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Hyperspectral Image Unmixing Using a
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Abstract—This paper is concerned with joint Bayesian end-

member extraction and linear unmixing of hyperspectral images

using a spatial prior on the abundance vectors. We propose a gen-

erative model for hyperspectral images in which the abundances

are sampled from a Dirichlet distribution (DD) mixture model,

whose parameters depend on a latent label process. The label

process is then used to enforces a spatial prior which encourages

adjacent pixels to have the same label. A Gibbs sampling frame-

work is used to generate samples from the posterior distributions

of the abundances and the parameters of the DD mixture model.

The spatial prior that is used is a tree-structured sticky hierarchical

Dirichlet process (SHDP) and, when used to determine the pos-

terior endmember and abundance distributions, results in a new

unmixing algorithm called spatially constrained unmixing (SCU).

The directed Markov model facilitates the use of scale-recursive

estimation algorithms, and is therefore more computationally

efficient as compared to standard Markov random field (MRF)

models. Furthermore, the proposed SCU algorithm estimates the

number of regions in the image in an unsupervised fashion. The

effectiveness of the proposed SCU algorithm is illustrated using

synthetic and real data.

Index Terms—Bayesian inference, hidden Markov trees, hyper-

spectral unmixing, image segmentation, spatially constrained un-

mixing, sticky hierarchical Dirichlet process.

I. INTRODUCTION

H YPERSPECTRAL imaging provides a means of iden-
tifying natural and man-made materials from remotely

sensed data [1], [2]. Typical hyperspectral imaging instruments
acquire data in hundreds of different subbands for each spatial
location in the image. Therefore each pixel is a sum of spectral
responses of constituent materials in the pixel region, defined
by the spatial resolution of the instrument.
Spectral unmixing [3] is the process by which the hyperspec-

tral data is deconvolved under a linear mixing model (LMM).
In the LMM the observed spectrum in each pixel is described
as a linear combination of the spectra of several materials (end-
members) with associate proportions (abundances). A common
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solution to the unmixing problem is to use a two stage approach:
endmember extraction followed by an inversion to compute the
abundances. Two of the most popular endmember extraction al-
gorithm are the N-FINDR [4] algorithm, and vertex component
analysis (VCA) [5]. However these methods assume the exis-
tence of pure pixels in the observed image, i.e., they assume
that for each of the materials there is at least one pixel where
it is observed without being mixed with any of the other ma-
terials. This assumption may be a serious limitation in highly
mixed scenes. There have been several approaches presented
in the literature to address the pure pixel assumption. In [6],
a convex optimization based unmixing algorithm which uses a
criterion that does not require the pure pixel assumption was
presented. However the observation model assumes noise-free
measurements and therefore the algorithm may not be effec-
tive at low signal-to-noise ratio (SNR). A Bayesian linear un-
mixing (BLU) approach which estimates the endmembers and
abundances simultaneously and avoids the pure pixel assump-
tion was presented in [7]. BLU also uses priors on the model
variables which ensure endmember nonnegativity, abundance
nonnegativity and sum-to-one constraints, and was shown to
outperform the N-FINDR and VCA based unmixing algorithms
for highly mixed scenes. Therefore, BLU can be considered as
a state-of-the-art algorithm.
A common assumption underlying the aforementioned un-

mixing algorithms is that the abundance vector for each pixel
is independent of other pixels. When the spatial resolution
(the size of the region that is represented by each pixel) is low
it might be expected that neighboring pixels have different
proportions of endmembers, however as the spatial resolution
increases neighboring pixels are more likely to share similar
spectral characteristics. Even low resolution images may have
patches that are characterized by similar abundances, e.g., a
large body of water or a vegetation field. Including spatial
constraints within the unmixing process has been receiving
growing attention in the literature, and has been demonstrated
to improve unmixing performance. In [8], spatially constrained
unmixing was considered, however, the abundance nonneg-
ativity and sum-to-one constraints as well as the endmember
nonnegativity constraint were not enforced. The algorithms
in [9] and [10] use spatial constraints to perform endmember
extraction, however they rely on the pure pixel assumption. In
[11] a spatially constrained abundance estimation algorithm
that uses Markov random fields (MRF) [12] and satisfies the
abundance nonnegativity and sum-to-one constraints was pre-
sented, however the endmembers were estimated separately
without including any spatial constraints.
The MRF prior has been used extensively in domains such

as texture [13] and hyperspectral [14], [15] image segmenta-
tion. Although MRF based algorithms perform well they suffer

1053-587X/$26.00 © 2011 IEEE
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from several drawbacks. Inference in MRF is computationally
expensive, and parameter estimation in the unsupervised setting
is difficult [16]. Furthermore MRF estimation performance is
highly sensitive to tuning parameters [17]. Although there exist
methods such as the iterated conditional modes algorithm [18]
that reduce the computational complexity related to inference in
MRF, these methods usually only converge to a locally optimal
solution, and limit the range of priors that may be employed in a
Bayesian formulation. A common image processing alternative
to MRF is the multiresolution Markov models defined on pyra-
midally organized trees [19], which allow for computationally
efficient scale-recursive inference algorithms to be used, and
can be constrained to enforce local smoothness by increasing
the self-transition probabilities in the Markov model.
In this paper, we develop a spatially constrained unmixing

(SCU) algorithm that simultaneously segments the image into
disparate abundance regions and performs unmixing. The
abundances within each region are modeled as samples from
a Dirichlet distribution (DD) mixture model with different
parameters, thus the nonnegativity and sum-to-one physical
constraints are naturally satisfied. Specifically we use a mixture
model with three components. The first two mixture compo-
nents capture the abundance homogeneity within the region by
setting the precision parameter of the DD mixture components
to be relatively large, and the third component models the
outliers using a DD whose parameters are all set to one (this
is equivalent to a uniform distribution over the feasibility set
that satisfies the nonnegativity and sum-to-one constraints).
We avoid the need to define the number of disparate homoge-
neous abundance regions a priori by employing a hierarchical
Dirichlet process (HDP) [20] type of prior. The standard HDP
is a nonparametric prior in the sense that it allows the number
of states in the Markov process to be learned from the data, and
has been previously used for hidden Markov models and hidden
Markov trees (HMT) [21], [22]. The multiresolution Markov
model which we use differs from the hidden Markov models in
[21] and [22] since the observations are only available at the
bottommost level of the tree. To encourage the formation of
spatially smooth regions we use the sticky HDP (SHDP) [23].
Our method has several advantages compared to the spatially
constrained unmixing algorithms in [8]–[11]: (a) it is based on
a directed multiresolution Markov model instead of a MRF and
thus it allows the use of inference schemes which exhibit faster
mixing rates; (b) the spatial dependencies are used to estimate
both the abundances and the endmembers simultaneously,
rather than just the abundances or endmembers; (c) it does not
require the pure pixel assumption; (d) the number of regions
that share the same abundances is inferred from the image in
an unsupervised fashion. The SCU algorithm that we present
here extends the work in [43] by modeling the abundance
vectors in each cluster as samples from a DD mixture model
with different parameters for each region, as opposed to fixed
abundances that are shared by all pixels within the region.
Our experimental results show that in low SNR the spatial
constraints implemented by the SCU algorithm significantly
improves the unmixing performance.
This paper is organized as follows. Section II presents back-

ground on the LMM for hyperspectral imaging, and the abun-

dance model. Section III presents the multiresolution prior and
background on the SHDP. Section IV presents the spatially con-
strained unmixing algorithm. Section V presents the experi-
mental results, and Section VI concludes this paper.

II. PROBLEM FORMULATION

A. Hyperspectral Imaging With the LMM

A hyperspectral image is composed of pixels ,
where each is a -dimensional vector representing different
spectral bands of the reflected electromagnetic field. In the
LMM each pixel measurement is a convex combination of
spectra vectors called endmembers,
corrupted by additive Gaussian noise

(1)

where denotes the proportion of the material in the
pixel. The vector which is called

the abundance, must satisfy nonnegativity and sum-to-one con-
straints

(2)

We denote by the set of feasible abundances that satisfy the
constraints (2). Similarly, since spectra are nonnegative, the
endmember must satisfy

(3)

Concatenating the vectors (1) into a matrix we have the equiv-
alent matrix version of (1)

(4)

where

(5)

The objective of hyperspectral unmixing is to estimate the ma-
trices and , given the observations .

B. Dimensionality Reduction

Due to the sum-to-one and nonnegativity constraints the
abundance vectors lie on a simplex; a subspace of codimension
1. We use the principal component analysis (PCA) approach
that was proposed in [7] to accomplish dimensionality reduc-
tion. Let denote the mean vector of the columns of , and let
denote the covariance matrix estimated using the columns

of . Let denote a diagonal matrix with the largest
eigenvalues of arranged along the diagonal, and similarly
let denote a matrix with columns that are the appropriate
eigenvectors, then the PCA reduced endmember takes the form

(6)
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where . Equivalently we have that

(7)

where . The endmember matrix can therefore be
expressed using as follows:

(8)

where .
The feasibility set for the endmember is expressed in terms

of the PCA reduced representation as

(9)

where , , and is the
entry of .

C. The Dirichlet Distribution

The Dirichlet probability density function (PDF) with param-
eter vector is [41]

(10)

where . An alternative representation of the Dirichlet
parameter vector is given by

(11)

(12)

where is the mean of the DD, and is known as the precision
parameter.
The variance of the DD takes the form [41]

(13)

and for we have that

(14)

This implies that the DD PDF becomes more peaked around its
mean as the precision parameter increases.

D. The Spatially Constrained Abundance Model

The unmixing algorithm that we present in this paper seg-
ments the image into disparate regions. Let the different regions
, denote disjoint sets composed of pixel in-

dices, and let the indicator function of a pixel in region be
defined as

if
otherwise

(15)

The class label associated with pixel thus takes the form

(16)

The abundance of the pixel is generated using

(17)

where for , ,

, and we denoted , and

. The first two mixture components capture the spa-
tial homogeneity of the abundances by setting the precision pa-
rameter to a relatively large value, whereas the third component
accounts for the outliers by setting to a relatively low value.
The prior for the parameters , follows:

(18)

where , , and where de-
notes the uniform distribution on the interval and
are parameters that satisfy . By setting to a
relatively large value we can model the homogeneity of the
abundances within a region. Furthermore we require
and in order for the likelihood function to
be sufficiently peaky and facilitate the estimation of the labels

. We fixed the parameter values to ,
, , , , ,

throughout this work.
Let denote a discrete random variable which determines

which mixture component was sampled from, then we can
describe the generative model for the abundances using

(19)

where the prior of is a multinomial probability mass function
(PMF) of the form

(20)

We also denote the sets and
for , .

In the sequel the labels , will be denoted
since they are going to be associated with the maximal resolu-
tion subset of a multiresolution tree in the SHDP representation
described here.

E. Lower-Dimensional Abundance Representation

Since the abundances must satisfy the nonnegativity and
sum-to-one constraints, they can be rewritten using the partial
abundance vectors [7]

with ... (21)
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Fig. 1. A quadtree lattice.

and . The feasibility set is

(22)

III. THE MULTIRESOLUTION STICKY HDP

The LMMand the abundancemodel described in the previous
section provide a statistical model for the observations, condi-
tioned on the labels . To complete this model we also
require a prior distribution for these labels, where in this paper
we propose to use a multiresolution SHDP which can encourage
the formation of spatially smooth label regions and determine
the number of regions in an unsupervised fashion. Consider the
quadtree lattice shown in Fig. 1, where the nodes are discrete
random variables that take their values from the set ,
where denotes the number of class labels. We use the nota-
tion , , to denote the labels at the level,
where denotes the number of levels in the quadtree. We also
define the vector containing all the labels at the level

(23)

The labels at the bottommost level of the quadtree
are associated with the appropriate pixels of the hyperspectral
image. We assume here that the number of pixels in the image
is equal to the number of leaves at the bottommost level of the
quadtree, otherwise one can increase the size of the tree and
prune all the branches that have no descendants that correspond
to image pixels. Our prior for the labels assumes a Markovian
relationship between the labels on the quadtree lattice. Specifi-
cally, let us define the likelihoods

(24)

where denotes the parent of node at the level,
then the joint probability mass function of all the labels takes
the form

(25)

where , and . We also
define the vector consisted of the transition probabilities from
class label at the level

(26)

The quadtree model can be used to enforce spatial smooth-
ness by using a prior for ,
which encourages larger self-transition probabilities, i.e.,

, . Another issue is
the choice of the number of class labels . These type of
problems are known as model order selection where common
approaches such as the AIC [24] and BIC [25], optimize a
criterion which advocates a compromise between the model
fitting accuracy and the model complexity. The drawback is
that the AIC and BIC require a scoring function to be com-
puted for every considered number of parameters in order to
choose the optimal model. Another approach is reversible jump
Markov chain Monte Carlo samplers [26], [27] where moves
between different parameter spaces are allowed. However such
methods require accurate tuning of the jump proposals and are
not computationally efficient [28]. Dirichlet processes (DP)
provide a nonparametric prior for the number of components
in a mixture model [20] and facilitate inference using Monte
Carlo or variational Bayes methods [29], [30]. The HDP is an
extension of the DP which allows for several models to share
the same mixture components, and can be used to infer the state
space in a Markov model. The SHDP augments the HDP by
encouraging the formation of larger self-transition probabilities
in the Markov model, thus it provides an elegant solution to all
the requirements of our multiresolution prior. Next we provide
an introduction to the DP, HDP, and SHDP in the context of the
tree prior which is used in the unmixing algorithm presented in
this paper.

A. Dirichlet Processes

The DP denoted by is a probability distribution on
a measurable space [31], and can be represented as an infinite
mixture model where each component is drawn from the base
measure , and the mixture weights are drawn from a stick-
breaking process that is parameterized by positive real number
[32]. Specifically, to sample from the DP one can sample the

from the infinite mixture model

(27)

where is the stick-breaking process constructed as fol-
lows:

(28)

(29)

where denotes the Beta distribution. The stick-
breaking process is commonly denoted by , and can
be interpreted as dividing a unit length stick into segments that
represent the proportions of the different mixture compo-
nents . Observing (28) and (29), we note that setting such
that is likely to be closer to one (i.e., smaller ) leads to
having fewer mixing components with nonnegligible weights
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and vice versa. Therefore the parameter expresses the prior
belief on the effective number of mixture components. Equiva-
lently, the generating process for a sample from ,
can be represented using an indicator random variable

(30)

where denotes a multinomial distribution.
Another interpretation of the DP is through the metaphor-

ical Chinese restaurant process (CRP) representation [20]
which follows from the Pólya sequence sampling scheme
[33]. According to the CRP, a customer that is represented
by the sample index enters a restaurant with infinitely many
tables each serving a dish . The customer can either sit at
a new table where no one else is sitting, with probability that
is proportional to , or sit at any other table with probability
that is proportional to the number of other customers that are
already sitting at that table. If the customer sits at a new table
then he also chooses the dish served at that table by sampling
the probability measure , otherwise the customer selects the
dish that is served at the chosen table.

B. Hierarchical Dirichlet Processes

The HDP defines a set of probability measures which are
DPs that share the same base measure which is itself a DP. Let

, then the HDP is obtained using

(31)

where denotes the number of different groups that share the
same base measure , and is a positive real number. The
process of generating a sample from can be repre-
sented using the indicator variable notation

(32)

Similarly to the DP, the HDP can be interpreted using a repre-
sentation that is analogous to the CRP and is known as the Chi-
nese restaurant franchise (CRF). The CRF metaphor describes
each of the processes as restaurants that share the
same global menu which offers dishes that are represented by
the mixture components of . A customer that enters the
restaurant can sit at an existing table with probability that is pro-
portional to the number of other customers already sitting at that
table, or at a new table with probability that is proportional to
. If the customer sits at a table which is already instantiated he
chooses the same dish that is served at that table, otherwise he
chooses a dish by randomly drawing from . A dish which has
already been served at any of the restaurants is sampled from
with probability that is proportional to the number of all tables
in the restaurants that are serving that dish, and a new dish is
sampled from with probability that is proportional to .
Assuming a HDP prior, we can use in (32) as the transi-

tion probabilities between the levels of the quadtree. The dishes
correspond to samples from a base measure described by the

PDF of which can be obtained from (18), customers cor-
respond to label realizations at the nodes of the quadtree, and
the restaurant that each customer is assigned to corresponds to
the label of the parent node, where we use different restaurants
for each level in the tree.

C. The Sticky HDP

An important property that is demonstrated by the HDP is that
the base measure serves as the “average” measure of all the
restaurants [23]

(33)

The implication of (33) is that by using a HDP prior we as-
sume that that the unique dish proportions are similar across dif-
ferent restaurants. This violates our requirement that the prior
for the transition probabilities encourage larger self-transition
likelihoods. The SHDP [23] modifies the restaurant specific dish
likelihoods in (32) in the following manner:

(34)

where is a nonnegative scalar, and denotes a vector with
1 at the entry and zeros in the rest. The “average” now
takes the form

(35)

and therefore the larger the parameter is, the more likely it
becomes that the dish, which is referred to as the specialty
dish, would be selected at the restaurant.
The metaphorical interpretation of the SHDP which is known

as theCRFwith loyal customers, is identical to the CRFwith the
sole difference that if a customer chooses to sit at an uninstan-
tiated table at the restaurant, then in order to sample a dish
he flips a biased coin such that with probability proportional to
he selects the dish and with probability proportional to

the customer draws the dish from . The table assignment of
the sample at the restaurant thus follows:

(36)

where denotes the number of customers sitting at the
table in the restaurant, and denotes the number of tables
instantiated in the restaurant. The dish assignment of a
table in the restaurant is drawn using

(37)

(38)

(39)

where denotes a Bernoulli distribution, , and
is an auxiliary variable which is equal to zero or one, de-

pending on whether the dish at the table in the restaurant
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Fig. 2. Graphical model representation of the SCU algorithm, where is
defined in (18), is defined in (20), is defined in (17), is defined in
(6), is defined in (23), , is defined in (26), is the
hyperspectral image, and is the variance of the observation noise in (4).

was chosen by drawing from , or by an override operation on
the specialty dish.
1) Infinite Limit of a Finite Mixture Model: The DP and the

derived HDP and SHDP can all be obtained as the limit of fi-
nite mixture models [34], [35]. Specifically for the SHDP the
stick-breaking process in (32) can be approximated as the
-dimensional DD

(40)

and the restaurant specific dish probabilities in (34) can be ap-
proximated using the -dimensional DD

(41)
The above construction converges in distribution to the SHDP
as .
2) Posterior Sampling in the SHDP: The approximation of

the SHDP using finite mixture models leads to a simple form
of the posterior distributions. By the conjugacy of the Dirichlet
and multinomial distributions, it follows that:

(42)

where , which is also equivalent to
the number of customers that are having the dish in the
restaurant. The posterior for takes the form

(43)

where denotes the number of tables that are serving the
dish all over the restaurants, which were not instantiated by
an override operation of the specialty dish.
The posterior for the number of tables serving the dish in

the restaurant in the SHDP takes the form [23]

(44)

where are unsigned Stirling numbers of the first kind.
Alternatively, it is possible to sample by simulating table
assignments from a CRP [23].
The posterior for the override auxiliary variables given

in (38) was developed in [23]:

(45)

The number of tables whose dish was selected by sampling
from satisfies:

(46)

where . A sample from the posterior for
can be obtained using Algorithm 1.

Algorithm 1: Posterior sampling of

� For ,
1) Sample using (44) or by simulating from (36).
2) For , sample from (45).
3) Compute using (46).

IV. SPATIALLY CONSTRAINED HYPERSPECTRAL UNMIXING
WITH A PYRAMID STRUCTURED SHDP

In this section, we present the SCU algorithm where the
graphical model representation is described in Fig. 2. We first
describe each of the parameters’ priors, and then present the
posterior distributions that are used with the Gibbs sampling
algorithm.

A. Parameter Priors

1) Label Transition Probabilities: The multiresolution
Markov model described in Section III relies on the state
transition probabilities , , .
The prior for these parameters is obtained from the SHDP with
the finite mixture approximation perspective. Specifically, we
have that is a stick-breaking process that is ap-
proximated using (40), and the prior for , ,

is obtained similarly to (41) with , regard-
less of the value of .
2) Abundances: As described in Section II-D the abundance

of pixel follows a DD mixture with a parameter vector which
depends on the label

(47)
where denotes the element of the vector .

3) DD Parameters: As explained in Section II-D, we use
, where the priors for , and were de-

scribed in Section II-D. Therefore
, . We assume that the parameters of the DD in

every class are independent, therefore we have that

(48)
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Algorithm 2: The SCU algorithm

� Initialization: initialize , , .
� Iterations: For
1) For , sample from (72).

2) Sample , using

(61).
3) For , , compute the

upward predictions using (58) and (60).
4) For , , sample the labels

using (56) and (57).
5) Partition all the labels into dishes and restaurants as
described in Section IV-B.II.

6) Sample the number of tables serving the dish
at the restaurant , using Algorithm 1 with

.
7) Sample from (43).
8) For , , sample
from (62).

9) For sample from (71).
10) For , sample as described in

Section IV-B.III.
11) For ,

— Sample using (67).
— For , sample using (65).

— For , set .
12) For , sample from (73).

where denotes the abundance feasibility set (2).
4) The Indicator Variable : The prior for is given

in (20), where as explained in Section II-D the parameters
where chosen such that the prior promotes abun-

dance PDFs which are peaky, and therefore facilitate the
segmentation process.
5) Likelihood: We assume that the additive noise term in

the LMM satisfies for all , thus the
likelihood of observing takes the form

(49)
where , and denotes the standard
Euclidean norm.
Since the noise vectors for each of the pixels ,

are assumed to be independent, the PDF of
all the pixels takes the form

(50)

6) Noise Variance Prior: The prior which we use for is
the conjugate prior

(51)

where denotes an inverse-gamma distribution, and we
used the parameter values and .
7) Projected Spectra Prior: Similarly to [7] we use a multi-

variate Gaussian that is truncated on the set given in (9), as
a prior for . The PDF therefore takes the form

(52)

where the mean is set using the endmembers found using
VCA, and is set to a large value (we used ).

B. Gibbs Sampling and the Posterior Distributions

The estimation is performed using a Gibbs sampler [36]
which generates a Monte Carlo approximation of the distribu-
tion of the random variables by generating samples from the
posterior distributions iteratively, as outlined in Algorithm 2.
The posterior sampling schemes are described next in this

section. Let , denote the sequence generated by the
Gibbs sampler for a random variable , then the minimummean
squared error (MMSE) estimate is approximated using:

(53)

where denotes the number of burn-in iterations.
A byproduct of the unmixing algorithm is the segmentation

that is given by the labels . Since the random vector
is discrete it can not be estimated like the abundances and
endmembers using (53). One possible approach to segment the
image is to select the which maximize the posterior likeli-
hood, however this approach tends to overfit the data [23]. The
approach that we use in this work is known as the maximum of
posterior marginals (MPM) [13], where the detected label for
each pixel is that which occurs with the largest frequency over
the sequence generated by the Gibbs sampler, i.e.

(54)

1) Block Sampling the Labels’ Posterior Distribution: The
blocked sampler for the states of a HDP-HMT was presented in
[22]. Here we present the particular case of the algorithm in [22]
in which the observations are available at the leaf nodes alone,
and which includes the SHDP extension of [23]. The approach is
similar to the “upward-downward” procedure in hiddenMarkov
trees [37]. The benefit of using a blocked sampler, as opposed to
a direct assignment sampler which updates the label of a single
node at a time, is that the mixing rate is improved significantly.
A faster mixing rate translates into faster convergence.
The labels’ posterior can be written as

(55)
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The interpretation of (55) is that given the appropriate condi-
tional distributions, the block sampler is realized by sampling
the labels at each level, going sequentially from the topmost
level to the bottommost level. The conditional distributions in
(55) admit the following expressions:

(56)

(57)

where in this paper we used an equally likely distribution for
the labels . This choice ensures that the MCMC algorithm
samples over the full depth of the tree. The upward predictions

are computed recursively using

(58)

where denotes the set consisted of the children of node
at the level, and is obtained from (17). Equa-

tion (58) therefore constitutes the upward sweep in which the
predictions are calculated, whereas (56) implements
a downward sweep in which the labels are sampled. Computing
the integral in (58) is in general intractable, therefore we use
Monte Carlo integration. Let denote the normalization con-
stant of the truncated PDF , then we first
draw samples

(59)

and approximate the integral using

(60)

where in this paper we used .We note that in (60) can
be ignored for the purpose of approximating (58), and the sam-
pling in (59) can be realized by sampling the partial abundance
vector from a Gaussian PDF that is truncated to the partial

abundance feasibility set
where

(61)
We refer the reader to [7] for specific details regarding the imple-
mentation of efficient sampling from the truncated multivariate
Gaussian distribution.
2) Posterior Sampling of the State Transition Probabilities:

The labels effectively partition the data into restau-
rants and dishes under the CRF with loyal customers metaphor.
For instance assume that and , then as dis-

cussed in Section III-B we interpret this as the dish being

served at the restaurant where . The pos-
terior for is therefore obtained similarly to (42) using

(62)

where . The posterior for is similarly given
in (43).
3) Sampling From the Abundance Posterior: The abundance

posterior at pixel takes the form

(63)

with and given in (61).
The posterior for every element of is

(64)

where denotes the length vector obtained by ex-
cluding from , , and are
the mean and variance of the Gaussian conditional PDF of
given which can be obtained from (61) using [42, p. 324].
Sampling from the posterior for proceeds by evaluating

(64) on a linearly spaced points in the interval , and sampling
from the obtained PMF.
4) Sampling From the Posterior for : Instead of sam-

pling from the posterior of directly, we sample

from the posterior of and and set .

The posterior for takes the form

(65)

where , and denotes the cardinality

of the set . We sample from the posterior for by evalu-
ating (65) on a linearly spaced points in the interval , and
sampling from the obtained PMF.
Since the DD is in the exponential family it is easy to show

that the posterior for is also in the exponential family, how-
ever it does not have the form of any standard PDF.We therefore
propose a different approach to approximately sample from the
posterior of . Let for , ,
then using (12) and the strong law of large numbers we have
that

(66)

as . Therefore assuming that the number
of samples is large the distribution of the sample mean approx-
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Fig. 3. The ground truth abundance maps (a)-(e), and the true endmembers and the endmembers estimated using the VCA, SCU and BLU algorithms for SNR of
15 db (f)-(j). (a) endm. 1 abundance map. (b) endm. 2 abundance map. (c) endm. 3 abundance map. (d) endm. 4 abundance map. (e) endm. 5 abundance map. (f)
endm. 1 spectra. (g) endm. 2 spectra. (h) endm. 3 spectra. (i) endm. 4 spectra. (j) endm. 5 spectra.

imates the distribution of the posterior. Using the central limit
theorem to approximate the PDF of the sample mean we ap-
proximate the posterior using

(67)

where

(68)
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andwhere is a symmetric matrix with the diagonal elements
and off diagonal elements for

, which follows from (13) and (14). Since is unavail-
able we replace it with the sample mean estimate . It can be
seen that the approximate posterior distribution (67) converges
to a Dirac delta function as the number of samples becomes
larger. In order to enforce the nonnegativity and sum-to-one
constraints for we replace the Gaussian PDF with a DD with
the same mean and covariance matrix. Therefore we can sample
approximately from the posterior of using

(69)

where .

5) Sampling the Posterior for : The posterior for is of
the form

(70)
where denotes the PDF of a DD for the random vector
that is parameterized by . Similarly to (60) we use Monte

Carlo integration to approximate the integral. We first draw
samples from (59), and then use the approximation

(71)

where is a normalization constant which can be ignored.
Therefore it is straightforward to sample by drawing from
the normalized PMF (71). In this paper, we used .
6) Sampling From the Posterior for : The posterior for

is an inverse Gamma distribution,

(72)
7) Sampling the Posterior for : The posterior for ,

is also multivariate Gaussian truncated to the feasi-
bility set . Let denote the matrix with the column
removed, then we have that

(73)

where

(74)

with

(75)

C. Computational Complexity

The main additional complexity incurred by the use of the
SHDP is due to the computation of the upward predictions in
(58). For the complexity of (58) is , however

TABLE I
ABUNDANCE MEANS FOR EACH OF THE REGIONS OF THE SYNTHETIC

HYPERSPECTRAL IMAGE

TABLE II
THE AND OF THE ESTIMATED ENDMEMBERS FOR

DIFFERENT SNR

since the transition probabilities are very sparse it can ef-
fectively be reduced to without any noticeable effect
on the performance. The complexity of the proposed SCU algo-
rithm is therefore dominated by the Monte Carlo approximation
used in (58) for , which involves sampling from a trun-
cated multivariate Gaussian. Let denote the complexity of
sampling from a truncated multivariate Gaussian, then the com-
plexity of SCU is approximately whereas the
complexity of BLU is approximately since sampling the
abundances entails the largest computational cost. Therefore the
SCU runs about times slower than the BLU.

V. EXPERIMENTAL RESULTS

A. Simulations With Synthetic Data

We generated a 100 100 synthetic hyperspectral image with
5 endmembers by simulating model (1) with , where
the endmember spectra were taken from [38], and the abun-
dances were sampled from a DD with precision parameter set to
60 and the means that are given in Table I. The synthetic abun-
dance maps are shown in Fig. 3(a)–(e).
The ground truth and estimated endmembers for the 15 db

scenario are shown in Fig. 3(f)–(j), where the SNR was defined
as follows:

(76)
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TABLE III
THE SSE OF THE ESTIMATED ABUNDANCES FOR DIFFERENT SNR

Fig. 4. The segmentation obtained for SNR 15 db using the proposed SCU
sticky HDP algorithm (a), and nonsticky SCU (b). (a) SCU. (b) Nonsticky SCU.

Fig. 5. A color visible band image corresponding to the hyperspectral image
of Cuprite, NV. The region of interest is marked with the black frame.

where , , and .
The parameters that we used were ,

, and we used a truncation order of
to approximate the DPs. The number of levels in the quadtree

TABLE IV
THE MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM,
OBTAINED USING 20 DIFFERENT INITIALIZATIONS FOR THE VCA, BLU AND

PROPOSED SCU ALGORITHM FOR DIFFERENT SNRS

Fig. 6. A satellite image of the region of interest obtained from Google Maps.
The white lines represent roads.

was set to the maximum possible levels, where as described in
Section III for a 100 100 image we first extend the image to
size 128 128 and prune all the branches that have no descen-
dants that correspond to image pixels. The parameters , , and
were estimated using the method described in [23]. However,

we observed that the performance is not sensitive to the exact
values of these parameters. The DD parameters were initialized
by using the k-means algorithm to cluster the abundances (esti-
mated using VCA) into classes, such that ,
were set to the centers, and the precision parameters were
set to , . In this paper, we assume that
the number of endmembers is known, however, in practice the
number can be estimated using model selection methods such
as [40]. It can be seen in Fig. 3(f)–(j) that the spectra that was
estimated using the proposed SCU algorithm is generally closer
to the true endmembers compared to the endmembers extracted
using the VCA abd BLU algorithms. Table II compares the sum
of squared errors (SSE) and the spectral angle distance (SAD)
for the VCA, BLU, and SCU for different SNR, where the SAD
is defined as

(77)
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Fig. 7. The five estimated endmembers (Kaolin , Kaolin , Alunite , Montmorillonite , Sphene) for the proposed SCU algorithm as compared to
ground truth and the VCA and BLU algorithms. SCU is competitive with the other methods at all SNRs.

It can be seen that the SCU performs comparably or better in all
cases. The abundance SSE using the three methods is shown in

Table III, where it can be verified that the SCU obtains lower
SSE for almost all of the cases compared to the VCA and BLU.



1668 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

TABLE V
THE MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM, OBTAINED USING 20 DIFFERENT INITIALIZATIONS FOR THE VCA, BLU,

AND PROPOSED SCU ALGORITHM FOR DIFFERENT SNRS

We did not observe significant differences in performance for
this simulated example under different initializations and there-
fore we do not report multiple random start statistics.
Fig. 4 shows the segmented images obtained using the pro-

posed SCU algorithm when using the SHDP and the standard
HDP. The SHDP identified 9 classes with very few misclassi-
fied pixels whereas the HDP identified 38. Therefore, the SHDP
more accurately identified the underlying ground truth segmen-
tation which had 9 classes. This demonstrates the significance
of the stickiness property for segmentation purposes.

B. Simulations With Real AVIRIS Data

In this section, we test the new approach using the AVIRIS
data of Cuprite, NV, [39] which has been used previously to
demonstrate the performance of hyperspectral imaging algo-
rithms [5], [7]. A color image synthesized from the hyperspec-
tral image is shown in Fig. 5, where we used a 80 80 pixels
region of interest which is marked with a black frame, to eval-
uate the performance of the proposed SCU algorithm. Fig. 6
also shows a satellite image of the region of interest obtained
from Google Maps, where the roads present in the image are
marked by the white lines. The ground truth for the endmembers
in this dataset is available at [38]. The parameter values and ini-
tialization method that were used here were identical to those
that were used for the synthetic image simulations, where we
used , and , and the
number of endmembers was set to 5.We ran the VCA, BLU, and
SCU for 20 different times, where for each run we used the same
endmember initialization obtained from the VCA algorithm for

the BLU and SCU algorithms. The SNR of the image as esti-
mated by the VCA algorithm is about 30 db, therefore to illus-
trate the benefits of the SCU algorithm in low SNR scenarios we
also evaluated the performance when adding Gaussian noise to
the hyperspectral image. Tables IV and V show the mean, stan-
dard deviation, worst, and best SSE and SAD of the endmem-
bers over the 20 runs, for SNRs of 10, 20, and 30 db. It can be
seen that VCA estimates the Kaolin #1, Kailin #2, and Mon-
tomorillonite endmembers quite well, which is most likely due
to the existence of pure pixels in these materials for the scene
under study. VCAÕs estimate of the Alunite and Sphene end-
members is much worse, probably due to the lack of such pure
pixels. Comparing the BLU and SCU it can be seen that on av-
erage they perform comparably, however for the SCU the stan-
dard deviation and worst case SSE is generally better than for
the BLU. This shows that the SCU is more robust to the initial-
ization of the endmembers in (52) which is obtained here using
the VCA.
Figs. 7 and 8 show the estimated endmembers and the

abundance maps, respectively, from one of the 20 runs for
different SNR. It can be seen in Fig. 7 that the endmembers
estimated using the BLU and SCU are generally comparable.
Fig. 8 demonstrates that the abundance maps obtained using
the SCU degrade far less as the SNR decreases compared to
the abundances estimated using the BLU. Although we only
show the results of one of the 20 runs, the abundance maps of
the other runs look very similar to those shown in Fig. 8 thus it
is representative of all our simulations.
There is no available ground truth for the abundances, how-

ever we argue that since the roads that are present in the image
and can be seen in Fig. 6 are man-made landmarks, the ground
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Fig. 8. The estimated abundances. The algorithm and SNR for each column is written at the top row. Each row describe the abundances of the same material
(from top to bottom: Kaolin #1, Kaolin #2, Alunite, Montmorillonite, Sphene).

TABLE VI
THE VARIANCE OF THE ROAD PIXEL ABUNDANCES FOR VCA, BLU, AND PROPOSED SCU ALGORITHM FOR DIFFERENT SNRS
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truth should demonstrate the property that the abundances along
the roads are more similar to each other. Table V shows the
variance of the variance of the road pixels abundances, where
it can be seen that the variance of road pixels abundances is
lower when using the SCU compared to the VCA and BLU. This
suggests that the SCU estimates the abundancesmore accurately
compared to the other algorithms.

VI. CONCLUSION

We presented a Bayesian algorithm, called the spatially con-
strained unmixing (SCU) algorithm, which makes use of a spa-
tial prior to unmix hyperspectral imagery. The spatial prior is en-
forced using a multiresolution Markov model that uses a sticky
hierarchical Dirichlet process (SHDP) to determine the number
of appropriate segments in the image, where the abundances are
sampled from Dirichlet distribution (DD) mixture models with
different parameters. We take the spatial homogeneity of the
abundances into accounted by including DD mixture compo-
nents with large precision parameters, whereas the outliers are
modeled using a mixture component that corresponds to a uni-
form distribubution over the feasibility set which satisfies the
nonnegativity and sum-to-one constraints. Large regions with
similar abundances are most likely to be found in high resolu-
tion hyperspectral imagery, thus our proposed SCU approach
is expected to be most beneficial in such images. However it
is also useful in low resolution images that contain some large
regions with similar abundances, e.g., a large body of water
or a vegetation field. The experimental results with synthetic
and real data demonstrate that our proposed SCU algorithm has
improved endmember and abundance estimation performance,
particularly in low SNR regimes.

REFERENCES
[1] D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal

Process. Mag., vol. 19, no. 1, pp. 17–28, Jan. 2002.
[2] J. A. Richards, “Analysis of remotely sensed data: The formative

decades and the future,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 3, pp. 422–432, Mar. 2005.

[3] N. Keshava and J.Mustard, “Spectral unmixing,” IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.

[4] M. Winter, “Fast autonomous spectral end-member determination in
hyperspectral data,” in Proc. 13th Int. Conf. on Appl. Geologic Remote
Sens., Vancouver, British Columbia, Apr. 1999, vol. 2, pp. 337–344.

[5] J. M. Nascimento and J.M. Bioucas-Dias, “Vertex component analysis:
A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.

[6] T. H. Chan, C. Y. Chi, Y. M. Hunag, and W. K. Ma, “A convex anal-
ysis based minimum volume enclosing simplex algorithm for hyper-
spectral unmixing,” IEEE Trans. Signal Process., vol. 57, no. 11, pp.
4418–4432, Nov. 2009.

[7] N. Dobigeon, S. Moussaoui, M. Coulon, J. Y. Tourneret, and A. O.
Hero, “Joint Bayesian endmember extraction and linear unmixing for
hyperspectral imagery,” IEEE Trans. Signal Process., vol. 57, no. 11,
pp. 4355–4368, Nov. 2009.

[8] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spatial/spectral end-
member extraction by multidimensional morphological operations,”
IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025–2041, Sep.
2002.

[9] S. Jia and Y. Qian, “Spectral and spatial complexity-based hyperspec-
tral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp.
3867–3879, Dec. 2007.

[10] G. Martin and A. Plaza, “Spatial-spectral preprocessing for
volume-based endmember extraction algorithms using unsuper-
vised clustering,” in Proc. IEEE GRSS Workshop on Hyperspectral
Image and Signal Process: Evolution in Remote Sens. (WHISPERS),
Jun. 2010.

[11] O. Eches, N. Dobigeon, and J.-Y. Tourneret, “Enhancing hyperspec-
tral image unmixing with spatial correlations,” IEEE Trans. Geosci.
Remote Sens., vol. 49, no. 11, pp. 4239–4247, Nov. 2011.

[12] J. Besag, “Spatial interaction and the statistical analysis of lattice sys-
tems,” J. Royal Stat. Soc. Ser. B, vol. 36, no. 2, pp. 192–236, 1974.

[13] M. L. Comer and E. J. Delp, “Segmentation of textured images using
a multiresolution Gaussian autoregressive model,” IEEE Trans. Image
Process., vol. 8, no. 3, pp. 408–420, Mar. 1999.

[14] G. Rellier, X. Descombes, F. Falzon, and J. M. Bioucas-Dias, “Tex-
ture feature analysis usingGaussMarkovmodel in hyperspectral image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp.
1543–1551, Jul. 2004.

[15] R. Neher and A. Srivastava, “A Bayesian MRF framework for labeling
terrain using hyperspectral imaging,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 7, pp. 1543–1551, Jul. 2004.

[16] C. A. Bouman, “A multiscale random field model for Bayesian image
segmentation,” IEEE Trans. Image Process., vol. 3, no. 2, pp. 162–177,
Mar. 1994.

[17] N. Bali and A. M. Djafari, “Bayesian approach with hidden Markov
modeling and mean field approximation for hyperspectral data anal-
ysis,” IEEE Trans. Image Process., vol. 17, no. 2, pp. 217–225, Feb.
2008.

[18] J. Besag, “On the statatistical analysis of dirty pictures,” J. Royal Stat.
Soc. Ser. B, vol. 48, no. 3, pp. 259–302, 1984.

[19] A. S. Willsky, “Multiresolution Markov models for signal and image
processing,” IEEE Proc., vol. 90, no. 8, pp. 1396–1458, Aug. 2002.

[20] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical
Dirichlet processes,” J. Amer. Statist. Assoc., vol. 101, no. 476, pp.
1566–1581, Dec. 2006.

[21] J. J. Kivinen, E. B. Sudderth, and M. I. Jordan, “Image denoising with
nonparametric hidden Markov trees,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), 2007.

[22] J. J. Kivinen, E. B. Sudderth, and M. I. Jordan, “Learning multiscale
representations of natural scenes using Dirichlet processes,” in Proc.
IEEE Int. Conf. Comput. Vision (ICCV), 2007.

[23] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “The sticky
HDP-HMM: Bayesian nonparametric hiddenMarkovmodels with per-
sistent states,” MIT, Cambridge, MA,MIT LEADS Tech. Rep. P-2777,
2009.

[24] A. Hirotugu, “A new look at the statistical model identification,” IEEE
Trans. Autom. Contr., vol. 19, no. 6, pp. 716–723, Dec. 1974.

[25] S. Gideon, “Estimating the dimension of a model,” Ann. Statist., vol.
6, no. 2, pp. 461–464, 1978.

[26] P. J. Green, “Reversible jump MCMC computation and Bayesian de-
termination,” Biometrika, vol. 82, pp. 711–732, 1995.

[27] C. Andrieu, P. M. Djuric, and A. Doucet, “Model Selection by MCMC
Computation,” Signal Process., vol. 81, no. 1, pp. 19–37, Jan. 2001.

[28] F. Bartolucci, L. Scaccia, and A. Mira, “Efficient Bayes factor estima-
tion from the reversible jump output,” Biometrika, vol. 92, no. 1, pp.
41–52, 2006.

[29] D.M. Blei andM. I. Jordan, “Variational inference for Dirichlet process
mixtures,” Bayesian Anal., vol. 1, no. 1, pp. 121–144, 2005.

[30] J. Paisley and L. Carin, “Hidden Markov Mmdels with stick-breaking
priors,” IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3905–3917,
Oct. 2009.

[31] T. S. Ferguson, “A Bayesian analysis of some nonparametric prob-
lems,” Ann. Statistics, vol. 1, no. 2, pp. 209–230, Mar. 1973.

[32] J. Sethuraman, “A constructive definition of Dirichlet priors,” Statis-
tica Sinica, vol. 4, pp. 639–650, 1994.

[33] D. Blackwell and J. B. Macqueen, “Ferguson distributions via Pólya
urn schemes,” Ann. Statist., vol. 1, no. 2, pp. 353–355, 1973.

[34] H. Ishwaran and M. Zarepour, “Markov chain Monte Carlo approxi-
mate Dirichlet and beta two-parameter process hierarchical models,”
Biometrika, vol. 87, no. 2, pp. 371–390, 2000.

[35] H. Ishwaran and M. Zarepour, “Exact and approximate sum-represen-
tations for the Dirichlet process,” Canadian J. Statist., vol. 30, no. 2,
pp. 269–283, Jun. 2002.

[36] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd
ed. New York: Springer, 2004.

[37] M. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet – based sta-
tistical signal processing using hidden Markov models,” IEEE Trans.
Signal Process., vol. 46, no. 4, pp. 886–902, Apr. 1998.

[38] R. N. Clark, G. A. Swayze, R.Wise, E. Livo, T. Hoefen, R. Kokaly, and
S. J. Sutley, USGS Digital Spectral Library Splib06a, U.S. Geological
Survey, 2007, vol. 231, Digital Data Series [Online]. Available: http://
speclab.cr.usgs.gov/spectral.lib06



MITTELMAN et al.: HYPERSPECTRAL IMAGE UNMIXING 1671

[39] AVIRIS Free Data, Jet Propulsion Lab (JPL), Calif. Inst. Technol.,
Pasadena, CA, 2006 [Online]. Available: http://aviris.jpl.nasa.gov/
html/aviris.freedata.html

[40] N. Dobigeon, J. Y. Tourneret, and C. I. Chang, “Semi-supervised
linear spectral unmixing using a hierarchical Bayesian model for
hyperspectral imagery,” IEEE Trans. Signal Process., vol. 56, no. 7,
pp. 2684–2695, Jul. 2008.

[41] T. P. Minka, Estimating a Dirichlet Distribution [Online]. Avail-
able: http://research.microsoft.com/en-us/um/people/minka/papers/
dirichlet/minka-dirichlet.pdf

[42] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[43] R. Mittelman and A. O. Hero, “Hyperspectral image segmentation and
unmixing using hidden Markov trees,” in Proc. IEEE Conf. on Image
Process. (ICIP), Hong Kong, Sep. 2010.

Roni Mittelman (S’08–M’09) received the B.Sc.
and M.Sc. (cum laude) degrees in electrical en-
gineering from the Technion— Israel Institute of
Technology, Haifa, and the Ph.D. degree in electrical
engineering from Northeastern University, Boston,
MA, in 2002, 2006, and 2009, respectively.
Since 2009, he has been a postdoctoral research

fellow with the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann
Arbor. His research interests include statistical signal
processing, machine learning, and computer vision.

Nicolas Dobigeon (S’05–M’08) was born in An-
goulême, France, in 1981. He received the Eng.
degree in electrical engineering from ENSEEIHT,
Toulouse, France, and the M.Sc. degree in signal
processing from the National Polytechnic Institute
of Toulouse, both in 2004, and the Ph.D. degree in
signal processing also from the National Polytechnic
Institute of Toulouse in 2007.
From 2007 to 2008, he was a Postdoctoral Re-

search Associate with the Department of Electrical
Engineering and Computer Science, University of

Michigan, Ann Arbor. Since 2008, he has been an Assistant Professor with
the National Polytechnic Institute of Toulouse (ENSEEIHT – University of

Toulouse), within the Signal and Communication Group of the IRIT Labora-
tory. His research interests are centered around statistical signal and image
processing with a particular interest to Bayesian inference and Markov chain
Monte Carlo (MCMC) methods.

Alfred O. Hero III (S’79–M’84–SM’96–F’98) re-
ceived the B.S. (summa cum laude) from Boston Uni-
versity, Boston, MA, in 1980 and the Ph.D. degree
from Princeton University, Princeton, NJ, in 1984,
both in electrical engineering.
Since 1984, he has been with the University of

Michigan, Ann Arbor, where he is the R. Jamison
and Betty Williams Professor of Engineering. His
primary appointment is with the Department of
Electrical Engineering and Computer Science and
he also has appointments, by courtesy, with the

Department of Biomedical Engineering and the Department of Statistics.
In 2008, he was awarded the Digiteo Chaire d’Excellence, sponsored by
Digiteo Research Park in Paris, located at the Ecole Superieure d’Electricite,
Gif-sur-Yvette, France. He has held other visiting positions at LIDS Massachu-
setts Institute of Technology (2006), Boston University (2006), I3S University
of Nice, Sophia-Antipolis, France (2001), Ecole Normale Supérieure de Lyon
(1999), Ecole Nationale Supérieure des Télécommunications, Paris (1999),
Lucent Bell Laboratories (1999), Scientific Research Labs of the Ford Motor
Company, Dearborn, Michigan (1993), Ecole Nationale Superieure des Tech-
niques Avancees (ENSTA), Ecole Superieure d’Electricite, Paris (1990), and
M.I.T. Lincoln Laboratory (1987–1989). His recent research interests have
been in detection, classification, pattern analysis, and adaptive sampling for
spatio-temporal data. Of particular interest are applications to network security,
multimodal sensing and tracking, biomedical imaging, and genomic signal
processing.
Dr. Hero was awarded a University of Michigan Distinguished Faculty

Achievement Award in 2011. He has been plenary and keynote speaker at
major workshops and conferences. He has received several best paper awards
including: a IEEE Signal Processing Society Best Paper Award (1998), the
Best Original Paper Award from the Journal of Flow Cytometry (2008), and
the Best Magazine Paper Award from the IEEE Signal Processing Society
(2010). He received the IEEE Signal Processing Society Meritorious Service
Award (1998), the IEEE Third Millenium Medal (2000), and the IEEE Signal
Processing Society Distinguished Lecturership (2002). He was President of
the IEEE Signal Processing Society (2006–2007). He was on the Board of
Directors of IEEE (2009–2011) where he served as Director Division IX
(Signals and Applications).




