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Abstract. Unsupervised clustering is a powerful
technique for understanding multispectral and
hyperspectral images, being k-means one of the most
used iterative approaches. It is a simple though
computationally expensive algorithm, particularly for
clustering large hyperspectral images into many
categories. Software implementation presents
advantages such as flexibility and low cost for
implementation of complex functions. However, it
presents limitations, such as difficulties to exploit
parallelism for high performance applications. In order
to accelerate the k-means clustering a hardware
implementation could be used. The disadvantage in this
approach is that any change in the project requires
previous knowledge of the hardware design process and
can take several weeks to be implemented. In order to
improve the design methodology, an automatic and
parameterized implementation for hyperspectral images
has been developed in a hardware/software codesign
approach. An unsupervised clustering technique k-means
that uses the Euclidian Distance to calculate the pixel to
centers distance was used as a case study to validate the
methodology. Two implementations, a software and a
hardware/software codesign ones, have been
implemented. Although the hardware component
operates in 40MHz, being 12.5 times lesser than the
software operating frequency (PC), the codesign
implementation was approximately 2 times faster than
software one.

1 Introduction
Some modern optical sensors can produce data

cubes with hundreds of spectral channels and million of
pixels. An alternative to cope with this amount of
information is to organize the data so that pixels with
similar spectral indices are clustered in the same
category (class). This supplies an understanding of the
data and a segmentation of the image, that can be useful
in the diverse stages of processing and analysis of the
data.

Hyperspectral image data is increasingly available
from a variety of sources, including commercial and
government satellites, as well as airbone and ground-
based sensors. This is accompanied by an increasing in
spatial resolution and in the number of spectral channels.

Hyperspectral images contain hundreds of spectral
channels per pixel.

The data of remote sensoring have shown
extremely useful for the study, survey and the
management of natural resources [4][5], mainly because
of the following three resolution characteristics:
♦ temporal: allows information collection at different

periodic time of the year in distinct years, allowing
possible dynamic studies of a region;

♦ spectral: allows the information attainment on a
target in the nature in distinct regions of the specter;

♦ space: makes possible the information attainment in
different scales, since regional until the local ones.
The use of collected data by sensory systems also

requires, frequently, methods to data clustering that may
be classified as supervised and unsupervised.

In the supervised method, information on the data is
known, while in the unsupervised methods, this
knowledge is not available. A classic approach for the
clustering of hyperspectral data is the k-means
algorithm. This is an unsupervised iterative method that
produces successive clustering [2] in a expensive
computational processing.

Leeser [6] discusses algorithm level transforms that
enable k-means to be implemented in hardware. In
general, computation using floating point arithmetic and
the multiplication-heavy Euclidian distance calculation
are fine on a general purpose processor, but they have
large area and speed penalties when implemented on an
FPGA. In this work the algorithm based on Manhattan
metric has been implemented on the Annapolis Wildstar
board. After, in another approach [2], a parameterized
implementation of the k-means algorithm, based on the
number of pixels in an image, the number of channels
per pixel, and the number of bits per channel, as well as
the number of clusters has been developed. It has the
added advantage that the parameterized design compiles
approximately three times faster than the original.

The standard software implementation of k-means
uses floating-point arithmetic and Euclidean distances.
In the Euclidean distance there are some advantages in
relation to other metrics (Manhattan, Max or linear
combination) since it is rotationally invariant [2]. On the
other hand, Euclidean distance algorithm has an
expensive implementation, being this one of the main
reasons for implementing some k-means algorithm
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modules in a hardware component, which the parallelism
can be explored.

In this paper we apply the k-means unsupervised
clustering algorithms to Airbone Visible Infrared
Imaging Spectrometer (AVIRIS) data sets [1]. A single
AVIRIS image contains 614x512 pixels with 224 16-bits
channels, or approximately 138Mbyte of data. An simple
example of a cube of data of this image with 4 pixels and
4 bands is showed in Figure 1.

Figure1- Cube of data example with 4 pixels and 4 bands

A methodology for hyperspectral image
segmentation using k-means algorithm as alternative to
speed up the clustering and to improve the performance
in the process of image segmentation has been
developed.

As case study, was implemented software and
codesign approaches from k-means algorithm. In order
to manage the two processing approaches, also was
implemented a segmentation tool to validate this
methodology based on k-means algorithm on the PCI [9]
Xilinx Spartan-II board has been prototyped. The PCI
board operates at 40MHz and is connected to a PC K6 II
500MHz. The k-means algorithm was partitioning
manually in modules, based on performance
requirements. The software approach from k-means
algorithm was all implemented in C++ language
following the above specification. Otherwise, in the
codesign approach, some modules are implemented in
C++, and one module (BlockClassifier) was
implemented in VHDL language.

In the next section we present the AVIRIS sensor.
Section 3 we presents the hyperspectrals images
segmentation and segmentation techniques focusing on
unsupervised category. In section 4 the
hardware/software and k-means implementation are
discussed. Section 5 presents the current implementation
of the k-means algorithm on the PCI board Xilinx FPGA
and the software tool developed. Section 6 presents
conclusions and future works.

2 The AVIRIS Sensor System

AVIRIS, [1] is an optic sensor that supplies
calibrated images of the spectral radiance at about 224
bands, with wave length of 400 to 2500nm.

The current platform of system AVIRIS is an
airplane U-2 model, that was modified to adapt it to the
sensor. Flies 20km above sea level and  730km/h speed
approximately.

AVIRIS system uses a device that sweeps the scene
in the longitudinal direction (“Whisk Broom” mode) [1]
as shown in Figure 2, producing 614 pixels for the 224
detectors of each sweeping. Each pixel produced by the
instrument covers an area of 20x20 meters in the land,
thus reaching to each covering of the land 11 km width
approximately.

Due its high spectral resolution, the AVIRIS
system is capable to reproduce the spectral response
curves of some types of targets, allowing a good
characterization of the absorption peaks as reflectance.
These peaks are essential to characterize certain types of
targets (mineral in geology, for example). Traditional
sensors, when compared with the spectral information
presented by the hyperspectrals sensors are inadequate
for many applications [1].

Figure 2 - (AVIRIS - “Whisk Broom” mode)

A single AVIRIS image contains 614x512 pixels
with 224 16-bits cannels, or approximately 138Mbyte of
data.

3 K-Means Clustering

The main goal of the image analysis is to identify
important aspects of the image under processing. This
kind algorithms segment the image by clustering pixels
into classes based on the spectral similarity of each pixel
to other members of the class. Each pixel in the image is
represented by a pointer to the spectral class associated
with that pixel. At the same time, these clustering
algorithms also provide a very real data compression.

The unsupervised methods attribute to the
technique or to the chosen algorithm, the task to identify,
by itself, the existing class in a data set [7].

A possible approach to solve a problem of pixel
clustering, frequently used in remote sensoring, consists
of looking at pixels clusterings in the space. These
clusterings are composed by a group of similar pixels, in
accordance with a determined criterion (Euclidean
distance, Manhattan or Max for instance). In this paper
we use the unsupervised method k-means and the
Euclidian distance metric method.

In this method was chosen the notation used by
Leeser [6], which given a set of N pixels, each composed
by C spectral channels, and represented as a point in C-
dimensional Euclidian space (that is, xn ∈ ℜC, with

pixel 4 (band 0)

pixel 4 (band 3)

pixel 4 (band 2)

pixel 4 (band 1)
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n=1,…,N); the pixels are split into K clusters with the
property that pixels in the same cluster are similar. Each
cluster is associated with a “center” value which is
representative of (and close to) the pixels in that class.

One measure of the quality of a partition is the
within-class variance; this is the sum of squared
distances Euclidian from each pixel to that pixel’s cluster
center.

For a fixed partition, the optimal (in the sense of
minimum within-class variance) location for each center
is the mean of all pixels in each class. For a fixed choice
of centers, the optimal partition assigns points to the
cluster whose centers are closest. The k-means clustering
algorithm provides an iterative scheme that operates over
a fixed number (K) of clusters, while attempting to
simultaneously optimize center locations and pixels
assignments.

Firstly, the k-means algorithm, chooses the
“centers” ic  of each cluster. In some works [3], a

refinement process is done through a function
probability associated with the set of pixels, in order to
find a local minimum for one faster convergence of the
method.

Secondly, a cluster is associated for each pixel of
the image based on minimum distance between a given
pixel ix and the “center”, ic  of that cluster. Once the

distance between the pixel and the center of each cluster
is calculated, the pixel is associated to the cluster that
obtained the minimum distance. In this stage the
Euclidian distance is used as metric. Consider a point x
and a cluster center c, where i indexes the spectral
components of each cluster. The Euclidian distance is
defined as following:

∑ −=−
i

ii cxcx
22

Once associated a cluster for each pixel of the
image, the clusters centers are recomputed. To compute
the cluster center, the mean of all pixels of that cluster
are calculated. If there are N points, K centers and C
spectral channels, then there will be O(NKC) operations.
For the Euclidian distance, each operation requires
computing the square of a number. The stop criteria (sc),

ε<− |]max[|: ji ccsc , is reached when the module of

difference between the news value of the center and the
old one, is less than an accurancy factor ( ε ). Otherwise,
the process continue with the news clusters. The work
uses 0=ε .

This procedure is very expensive when
implemented in hardware since large multiplications and
square of numbers have to be performed resulting in
larges bit vectors and so area and high speed processing.

4 Hardware/Software approach

In a general way, digital systems implementations
in hardware, have as advantage to explore concurrency
increasing and so the data processing speed.
Unfortunately, applications implemented in such way

derive high cost prototyping and low flexibility design.
Implementations in software in turn, present advantages
such as flexibility and low cost of complex functions
implementation. However, it presents limitations such as
difficulties to explore parallelism and high speed
applications.

On the other hand, a hardware/software codesign
approach offers a more flexible alternative for this kind
of problem, based on certain constraints (cost function),
such as: silicon area, speed, application and
communication cost.

In this methodology, the software component can
be represented by microcontrollers, or general propose
microprocessors and the hardware one by a ASIC or a
Field Programmable Gate Array (FPGA) [10]. The
FPGA is an array of logic cells and interconnection cells
that can be configured in the field to implement a desired
designed function.

The k-means segmentation algorithm consists
basically of two main steps: (1) Association of each
pixel to one of the k clusters, and (2) Recomputation of
the clusters centers. To recompute the clusters centers,
the pixels must be associated with the cluster to be
computed. Also, the values of all pixels associate to each
cluster with its bands must be accumulated.

The figure 3 depicts the k-means
hardware/software architecture implemented in this
work. The design consists of a classifier for
hyperspectrals images that performs unsupervised
segmentation and implements the k-means algorithm.
The classifier receives the hyperspectral image, with a
typical number of bands, approximately 200, and as
result of the algorithm processing, a classified image is
generated, representing the thematic map of the original
image.

Figure 3. Classifier hardware/software partitioning

The classifier is composed by software and
hardware modules. The partitioning is done manually
based on performance requirements. The modules
BlockExtractor (BE), ClassifierManager (CM) and
ImageComposer (IC) were implemented in software, and
BlockClassifier module (BC) was implemented in the
hardware. The modules indicated for dashed line in
hardware side representing proxies, and the dashed line
in software side are used for communication, through a
parallel interface.

In the direction to evaluating the advantages of the
hardware/software approach, this classifier was
implemented in two versions. In the first version, all k-
means algorithm was implemented in software. In this in

Hyperspectral

image

Thematic

map
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case, all its specification was made in C++, and executed
in a PC using the Windows operating system.

In the second version, based on a codesign
approach, the module BC was implemented in hardware
while the others modules (BE), (CM) and (IC), were
implemented in software. In this architecture, a PC,
using Windows operation system, connect to a FPGA
prototyping board, through a PCI interface has been
used. The hardware component implemented in FPGA,
was totally specified in a hardware description language,
VHDL (VHSIC Hardware Description Language) and
synthesized in a CAD Xilinx Foundation 3.1i tool.

5 Modules Implementation

The classifier performs three basic functions:
management and user interface, reading of the original
image, segmentation and generation of the thematic map.
These functions are implemented by processes which
had been partitioned in four main modules:
ClassifierManager (CM), BlockExtractor (BE),
BlockClassifier (BC) and ImageComposer (IC), as
mentioned in the previous section. Figure 4 shows a
general vision of these modules.

Figure 4. General vision of the modules

The ClassifierManager block has two main
functions, the first one to provide a friendly user
graphical interface; the second function is to manage the
execution of the algorithm.

The ClassifierManager defines the block size (set
of pixels) to be read from the original and classified
images. This module sends commands to the
BlockExtractor that extracts a block of pixels from the
original image, repasses this block to the BlockClassifier
and finally it sends commands to the ImageComposer
that stores this block of pixels. ClassifierManager
repeats these operations until a stop criterion defined by
the user is reached. After these steps, the
ImageComposer generates a classified image (thematic
map).

The BlockExtractor block reads a file containing
the hyperspectral image and returns a set (block) of
pixels, being each pixel composed by its bands.

The BlockClassifier block implements the main
part of k-means algorithm being responsible by
segmentation of each pixel of the original image. An
internal vision of this module is shown in Figure 5. This
module receives a set of pixels of the original image and

a set of centers from all clusters and provide as result a
classified set of pixels with the same size.

The BlockClassifier block is composed of two
submodules: CalcDistance and ClassSelector. The first
one is responsible to calculate the distance between one
pixel and the center of a cluster, and the second, selects
the cluster which the pixel belongs. The classification or
segmentation is made by calculating the distance of each
pixel to the center of each cluster.

In the codesign approach, this module was chosen
to be implemented in hardware due its implicit
concurrency features. In this way the parallelism can be
adequately explored. The distance processing is then
calculated simultaneously for each one of the clusters; as
well as, several pixels can be processed in parallel. For
each pixel is calculated the Euclidian distance between
the center of that cluster and the pixel. The pixel is
associated to the cluster with the minimum distance.

The Figure 5 shows as the parallelism aspect is
explored in CalcDistance module, calculating the
Euclidian distance between each pixel and all K clusters
centers. This procedure for one pixel, may be perform
simultaneously for the other N pixels. The maximum
value for N is 614x512 pixels per channel, and there are
220 channels. The limitation of this approach is the
hardware area.

Finally, the ImageComposer block generates the
thematic map from original image.

Figure 5 – BlockClassifier

The k-means algorithm is an iterative process, and
it spends a certain time to converge. Two different
approaches of the k-means algorithm stop criterion were
implemented, the “minimum error” and the “ number of
iterations”.

When the algorithm stop criterion chosen by user is
“minimum error”, the algorithm must converge when the
clusters centers are identical during two consecutive
iterations. After convergence, the application save an
image file with each cluster in a different color.

The user can also choose the number of iterations
(“number of iterations” cr iterion). In this case, the
processing usually does not guarantee the same accuracy
reached by the former criterion, because normally the
algorithm could not have been converged.

pixel 1 pixel 2 pixel N

cluster 1

cluster 2

cluster K

time

Calc
Distance

Calc
Distance

Calc
Distance

Calc
Distance

Calc
Distance

user
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6 Case Study

Two case study implementations, a software and a
hardware/software ones,  have been developed.

In the hardware/software approach, the hardware
component is represented by the BlockClassifier which
implements the k-means algorithm on a XESS PCI board
[9] with one FPGA Xilinx Spartan-II of 200.000 gates.
The board is connected to a 500MHz K6 II workstation
by PCI interface of 33MHz. The hardware component
was specified in VHDL and synthesized in the Xilinx
Foundation 3.1i CAD tool.

The ClassifierManager, BlockExtractor,
ImageComposer compose the software part of the
codesign approach that were implemented in C++. In the
software version, all blocks are implemented in C++. A
tool has been developed in C++, to classify images of
any data size of 16 bits per pixel per channel, type BIP
(Band Interleave Pixel) of an AVIRIS image and,
returning as result, a thematic map with the same size of
the original image, 614x512 pixels, one 8-bit size
channel.

The original image was obtained from AVIRIS
system, from Air base of Moffet Field, in California. It is
located in initial latitude of +037.449470º , final latitude
of +037.449820º , initial longitude: -121.806630, final
longitude: -122.216380, initial altitude: 21412.400 and
final altitude: 21384.600. A image composition may be
seen in Figure 6(a), (b) and (c). The Figure 6(a) depicts a
general vision of the California localization [8] in the
map. The Figure 6(b) depicts [8], in more details, a zoom
performed in the rectangle delimited in the figure 6(a).
The Figure 6(c) shows the original image, obtained
through AVIRIS [1], that was used as case study.

Figure 6 - Composition  of original image

A classification tool for hyperspectrals images,
with graphical interface was developed to manage both
implementations. In this tool the user has the option to
select the image, bands, number of clusters, stop
criterion (“maximum error” or “ number of iterations”)
besides choosing software or hardware/software
codesign approach.

When the user chooses to classify in codesign
approach, for each iteration, the software application
writes the clusters centers in the FPGA by a PCI
communication interface. The software partition waits
for the k-means algorithm execution in hardware.

At the end, an interruption is generated to the
software component signaling the end of the
classification of each pixel. The software receives the
pixel classified, storage it in a file and draws the pixel in
the user interface. After, the software sends a new pixel
to the FPGA and the process is repeated until the image
is completely processed.

Figure 7 - Design flow

In this case study, the image classification involves
a computation of 614x512 = 314368 pixels and 3
clusters, each one with 2 channels (bands). Each pixel on
the hyperspectral image is an integer type (with size 2
bytes), and the thematic map pixel generated by
algorithm processing, is a char type (1 byte) both in the
software and codesign approaches.

The main part to be observed, is that, the
“BlockClassifier”, the more complex block of the
algorithm. When implement in hardware, in the codesign
approach, is twice faster than when it is implemented in
software approach. That means that even the FPGA
platform working at 40MHz clock, 12.5 times lesser than
the workstation, it still presents a better performance (2
times) than the same block implemented in software as
show the Table 1.

The algorithm for 3 clusters and 2 channels was
implemented in codesign version and takes 91% area of
the FPGA Spartan II, from Xilinx running at 40MHz and
3500 C++ code lines. As the platform does not support
the substitution of the FPGA it is not possible to
implement a case study with more bands and /or clusters.
This limitation is due to the FPGA capacity only and not
of the algorithm that is parameterizable. The hardware

Inicialization
Parameters Write clusters

k-means
algorithm

Classified
image

centers

k-means
algorithm

sw

sw

sw

sw

sw

wait
interruption

hw

Load image

Hw/sw

sw

sw

Plot pixel
classified

End
image

sw

noyes

Read cluster
associated

sw
Plot image
classified

sw

End

(a)

(b)

(c)

Proceedings of the 16th Symposium on Integrated Circuits and Systems Design (SBCCI’03) 

0-7695-2009-X/03 $17.00 © 2003 IEEE



part in codesign approach, was successful simulated,
synthesized and mapped and the software part compiled
on C++ Builder tool.

In both approaches the “minimum error” was used
as stop criterion. The k-means algorithm converged in 17 
iterations.

The codesign implementation spends at about twice
the software implementation in terms of code lines as
showed in Table 1, because of the high complexity to
implement some functions as (square root, square,
division) in hardware.

Software Codesign
Code lines 3816 3427(Hw)

3500(Sw)
Number of slices - 2141 (91%)
Time processing 500MHz

(18seg)
40MHz

(8,91seg)

Table 1

Figure 8 illustrates the result of the classification
using 3 clusters and 2 bands. It was detect three different
clusters showed in figure 8. In this work, was focused to
determine the clusters location, given a original
hyperspectral image. As future work, and another
problem to solve, is how to determine what is a chosen
cluster.

Figura 8. Thematic map of the AVIRIS image
f970620t01p02_r03_sc02.c.rfl

7 Conclusions

In this work, a hardware/software codesign
approach implementation for k-means algorithm has
been implemented. A comparison with a software
version was also presented in order to show the
advantages of the former approach for this kind of
problem, where high computation and parallelism
processing are important issues. Although the limitation
of the FPGA and its low operating frequency, 40MHz,
12,5 times lesser than software solution, the codesign
approach was 2 times fast. In the future, could be used
state-of-the-art solutions, as embedded processors and
SoC platforms, as Excalibur (Altera) or Microblaze
(Xilinx).
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