often carried out by

maximizing the posterior distribution1

p(y|x) ∝ p(x|y)p(y) (1)

where p(x|y) is the likelihood function (i.e., the probability of

the feature image given the labels) and p(y) is the prior over the

labels in y. Assuming conditional independence of the features

given the labels, i.e., p(x|y) = ∏i=n
i=1 p(xi|yi), the posterior

p(y|x) may be written as a function of y as follows:

p(y|x) = 1

p(x)
p(x|y)p(y)

=α(x)
i=n∏

i=1

p(yi|xi)

p(yi)
p(y) (2)

where α(x) ≡ ∏i=n
i=1 p(xi)/p(x) is a factor not depending

on y. The MAP segmentation is then given by

ŷ = arg max
y∈Ln

{
n∑

i=1

(log p(yi|xi)− log p(yi)) + log p(y)

}
.

(3)

In the present approach, the densities p(yi|xi) are modeled

as MLRs [16], whose regressors are learned via the LORSAL

algorithm [30]. As prior p(y) on the labelings y, we adopt

an MLL Markov random field (MRF) [31], which encourages

neighboring pixels to have the same label. The MAP labeling/

segmentation ŷ is computed via the α-expansion algorithm

[34], a min-cut-based tool to efficiently solve a class of integer

optimization problems of which the MAP segmentation in (3)

is an example.

III. PROPOSED APPROACH

As mentioned in the previous section, in this paper, we

model the posterior densities p(yi|xi) using an MLR, which

is formally given by [16]

p(yi = k|xi,ω) ≡ exp
(
ω

(k)h(xi)
)

∑K
k=1 exp

(
ω

(k)h(xi)
) (4)

1To keep the notation simple, we use p(·) to denote both continuous
probability densities and discrete probability distributions of random variables.
The meaning should be clear from the context.
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where h(x) ≡ [h1(x), . . . , hl(x)]
T is a vector of l fixed

functions of the input, often termed features, and ω ≡
[ω(1)T , . . . ,ω(K)T ]

T
denotes the logistic regressors. Since the

density in (4) does not depend on translations of the regressors

ω
(K), we take ω

(K) = 0 and remove it from ω, i.e., ω ≡
[ω(1)T , . . . ,ω(K−1)T ]

T
.

It should be noted that function h may be linear, i.e.,

h(xi) = [1, xi,1, . . . , xi,d]
T, where xi,j is the jth component

of xi. Alternatively, h can also be nonlinear. For the nonlinear

case, kernels are a relevant example and can be expressed by

h(xi) = [1,Kxi,x1
, . . . ,Kxi,xl

]T, where Kxi,xj
≡ K(xi,xj)

and K(·, ·) is some symmetric kernel function. Kernels have

been largely used in this context because they tend to improve

the data separability in the transformed space. In this paper,

we present results only for the Gaussian radial basis function

(RBF) kernel, given by K(x, z) = exp(−‖x− z‖2/(2ρ2)).
The RBF kernel has been widely used in hyperspectral image

classification [11]. If we denote by γ the dimension of h(x),
then we have γ = d+ 1 for the linear case and γ = L+ 1
for the RBF kernel (recall that L is the number of samples

in the training set DL). In addition to the Gaussian RBF

kernel, we have considered other alternative kernels such as the

polynomial one. However, we have experimentally tested that

the results obtained are very similar in both cases. Hence, in the

following, we adopt the Gaussian RBF kernel as a baseline for

simplicity.

A. LORSAL

In our context, learning the class densities amounts to esti-

mating the logistic regressors ω. Following the principles of

the SMLR algorithm [18], the estimation of ω amounts to

computing the MAP estimate

ω̂ = argmax
ω

ℓ(ω) + log p(ω) (5)

where ℓ(ω) is the log-likelihood function given by

ℓ(ω) ≡ log

L∏

i=1

p(yi|xi,ω) (6)

p(ω) ∝ exp (−λ‖ω‖1) (7)

is a Laplacian prior promoting the sparsity on ω (‖ω‖1 denotes

the l1 norm of ω) with λ acting as a regularization parameter.

The prior p(ω) forces many components of ω to be zero.

Thus, the Laplacian prior selects just a few kernel functions.

The sparseness imposed on the regression vector controls the

MLR classifier complexity and consequently enhances its gen-

eralization capacity.

Solving the convex problem in (5) is difficult because the

term ℓ(ω) is nonquadratic and the term log p(ω) is non-

smooth. A majorization–minimization framework [35] has re-

cently been used in [18], [20], [23], and [36] to decompose the

problem in (5) into a sequence of quadratic problems. The com-

putational cost of the SMLR algorithm used for solving each

quadratic problem is O((γK)3), which is prohibitive when

dealing with data sets with a large number of features, with

a large number of classes, or both. The fast SMLR (FSMLR)

[19] estimates the sparse regressors in an efficient way by

implementing a block-based Gauss–Seidel iterative procedure

to calculate ω. This procedure is on the order of K2 faster

than the original SMLR algorithm. Thus, the FSMLR algorithm

extends the capability of SMLR to handle data sets with a

large number of classes. However, with an overall complexity

of O(γ3K), the complexity of FSMLR is still unbearable in

many cases, particularly for hyperspectral data sets with high-

dimensional features.

In this paper, we resort to the recently introduced LORSAL

algorithm [30] to learn the MLR regressors given by (5). By re-

placing log p(ω) in (4) with log p(ν), approximating ℓ(ω) with

a quadratic majorizer, and introducing the constraint ω = ν,

the LORSAL algorithm replaces a difficult nonsmooth convex

problem with a sequence of quadratic plus diagonal l2 − l1
problems which are easier to solve. For additional details, see

the Appendix located at the end of this paper. In practice, the

total cost of the LORSAL algorithm is O(γ2K) per iteration,

which contrasts with the O((γK)3) and O(γ3K) complexities

of SMLR and FSMLR, respectively. As a result, the reduction

of computational complexity is on the order of γK2 and γ,

respectively.

B. MLL Spatial Prior

In order to encourage piecewise smooth segmentations and

promote solutions in which adjacent pixels are likely to belong

to the same class, we include spatial–contextual information in

our proposed method by adopting an isotropic MLL prior to

model the image of class labels y. This prior, which belongs

to the MRF class, is a generalization of the Ising model [37]

and has been widely used in image segmentation problems (see,

e.g., [5], [20], [36], and [38]).

According to the Hammersly–Clifford theorem [39], the

density associated with an MRF is a Gibbs’ distribution [37].

Thus, the prior model has the structure

p(y) =
1

Z
e

(
−
∑
c∈C

Vc(y)

)

(8)

where Z is a normalizing constant for the density, the sum in

the exponent is over the so-called prior potentials Vc(y) for the

set of cliques2 C over the image, and

−Vc(y) =

⎧
⎨
⎩

υyi
, if |c| = 1 (single clique)

μc, if |c| > 1 and ∀i,j∈cyi = yj
−μc, if |c| > 1 and ∃i,j∈cyi 	= yj

(9)

where μc is a nonnegative constant.

The potential function in (9) encourages neighbors to have

the same class label. The considered MLL prior offers great

flexibility in this task by varying the set of cliques and the

parameters υyi
and μc. For example, the model generates

2A clique is a single term that denotes a set of pixels that are neighbors of
one another.
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texturelike regions if μc depends on c and bloblike regions

otherwise [31]. In this paper, we take eυyi = cte, implying that

we are assuming equiprobable classes, and μc = (1/2)μ > 0
and assume that a clique consists either of a single pixel, i.e.,

c = {i}, or a pair of neighboring pixels, i.e., c = {i, j}, where

i and j are neighbors; then, (8) can be rewritten as

p(y) =
1

Z
e

µ
∑

{i,j}∈C

δ(yi−yj)

, (10)

where δ(y) is the unit impulse function.3 This choice gives no

preference to any direction. Notice that the pairwise interaction

terms δ(yi − yj) attach higher probability to equal neighboring

labels than the other way around. In this way, the MLL prior

promotes piecewise smooth segmentations, where μ controls

the degree of smoothness.

C. Computing the MAP Estimate via Graph Cuts

Using the LORSAL algorithm to learn p(yi|xi) and the MLL

prior p(y) and according to (3), under the equiprobable class

assumption, the MAP segmentation is finally given by

ŷ = arg min
y∈Ln

∑

i∈S
− log p(yi|ω̂)− μ

∑

i,j∈C
δ(yi − yj) (11)

where p(yi|ω̂) ≡ p(yi|xi,ω) computed at ω̂. Minimization of

(11) is a combinatorial optimization problem involving unary

and pairwise interaction terms, which is very difficult to com-

pute. Recently developed energy minimization algorithms like

graph cuts [32], [34], [40], loopy belief propagation [41], [42],

and tree-reweighed message passing [43] are efficient tools

to tackle this class of optimization problems. In this paper,

we use the α-expansion algorithm [34] to solve our integer

optimization problem [44]. This algorithm yields very good

approximations to the MAP segmentation and is quite effi-

cient from a computational point of view, being the practical

computational complexity of this algorithm O(n). The pseu-

docode for the proposed supervised segmentation algorithm

with discriminative class learning and MLL prior is shown in

Algorithm 1.

Algorithm 1 Supervised Segmentation Algorithm

(LORSAL-MLL)

Input: DL, λ, β
1: ω̂ := LORSAL(DL, λ, β)

2: P̂ := p̂(xi, ω̂) i ∈ S
3: ŷ := α-Expansion(P̂, μ)

D. Overall Complexity

The overall complexity of our proposed approach is domi-

nated by the supervised learning of the MLR regressors through

3δ(0) = 1 and δ(y) = 0 for y �= 0.

the LORSAL algorithm, shown in Algorithm 4 (see Appendix),

which has a complexity of O(γ2K), and by the α-expansion

algorithm used to determine the MAP segmentation, which has

a practical complexity of O(n). In conclusion, if γ2K ≫ n
(e.g., h(x) are kernels and the number of classes is large), then

the algorithm’s complexity is dominated by the computation of

the MLR regressors, whereas if γ2K ≪ n, then the algorithm’s

complexity is dominated by the α-expansion algorithm.

IV. ACTIVE LEARNING

In this paper, we use active learning to reduce the need for

large amounts of labeled samples. The basic idea of active

learning is to iteratively enlarge the training set by request-

ing an expert to label new samples from the unlabeled set

{xi, i ∈ SU} in each iteration, where SU is the set of unlabeled

feature vectors, i.e., spectral vectors in the observed context.

The relevant question is, of course, what vectors in SU are

most informative and should be chosen as new samples. In this

paper, we take advantage of the MLR model, which provides

the exact posterior probabilities. Therefore, three different sam-

pling schemes, based on the spectral information (more specif-

ically, on the MLR posterior probabilities just provided by the

LORSAL algorithm) are implemented: 1) MI-based criterion

[22], [23]; 2) BT algorithm [33]; and 3) our proposed MBT

scheme.

A. MI-Based Active Learning

The first active learning scheme considered is an MI-based

criterion [22], [23] that maximizes the MI between the MLR

regressors and the class labels. Let I(ω; yi|xi) denote the MI

between the MLR regressors and the class label yi. Following

[22], the new vector xi is selected according to

x̂MI
i = arg max

xi,i∈SU

I(ω; yi|xi), (12)

where (see [22] for more details)

I(ω; yi|xi) = (1/2) log
(
|HMI|/H

)
. (13)

Here, H is the posterior precision matrix, i.e., the Hessian

of minus the log-posterior H ≡ ∇2(− log p(ω̂|DL)) [45] and

HMI is the posterior precision matrix after including the new

sample xi. In the proposed approach, we use a Laplacian

approximation of the posterior to model p(ω|DL), such that

p(ω|DL) ≃ N (ω|ω̂,H−1), which assumes that the MAP es-

timate ω̂ remains unchanged after including the new sample. If

the size of the initial training sample is “small,” this assumption

may not hold at the beginning of the active learning procedure.

Nevertheless, it has been empirically observed that it leads to a

very good approximation [23], [46]. Under this assumption, we

can compute HMI as follows:

HMI = H+
(
diag (pi(ω̂))− pi(ω̂)pi(ω̂)T

)
⊗ h(xi)h(xi)

T

(14)
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Fig. 1. Graphical illustration of the MI, BT, and MBT active learning
approaches using a toy example.

where pi(ω̂) ≡ [pi,1, . . . , pi,K ]T, pi,k ≡ p(yi = k|xi, ω̂) for

k = 1, . . . ,K, and ⊗ is the Kronecker product. Therefore,

(13) turns to

I(ω; yi|xi) = (1/2) log

(
1 +

K∏

k=1

pi,kx
T
i H

−1xi

)
. (15)

According to (15), the function in (12) is maximized for pi,k ≈
1/K, i.e., for samples near the boundaries among classes

and corresponding to probability vectors pi with maximum

entropy. This situation is graphically shown in Fig. 1, in

which a toy example with four simulated regions is used

for demonstration purposes. As shown by Fig. 1, the MI fo-

cuses on the most complex area (boundary between the four

regions).

B. BT Active Learning

The BT active learning algorithm [33] was proposed to

achieve diversity in the sampling, thus alleviating the bias in

the MI-based sampling. The decision criterion is

x̂BT
i = arg min

xi,i∈SU

{
max
k∈L

p(yi = k|xi, ω̂)

− max
k∈L\{k+}

p(yi = k|xi, ω̂)

}
(16)

where k+ = argmax
k∈L

p(yi = k|xi, ω̂) is the most probable

class for sample xi.

Other than the MI-based criterion, which focuses on the

most complex regions (i.e., regions with the largest number of

boundaries), the BT criterion focuses on the boundary region

between two classes, with the goal of obtaining more diversity

in the composition of the training set. In spite of the better

performance generally expected from the BT criterion with

respect to the MI-based one, it may still produce biased sam-

pling, namely, when there are many samples located close to a

boundary. This can be seen in Fig. 1, which shows how the BT

criterion generally focuses on the boundaries comprising many

samples, possibly disregarding boundaries with fewer samples

but which may be crucial for the learning procedure needed

to train discriminative classifiers. In the following section, we

propose a new modified scheme (called MBT) which promotes

even more diversity in the sampling process.

C. MBT Active Learning

For a given ω̂ and s ∈ L, let SUs
⊂ SU be the set of pixels

such that p(yi = s|xi, ω̂) ≥ p(yi = k|xi, ω̂), for i ∈ SUs
and

k 	= s. Then, the MBT criterion simply works as follows:

do

s = next class

select SUs

x̂MBT
i = arg max

xi,i∈SUs ,k∈L\{s}
p(yi = k|xi, ω̂),

while stop rule (17)

where the “next class” is chosen by scanning the index set L
in a cyclic fashion. We highlight the following two character-

istics of the MBT criterion in (17), both intended to promote

diversity in the selection process as compared with the BT

criterion.

1) By cyclically selecting subsets of SU containing the

pixels with the same MAP label, it is assured that the

MBT criterion does not get trapped in any class.

2) The step maxk∈L\{s} p(yi = k|xi, ω̂) tends to select new

samples away from complex areas. As shown by Fig. 1,

the main advantage of the proposed MBT with regard to

other active learning approaches such as MI or BT is that

the former method takes into account all the class bound-

aries which are crucial to the learning procedure when

conducting the sampling, whereas MI mainly focuses on

the most complex area and BT may get trapped in a single

boundary.

After having presented the three sampling methods consid-

ered in this paper, i.e., MI, BT, and MBT, it is now important

to emphasize that (12), (16), and (17) assume that only one

sample is labeled at each iteration. However, in practice, we

consider u > 1, i.e., we label more than one sample per iter-

ation. Let Du ≡ {(x1, y1), . . . , (xu, yu)} be the new labeled

set. For the MBT sampling, we adopt a two-step scheme. First,

round(u/K) + 1 new samples per class are selected according

to (17), where function round(·) simply rounds toward the

nearest integer value. Second, we run (16) to select the u most

informative samples for the recently obtained set. For binary

classification problems, the MI, BT, and MBT strategies can

be considered equivalent since they lead to exactly the same

new labeling for any u. However, for multiclass problems, the

three considered strategies may lead to different labelings. In

turn, when u is very small, the performances of BT and MBT

become similar.

To conclude this section, Algorithm 2 shows the pseu-

docode of the LORSAL algorithm using active learning (called

LORSAL-AL), where β ≥ 0 is the augmented Lagrangian

LORSAL parameter (see Appendix). Finally, the supervised

segmentation algorithm with active learning (called LORSAL-

MLL-AL) is shown in Algorithm 3.
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Algorithm 2 LORSAL Using Active Learning

(LORSAL-AL)

Input: ω̂,DL,SU , u, λ, β
1: repeat

2: Du := AL(ω̂,SU ) (function AL(·) is one of the sam-

pling methods: RS, MI, BT, and MBT.)

3: DL := DL +Du

4: SU := SU − {1, . . . , u}
5: ω̂ := LORSAL(DL, λ, β)
6: until some stopping criterion is met

Algorithm 3 Supervised Segmentation Algorithm Using

Active Learning (LORSAL-AL-MLL)

Input: ω̂,SU ,DL, u, λ, β
1: repeat

2: Du := AL(ω̂,SU )
3: DL := DL +Du

4: SU := SU − {1, . . . , u}
5: ω̂ := LORSAL(DL, λ, β)
6: until some stopping criterion is met

7: ŷ := α-Expansion(P̂, μ)

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

algorithm using both simulated and real hyperspectral data

sets. The main objective of the experimental validation with

simulated data sets is the assessment and characterization of the

algorithm in a fully controlled environment, whereas the main

objective of the experimental validation with real data sets is

to compare the performance of the proposed method with that

reported for state-of-the-art competitors in the literature.

It should be noted that, in all of our experiments, we apply the

Gaussian RBF kernel to a normalized version of the input hy-

perspectral data.4 Alternative experiments have been conducted

with other kernels, such as the polynomial one, obtaining very

similar results. The scale parameter is set to a fixed value

ρ = 0.6, as we have empirically proved that this setting leads

to good characterization results. Another reason is that we have

not observed significant improvements for small variations of

ρ. In the following, we assume that DLi
denotes the initial

labeled set, which is a subset of the available training set, and

that Li denotes the number of samples (recall that L denotes

the total number of labeled samples). In practice, we assume

that the initial training samples for each class are uniformly

distributed. Concerning the smaller classes, if the total labeled

samples of class k in the ground truth image, for example, Lk,

is smaller than L/K, we take Lk/2 as the initial number of

labeled samples. In this case, larger classes have more samples.

In all cases, the reported figures of overall accuracy (OA) are

4The normalization is simply given by xi := xi/(
√∑

‖xi‖2),
for i = 1, . . . , n, where xi is a spectral vector.

obtained by averaging the results obtained after conducting ten

independent Monte Carlo runs with respect to DLi
.

The remainder of this section is organized as follows.

Section V-A reports experiments with simulated data, with

Section V-A.1 conducting an evaluation of the LORSAL al-

gorithm, Section V-A.2 evaluating the impact of the spatial

prior, and Section V-A.3 evaluating the impact of the active

learning approaches. Section V-B evaluates the performance

of the proposed algorithm using four real hyperspectral scenes

collected by the Airborne Visible Infrared Imaging Spectrom-

eter (AVIRIS), operated by NASA Jet Propulsion Laboratory,

and by the Reflective Optics Imaging Spectrometer System

(ROSIS), operated by the German Aerospace Agency.

A. Experiments With Simulated Data

In our simulated data experiments, we generate images of

labels denoted by y ∈ Ln, sampled from a 128 × 128 MLL

distribution with μ = 2. The feature vectors are simulated

according to

xi = myi
+ ni, i ∈ S, yi ∈ L (18)

where xi ∈ R
d denotes the spectral vector observed at pixel

i, myi
denotes a set of K known vectors, and ni denotes

zero-mean Gaussian noise with covariance σ2I, i.e., ni ∼
N (0, σ2I). In Sections V-A.1 and A.2, we will not consider

the active learning procedure (i.e., L = Li) because our focus

in these two sections will be on analyzing the competitiveness

of the LORSAL algorithm and on evaluating the role of the

spatial prior independently of the active learning mechanism,

respectively. In both cases, the training set DL is a subset of the

ground-truth image, whereas the remaining samples are consid-

ered as the test set. Finally, Section V-A.3 analyzes the impact

of including the active learning mechanism in the proposed

method. We would like to state that, in these experiments, the

initial labeled set DLi
is randomly selected from the ground-

truth image, whereas the remaining samples are considered as

the validation set. At each iteration of the active sampling pro-

cedure, the new set Du is actively selected from the test set. This

is a suboptimal procedure for the evaluation of the accuracies.

However, in these experiments, the maximum training set used

is made up of 80 samples, which represents only 0.49% of

the whole image. According to this, we believe that the active

learning process would not be harmful to the evaluation of the

accuracy in our proposed setting. Therefore, we do not separate

the training and test sets, which also guarantees that the test set

remains as large as possible. In the real image experiments, we

completely separate the training and test sets.

1) Evaluation of the LORSAL Algorithm: In this section,

we generate the simulated hyperspectral data according to the

model in (18), where spectral vectors mi, with i = 1, . . . ,K,

were selected (randomly) from the U.S. Geological Survey

(USGS) digital spectral library5 with d = 224, K = 10, L =
1000, and σ = 1.

5Available online: http://speclab.cr.usgs.gov.
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Fig. 2. Evaluation of the log-posterior in (5) as a function of the computing
time (measured in a desktop PC with Intel Core 2 Duo CPU at 2.40 GHz and
4 GB of RAM memory) for LORSAL, FSMLR, and SMLR algorithms.

Fig. 3. Evaluation of the impact of the regularization parameter λ on the OA
and on the level of sparsity ξ.

In our first experiment, we illustrate the computational

efficiency of the LORSAL algorithm. Fig. 2 shows the log-

posterior ℓ(ω)− λ‖ω‖1 as a function of the computation time

for LORSAL, FSMLR, and SMLR algorithms (implemented

in Matlab). As it can be seen in Fig. 2, LORSAL is by far

the fastest algorithm. For a similar log-posterior, the LORSAL

algorithm took about 2 s in a desktop PC with Intel Core 2

Duo CPU at 2.40 GHz and 4 GB of RAM memory, while

the FSMLR and SMLR algorithms took around 48 and 880 s,

respectively, in the same computing environment.

As already mentioned, the regularization parameter λ in (7)

controls the sparseness of the regressors, which is essential to

the generalization capacity. However, an inappropriate value of

λ may lead to overfitting or underfitting scenarios. In practice,

we estimate λ by using cross-validation sampling [47] over

the initial training set. Nevertheless, in our second experiment,

we conduct an analysis of the impact of λ on the achieved

performance. Let ξ = 100× (nω0
/nω)%, where nω and nω0

denote the number of components and zeros in ω, respectively.

Fig. 3 shows the OA and ξ as a function of λ, for 10−2 ≤
λ ≤ 30. The impact of λ on the sparsity of ω is clear. The

higher values of OA are obtained for λ ∈ [2, 10] corresponding

to levels of sparsity ξ ∈ [50, 60]%.

2) Impact of the Spatial Prior: In this experiment, we ana-

lyze the impact of the spatial prior on the segmentation accuracy

in a binary problem, i.e., with K = 2. The feature vector is set

to mi = ξiφ, where ‖φ‖ = 1 and ξi = ±1. An image of class

Fig. 4. Classification and segmentation results obtained with the proposed
algorithm. The simulated data set was generated according to (18) with d =
500, σ = 1.5, and µ = 2. (a) Simulated binary map. (b) Classification map
produced by the LORSAL algorithm using L = 100 labeled samples without
active learning (OA = 60.13%, with OAopt = 71.91%, see text). (c) Segmen-
tation map, same as (b) but using the MLL spatial prior (OA = 92.48%).

labels y generated according to the MLL prior in (18) is shown

in Fig. 4(a), where the labels yi = 1, 2 correspond to ξi = −1,

+1, respectively. In this problem, the theoretical OA, given

by OAopt ≡ 100(1− Pe)% and corresponding to the minimal

probability of error [48] is

Pe =
1

2
erfc

(
1 + λ0√

2σ

)
p0 +

1

2
erfc

(
1− λ0√

2σ

)
p1 (19)

where erfc is the complementary error function, λ0 =
(σ2/2) ln(p0/p1), and p0 and p1 are the a priori class la-

bel probabilities. Usually, model parameters are estimated by

cross-validation. However, in this paper, we empirically con-

cluded that μ ∈ [2, 6] yields almost optimal results. In order

to reduce computational efficiency, we have not applied cross-

validation to derive the optimal value of this parameter. The

aforementioned observation is shown in Fig. 5 where we stud-

ied the impact of the spatial prior. Here, Fig. 5(a) shows the

OA results as a function of μ. For the considered problem,

with 2 ≤ μ ≤ 6, the LORSAL-ALL algorithm obtained good

segmentation results. It should be noted that ten independent

Monte Carlo runs were conducted in these experiments, and we

report only the mean scores obtained. The following conclu-

sions may be drawn from Fig. 5.

1) The best overall results are obtained by the proposed

segmentation algorithm (in all cases, the classification

accuracies and the values of OAopt are higher). This

confirms our introspection that the inclusion of a spatial

prior can significantly improve the classification results

provided by using only spectral information, even for

very noisy scenarios [see Fig. 5(b)].

2) The classification OA approaches the optimal value

OAopt as the number of labeled samples increases [see

Fig. 5(c)]. However, the number of labeled samples needs

to be relatively high in order to obtain classification

accuracies which are close to optimal.

3) For a fixed number of training samples, the classifica-

tion accuracy of our proposed method decreases as the

number of bands increases [see Fig. 5(d)]. This is not

surprising in light of the Huges phenomenon. On the

contrary, after including the spatial prior, our supervised

segmentation algorithm performs very well even with

small training sets and a large number of bands.

To give a broad picture of the good performance of

the proposed algorithm, we finally illustrate the LORSAL
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Fig. 5. OA results obtained by the proposed algorithm: (a) As a function of the spatial prior parameter µ. (b) As a function of the noise standard deviation σ.
(c) As a function of the number of labeled samples L. (d) As a function of the number of bands d.

Fig. 6. Segmentation results obtained by using active learning approaches: (a) OA results as a function of L with Li = u = L/2. (b) OA results as a function
of Li with L = 60 and u = L− Li. (c) OA results as a function of u with L = 60 and Li = 20.

classification and LORSAL-MLL segmentation maps in

Fig. 4(b) and (c) for a problem with σ = 1.5 and d = 500 using

L = 100 and μ = 2. Clearly, the inclusion of the spatial prior

yields, as expected, much better results.

3) Impact of the Active Learning Approach: In this section,

we analyze the impact of the considered sampling strategies on

our proposed approach. To do so, a new simulated hyperspectral

data set is generated according to the model in (18), with

K = 4, σ = 0.8, and vectors myi
obtained from the USGS

library with d = 224. Fig. 6 shows the learning results over

100 independent Monte Carlo runs, where we consider three

different experiments: 1) OA results as a function of L by using

Li = u = L/2; 2) OA results as a function of Li by using

L = 60 and u = L− Li; and 3) OA results as a function of u
by using L = 60 and Li = 20 (five samples per class). Several

conclusions can be obtained from the results shown in Fig. 6.

1) First of all, the active learning procedure improves the

segmentation results as expected. In general, the MBT

strategy achieves the best performance.

2) Second, as already discussed in Section IV, with a small

u both MBT and BT lead to very similar results.

3) Furthermore, the results obtained by the MI sampling

are highly dependent on the size of u. For a small size

of u (such as u < Li), good results are obtained, e.g.,

see Fig. 6(c). However, for a large value of u, the MI
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Fig. 7. Classification maps by using L = 475, Li = 235, and u = 60. (a) Ground truth. (b) LORSAL-AL (RS), OA = 84.24%. (c) LORSAL-AL (MBT),
OA = 86.38%. (d) LDA-AL (RS), OA = 69.35%. (e) LDA-AL (MBT), OA = 70.83%. (f) SVM (RS), OA = 80.43%. (g) PCA+SVM (RS), OA = 76.32%.

Fig. 8. Classification and segmentation maps obtained for the ROSIS subset #2 by using the whole training set (L = 3921). (a) Ground truth. (b) LORSAL,
OA = 80.24%. (c) LORSAL-MLL, OA = 86.72%. (d) LDA, OA = 73.45%. (e) LDA-MLL, OA = 80.67%.

TABLE I
ALGORITHMS TESTED WITH EACH CONSIDERED HYPERSPECTRAL DATA SET, WHERE CLASSIFICATION ALGORITHMS ONLY USE

THE SPECTRAL INFORMATION AND SEGMENTATION ALGORITHMS INTEGRATE BOTH SPECTRAL AND SPATIAL INFORMATION.
THE NUMBER OF FEATURES EXTRACTED PRIOR TO CLASSIFICATION ARE GIVEN IN THE PARENTHESES

sampling leads to results which are even worse than

random selection. This is because the MI sampling

focuses on the most complex area. Thus, with a large

value of u, the new predictions are concentrated in a most

complex area which leads to poor generalization ability

of the regressors.

4) Finally, the improvements in performance due to active

learning are less relevant as the size of the training set

increases, e.g., see Fig. 6(a). This is expected, since the

uncertainty in the determination of classifier boundaries

decreases as the training set size increases.

B. Experiments With Real Data Sets

In this section, four real hyperspectral data sets are used to

evaluate our algorithm. The first one is the well-known AVIRIS
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TABLE II
PARAMETER SETTINGS IN OUR EXPERIMENTS WITH REAL

HYPERSPECTRAL DATA SETS. FOR SUBSET #1, WE ONLY RUN

CLASSIFICATION EXPERIMENTS; THEREFORE, NO µ IS USED

Fig. 9. OA results as a function of the number of labeled samples for the
AVIRIS Indian Pines data set.

Indian Pines scene, collected over Northwestern Indiana in June

1992 [49]. The scene is available online6 and contains 145 ×
145 pixels and 224 spectral bands between 0.4 and 2.5 μm. A

total of 20 spectral bands were removed prior to experiments

due to noise and water absorption in those channels. The

ground-truth image shown in Fig. 7(a), contains 16 mutually

exclusive classes, seven of which were discarded for their

small size which resulted in insufficient training samples. The

remaining nine classes were used to randomly generate a set of

4757 training samples, with the remaining samples (4588) used

for testing purposes.

In addition to the AVIRIS Indian Pines scene, we have also

used three ROSIS hyperspectral data sets collected over the

town of Pavia, Italy. The data sets consist of 115 spectral bands

between 0.4 and 1.0 μm. Three different subsets of the full data

set are considered in our experiments.

1) Subset #1, with 492 × 1096 pixels in size, collected over

the Pavia city center. The noisy bands were removed,

yielding a data set with 102 spectral bands. The ground

truth image contains 9 ground-truth classes, 5536 training

samples, and 103 539 test samples.

2) Subset #2, with size of 610 × 340 pixels, centered at

the University of Pavia in Italy. The noisy bands were

removed, yielding 103 spectral bands. The ground truth

image in Fig. 8(a), contains 9 ground-truth classes, 3921

training samples, and 42 776 test samples.

3) Subset #3 includes a dense residential area, with 715 ×
1096 pixels. The ground-truth image contains 9 ground-

truth classes, 7456 training samples, and 148 152 test

samples.

In our experiments, we compare our proposed approach with

LDA [8] and SVMs [11], using feature extraction based on PCA

[48] and hyperspectral signal identification by minimum error

6https://engineering.purdue.edu/~biehl/MultiSpec/.

(HySime) [50]. This is because LDA requires that the number

of labeled samples be larger than the dimensionality of the input

features. In the case of SVM, we use PCA for feature extraction,

as it is common practice in other studies; whereas, in the case

of LDA, we use HySime as different feature extraction strategy

which efficiently estimates the subspace. In summary, Table I

shows the different classification and segmentation algorithms

considered in our real data experiments, where LDA-AL and

LDA-AL-MLL integrate the standard LDA classifier and MLL

spatial prior with the proposed active learning approaches. We

would also like to emphasize that, in the real image exper-

iments, no cross-validation is performed. Table II shows the

parameter used for each data set. Although these parameter

settings may be suboptimal, we have experimentally tested

that they lead to good results for each classifier as it will be

shown in experiments. Finally, it is also worth noting that, in

all experiments, all considered algorithms use exactly the same

training sets when there is no active sampling strategy applied.

Also, they all share the same initial training sets when active

sampling is considered.

1) Experiment 1—AVIRIS Indian Pines Data Set: Our first

experiment with the AVIRIS Indian Pines data set is intended to

illustrate the contribution of the spatial prior. For this purpose,

Fig. 9 shows the obtained OA results as a function of the

number of labeled samples after ten Monte Carlo runs (without

active sampling). Here, the training samples are randomly

selected from the original training set. From the results shown

in Fig. 9, we can observe that, by including the spatial prior, the

LORSAL-MLL algorithm greatly improves the classification

results obtained by the LORSAL algorithm which only uses the

spectral information.

In a second experiment, we evaluate the performance of

the proposed MLR-based classification algorithms by using

training sets made up of 5% (237 samples), 10% (475 samples),

and 25% (1189 samples) of the original training data. Table III

shows the classification results obtained after ten Monte Carlo

runs, along with those provided by SVMs and LDA. From

Table III, it can be observed that the proposed MLR-based

algorithms obtain good results when compared with other

methods. As expected, the proposed active learning procedure

improves the learning results. For illustrative purposes, the

effectiveness of the proposed method with the AVIRIS Indian

Pines scene is further shown in Fig. 7 in which the classifica-

tion maps obtained are displayed along with their associated

OA scores.

2) Experiment 2—ROSIS Pavia Data Sets: In this section,

the three considered subsets of the ROSIS Pavia data are used

to evaluate the proposed approach. The first experiment uses the

ROSIS Pavia Data subset #1. In this experiment, we use small

training sets, i.e., L(k) = {10, 20, 40, 60, 80, 100} samples per

class. Concerning the active learning approach, we focus on

the MBT method as it provides the flexibility of selecting

a given number of new samples per class at each iteration.

Table IV summarizes the results obtained after ten Monte Carlo

runs by the considered classification algorithms in comparison

with the same standard methods used for reference in the

previous section. We emphasize the good classification perfor-

mance achieved by the proposed LORSAL and LORSAL-AL
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TABLE III
OA (IN PERCENT) AND κ STATISTIC (IN PARENTHESES) OBTAINED WITH THE PROPOSED ALGORITHM (USING DIFFERENT SAMPLING SCHEMES)

AS A FUNCTION OF THE NUMBER OF LABELED SAMPLES FOR THE AVIRIS INDIAN PINES DATA SET. FOR COMPARATIVE PURPOSES,
RESULTS WITH LDA AND SVMS (WITH AND WITHOUT PCA-BASED FEATURE EXTRACTION) ARE ALSO INCLUDED

TABLE IV
OA (IN PERCENT) κ STATISTIC (IN PARENTHESES) FOR ROSIS SUBSET #1, WHERE L(k) DENOTES THE NUMBER OF LABELED SAMPLES PER CLASS

TABLE V
OA (IN PERCENT) AND κ STATISTIC (IN PARENTHESES)

OBTAINED FOR ROSIS PAVIA SUBSET #2

algorithms. Moreover, Table IV reveals that the MBT sampling

procedure further improves the OA results and the κ statistic.

In our second experiment, we use subset #2 of the Pavia

ROSIS data to evaluate the proposed segmentation algorithm.

Table V illustrates the OA results obtained after ten Monte

Carlo runs by using the entire training set. Notice the good

performances achieved by the proposed LORSAL and

LORSAL-MLL algorithms (see Table V), where the segmenta-

tion result obtained by the LORSAL-MLL algorithm is compa-

rable with that reported in previous work for an SVM classifier

using extended morphological profiles as input features in

[1]. Although a more exhaustive comparison between these

approaches should be conducted using the same training and

test sets, we believe that the fact that our method provides

comparable results with those of a highly consolidated tech-

nique that integrates the spatial and the spectral information is

remarkable.

Furthermore, we also evaluate the sensitivity of the proposed

AL-based approaches to the size of the considered training set

by using subsets of the original training set. Fig. 10 shows the

OA results as a function of L, with Li = 450 and u = 20. From

Fig. 10, it can be observed that the LORSAL-AL and LORSAL-

AL-MLL algorithms achieve significant improvements as com-

pared with the standard RS strategy. Finally, it is also worth

noting that the integration of spatial and spectral information

significantly improves the classification results obtained using

spectral information only.

In our final experiment, we consider subset #3 of the

Pavia ROSIS data to evaluate the proposed LORSAL-AL and

LORSAL-AL-MLL algorithms by using Li = 8 (only one sam-

ple per class) and u = 1. In this experiment, we do not consider

the LDA-AL and LDA-AL-MLL algorithms because the LDA

model requires a number of training samples which is larger

than the dimensionality of the feature space. Fig. 11 shows the

OA results (as a function of L) in this challenging scenario.

The good performance achieved by the proposed LORSAL-AL

and LORSAL-AL-MLL algorithms in this analysis scenario is

remarkable where, as expected, the BT and MBT methods lead

to similar estimates for the considered problem. Furthermore,

the contribution of the spatial prior is less relevant as the value

of L increases. As shown by Fig. 11, the AL further improves

the learning results and, eventually, MI, BT, and MBT converge

to very similar OA results. For illustrative purposes, Fig. 8

shows the classification and segmentation maps obtained by the

considered algorithm configurations in comparison with other

methods) using the ROSIS Pavia University data set.

VI. CONCLUSION

In this paper, we have developed a new (supervised)

Bayesian segmentation approach aimed at addressing ill-posed

hyperspectral classification and segmentation problems. The

proposed algorithm models the posterior class probability dis-

tributions using the concept of MLR, where the MLR regressors

are learned by the LORSAL algorithm. The algorithm adopts

an MLL prior to model the spatial information present the class

label images. The MAP segmentation is efficiently computed
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Fig. 10. OA (in percent) results as a function of the number of labeled samples for ROSIS subset #2. (a) LORSAL-AL results. (b) LORSAL-AL-MLL results.

Fig. 11. OA results as a function of the number of labeled samples for ROSIS subset #3. (a) LORSAL-AL results. (b) LORSAL-AL-MLL results.

by the α-expansion graph-cut-based algorithm. The resulting

segmentation algorithm (LORSAL-MLL) greatly improves the

overall accuracies with respect to the classification results just

based on the learned class distribution. Another contribution

of this paper is the incorporation of active learning strategies

in order to cope with training sets containing a very lim-

ited number of samples. Three different sampling approaches,

namely, a MI-based criterion, a BT strategy, and a newly

developed method called MBT, are integrated in the developed

classification (LORSAL) and segmentation (LORSAL-MLL)

methods, resulting in two new methods with active learning,

called LORSAL-AL and LORSAL-MLL-AL, respectively. The

effectiveness of the proposed algorithms is illustrated in this

paper using both simulated and real hyperspectral data sets.

A comparison with state-of-the-art methods indicates that the

proposed approaches yield comparable or superior performance

using fewer labeled samples. Moreover, our experimental re-

sults reveal that the proposed MBT approach leads to an unbi-

ased sampling as opposed to the MI and BT strategies. Further

work will be directed toward testing the proposed approach

in other different analysis scenarios dominated by the limited

availability of training samples.

APPENDIX

The problem described in (5) is equivalent to

(ω̂, ν̂) = argmin
ω,ν

−ℓ(ω) + λ‖ν‖1

subject to : ω = ν. (20)

By applying the alternating direction method of multipliers [51]

(see also [52] and references therein) to solve the problem in

(20), we get the iterative Algorithm 4. In this algorithm, β ≥ 0
sets the augmented Lagrangian weight. Under mild conditions,

the sequence ω̂t, for t = 0, 1, 2 . . ., converges to a minimizer of

(20), for any β ≥ 0 [51].

Algorithm 4 LORSAL

Input: ω(0),ν(0),b(0), λ, β
1: t := 0
2: repeat

3: ω̂
(t+1) ∈ argmin

ω

− ℓ(ω) +
β

2

∥∥∥ω − ν
(t) − b(t)

∥∥∥
2

(21)

4: ν̂
(t+1) ∈ argmin

ν

λ‖ν‖1 +
β

2

∥∥∥ω(t+1) − ν − b(t)
∥∥∥
2

(22)

5: b(t+1) := b(t) − ω
(t+1) + ν

(t+1)

6: t := t+ 1
7: until some stopping criterion is met

It should be noted that the solution of the optimization

problem in (21) (line 3 of Algorithm 4) is still a difficult

problem because ℓ(ω), although strictly convex and smooth, is
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nonquadratic and often very large. We tackle this difficulty by

replacing ℓ(ω) with a quadratic lower bound given by [16]

ℓ(ω) ≥ ℓ
(
ω

(t)
)
+
(
ω − ω

(t)
)T

g
(
ω

(t)
)

+
1

2

(
ω − ω

(t)
)T

B
(
ω − ω

(t)
)

(23)

where B≡−(1/2)[I−11T/K]⊗∑L
i=1h(xi)h(xi)

T (symbol 1

denotes a vector column of ones) and g(ω(t)) is the gradient of

ℓ at ω(t). Since the system matrix involved in the optimization

of (23), with ℓ(ω) replaced with the quadratic bound given in

(17), is fixed, its inverse can be precomputed, provided that

γ—the dimension of h(xi)—is below, for example, a few thou-

sands. Under mild conditions, the convergence of Algorithm 4

with the aforementioned modification still holds [51], [52].

On the other hand, the solution of the optimization problem

in (22) (line 4 of Algorithm 4) is simply the soft-threshold

rule [53] given by ν̂
(t+1) = max{0, abs(u)}signal(u), where

u ≡ (ω(t+1) − b(t))− λ/β and the involved functions are to

be understood componentwise. As a final note, we reiterate

that the complexity of each iteration of the LORSAL algorithm

is O(γ2K), which is faster than O((γK)3) for the SMLR

algorithm [18], and O(γ3K) for the FSMLR algorithm [19].
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