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Abstract

For the instrument limitation and imperfect imaging optics, it is difficult to acquire high spatial resolution

hyperspectral imagery. Low spatial resolution will result in a lot of mixed pixels and greatly degrade the detection

and recognition performance, affect the related application in civil and military fields. As a powerful statistical

image modeling technique, sparse representation can be utilized to analyze the hyperspectral image efficiently.

Hyperspectral imagery is intrinsically sparse in spatial and spectral domains, and image super-resolution quality

largely depends on whether the prior knowledge is utilized properly. In this article, we propose a novel

hyperspectral imagery super-resolution method by utilizing the sparse representation and spectral mixing model.

Based on the sparse representation model and hyperspectral image acquisition process model, small patches of

hyperspectral observations from different wavelengths can be represented as weighted linear combinations of a

small number of atoms in pre-trained dictionary. Then super-resolution is treated as a least squares problem with

sparse constraints. To maintain the spectral consistency, we further introduce an adaptive regularization terms into

the sparse representation framework by combining the linear spectrum mixing model. Extensive experiments

validate that the proposed method achieves much better results.
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1. Introduction
Hyperspectral sensor can acquire imagery in many con-

tiguous and very narrow (such as 10 nm) spectral bands

that typically span the visible, near-infrared, and mid-

infrared portions of the spectrum (0.4-2.5 μm) [1]. A

continuous radiance spectrum for every pixel can be

constructed from hyperspectral imagery, and it makes

the identification of land-covers of interest possible

based on their spectral signatures [1,2]. Hyperspectral

remote sensing has widely been used for aerial and

space imaging applications, including land use analysis,

pollution monitoring, wide-area reconnaissance, and

battle-field surveillance [3].

Although hyperspectral sensor can acquire higher

spectral resolution information, for the instrument lim-

itation and imperfect imaging optics, it is difficult to

acquire high spatial resolution imagery. The spatial reso-

lution is a key parameter in many applications related to

space images (object detection and precise location to

name a few); it is obvious that any improvement here is

important [3-5]. Low spatial resolution will result in a

lot of mixed pixels and greatly degrade the detection

and recognition performance, affect the related applica-

tion in civil and military fields. There is significant sense

to enhance the hyperspectral imagery’s spatial resolu-

tion. In practice, modifying the imaging optics or the

sensor array is not a good option, resolution enhance-

ment using post-processing is a better way. Super-reso-

lution image reconstruction offers the promise of

overcoming the inherent resolution limitation of ima-

ging sensors [4,5]. Conventional approaches to generat-

ing a super-resolution image normally require as input

multiple low-resolution image of the same scene, which

are registered with sub-pixel accuracy [6]. But, it is diffi-

cult for hyperspectral aerial and space remote sensing.

Based on the hyperspectral imaging model [5], the

super-resolution task is cast as the inverse problem of

recovering the original high-resolution images, based on

reasonable assumptions or prior knowledge about the

observation model that maps the high-resolution image

to the low-resolution ones [7]. For hyperspectral images,
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the assumptions and prior knowledge are not only lim-

ited to spatial domain, but also spectral domain. How to

represent and utilize these assumptions and prior will

affect the performance of super-resolution. For example,

to ensure the spatial satisfaction of constraints, total var-

iation (TV) model is used as prior to regularize the

super-resolution problem [8]. Guo et al. [9] proposed a

hyperspectral super-resolution algorithm using the spec-

tral unmixing information and TV model. Based on the

pixel neighborhood, the piecewise autoregressive (AR)

models can be used to enhance the performance of

restoration [10]. To get the better performance, the

prior and assumption can be represented in Fourier-

Wavelet domain [11].

As an emerging image modeling technique, sparse

representation has successfully been used in various

image super-resolution applications. The success of

sparse representation owes to the development of l1-

norm optimization techniques, and the fact that natural

images are intrinsically sparse in some domain [7]. Nat-

ural images can be sparsely represented using a diction-

ary of atoms, the dictionary can be gotten through

DCT/wavelet transforming or learning. It has been pro-

ven that the sparsity of the coefficients can be served as

good prior during the panchromatic image super-resolu-

tion [7,12-15]. But, for hyperspectral image, the contents

across different bands are related tightly. For hyperspec-

tral image super-resolution, correlation among bands

can be used as a prior, and more important thing is,

after spatial super-resolution, the endmember of scene

should not be changed. Based on these ideas, a novel

hyperspectral image super-resolution method is pro-

posed in this article. By analyzing the hyperspectral and

panchromatic imaging process, we prove that dictionary

learned from panchromatic images can be used to

represent the hyperspectral images. Then the spectral

mixing model is used to test the spectral consistency,

and take it as a regularization term in super-resolution

process. Finally, we present results obtained from

experiments carried out on two datasets, namely a 118-

band hyperspectral images captured under a controlled

illumination laboratory environment and a 224-band air-

borne visible/infrared imaging spectrometer (AVIRIS)

image.

The rest of the article is organized as follows. Section

2 introduces the related works. Section 3 presents the

super-resolution algorithm based on spatial sparsity and

endmember regularization. Section 4 presents experi-

mental results and Section 5 concludes the article.

2. Related studies

2.1. Sparse representation

It has been found that natural images can generally be

coded by structured primitives, e.g., edges and line

segments [7], and these primitives are qualitatively simi-

lar in form to simple cell receptive fields. Olshausen and

Field [16] proposed to represent a natural image using a

small number of basis functions chosen out of an over-

complete code set. The sparse representation of a signal

over an over-complete dictionary is achieved by optimiz-

ing an objective function that includes two terms: one

measures the signal reconstruction error and the other

measures the signal sparsity.

Suppose that the data (image patch) x Î Rm admits a

sparse approximation over an over-complete dictionary

F Î Rn×m (K > m) with K atoms. Then x can approxi-

mately be represented as a linear combination of a few

atoms from F. An over-complete dictionary F and the

sparse coefficients a are obtained by solving the follow-

ing optimization problem:

arg min
�,α

{

‖ x − �α ‖2
2 + λ‖ α ‖1

}

(1)

where ||·||2 is the 2 norm. For F, each of its atoms

(columns) is a unit vector in the l2 norm. They are

learned by solving the above minimization problem. l1
norm regularization constraint is used to guarantee the

sparseness of a, where ‖ α ‖1 =
∑

i

| αi | and a = [a1;...;

am]. Positive constant l controls the trade-off between

accuracy of reconstruction and sparseness of a. The

cost function given above is non-convex with respect to

both F and a. However, it is convex when one is fixed.

Thus, this problem can be alternating between learning

F using K-SVD [17], MOD [18], or gradient descent

[19] while fixing a and inferring a using orthogonal

matching pursuit (OMP) [20] while fixing F.

2.2. Hyperspectral and panchromatic images

representation

Hyperspectral imaging sensors divide the wavelength

span (such as 0.4-1.2 μm) into a series of contiguous

and narrow (such as 10 nm) spectral bands, and mea-

sure the radiance of every bands. Panchromatic imaging

sensors measure all the radiance in the wavelength

spans (such as 0.4-1.2 μm) once. For an arbitrary pixel

in the hyperspectral or panchromatic image, digital

number (or gray levels) of the image between wave-

length l1 and l2 can be written as

DN =

∫ λ2

λ1

L(λ)Kigi(λ)dλ + B(λ1∼λ2) (2)

where L(l) is the spectral radiance at the sensor’s

entrance pupil, gi(l) is the spectral response function of

the sensor between wavelength l1 and l2. Ki is the con-

stant related to sensor such as electronic gain, the detec-

tor saturation electrons, the quantization levels, the area

of the entrance aperture, and so on. B(λ1∼λ2) is the noise
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caused by dark signal. For same scene imaged by differ-

ent sensors, L(l) is same. Figure 1 shows the principle

of hyperspectral and panchromatic imaging processes.

Although image contents can vary a lot from image-

to-image, it has been found that the micro-structures of

images can be represented by a small number of struc-

tural primitives (e.g., edges, line segments, and other ele-

mentary features) [7]. Here, we can assume that spatial

micro-structures information in hyperspectral bands can

be derived from a series of panchromatic images. Based

on this assumption, we can use the panchromatic

images to enhance the spatial resolution of hyperspectral

images.

In sparse representation scheme, a natural image can

be coded using a small number of basis functions cho-

sen out of an over-complete code set. We can train

the dictionaries using the patches extracted from sev-

eral training panchromatic images which are rich in

edges and textures. Here, we train two dictionaries

using panchromatic image sets and hyperspectral

image sets, as shown in Figures 2 and 3. The redun-

dant DCT dictionary is described on the left side of

Figure 1 The principle of hyperspectral and panchromatic imaging.
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Figure 2, each of its atoms shown as an 8 × 8 pixel

image. This dictionary was also used as the initializa-

tion for all the training algorithms that follow. The

globally trained dictionary is shown on the right side

of Figure 2. This dictionary was produced by the K-

SVD algorithm (executed 180 iterations, using OMP

for sparse coding with), trained on a dataset of

1,00,000 8 × 8 patches. Those patches are taken from

an arbitrary set of natural images (unrelated to the test

images), some of which are shown in Figure 4.

3. Hyperspectral imagery super-resolution (HISR)

with sparsity based regularization

HISR aims to reconstruct a high-quality imagery X from

its degraded measurement Y. The hyperspectral imagery

acquisition process can be modeled as:

Y = WHX + υ (3)

where W represents the down-sampling operator and

H represents a blurring filter, and υ is the additive noise

[2]. In this article, we just consider the spatial down-

sampling and blurring operator. We can get the estima-

tion of high-quality imagery X̂ through resolving the

inverse of (3):

X̂ = arg min ‖ Y − WHX ‖2
F (4)

where ||·||F is the F norm. The estimation of X̂ by

formula (4) is a ill-posed inverse problem, since for a

given low-resolution input Y, infinitely many high-reso-

lution images X satisfy the reconstruction constraint. To

find a better solution, prior knowledge of hyperspectral

imagery can be used to regularize the HISR problem.

We regularize the problem via the following prior on

small patch x of X.

3.1. Spatial sparsity regularization

Panchromatic image is fused with hyperspectral image

to enhance the spatial resolution, by extracting the

structure information from a panchromatic image and

injected into the hyperspectral image in a special repre-

sentation frame work. Here, we use a dictionary F =

[j1,..., jm]ÎR
n×m trained from high-resolution images to

model the structure from panchromatic images. Based

on this dictionary F, the hyperspectral imagery acquisi-

tion process can be modeled as

Y ≈ WH�� + υ (5)

where Λ = [a1;...; am] is the m × N matrix where most

of the elements in ai (i = 1, 2,...,m) are close to zero.

�̂ = arg min
α

{

‖ Y − WH�� ‖2
F +λ‖ � ‖1

}

(6)

Λ = [a1, a2,...,aN] where N is the number of band.

That is for nth band, we have

α̂n = arg min
αn

{

‖ y − whφαn ‖2
2 +λ‖ αn ‖1

}

(7)

3.2. Spectral regularization

Solving (7) individually for each band does not guaran-

tee the compatibility between adjacent bands. We

enforce compatibility between adjacent bands using the

spectral regularization. For each given pixel, a linear

spectral mixing model can be used to regularize the

solution space, which is very helpful in preserving spec-

tral consistency and suppressing noise. Let {mi}1≤i≤N

denote the set of N endmember material signals. We

will arrange the signals mi as the columns of the end-

member matrix M. ai is the abundance of endmember

mi, and it satisfies the two constraints: non-negative and

normality. We will write the abundance values a1,...,aN

Figure 2 Left: Overcomplete DCT dictionary. Right: Globally

trained dictionary.

Figure 3 Dictionary trained from hyperspectral images.
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as a column vector a. For mathematical simplicity, it is

common to assume a linear mixing model:

f = Ma + n (8)

where f is the given spectral signal, n is the noise.

The most straightforward approach for solving the lin-

ear problem (8) is by constrained least squares minimi-

zation

arg min
a

‖ xi − Ma ‖2
2 subject to ai > 0,

∑

i

ai = 1 (9)

By incorporating the non-local similarity regularization

term into the sparse representation, we have

α̂n = arg min
αn

{

‖ y − whφαn ‖2
2 +λ‖ αn ‖1 + γ

∑

xi∈x

‖ xi,n − Ma ‖2
2

}

(10)

where g is a constant balancing the contribution of the

spectral regularization term. For a small patch, we write

the third term
∑

xi∈x
‖ xi,n − Ma ‖2

2 as ‖ (I − B)φαn ‖2
2,

where I is the identity matrix and

B(i, j) =

{

Mai, if xj is an element of a

0, otherwise
(11)

Then, formula (10) can be rewritten as

α̂n = arg min
αn

(f ) = arg min
αn

{

‖ y − whφαn ‖2
2 +λ‖ αn ‖1 + γ ‖ (I − B)φαn ‖2

2

}

(12)

By letting

ỹ =

[

y

0

]

, L =

[

wh

γ (I − B)

]

Formula (12) can be rewritten as

α̂n = arg min
αn

{

‖ ỹ − Lφαn ‖2
2 +λ‖ αn ‖1

}

(13)

This is a reweighted l1-minimization problem, which

can effectively be solved by the iterative shrinkage algo-

rithm [21].

4. Experiment results and analysis

To test the performance of the super-resolution recon-

struction algorithm, two kinds of experiments are

designed. In the first experiment, the proposed super-

resolution algorithm is tested on data which is collected

under controlled illumination. The spectral span of

images used for training and testing is same in this

scene. In the second experiment, the algorithm is tested

on the AVIRIS hyperspectral datasets. The super-resolu-

tion results by proposed algorithm are compared with

interpolation technique and hyperspectral super-resolu-

tion method using endmember-based TV model [9].

4.1. Evaluation measures

The most common measure to quantitatively under-

stand the performance of the reconstruction is the peak-

Figure 4 Sample from the images used for training the global dictionary.
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signal-to-noise-ratio (PSNR). The peak signal value for

each band can significantly change, which makes this

measure biased toward bands with higher energy. To

compensate this PSNR, the definition of standard is

changed as follows

PSNR = 20 log

⎛

⎜

⎜

⎜

⎝

K
∑

b=1

Speak,b

√
MSE

⎞

⎟

⎟

⎟

⎠

(14)

where Speak,b is the peak signal value at b’th band,

MSE is the mean square error between the ground truth

and the estimated high-resolution signal.

Wang et al. [22] proposed a structural similarity mea-

sure SSIM for two panchromatic images. For hyperspec-

tral images, the means and variance should be vector.

The SSIM index between hyperspectral images x and y

can be defined as [22]

SSIM(x, y) =
(2µ

T
xµy + C1)(2σxy + C2)

(µT
xµx + µT

yµy + C1)(σT
xσx + σT

yσy + C2)
(15)

Zhang et al [23] proposed a novel feature-similarity

(FSIM) index for full reference image quality assessment.

The phase congruency (PC) and gradient magnitude

(GM) are utilized jointly in evaluating process. The

SSIM index between hyperspectral images x and y can

be defined as [9]

FSIM(x, y) =

∑

z∈�

SL(z) · PCm(z)

∑

z∈�

PCm(z)
(16)

where Ω means the whole image spatial domain. PCm

(z) = max{PCx(z), PCy(z)}, where PCx(z) is phase con-

gruency for a given position z of image x. SL (z) is the

gradient magnitude for a given position z.

4.2. Indoor experiments

The data used in this experiment are the hyperspectral

image captured at Instrumentation and Sensing Labora-

tory (ISL) at Beltsville Agricultural Research Center (16

bit BIL, 307 rows by 307 columns by 118 bands, wave-

length range: 426.9-853.0 nm, bandwidth: 4 nm) under

control illumination. The spectral range of panchromatic

images used to train the dictionary is 400-900 nm. Part

of these panchromatic images comes from website [24],

and some panchromatic images come from GoogleEarth,

and some captured by our research group using Retiga

EXi camera [25]. Figure 5 shows one scene and its cor-

responding spectral reflectance.

In this experiment, the original ISL hyperspectral data

are first down sampled by the nearest neighboring filter,

band-by-band. Then, the linear spectral unmixing is per-

formed on the down-sampled images. Here, a geometry-

Figure 5 The scene of interest and spectral characteristics of the four materials in the scene.
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based N_FINDR algorithm is adopted for automatic

extraction of endmembers. The details about this algo-

rithm can be found in [26]. Figure 6 shows the super-

resolution results by bicubic interpolation, endmember-

based TV model, and proposed algorithm, and its corre-

sponding PSNR, SSIM, and FSIM. By analyzing the

images and evaluation measures in Figure 6, we can

conclude that the proposed algorithm can get better

PSNR and maintain more structure information. Figure

7 shows the spectral difference by different algorithm at

different regions. Region 1 is smooth background, three

different algorithms acquire almost same reflectance.

Region 2 is edge, there is sharp variation of texture in

this region, and only proposed algorithm can acquire

almost same reflectance with original high-resolution

data. The reflectance acquired by endmember-based TV

model is obviously deviated from original high-resolu-

tion data, and the reflectance error of bicubic interpola-

tion is large. Region 3 is relative smooth edge region,

and the reflectance difference is not so obvious. But,

there is still obvious deviation of reflectance acquired by

bicubic interpolation. The pre-trained dictionary has the

adaptivity to image local structure, and the spectral reg-

ularization can maintain the spectral information very

well. Although endmember information is used in end-

member-based TV model, poor performance is acquired

at edge region. Since the TV model favors the piecewise

constant image structures, it tends to smooth out the

fine details of an image.

5. Outdoor experiments

The dataset used in this experiment is the hyperspectral

image of the Indian Pines (200 spectral bands in the

400-2500 nm range, 145 × 145 pixels), obtained by the

AVIRIS sensor. Here, two dictionaries are trained for

super-resolution of this kind of data. The first dictionary

is trained using the panchromatic image with spectral

covering within 400-900 nm. The second dictionary is

trained using the multispectral images with spectral cov-

ering within 400-2400 nm. The data used in second dic-

tionary training come from different remote sensing

satellites, such as LANDSAT and SPOT. Figure 8 shows

the super-resolution results by bicubic interpolation,

endmember-based TV model, and proposed algorithm,

and its corresponding PSNR, SSIM, and FSIM. The

experiment results in Figure 8 also shown that the pro-

posed algorithm can get better performance. To better

illustrate the robustness of the proposed method to the

Figure 6 The results for a 118-band indoor hyperspectral database. (a) The original high-resolution data at band 70, (b) low-resolution

image of (a) (downsampled in the spatial domain by a factor of 3), (c) bicubic interpolation (PSNR = 12.10, SSIM = 0.343364, FSIM = 0.4745), (d)

super-resolution by endmember-based TV model (PSNR = 13.30, SSIM = 0.366734, FSIM = 0.5822), (e) super-resolution by proposed algorithm

(PSNR = 16.61, SSIM = 0.393864, FSIM = 0.6433).
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training dataset, we train two dictionaries using pan-

chromatic image sets and hyperspectral image sets,

some of panchromatic images are shown in Figure 4.

Figure 8e, f shows the super-resolution results by the

proposed algorithm using different dictionaries. By

comparing Figure 8e, f, we can conclude that using the

different dictionaries almost same super-resolution

results can be get. It can be explained as two different

dictionaries are trained from sufficient large training

remote sensing images sets, and almost all micro-

Figure 7 Spectral difference by different super-resolution algorithms. (a) Different region location, (b) spectral difference at region 1, (c)

spectral difference at region 2, (d) spectral difference at region 3.
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Figure 8 The results for a 220-band Indian Pines test site of the AVIRIS database. (a) The original high-resolution data at band 70, (b) low-

resolution image of (a) (downsampled in the spatial domain by a factor of three), (c) bicubic interpolation (PSNR = 19.97, SSIM = 0.550082, FSIM

= 0.5822), (d) super-resolution by endmember-based TV model (PSNR = 20.30, SSIM = 0.666734, FSIM = 0.6230), (e) super-resolution by the

proposed algorithm using the first dictionary (PSNR = 23.17, SSIM = 0.760108, FSIM = 0.6730), (f) super-resolution by the proposed algorithm

using the second dictionary (PSNR = 23.19, SSIM = 0.760148, FSIM = 0.6737).

Figure 9 Spectral difference by different super-resolution algorithms. (a) Spectral difference at smooth region, (b) spectral difference at

edge region of different land covers.
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structures in nature scene can be captured in these two

dictionaries. It can be proved by Figures 2 and 3. Figure

9 shows the spectral difference by different algorithm.

In smooth region, there are no land cover’s variations,

three different algorithms acquire almost same reflec-

tance. But for the regions with obvious land cover’s var-

iations, only proposed algorithm can acquire the almost

reflectance with original high-resolution data.

5. Conclusion

We propose a novel hyperspectral super-resolution algo-

rithm by utilizing the sparse representation and spectral

mixing model. Single hyperspectral image super-resolu-

tion is typical ill-posed inverse problem, prior knowl-

edge of data can be used to regularize the super-

resolution problem. Considering the fact that the micro-

structures of images can be represented as linear combi-

nation of atoms in the pre-trained dictionaries, we uti-

lize the sparsity of combination coefficient to solve the

inverse problem. To further improve the spectral quality

of reconstructed images, we introduced a spectral mix-

ing model-based image restoration framework. Spectral

mixing models were learned from the training dataset

and were used to regularize the image local smoothness.

The experimental results on two hyperspectral images

showed that the proposed approach outperforms state-

of-the-art methods in both PSNR, visual, and spectral

quality.
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