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Hyperspectral Image Superresolution Using Global

Gradient Sparse and Nonlocal Low-Rank Tensor

Decomposition With Hyper-Laplacian Prior
Yidong Peng , Weisheng Li , Xiaobo Luo , and Jiao Du

Abstract—This article presents a novel global gradient sparse
and nonlocal low-rank tensor decomposition model with a hyper-
Laplacian prior for hyperspectral image (HSI) superresolution to
produce a high-resolution HSI (HR-HSI) by fusing a low-resolution
HSI (LR-HSI) with an HR multispectral image (HR-MSI). Inspired
by the investigated hyper-Laplacian distribution of the gradients of
the difference images between the upsampled LR-HSI and latent
HR-HSI, we formulate the relationship between these two datasets
as a ℓp (0 < p < 1)-norm term to enforce spectral preservation.
Then, the relationship between the HR-MSI and latent HR-HSI is
built using a tensor-based fidelity term to recover the spatial details.
To effectively capture the high spatio-spectral-nonlocal similarities
of the latent HR-HSI, we design a novel nonlocal low-rank Tucker
decomposition to model the 3-D regular tensors constructed from
the grouped nonlocal similar HR-HSI cubes. The global spatial-
spectral total variation regularization is then adopted to ensure
the global spatial piecewise smoothness and spectral consistency of
the reconstructed HR-HSI from nonlocal low-rank cubes. Finally,
an alternating direction method of multipliers-based algorithm is
designed to efficiently solve the optimization problem. Experiments
on both the synthetic and real datasets collected by different sensors
show the effectiveness of the proposed method, from visual and
quantitative assessments.

Index Terms—Global gradient sparse, hyper-Laplacian,
hyperspectral image, nonlocal low-rank, superresolution, total
variation, tucker decomposition.
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I. INTRODUCTION

H
YPERSPECTRAL imaging is an emerging modality that

can provide the same scene over several hundreds of

contiguous and narrow spectral bands. Owning to the wealth

of available spectral information, hyperspectral images (HSIs)

enhance our capabilities in many earth remote sensing tasks,

including the monitoring and management of natural resources,

the ecosystem, and disasters [1]. However, due to the inevitable

trade-off between the spatial resolution, spectral resolution, and

signal-to-noise ratio (SNR), HS imaging is generally limited by

the poor spatial resolution of the data acquisition equipment [1]–

[5]. Fortunately, the existing panchromatic and multispectral

imaging cameras can provide panchromatic images (PANs) and

multispectral images (MSIs) with much higher spatial resolu-

tion, which can be fused with low spatial resolution HSIs (LR-

HSIs) to obtain HSIs with high spatial resolution (HR-HSIs).

This procedure is often referred to as HSI superresolution, and it

can be divided into two categories: hypersharpening and MS/HS

fusion.

The earliest work on hypersharpening is an extension of

Pansharpening [1], [6]–[8]. Pansharpening is a kind of fusion

method that generates an HR-MSI by fusing an LR-MSI with

a PAN. To date, a variety of pansharpening methods that take

full advantage of the available multicomplementary spatial and

spectral information in MSIs and PANs have been proposed [9]–

[12]. These methods have been classified based on different

rules [13]–[15]. More recently, Meng et al. [14] classified the

existing pansharpening methods into component substitution,

multiresolution analysis, and variational optimization. With the

increasing availability of HS imaging systems, pansharpening

was then extended to HSI superresolution by fusing HSIs with

PANs, which was called hypersharpening [13], [16]–[19]. In

addition, several of the hypersharpening methods also evolved

from MS/HS fusion methods [4], [20]–[22]. In this case, the

MSI is only composed of a single band, and thus, it can be

reduced to a PAN image [13]. A more detailed comparison of

hypersharpening methods can be found in [13].

In addition to hypersharpening methods, MS/HS fusion is

another essential HSI superresolution category to obtain HR-

HSIs. Representative MS/HS fusion approaches include matrix

factorization-based methods [4], [20], [22]–[28], tensor-based

methods [2], [3], [29]–[32], and deep learning-based meth-

ods [11], [33]–[36]. Deep learning has attracted increasing
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attention in HSI superresolution due to its strong learning per-

formance and high speed [29], [30], [34]. Li et al. [33] presented

a deep spectral difference convolutional neural network model

with a spatial constraint strategy for HSI superresolution. In [34],

an HSI superresolution method based on a deep residual learning

network that can learn the spectral prior of HSIs is proposed. Qu

et al. [35] presented an unsupervised deep convolutional neural

network using an unsupervised encoder–decoder architecture

for HSI superresolution. However, deep learning-based methods

usually require large amounts of samples for training the neural

network to obtain the parameters of the network.

Matrix factorization-based methods have attracted increasing

interest in recent years, and they have achieved promising per-

formance. Their basic idea is that the unfolding matrix of an

HR-HSI can be represented as a linear combination of a small

number of distinct spectral signatures based on the assumption

that the HR-HSI only contains a small amount of pure spectral

signatures, namely, that the unfolding matrix of the HR-HSI

can be factorized as a basis matrix (dictionary) multiplied by

a coefficient matrix. Berné et al. [27] proposed a nonnega-

tive matrix factorization (NMF) based method for mid-infrared

astronomy. In [20], coupled nonnegative matrix factorization

(CNMF) was proposed for HSI superresolution. In CNMF, the

endmember and abundance matrices are estimated by alternating

spectral unmixing based on NMF under the constraints of an

observation model. However, the results from CNMF may not be

always satisfactory since the NMF is often nonunique [26], [37].

Kawakami et al. [23] presented an HSI superresolution method

based on a sparse matrix factorization technique, which can de-

compose an HR-HSI into a basis matrix and a sparse coefficient

matrix. The HR-HSI can be then reconstructed using the spectral

basis obtained from the LR-HSI and the sparse coefficient matrix

estimated from the HR-MSI. Recently, for better inferences, the

works in [24], [25], and[28] solve the superresolution problem

by simultaneously exploiting the sparsity and nonnegativity

constraints of the HR-HSI. For example, Wycoff et al. [28]

presented a nonnegative sparse matrix factorization method

to exploit both the sparsity and nonnegativity constraints of

HR-HSIs. The superresolution problem was formulated as a joint

optimization problem involving the nonnegative basis obtained

from the LR-HSI and sparse coefficients estimated from the

HR-MSI. In addition, the spatial similarities of the HR-HSI were

also exploited to solve the superresolution problem [22], [26].

In [26], a nonnegative dictionary learning algorithm using the

block-coordinate descent optimization technique is proposed to

learn the spectral basis, and a structured sparse coding approach

is used to estimate the coefficient matrix. In this way, the non-

local spatial similarities of HR-HSIs are exploited to solve the

superresolution problem and achieve promising performance.

Although many the matrix factorization-based methods have

been proposed under different constraints and have yielded

promising performances, all of them needed to unfold 3-D

data structures into matrices, which makes it difficult to fully

exploit the spatial-spectral correlations of HSIs [2], [3]. Since

tensor-based techniques have a more powerful ability to simul-

taneously capture the correlations between and within differ-

ent dimensions, they may be able to better deal with the HSI

superresolution problem involving high-dimensional data, e.g.,

HSIs and MSIs, from the viewpoint of tensors [2], [3], [12].

Recently, the superresolution problem has been formulated from

the viewpoint of tensor-based techniques [2], [3], [12], [29], [30].

Dian et al. [3] proposed a nonlocal sparse Tucker factorization.

Although this method has promising performance, it failed to

use the LR-HSI to estimate the core tensor. To address this

problem, Li et al. [2] proposed a superresolution approach

based on coupled sparse tensor factorization by formulating

the estimation of the core tensor and dictionaries as a coupled

sparse tensor factorization of the LR-HSI and HR-MSI. Zhang et

al. [29] proposed a spatial-spectral-graph-regularized low-rank

tensor decomposition-based HSI superresolution method by in-

ferring the spatial smoothness and spectral consistency from the

HR-MSI and LR-HSI, respectively. Dian et al. [30] proposed a

low tensor train rank-based HSI superresolution method, which

learns the correlations among the spatial, spectral, and nonlocal

modes of the nonlocal similar HR-HSI cubes via a tensor train

rank prior. Xu et al. [31] proposed a tensor-tensor product-based

tensor sparse representation to model nonlocal patch tensors.

Most current tensor-based methods depend on two assump-

tions: 1) the LR-HSI and HR-MSI can be modeled as spec-

trally and spatially downsampled versions of the HR-HSI, re-

spectively; and 2) the LR-HSI and HR-MSI can provide the

high spatial-resolution information and high spectral-resolution

information to the HR-HSI, respectively. However, this kind

of methods sometimes suffers from spectral distortion after

HSI superresolution because of the first unrealistic assumption.

Moreover, these methods often use the ℓF -norm to describe the

relations of these three datasets [2], [30], [31] or switch to the

ℓ1-norm when sparsity is desired [29], which indicates that those

methods require substantial computational resources.

In this article, we propose a global gradient sparse and

nonlocal low-rank tensor decomposition model with a hyper-

Laplacian prior, which we refer to as HL-GSNLTD, for HSI

superresolution by exploiting both the desired nonlocal and

global properties of the HR-HSI. The framework of the proposed

method is shown in Fig. 1. First, we investigated the error

distribution of the upsampled LR-HSI and the target HR-HSI

on the gradient domain and found that the gradients of the errors

obey a hyper-Laplacian distribution (see Fig. 2). Hence, we

would prefer to choose the hyper-Laplacian term depicted by

the ℓp (0 < p < 1)-norm to describe the relationship of these

two datasets. Second, to recover the spatial details, we adopt

the assumption that the HR-MSI is modeled as a spatially

downsampled version of the HR-HSI, which usually can be

given in tensor-matrix multiplication format [2], [30], [31]. For

an HR-HSI, spectrally adjacent bands are usually very similar,

and the spatially adjacent pixels are highly correlated, which

both indicate the fact that the HR-HSI has low-rank structures

in both the spatial and spectral domains [29], [38]. Moreover,

there are many similar cubes across the HR-HSI, and there

exists strong correlation among those nonlocal similar cubes,

which reveal that nonlocal similarity exists in the HR-HSI [30],

[31]. To better exploit the nonlocal similarity and spatial-spectral

low-rank structure of the HR-HSI, a new nonlocal low rank

Tucker decomposition model is built to learn both the spatial
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Fig. 1. Framework of the proposed HSI superresolution method.

Fig. 2. Distributions of image gradient data ∇i(X − Ŷ) (i = x, y, z), where the data, respectively, come from ROSIS-3, (a) HYDICE, (b) Hyperspec-VNIR-C,
and (c) sensors.

Fig. 3. Gradient images of the 3-D HR-HSI tensor along three different
directions. (a) Original image. (b) Gradient image along the spatial horizontal
direction. (c) Gradient image along the spatial vertical direction. (d) Gradient
image along the spectral direction.

and spectral similarities of nonlocal cubes. However, this pro-

cedure processes all the grouped nonlocal similar cube tensors

individually, which results in ignoring the global smoothness

of the HR-HSI [38]–[42]. Fig. 3 depicts both the global spa-

tial piecewise smooth property and spectral consistency of the

target HR-HSI tensor along the spatial and spectral directions,

respectively. Inspiringly, we also adopt a global spatial-spectral

total-variation (SSTV)-regularization to reconstruct the HR-HSI

from these nonlocal low-rank cubes, to further capture the global

spatial piecewise smooth and spectral consistent structures of

the HR-HSI. In this way, both the desired nonlocal and global

properties of the HR-HSI are integrated into the proposed model.

In summary, the main contributions of this article are the

following two aspects.
� According to image statistics, the gradients of the dif-

ference images of the upsampled LR-HSI and the target

HR-HSI obey a hyper-Laplacian distribution, which corre-

spond to the ℓp (0 < p < 1)-norm (see Fig. 2). Hence, the
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ℓp term on the gradients of the difference images is more

appropriate for enforcing spectral preservation compared

with the ℓ1 or ℓ2 terms. Moreover, the ℓp term can reduce

the complexity of the model without the blur kernel, which

is generally assumed to be an inaccurate Gaussian one with

an empirical variance. Under the framework of the alter-

nating direction method of multipliers (ADMM) [43], the

formulated nonconvex ℓp subproblem can be efficiently and

readily solved by the generalized shrinkage/thresholding

(GST) algorithm [44].
� A new global gradient sparse and nonlocal low-rank tensor

decomposition model is introduced to characterize both

the desired nonlocal and global properties of the HR-HSI.

Specifically, the HR-HSI cubes are grouped into several 4-

D tensors based on the learned 1-D smooth ordering calcu-

lated in the HR-MSI. Then, a new 3-D tensor is constructed

by stacking each cube’s transpose of the mode-3 unfolding

matrix in the kth 4-D tensor. After the grouping operation,

three modes of the 3-D tensor are highly correlated. Hence,

these 3-D tensors can be naturally modeled as the form of

low-rank tensor decomposition. Here, we apply a new low-

rank Tucker decomposition model on these 3-D tensors to

effectively capture the spatial and spectral similarities of

nonlocal cubes. Moreover, global SSTV regularization is

integrated into the fusion model to reconstruct the HR-HSI

from these nonlocal low-rank cubes, to further capture the

global spatial piecewise smoothness and spectral consis-

tency of the HR-HSI.

II. TENSOR NOTATIONS

A tensor is a multidimensional data array, whose order is

the number of ways, also known as modes or dimensions.

Following [45], lowercase letters denote vectors, e.g., g, bold-

face capital letters denote matrices, e.g., G, and calligraphic

letters denote tensors, e.g., G. Then, an N-dimensional tensor is

defined as G ∈ R
I1×...×In×...×IN , and gi1...i2...iN represents its

(i1, i2. . ., iN )th entry. A fiber of tensor is a 1-D section defined

by fixing all indices but one. The mode-n unfolding matrix,

e.g., G(n) = Unfoldn(G) ∈ R
In×I1I2...In−1In+1...IN , is defined

by arranging the mode-n fibers of the tensor as the columns

of the matrix. Conversely, the inverse transform of unfolding

can be defined as G = foldn(G(n)). The ℓ1 norm of a tensor

G is defined as ‖G‖1 =
∑

i1,...,iN
|gi1,...,iN |, and the Frobenius

norm is defined as ‖G‖F =
√

∑

i1,...,iN
|gi1,...,iN |2.

The n-mode product of a tensor G ∈ R
I1×...×In×...×IN with a

matrix U ∈ R
J×In , denoted by G ×n U, is also a tensor A with

a size of I1 × · · · × In−1 × J × In+1 × · · · × IN . The n-mode

product can also be expressed as each mode-n fiber multiplied

by the matrix, namely, A(n) = UG(n).

Tucker decomposition [45], also known as a form of higher

order principal component analysis, factors a tensor into a core

tensor multiplied by the factor matrices along each mode as

follows:

G = C ×1 U1 ×2 U2 × · · · ×N UN (1)

where Ui ∈ R
Ii×ri represents the factor matrix along the ith

mode. C ∈ R
r1×r2×···×rN represents the core tensor that de-

scribes the level of interaction between the different factor ma-

trices. Matricized form of Tucker decomposition can be defined

as follows [45]:

G(i) = UiC(i)(UN ⊗ · · · ⊗Ui+1 ⊗Ui−1 ⊗ · · · ⊗U1)
T

(2)

where ⊗ is the Kronecker product.

III. PROPOSED MODEL

In this article, the target HR-HSI is considered to be a tensor

of order three, e.g.,X ∈ R
Nw×Nh×Ns , whereNw andNh are the

height and width of the HR-HSI, respectively. Ns is the number

of bands in the HR-HSI. The observed LR-HSI, which contains

abundant high spectral-resolution information, is denoted by

Y ∈ R
Nd

w×Nd
h
×Ns , where Nd

w = 1
r ×Nw and Nd

h = 1
r ×Nh. r

is the spatial resolution ratio between the LR-HSI and HR-HSI.

In addition, the tensor Z ∈ R
Nw×Nh×Nd

s denotes the observed

HR-MSI, which is a spectrally downsampled version of the

target HR-HSI, i.e., Nd
s < Ns. The goal of superresolution is

obtaining a reasonable HR-HSI X by utilizing the complemen-

tary information of the observations Y and Z .

A. Spectral Preservation

For most of the image fusion models, the observed LR-HSI

is considered to be a blurred and downsampled version of the

target HR-HSI X [2], [30], [46]–[50]. However, the blur kernel

is generally unknown, and it usually is assumed to follow a

Gaussian distribution with an empirical variance, which actually

is not fully reasonable. To get rid of the empirical blur kernel,

we explore the relationship between the target HR-HSI and

observed LR-HSI by investigating the gradient distribution of

the difference image between these two datasets. Specifically,

we interpolate the LR-HSI to obtain an upsampled LR-HSI

Ŷ , which has the same size as the target HR-HSI. Then, we

investigated the gradient distributions of the difference images

between the target HR-HSI and the upsampled LR-HSI on

several datasets collected from different sensors (see Fig. 2.),

and found that the gradient distributions along the horizontal,

vertical and spectral directions all obey the hyper-Laplacian case

(ℓp (0 < p < 1)) instead of a Gaussian (ℓ2) or Laplacian (ℓ1)

distribution. Hence, it is more reasonable to apply an ℓp norm on

the gradients of the difference images to describe the relationship

between the target HR-HSI and the upsampled LR-HSI using

maximum a posteriori theory. Hence, we define the energy

term of the spectral preservation to be a nonconvex ℓp term as

follows:

E(1) =

3
∑

i=1

αi‖∇i(X − Ŷ)‖p, 0 < p < 1 (3)

where E(1) is the energy term of the spectral preservation.

∇i, i = 1, 2, 3 are the gradient operators along the horizontal,

vertical, and spectral directions, respectively. αi are positive

parameters. ‖ · ‖p is the ℓp norm. From Fig. 2, we find that

the hyper-Laplacian with p = 1/2 can fit these the gradients
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very well; therefore, we believe that the ℓ1/2 norm is a more

reasonable choice for depicting the relationship of the target

HR-HSI and the upsampled LR-HSI on the gradient domain.

B. Spatial Structural Preservation

The observed HR-MSI Z contains abundant high spatial-

resolution information, which can be used to provide the spatial

details for the HR-HSI. In this article, we assume that the

HR-MSI Z is modeled as a spectrally downsampled version

of the HR-HSI X . Thus, the energy term of the spatial structural

preservation can be defined as follows:

E(2) =
λ

2
‖Z − X ×3 P‖2F (4)

where P ∈ R
Nd

s ×Ns is the spectral response matrix. λ is a

tradeoff parameter.

C. Nonlocal Low-Rank and Global Total Variation

Assumptions

1) Nonlocal Low-Rank Assumption: The nonlocal similarity

of an HR-HSI is a patch-based prior that describes the fact

that a 3-D cube in the HSI has many similar cubes in the

nearby space. Here, we present a nonlocal low-rank Tucker

decomposition prior for the HR-HSI to capture the spatial and

spectral similarities of nonlocal cubes. Since the spatial details

of the latent HR-HSI mainly exist in the HR-MSI, the HR-MSIZ
is first spatially segmented into overlapping 3-D cubes with the

size of dw × dh ×Nd
s , and then, the similar HR-MSI cubes are

grouped into K clusters Z(k) = {Z(k,j) ∈ R
dw×dh×Nd

s }Nk

j=1,

k = 1, 2, . . .,K, where Nk is the number of cubes in the kth

cluster, and (k, j) is the spatial location of the cube. Con-

ventionally, there are some unsupervised clustering methods,

such as k-means and k-means ++, can be employed in the

clustering process [30], [51], [52]. However, the number of

cluster centers must be set manually and the clustering result is

highly dependent on the initialization of the cluster centers [31].

In this article, we use an image processing scheme based on

the reordering of its patches to group the similar HR-MSI

cubes [53]. Specifically, the segmented overlapping 3-D cubes

are reordered to make sure that these segmented cubes are

chained in the “shortest possible path,” which can essentially

solve the traveling salesman problem [53]. Then, we obtain a

new ordering of the HR-MSI cubes that is expected to induce

a highly regular (smooth or at least piecewise smooth) 1-D

ordering, and the neighboring cubes in the new 1-D ordering

are very similar and highly correlated. Finally, nonlocal similar

cube sets can be constructed by extracting a limited number

of consecutive cubes according to the learned 1-D smooth

ordering.

Based on the learned 1-D smooth ordering computed in

the HR-MSI, we construct clusters of HR-HSI cubes with the

same spatial structure, i.e.,X(k) = {X (k,j) ∈ R
dw×dh×Ns}Nk

j=1,

where X (k,j) has the same spatial locations as Z(k,j). We

stack the transpose of the mode-3 unfolding matrix of each

cube in the kth cluster, and then we can obtain a new 3-D

nonlocal similar cube tensor (NSCT), which is denoted as

Xk ∈ R
dwdh×Ns×Nk , whose three modes, i.e., one spatial mode,

one spectral mode, and one nonlocal mode, are highly correlated.

Here, we define an operator Rk: X → Xk, where Rk is a binary

operator that extracts the kth NSCT from a given tensor, i.e.,

RkX = Xk. For an NSCT that is highly regular, it can be

effectively characterized using a form of low-rank tensor decom-

position. Here, the low-rank constrained Tucker decomposition

model is employed, and the nonlocal low-rank term is given as

follows:

ENL

(3) =

K
∑

k=1

3
∑

i=1

βi‖Vik‖∗

+
µ

2

K
∑

k=1

‖RkX −Hk ×1 V1k ×2 V2k ×3 V3k‖
2
F

(5)

where ‖ · ‖∗ is the nuclear norm, which is the sum of all singular

values.Hk ∈ R
NJ1×NJ2×NJ3 is the core tensor of the kth NSCT.

Vik, i = 1, 2, 3, are the factor matrices of the spatial, spectral,

and nonlocal modes, respectively; and βi is the weight with

respect to (w.r.t.) factor matrix Vik. µ is a penalty parameter. It

is noteworthy that the tensor rank is hard to determine. The work

in [54] directly defined the tensor rank as the sum of the ranks of

the unfolding matrix on all modes, which lacks a theoretical

interpretation [29]; and the determination of the underlying

rank of the unfolding matrix is difficult and unreliable [51]. In

addition, the work in [2] empirically preseted the underlying

rank of Vi, which lacks versatility. In this article, we model the

nonlocal low-rank property by imposing the nuclear norm on

the factor matrices of the NSCTs.

2) Total Variation Assumption: Patch-based low-rank meth-

ods have achieved great success in HSI superresolution [29]–

[31]. These patch-based methods partition the HR-HSI X into

patches, fuse each patch cluster separately, and finally recon-

struct the fused patches in a simple way, i.e., each pixel in the

reconstructed HR-HSI is the weighted average across multiple

patches containing the pixel. However, this procedure ignores

the global spatial piecewise smoothness and spectral consistency

of HR-HSI X (see Fig. 3). Here, we adopt the TV model to

reconstruct the fused cubes. In addition, by considering that the

target HR-HSI is the hyperspectral image but the multispectral

image, whose two nearby band images are usually very similar,

indicating spectral consistency. Therefore, we apply TV to both

the spatial and spectral directions simultaneously to explore the

global spatial piecewise smoothness and spectral consistency of

the HR-HSI. The TV term for the latent HR-HSI is given as

follows:

ETV

(3) =

3
∑

i=1

wi‖∇iX‖1 (6)

which is a spatial-spectral TV (SSTV) regularizer, and wi,

i = 1, 2, 3 are the weights for the variations along two spatial

directions and one spectral direction, respectively. ‖ · ‖1 repre-

sents the ℓ1 norm.
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D. Proposed HL-GSNLTD Model

Combining the abovementioned four energy terms together,

we finally obtain the following optimization problem:

min
X

3
∑

i=1

αi‖∇i(X − Ŷ)‖1/2 +
λ

2
‖Z − X ×3 P‖2F

+

K
∑

k=1

3
∑

i=1

βi‖Vik‖∗ +

3
∑

i=1

wi‖∇iX‖1

+
µ

2

K
∑

k=1

‖RkX −Hk ×1 V1k ×2 V2k ×3 V3k‖
2
F .

(7)

It should be noted that, in the proposed HL-GSNLTD model,

the nonlocal low-rank tensor decomposition is implemented on

the NSCTs to better capture the spatial and spectral similarities

of nonlocal cubes. On the other hand, the anisotropic SSTV

regularizer is globally applied to reconstruct these NSCTs and

effectively preserve both the spatial piecewise smoothness and

spectral consistency of the whole HR-HSI. Using this strategy,

the noise and outliers in the NSCTs can be efficiently dealt with,

and the edge information of the latent HR-HSI can be preserved

globally. It is clear that the proposed HL-GSNLTD model is a

nonconvex and nonsmooth model that involves an ℓ1/2 term and

an ℓ1 term. In the following part, we will present the ADMM-

based [43] algorithm for the proposed HL-GSNLTD model.

E. Optimization Algorithm

The optimization problem (7) can be solved by various meth-

ods. For efficiency, we use the ADMM framework [43] to solve

it. First, by introducing three auxiliary variables L = X , Si =
∇i(X − Y), and Ui = ∇iX , where i = 1, 2, 3, and a penalty

term about Hk to prevent overfitting and improve stability, the

augmented Lagrangian function can be exhibited as follows:

Lu(Si,Ui,L,X ,Vik,Hk,Ai,B, Ci)

=

3
∑

i=1

αi‖Si‖1/2 +

3
∑

i=1

γi
2
‖Si −∇i(X − Ŷ) +Ai‖

2
F

+
λ

2
‖Z − L ×3 P‖2F +

δ

2
‖L − X + B‖2F +

τ

2

K
∑

k=1

‖Hk‖
2
F

+
K
∑

k=1

3
∑

i=1

βi‖Vik‖∗ +
µ

2

K
∑

k=1

‖RkX −Hk ×1 V1k ×2 V2k

×3 V3k‖
2
F +

3
∑

i=1

wi‖Ui‖1 +

3
∑

i=3

ηi
2
‖Ui −∇iX + Ci‖

2
F

(8)

where Ai, B, and Ci are the Lagrangian multipliers. δ, τ , ηi,
and γi, where i = 1, 2, 3, are the penalty parameters. The aug-

mented Lagrangian function (8) can be minimized by iteratively

optimizing the following subproblems.

1) Update Vik, i = 1, 2, 3: After the mode-i unfolding op-

eration, the sub-Lagrange function w.r.t. Vik can be written as

(9). Here, we takeV1k for instance to demonstrate the derivation

process

min
V1k

K
∑

k=1

β1‖V1k‖∗ +
µ

2

K
∑

k=1

‖V1kD1k −G(1)‖
2
F (9)

where G(1) is the mode-1 unfolding matrix of G = RkX , and

D1k = (Hk ×2 V2k ×3 V3k)(1). However, it is quite difficult to

optimize (9) due to the quadratic term of V1k. Recently, some

proximal linearized algorithms for resolving such a problem

have appeared [55]. Here, we first approximate the subproblem

(9) by linearizing the quadratic term about V1k so that the solu-

tion can be easily derived. With this linearization, the resulting

approximation to (9) can be defined as

min
V1k

K
∑

k=1

β1‖V1k‖∗ +
µ

2θ

K
∑

k=1

‖V1k − (Vpre

1k − θqpre
1k )‖2F

(10)

where V
pre

1k is the estimated factor matrix in the previous it-

eration. q
pre

1k is the first-order derivative of (9) at V1k. θ > 0
is a proximal parameter. Then, this proximal problem can be

efficiently solved using the singular value thresholding oper-

ator [56]. Finally, the solutions of the V2k- and V3k-related

subproblems can be easily solved in the same way.

2) Update Hk: According to (8), the Hk-subproblem is pre-

sented as follows:

min
Hk

τ

2

K
∑

k=1

‖Hk‖
2
F +

µ

2

K
∑

k=1

‖RkX −Hk ×1 V1k

×2 V2k ×3 V3k‖
2
F (11)

which can be transformed into matrix-vector form as

min
hk

τ

2

K
∑

k=1

‖hk‖
2
F +

µ

2

K
∑

k=1

‖g −Qkhk‖
2
F (12)

where hk = vec(Hk) and g = vec(G) are obtained by vector-

izing the tensors Hk and G, respectively, where G = RkX ; and

vec(·) is the vectorization operation. Qk = V3k ⊗V2k ⊗V1k,

where the symbol ⊗ represents the Kronecker product.

Problem (12) has a closed-form solution for each NSCT

hk = (τI+ µQT
kQk)

−1(µQT
k g). (13)

It seems that (13) is hard to calculate because of the involved

Kronecker product. However, the computation cost for each

NSCT, in fact, is quite small because (13) calculates each small

size NSCT separately. In additon, we also employ the following

strategy [2] to alleviate this problem. We note that

(τI+ µQT
kQk)

−1 = (Ψ3 ⊗Ψ2 ⊗Ψ1)

(µ(Ω3 ⊗ Ω2 ⊗ Ω1) + τI)−1

(ΨT
3 ⊗ΨT

2 ⊗ΨT
1 )

(14)

where Ψi and Ωi, i = 1, 2, 3, are unitary matrices and non-

negative diagonal matrices consisting of the eigenvectors and

eigenvalues of VT
ikVik, respectively. Therefore, (µ(Ω3 ⊗ Ω2 ⊗

Ω1) + τI)−1 is diagonal and easy to calculate. Moreover, the

operations on Ψi and ΨT
i are just i-mode products, and the

operation on (µ(Ω3 ⊗ Ω2 ⊗ Ω1) + τI)−1 is an elementwise
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Algorithm 1: Generalized Shrinkage/Thresholding (GST)

Algorithm.

Input: y, λ, p, J

1: τGST
p (λ) = (2λ(1− p))

1
2−p + λp(2λ(1− p))

p−1
2−p

2: if |y| ≤ τGST
p (λ) then

3: TGST
p (y; λ) = 0

4: else

5: k = 0, x(k) = |y|
6: for k = 0, 1, . . . , J do

7: x(k+1) = |y| − λp(x(k))p−1

8: end for

9: TGST
p (y; λ) = sgn(y)xk

10: end if

Output: TGST
p (y; λ)

multiplication. Besides, the termµQT
k g in (13) can be calculated

as follows:

µQT
k g = µvec(G ×1 V1k ×2 V2k ×3 V3k). (15)

3) Update Si: By fixing the other variables, the optimization

w.r.t. Si, where i = 1, 2, 3, can be equivalent to the following:

min
Si

3
∑

i=1

αi‖Si‖1/2 +

3
∑

i=3

γi
2
‖Si−∇i(X−Ŷ)+Ai‖

2
F (16)

where problem (16) is a nonconvex sparse coding problem that

is calculated using the ℓ1/2 norm. This indicates that it is quite

difficult to optimize (16) with guarantees of global convergence.

Fortunately, a number of algorithms have been proposed for

solving such a problem, e.g., the iteratively reweighted least

squares [57], the iteratively thresholding method [58], [59],

the look-up table [60], and the GST algorithm [44]. Here, the

GST [44] algorithm (summarized in Algorithm 1) is adopted to

solve the given nonconvex problem owning to its simple scheme

and fast speed, and then problem (16) has the following solution:

Si = TGST
1/2 (∇i(X − Ŷ)−Ai,

αi

γi
), i = 1, 2, 3. (17)

For more details about the GST algorithm, please refer to [44].

4) Update Ui: From (8), the subproblem w.r.t. Ui, where i =
1, 2, 3, can be written as

min
Ui

3
∑

i=1

wi‖Ui‖1 +

3
∑

i=3

ηi
2
‖Ui −∇iX + Ci‖

2
F . (18)

Problem (18) is strongly convex, and it can be efficiently solved

using the soft-thresholding (shrinkage) operator [56]

Soft(a, b) =

⎧

⎨

⎩

a− b, if a > b
a+ b, if a < b
0, otherwise.

(19)

Then, we can update Ui as

Ui = Soft(∇iX − Ci,
wi

ηi
), i = 1, 2, 3. (20)

5) Update L: For the L-subproblem, it has the following

minimization problem:

min
L

λ

2
‖Z − L ×3 P‖2F +

δ

2
‖L − X + B‖2F . (21)

Using the properties of mode-n matrix unfolding, the sub-

problem becomes

min
L(3)

λ

2
‖Z(3) −PL(3)‖

2
F +

δ

2
‖L(3) −X(3) +B(3)‖

2
F (22)

where L(3), Z(3), X(3), and B(3) are the mode-3 unfolding

matrices of tensors L, Z , X , and B, respectively. Problem

(22) is strongly convex. Hence, minimizing (22) w.r.t. L(3) is

equivalent to forcing the derivative of (22) to be zero, leading to

the following closed-form solution:

L(3) = (λPTP+ δI)−1(λPTZ(3) + δ(X(3) −B(3)))(23)

where I ∈ R
Ns×Ns is the identity matrix. Since the solution of

the L(3)-subproblem only involves an inverse computation of

small matrices with a size of Ns ×Ns, its computation cost is

quite small. After obtaining the mode-3 unfolding matrix L(3),

we can acquire the tensor L using L = fold3(L(3)).
6) Update X : From (8), we have

min
X

3
∑

i=1

γi
2
‖Si −∇i(X − Ŷ) +Ai‖

2
F +

δ

2
‖L − X + B‖2F

+
µ

2

K
∑

k=1

‖RkX −Hk ×1 V1k ×2 V2k ×3 V3k‖
2
F

+
3

∑

i=3

ηi
2
‖Ui −∇iX + Ci‖

2
F

(24)

which can be efficiently solved by the fast Fourier transform

(FFT) method under the periodic boundary condition

X = F−1

(

F(W)

F(K)

)

(25)

where the F and F−1 are the FFT and inverse FFT, respectively,

and

W =

3
∑

i=1

γi∇
T
i (∇iŶ + Si +Ai) + δ(L+ B)

+ µ

K
∑

k=1

RT
k (Hk ×1 V1k ×2 V2k ×3 V3k)

+

3
∑

i=3

ηi∇
T
i (Ui + Ci)

(26)

and

K =
3

∑

i=1

(γi + ηi)∇
T
i ∇i + δO + µ

K
∑

k=1

RT
kRk (27)

where O ∈ R
Nw×Nh×Ns is a tensor whose elements are 1.
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7) Update the Multipliers: After solving each subproblem of

problem (8), the multipliers Ai, B, and Ci can be updated by the

following formulas:

Ai = Ai + (Si −∇i(X − Ŷ)), i = 1, 2, 3

B = B + (L − X )

Ci = Ci + (Ui −∇iX ), i = 1, 2, 3.

(28)

Using the ADMM framework, the difficult minimization

problem (8) is split into six simpler subproblems that are solved

iteratively. Note that all these six subproblems can be effectively

solved using fast and accurate techniques. For instance, the

Vik subproblem can be easily solved by the singular value

thresholding operator after linearizing its quadratic term, and

the nonconvex Si subproblem can be readily solved by the fast

GST algorithm. Moreover, the Ui and X subproblems can be

efficiently solved by the soft-thresholding strategy and the FFT

algorithm, respectively. Specifically, the complete algorithm of

the proposed method (8) is summarized in Algorithm 2.

IV. EXPERIMENTAL STUDY

In this section, we conduct an extensive series of image fusion

experiments on both the synthetic and real data sets to verify

the effectiveness of the proposed method. First, we introduce

the synthetic datasets and the evaluation indices used in the

experiments. Second, we present the experimental results on

the synthetic datasets and the real dataset. Then, the influences

of the parameters and energy terms, and the computational time

are analyzed.

A. Synthetic Datasets

1) ROSIS-3 University of Pavia: The first dataset was taken

by the reflective optics spectrographic imaging system (ROSIS-

3) optical airborne sensor over the University of Pavia, Italy,

in 2003. The image size is 610 × 340 × 115 with a ground

sampling distance (GSD) of 1.3 m and spectral coverage from

0.43 to 0.86 µm. After removing the water vapor absorption

bands, a total of 103 bands with a spectral coverage from

0.43 to 0.838 µm remained. In our experiments, we select the

middle-left 256 × 256 × 93-pixel-size as the reference image.

2) HYDICE Washington DC Mall: The second dataset is

Washington DC Mall data acquired by the hyperspectral dig-

ital imagery collection experiment (HYDICE) sensor over the

Mall in Washington, DC, USA, in 1995. The image size is

1280 × 307 × 210 with a GSD of 2.5 m and spectral coverage

from 0.4 to 2.5 µm. The number of bands is reduced to 191

spectral bands with a spectral coverage from 0.9 to 1.4 µm after

removing the water vapor absorption bands. In the experiments,

a 256 × 256 × 93 cube size image is cropped as the reference

image.

3) Hyperspec-VNIR Chikusei: The third dataset was acquired

by the Headwalls Hyperspec-VNIR-C imaging sensor over

Chikusei, Ibaraki, Japan, in 2014. It consists of 2517× 2335
pixel images with a GSD of 2.5 m and 128 spectral bands with

a spectral coverage ranging from 0.363 to 1.018 µm. The scene

is mainly agricultural and urban areas. We select the down-left

256 × 256 × 128-pixel-size as the reference image.

B. Implementation Details

In the experiments, the fusing performance is influenced by

the cube size and number of cubes for the nonlocal similarity

search and the parameters for the optimization procedure. The

cube size dw × dh ×Ns for the nonlocal similarity search is

set to 4 × 4 ×Ns with step size of 3, and the number of cubes

in each NSCT was set to Nk = 6. Then, the size of the NSCT

is determined as 16 ×Ns × 6. To reduce the influence of the

initialization strategy, we carefully initialize the factor matrices

using the fast vertex component analysis (VCA) algorithm [61].

Considering that the HR-MSI contains important high spatial

resolution information and the spectral information mostly exists

in the LR-HSI, we, hence, initialize V1k ∈ R
dw∗dh×NJ1 and

V3k ∈ R
Nk×NJ3 using the mode-1 (spatial mode) and mode-

3 (nonlocal mode) unfolding matrices of the NSCTs extracted

from the HR-MSI, respectively, where NJ1 and NJ3 are the

number of atoms ofV1k andV3k, respectively.V2k ∈ R
Ns×NJ2
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is initialized using the mode-2 (spectral mode) unfolding matrix

of the NSCTs extracted from the upsampled LR-HSI, where

NJ2 is the number of atoms of V2k. As we know that it is not

easy to estimate the mode-k rank for the desired Xk directly, we,

hence, directly set NJ1, NJ2, and NJ3 as dw ∗ dh, Ns, and Nk,

respectively, and then the low-rank constraints are achieved by

the weights βi alternatively. The weights for each mode are set

as

βi = ρ
√

Nmax/NJi, Nmax = max(NJ1, NJ2, NJ3)

τ = 1/‖Ŷ‖2F

(29)

where ρ is a ratio parameter set to 0.01. Considering the balance

of the terms in (8), the regularization parameters should be

carefully designed in the proposed model. In the experiments,

we empirically set α1 = α2 = 1× 10−3, α3 = 5× 10−2, w1 =
w2 = 1× 10−2,w3 = 5× 10−2,µ = 1× 10−1, λ = 5× 10−1,

δ = η3 = γ3 = 1× 10−3, and ηi = γi = 1× 10−2 (i = 1, 2)

for all datasets. Although the proposed method contains many

parameters, most of them are relatively robust to different

datasets. Detailed discussions of the selections of parameters

will be presented in Section V-C.

In this article, we compare our results with those of five

current state-of-the-art approaches, such as nonnegative struc-

tured sparse representation (NSSR) [26], coupled sparse tensor

factorization (CSTF) [2], low tensor train rank (LTTR) based

method [30], spatial-spectral-graph-regularized low-lank tensor

decomposition (SSGLRTD) [29], and deep HSI sharpening

(DHSIS) [34]. The parameters for the compared methods are set

to the default values or determined according to the suggestions

in their articles to obtain the best performance. For NSSR, the

number of atoms of the dictionary is set to 55, the parameters

η1 and η2 are set to 1.5 × 10−4 and 1 × 10−4, respectively.

As a deep learning method, DHSIS requires large numbers of

samples to train the neural network. The University of Pavia

and Washington DC Mall datasets, which do not have enough

image samples to train a neural network, are unsuitable for

DHSIS. Thus, DHSIS was only implemented on the Hyperspec

Chikusei dataset. For the Hyperspec Chikusei dataset, we extract

the training samples from the original images outside the test

region in the experiments. The numbers of training samples are

20 614 for the Hyperspec Chikusei dataset.

In addition, five quantitative metrics are selected to quan-

titatively evaluate the quality of the reconstructed HSIs, such

as the peak signal-noise-ratio (PSNR), spectral angle mapper

(SAM) [62], degree of distortion (DD) [2], Erreur Relative Glob-

ale Adimensionnelle de Synthèse (ERGAS) [63], and universal

image quality index (UIQI) [64]. The larger the PSNR and the

smaller the SAM, DD, and ERGAS are, the better the fusion

results. The UIQI has a range of [−1,1], and its ideal value is 1.

The larger the UIQI value is, the better the fusion results.

C. Experimental Results on Synthetic Datasets

In this section, we use the original University of Pavia and

Washington DC Mall images as the reference HR-HSIs X . The

LR-HSIs Y are simulated by uniformly averaging over disjoint

r × r blocks of the reference HR-HSIs (e.g., r = 4, 8, 16). The

TABLE I
QUANTITATIVE EVALUATION OF THE COMPARED METHODS ON THE

UNIVERSITY OF PAVIA DATASET WITH UNIFORM BLUR

TABLE II
QUANTITATIVE EVALUATION OF THE COMPARED METHODS ON THE

WASHINGTON DC MALL DATASET WITH UNIFORM BLUR

HR-MSIs Z are generated by filtering the reference HR-HSIs

using the spectral reflectance response files of the Red, Green,

Blue (R.G.B.), and Near Infrared (NIR) bands of the IKONOS

multispectral sensor. Tables I and II present the PSNR, SAM,

DD, ERGAS, and UIQI values of the reconstructed HSIs for the

University of Pavia and Washington DC Mall datasets, respec-

tively. The best values are marked in bold for clarity. The first

and third rows of Figs. 4 and 5 show the reconstructed images

of the University of Pavia and Washington DC Mall datasets

with the scaling factors 8 and 16. The reconstructed images of

the University of Pavia dataset are displayed as the composite

images produced by the 50th, 23th, and 5th band images. The

reconstructed images of the Washington DC Mall dataset are

displayed as the composite images produced by the 60th, 30th,

and 8th band images. The pixelwise root-mean-square error

(RMSE) [1] images are used to visualize the errors between the

reconstructed results and reference image (second and fourth

rows in Figs. 4 and 5), where blue pixels indicate no fusion error
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Fig. 4. Reconstructed images and the corresponding RMSE images of the University of Pavia dataset with uniform blur and scaling factor (Top two rows) r = 8
and (Bottom two rows) r = 16. (a) NSSR [26]. (b) CSTF [2]. (c) SSGLRTD [29]. (d) LTTR [30]. (e) Proposed method. (f) Reference image.

and red pixels mean severe local fusion errors. Besides, we mag-

nify a meaningful region of each reconstructed image for better

visual comparison. From magnified regions, the NSSR, CSTF,

and SSGLRTD methods produce clear and sharp spatial details.

However, there are many obvious artifacts in some areas of their

RMSE images, indicating their poor performance in those areas.

Although LTTR produces few artifacts in its RMSE images,

there are many noises distributed over the entire RMSE images.

Compared with other reconstructed results, the reconstructed

image of the proposed method provides more consistent spectral

information and preserves more spatial details. Fig. 6 shows the

spectral curves of the reconstructed results with uniform blur

and scaling factor r = 8 to compare the performances in terms

of spectral preservation. From Fig. 6, we obtain that the spectral

signatures of the proposed method are more consistent with the

reference spectral signatures than the other compared methods

for the entire spectral coverage. The proposed method yields

better performance compared with the other four methods both

quantitatively and qualitatively in most cases.

We also demonstrate the performance of the proposed method

to the Gaussian blur on the University of Pavia and Washington

DC Mall datasets. To generate the LR-HSIs, we first apply an

8× 8 Gaussian blur function of standard deviation 2.15 to the

reference HR-HSIs before downsampling along the width and

height modes of the reference HR-HSIs with scaling factor 8.

Table III presents the quantitative evaluation of the test methods

on the University of Pavia dataset and Washington DC Mall

dataset with Gaussian blur and scaling factor 8. From Table III,

we obtain that the proposed method produces more competitive

performance in the spatial and spectral quality metrics. This

TABLE III
QUANTITATIVE EVALUATION OF THE COMPARED METHODS ON THE

UNIVERSITY OF PAVIA DATASET AND WASHINGTON DC MALL DATASET WITH

GAUSSIAN BLUR AND SCALING FACTOR 8

indicates that the proposed method performs better at preserving

the spectral and spatial information than the other compared

methods.

D. Experimental Results on Synthetic Dataset Corrupted by

Gaussian Noise

The objective of this section is to verify the robustness of the

proposed method to the noise on the Hyperspec Chikusei data

with Gaussian noise. We produce the noisy LR-HSI Y and HR-

MSI Z in the same way described in work [26]. Specifically, the

noisy LR-HSIY is produced by first applying an 8 × 8 Gaussian

blur with standard deviation 3 before downsampling with scaling

factor 8, and then adding the Gaussian white noise. Here, SNRh
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Fig. 5. Reconstructed images and the corresponding RMSE images of the Washington DC Mall dataset with uniform blur and scaling factor (Top two rows) r
= 8 and (Bottom two rows) r = 16. (a) NSSR [26]. (b) CSTF [2]. (c) SSGLRTD [29]. (d) LTTR [30]. (e) Proposed method. (f) Reference image.

represents the SNR of the noisy LR-HSI Y . The noisy HR-

MSI Z is simulated by filtering the reference image using an

IKONOS-like spectral reflectance response, and then adding the

Gaussian white noise. We denote the SNR of the noisy HR-MSI

Z by SNRm. The reconstructed images and the corresponding

RMSE images of the Hyperspec Chikusei data from the LTTR

and DHSIS methods and the proposed method are shown in

Fig. 7. We only demonstrated the comparison with LTTR and

DHSIS as they have better performances than other compared

methods. Table IV presents the quality metric values of the noisy

cases on the Hyperspec Chikusei dataset. We can clearly see that

the proposed method still produces the best results compared to

the compared methods in the noisy case.

E. Experimental Results on Real Dataset

In this section, we further conduct the real dataset experiment

to verify the effectiveness of the proposed method and practical

application in real-life scenarios. The real-life dataset consists

of real LR-HSI data acquired from the Hyperion HSI sensor and

real HR-MSI data acquired from Sentinel-2 satellite. The real

data is obtained from Arkansas City, Cowley County, Kansas,

USA. The used size of the real LR-HSI data is 100 × 100 ×
89. For the real HR-MSI data, only the R.G.B. and NIR bands

TABLE IV
PERFORMANCE COMPARISON OF NOISY CASES ON THE HYPERSPEC CHIKUSEI

DATASET WITH SCALING FACTOR 8

of the original HR-MSI data are used and the used size of the

real HR-MSI data is 300 × 300 × 4 in this experiment. Thus,

the spatial downsampling factor is 3. The spectral response

matrix P, spatial degradation method, and reference HR-HSI

are unknown in this real dataset experiment. Therefore, we use

the method in [22] to estimate the unknown spatial blur kernel

and spectral response matrix. The CSTF is developed with the

assumption that the spatial blur kernel can be decomposed into

the width and height modes, while the blurring kernel estimated

using the method developed in [22] is not separated. Thus, two
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Fig. 6. Spectral curves of the reconstructed results with uniform blur and scal-
ing factor r = 8. (a) Spectral curves of the [50,78]th pixels in the reconstructed
University of Pavia HSI. (b) Spectral curves of the [225, 130]th pixels in the
reconstructed Washington DC Mall HSI.

separate blur responses along the width and height modes are

used to approximate the estimated spatial blur kernel in this

experiment. In addition, considering that there is no reference

HR-HSI in this experiment, the DHSIS is not implemented on

the real dataset. Fig. 8 shows the reconstructed results of the test

methods for the real dataset. The HR-HSI reconstructed by the

NSSR shows obvious artifacts, while the HR-HSI reconstructed

by the SSGLRTD exhibits spectral distortion. The HR-HSIs re-

constructed by LTTR and CSTF exhibit obvious over-smoothing

effects, indicating that the detailed spatial structures are not well

reconstructed. However, the proposed method achieves better

visual quality. Fig. 9 shows the spectral curves of the [130, 200]th

pixel in the reconstructed results and the [50, 70]th pixel in the

LR-HSI of the real dataset. We observe that the spectral signa-

tures of the proposed method are more consistent with spectral

signatures of the LR-HSI than the other compared methods. This

experiment shows that the proposed method performs well in

dealing with the superresolution problem of the real data.

V. DISCUSSION

In this section, we provide more analysis of the proposed

method through extensive experiments. For simplicity, only the

Fig. 7. Reconstructed images and the corresponding RMSE images of the
Hyperspec Chikusei dataset with Gaussian white noises (Top two rows) SNRh
= 35 dB and SNRm = 40 dB and (Bottom two rows) SNRh = 30 dB and SNRm
= 35 dB. (a) LTTR [30]. (b) DHSIS [34]. (c) Proposed method. (d) Reference
image.

Fig. 8. Reconstructed images of the real data set. (a) NSSR [26]. (b) CSTF [2].
(c) SSGLRTD [29]. (d) LR-HSI. (e) LTTR [30]. (f) Proposed method. (g) HR-
MSI.

University of Pavia dataset is selected as the experimental object

for all following experiments. The LR-HSI Y is simulated by

uniformly averaging over disjoint 8 × 8 blocks of the original

University of Pavia data. The HR-MSI Z is generated by fil-

tering the original University of Pavia data using the spectral

reflectance response files of the R.G.B. and NIR bands of the

IKONOS multispectral sensor.

A. Comparison of Different E(1) Terms

In the proposed HL-GSNLTD method, we apply the noncon-

vex ℓ1/2 term to the gradients of the difference images of the

upsampled LR-HSI and HR-HSI to enforce spectral preserva-

tion, which is only based on the empirical statistics of different
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Fig. 9. Spectral curves of the [130, 200]th pixel in the reconstructed results
and the [50, 70]th pixel in the LR-HSI of the real dataset.

TABLE V
NOTATION OF DIFFERENT E(1) TERMS

datasets. Here, by fixing the E(2) and E(3) terms, we investigate

the performance with different E(1) terms to the fusion model

(7). The notations of E(1) terms are summarized in Table V. It

is worth noting that P1 and P2 in the Proposed-ℓF model are

the blurring and downsampling matrices along the width and

height modes, respectively. All these models are solved using

ADMM-based algorithm. The 55th, 30th, and 8th band images

of the reconstructed results are selected as a false color image

shown in Fig. 10 for visual analysis. The first row in Fig. 10 dis-

plays the reference and the reconstructed images of all methods,

and the second row displays the color-composite error images

between the reference image and the reconstructed images. From

Fig. 10, we obtain that the spatial details in all reconstructed

images have been significantly enhanced. However, there are

some spectral differences or blurring effects existing in the

reconstructed images compared with the reference image. For

example, the Proposed-ℓ2 produces significant spectral distor-

tion and fails to preserve the edges and details. The Proposed-ℓ1,

Proposed-ℓF , Proposed-∇ℓ1, and Proposed-∇ℓ2 perform well in

spectral preservation, however, they have blurring and some loss

of details. Compared with other methods, the proposed method

(i.e., Proposed-∇ℓ1/2) provides a better visual quality. Table VI

reports the quantitative evaluation results of the models with

different E(1) terms. The Proposed-ℓF is usually used as the

spectral preservation term to deal with the HSI superresolution

problem [2], [30], [65]. It takes second place in terms of quality

metrics. The proposed method (i.e., Proposed-∇ℓ1/2) yields the

best quantitative results on all quality measures, indicating the

effectiveness of the proposed method.

TABLE VI
QUANTITATIVE EVALUATION OF THE MODELS WITH DIFFERENT E(1) TERMS

ON THE UNIVERSITY OF PAVIA DATASET

B. Results With Different E(3) Terms

The major contribution of the proposed HL-GSNLTD method

is that both the nonlocal low-rank tensor decomposition and

global SSTV regularization are introduced into the fusion model

to simultaneously investigate the nonlocal low-rank property and

global spatial-spectral smoothness of the HR-HSI. To investigate

the influence of different E(3) terms on the fusion results, we

conduct additional comparisons among the models with differ-

ent combinations of E(3) terms, such as the basic fusion model

(BFM=E(1)+E(2)), the basic fusion model with the nonlocal

low rank prior (BFM+ENL

(3) ), the basic fusion model with the

global SSTV prior (BFM+ETV

(3) ), and the basic fusion model

with both the nonlocal low rank and global SSTV priors (i.e.,

the proposed model: BFM+ENL

(3) +ETV

(3) ). For a fair comparison,

all experimental environments and settings remain the same.

From Fig. 11, we obtain that the BFM performs poorly at

preserving the spatial and spectral information of the HR-HSI.

After adding the nonlocal low-rank or global SSTV priors into

the BFM, the quantitative performance increases significantly,

indicating that ENL

(3) and ETV

(3) show important and positive

influences on the fusion results. The proposed HL-GSNLTD

model, which simultaneously considers the nonlocal low-rank

and global SSTV priors, performs the best among the compared

models. This indicates that the nonlocal low-rank and global

SSTV priors can be organically combined to produce better

results than considering only one of them.

C. Parameter Selection

In the proposed HL-GSNLTD method, several parameters

with significant influences on the fusion results must be deter-

mined before performing Algorithm 2, including the number of

cubes in the NSCTNk for the cube clustering process, and some

sensitive parameters for the optimization procedure, i.e., αi, wi

(i = 1, 2, 3), λ, µ, and p. Next, we take the University of Pavia

dataset as an example and further investigate the influence of

these sensitive parameters for our method.

The number of cubes in the NSCT Nk has a significant influ-

ence on the cube clustering process. Fig. 12(a) shows the PSNR

of the reconstructed results of the University of Pavia dataset as

a function of Nk ∈ [2, 16]. As shown in Fig. 12(a), the PSNR

values remain relatively stable for Nk ∈ [2, 8] and decrease

sharply for Nk > 8. The PSNR attains its maximum value when

Nk = 6. Thus, Nk is eventually set as 6. The parameters αi (i =
1, 2, 3) are the three regularization parameters for balancing the
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Fig. 10. Comparisons of the reconstructed results obtained using the models in Table V on the University of Pavia dataset. (a) Reference image. (b) Proposed-ℓ1.
(c) Proposed-ℓ2. (d) Proposed-ℓF . (e) Proposed-∇ℓ1. (f) Proposed-∇ℓ2. (g) Proposed-∇ℓ1/2.

Fig. 11. Quantitative evaluation of the models with different combinations of E(3) terms, i.e., BFM=E(1) + E(2), BFM+ETV

(3)
, BFM+ENL

(3)
, and the proposed

model (i.e., BFM+ENL

(3)
+ ETV

(3)
), for the University of Pavia dataset. The proposed model exhibits the best performance compared to other models.

Fig. 12. PSNR curves as a function of the parameters for the proposed method. (a) Number of cubes Nk . (b) Parameter α3. (c) Parameters αi (i = 1, 2). (d)
Parameter λ. (e) Parameter p. (f) Parameter w3. (g) Parameters wi (i = 1, 2). (h) Parameter µ.

contribution of the nonconvex ℓp term in the different direc-

tions. From Fig. 12(b) and (c), we can clearly see that the pro-

posed method achieves high PSNR measures when α3 ∈ [5×
10−5, 5× 10−2] andα1 = α2 ∈ [1× 10−6, 1× 10−2]. Thus,α1

and α2 can be set to 1× 10−3, and α3 to 5× 10−2. Fig. 12(d),

(e), and (h) shows the PSNR curves of the reconstructed results

for the parameters λ, p and µ, respectively. We obtain that when

λ = 0.5, p = 0.5, and µ = 1 × 10−1, the PSNR measures attain

their maximum values, respectively. Thus, we set λ = p = 0.5

and µ = 1 × 10−1. The parameters wi (i = 1, 2, 3) are the three

regularization parameters for balancing the contribution of the

spatial-spectral TV term in the different directions. Fig. 12(f) and

(g) shows the PSNR of reconstructed results as a function of w3

and w1 = w2, respectively. It shows that the proposed method

achieves the best PSNR performance when w3 = 5 × 10−2 and

w1 = w2 = 1 × 10−2, respectively. Thus, in our experiments,

we set w3 = 5 × 10−2 and w1 = w2 = 1 × 10−2. Besides, we

test the proposed method when the penalty parameters δ, ηi
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TABLE VII
TIME COMPARISON OF DIFFERENT METHODS ON DIFFERENT DATASETS (IN SECONDS)

and γi (i = 1, 2, 3) varies from 1× 10−5 to 1× 101. Then, it

can be set as δ = η3 = γ3 = 1× 10−3, and ηi = γi = 1× 10−2

(i = 1, 2) to achieve the best results on the University of Pavia

dataset.

D. Computational Complexity

In this article, all experiments were implemented using MAT-

LAB R2016b on a computer with an Intel(R) Core(TM) i7-

8750H CPU @ 2.21 GHz and 16 GB of RAM. For each iteration

of the proposed HL-GSNLTD method, the computational burden

mainly consists of three parts, i.e., the nonlocal low-rank tensor

decomposition, global SSTV regularization related subproblem,

and nonconvex sparse ℓp related subproblem. The nonlocal

low-rank tensor decomposition can be accelerated by the sin-

gular value thresholding operator after applying the linearizing

operation on the quadratic term. The global SSTV regularization

related subproblem can be accurately and quickly solved by the

FFT algorithm. The nonconvex sparse ℓp subproblem is readily

solved using the fast GST algorithm. Table VII presents the

computational times of different methods on the three datasets.

We observe that the proposed method consumes more time than

NSSR, CSTF, and DHSIS; however, it is less time consuming

than the popular local and nonlocal tensor-based methods, such

as SSGLRTD and LTTR. Although DHSIS is very fast at pre-

dicting the HR-HSI, it requires long computational time on the

neural network training process.

VI. CONCLUSION

In this article, a novel global gradient sparse and nonlocal

low-rank tensor decomposition model with a hyper-Laplacian

prior is proposed for fusing the LR-HSI and HR-MSI of the

same scene. The proposed model mainly consists of three terms,

i.e., the spectral and spatial preservation terms and the prior

knowledge term. The spectral preservation term is described

as an ℓp (0 < p < 1) energy term, which was inspired by

the investigated hyper-Laplacian distribution of the gradients

of the difference images between the upsampled LR-HSI and

latent HR-HSI. The spatial preservation term is described as

a tensor-based fidelity term to recover the spatial details. The

last term models both the nonlocal low-rank structure and the

global spatial piecewise smooth and spectral consistent struc-

tures of the HR-HSI. Specifically, the nonlocal low rank Tucker

decomposition model is used to learn the spatial and spectral

similarities among the nonlocal similar cubes in the HR-HSI.

The global SSTV regularization is adopted to reconstruct these

nonlocal similar patches, and to further capture the global spatial

piecewise smoothness and spectral consistency of the HR-HSI.

The proposed optimization problem is efficiently solved using

ADMM. The proposed method was visually and quantitatively

compared with other existing state-of-the-art fusion methods on

three synthetic data sets and one real-life dataset, verifying the

superiority of our method. In addition, more analysis about the

influences of parameters and energy terms are also presented,

and the results demonstrate the effectiveness of our method.

In the future works, we plan to explore the parallel accelera-

tion scheme of the proposed method. In addition, tensor-based

techniques are much more advantageous in higher dimensional

image processing compared to matrix-based techniques [2],

[29]–[31]. Thus, we will investigate the feasibility of other tensor

techniques, such as tensor ring decomposition [66], to improve

the reconstruction results.
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