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Hyperspectral Imaging for 
Predicting the Internal Quality 
of Kiwifruits Based on Variable 
Selection Algorithms and 
Chemometric Models
Hongyan Zhu1, Bingquan Chu1, Yangyang Fan1, Xiaoya Tao2, Wenxin Yin1 & Yong He1

We investigated the feasibility and potentiality of determining firmness, soluble solids content (SSC), 
and pH in kiwifruits using hyperspectral imaging, combined with variable selection methods and 

calibration models. The images were acquired by a push-broom hyperspectral reflectance imaging 
system covering two spectral ranges. Weighted regression coefficients (BW), successive projections 
algorithm (SPA) and genetic algorithm–partial least square (GAPLS) were compared and evaluated for 
the selection of effective wavelengths. Moreover, multiple linear regression (MLR), partial least squares 
regression and least squares support vector machine (LS-SVM) were developed to predict quality 
attributes quantitatively using effective wavelengths. The established models, particularly SPA-MLR, 
SPA-LS-SVM and GAPLS-LS-SVM, performed well. The SPA-MLR models for firmness (Rpre = 0.9812, 
RPD = 5.17) and SSC (Rpre = 0.9523, RPD = 3.26) at 380–1023 nm showed excellent performance, 
whereas GAPLS-LS-SVM was the optimal model at 874–1734 nm for predicting pH (Rpre = 0.9070, 
RPD = 2.60). Image processing algorithms were developed to transfer the predictive model in every 
pixel to generate prediction maps that visualize the spatial distribution of firmness and SSC. Hence, the 
results clearly demonstrated that hyperspectral imaging has the potential as a fast and non-invasive 

method to predict the quality attributes of kiwifruits.

Fruit quality represents a combination of properties and attributes that determine the suitability of the fruit to 
be eaten as fresh or stored for a reasonable period without deterioration and confer a value regarding consum-
er’s satisfaction1, 2. Kiwifruit (Actinidia sp.) is an emerging horticultural crop globally but is indigenous to the 
mountains of southern China3. Kiwifruit is an economically in�uential fruit and is appreciated by consumers due 
to its attractive sensory and nutritional properties, especially its high ascorbic acid content, which is bene�cial 
to health4, 5. Currently, kiwifruits are sorted manually or automatically, mainly according to their external char-
acteristics. However, the internal qualities of �rmness, soluble solids content (SSC), and acidity may in�uence 
the quality evaluation of kiwifruits. Firmness directly impacts the texture, shelf life and consumer acceptance2, 
while SSC and acidity (expressed as pH) determine the �avour of kiwifruits as related to sweetness and sourness, 
respectively. Moreover, the �rmness and SSC are vital parameters in assessing the maturity6, 7 for determining the 
optimal harvest time of kiwifruits.

The conventional methods for quality measurements using standard instrumental methods include a 
Magness-Taylor penetrometer or texture analyser8 for �esh �rmness, a digital hand-held pocket refractome-
ter for SSC, and a pH-meter for pH. However, these techniques are destructive, time-consuming or ine�cient, 
involve a considerable amount of manual work and only measure a small percentage of the products2, 7. �erefore, 
non-destructive sensing techniques for assessing the internal quality of kiwifruits are bene�cial for ensuring 
high quality and fast evaluation for consumers, producers, processors, and distributors. Spectroscopic techniques 
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provide the detailed �ngerprints of the biological specimen to be analysed for the physical characteristics of 
the interaction between the electromagnetic radiation and the specimen, such as transmittance, re�ectance, 
absorbance, �uorescence, phosphorescence and radioactive decay9. Speci�cally, visible/near-infrared (Vis/NIR) 
or near-infrared (NIR) spectroscopy is well established as a non-destructive tool10 for multi-constituent quality 
analysis of fruits, including apples7, peaches2, citrus11, and pears12. Furthermore, there has been extensive research 
regarding the kiwifruit quality assessment based on spectroscopic methods13–17. Unfortunately, the inability of 
NIR spectrometers to capture the internal constituent gradients within fruits may result in discrepancies between 
the predicted and measured compositions18. Furthermore, the spectroscopic assessments with comparatively 
small point-source measurements do not embody the information on the spatial distribution of quality parame-
ters18, 19, which is needed for analysing and monitoring the quality of kiwifruits. Contrastingly, as with hyperspec-
tral imaging, di�erent regions of interest (ROIs) can be selected according to the studies targeted to compensate 
for the shortcomings of the background noise or point-source measurement.

Originally developed for remote sensing applications, hyperspectral imaging (HSI), which is also known as 
spectroscopic or chemical imaging, has witnessed tremendous growth and application in diverse �elds20, 21, spe-
ci�cally in the comprehensive measurements of internal and external quality. HSI has many advantages over the 
conventional RGB, NIR and multispectral imaging (MSI)18. For HSI, there are normally more than 100 bands, 
while for MSI, there are usually less than 10 bands, which indicates that the spectral information is limited. 
Moreover, the success of the MSI deeply relies on the e�ciency of the HSI for providing the important wave-
lengths. HSI integrates conventional imaging and spectroscopy to obtain both spatial and spectral information 
simultaneously from a sample at spatial resolutions varying from the level of single cells up to the macroscopic 
objects20, 22. Hyperspectral images, known as hypercubes, are three-dimensional blocks of data comprising two 
spatial and one wavelength dimension. As regions of a specimen with similar spectral properties have similar 
chemical compositions, the hypercube allows for the visualization of the biochemical constituents of a sample, 
separated into particular areas of the image18.

�ere are most commonly two spectral ranges: 400–1000 nm (Vis/NIR) and 900–1700 nm (NIR), which are 
encompassed in the HSI system. Extensive studies have been conducted for analysing fruits in the 400–1000 nm 
range using HSI. �ese studies include the early detection of apple surface defects/contamination or quality deter-
mination (�rmness and SSC) in apples7, 9, 23; proposing two new indexes of ripening based on three wavelengths 
close to the chlorophyll absorption peak at 680 nm and comparing the multispectral indexes for the assessment 
of peach ripening24; determining moisture content (MC); �rmness and total soluble solids (TSS) of bananas25; 
estimation of MC, TSS, pH in strawberries and texture analysis of the images with grey-level co-occurrence 
matrix (GLCM)1. Contrastingly, a growing body of research has also been conducted to evaluate the fruit quality 
in the range of 900–1700 nm26, 27. Nevertheless, few studies have been generated spatial distribution maps on the 
quality attributes of kiwifruits using HSI. Moreover, little attention has been paid to determining the better range 
(400–1000 nm or 900–1700 nm) to predict �rmness, SSC and pH based on di�erent variable selection methods 
and robust calibration models.

�us, we sought to explore the feasibility and potentiality of determining �rmness, SSC, and pH in kiwifruits 
based on HSI. �is utmost goal was achieved by meeting the following speci�c objectives: (i) establishing a hyper-
spectral imaging system and choosing a better spectral range for determining the quality attributes by means of 
full-spectral wavelengths with partial least squares regression (PLSR) model; (ii) comparing and evaluating the 
superior variable selection method from the weighted regression coe�cients (BW), successive projections algo-
rithm (SPA) and genetic algorithm–partial least square (GAPLS) and determining the corresponding optimal 
wavelengths, which give the highest correlation between the spectral data and the three quality parameters; (iii) 
developing robust and accurate calibration models [PLSR, multiple linear regression (MLR), least squares support 
vector machine (LS-SVM)] to quantitatively predict the �esh �rmness, SSC, and pH using spectral responses 
from only the optimal wavelengths; and (iv) applying the optimal model to predict the quality attributes of each 
pixel in samples and generate spatial distribution maps for the whole kiwifruit.

Results
Characteristics of spectral profiles. Figure 1 shows the average re�ectance spectra and standard devi-
ation (SD) at the two spectral ranges of ‘Xuxiang’, ‘Hongyang’, and ‘Cuixiang’. �ere are 512 bands (variables) 
covering the Vis/NIR spectral range (380–1023 nm). Likewise, the NIR spectral range (874–1734 nm) has 256 
bands. However, the spectra in only 450–1000 nm and 951–1670 nm were used for analysis since the beginning 
and ending of the wavelengths had obviously noisy signals. Substantial absolute variability in the re�ectance 
was observed among the three varieties of kiwifruits between 500 nm and 700 nm, which was mainly caused by 
di�erent contents of anthocyanin and chlorophyll2, 28 (Fig. 1a). Compared with the re�ectance spectral region of 
450–1000 nm, the average spectrum of each variety at 951–1670 nm (Fig. 1b) showed similar spectral curves and 
slight di�erences in re�ectance values, with few features. �e re�ectance curves had four broadband absorption 
regions of approximately 673, 970 [968 (a), 976 (b)], 1200, and 1460 nm, in addition to a small absorption region 
at 835 nm.

As shown in Fig. 1a, lower values of re�ectance in the visible region were attributed to the dark colour of 
the kiwifruits due to the relatively homogeneous absorption of light by anthocyanins in the three varieties at 
450–550 nm29, 30. High absorbance observed at 673 nm indicates red absorbing pigments, particularly chloro-
phyll, which represents the colour characteristics in the fruit31. �is result was in agreement with those (675 nm 
for chlorophyll-a) of Cen et al.2. For the region starting at approximately 700 nm, the re�ectance increased rap-
idly and reached a peak at a wavelength close to 820 nm and another peak at 870 nm. As kiwifruits had an SSC 
of 10–20% and an estimated water content of 80–90%, the re�ectance decreased rapidly from 900 to 1000 nm, 
which was probably due to the combination e�ect of O-H groups from the carbohydrates at 835 nm and water at 
970 nm. In Fig. 1b, the other two valleys were related to the strong water absorbance bands occurring at 1200 nm 
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and 1460 nm in the kiwifruits11. Diverse types of kiwifruits showed di�erent patterns of re�ectance spectra, which 
were characterized by major pigments (chlorophyll-b, chlorophyll-a, and anthocyanin) and water in the fruit 
tissue.

Statistics of measured samples. �e descriptive statistics for the quality attributes determined by the 
standard methods are summarized in Table 1. �e tested kiwifruits of each variety were randomly divided into 
a calibration and a prediction set at the ratio of 2:1. �e calibration set consisted of 88 kiwifruits. �e prediction 
set contained 45 kiwifruits used for model validation and veri�cation of the prediction performance of the cali-
bration models. �e calculated values varied for the quality attributes of kiwifruits, as illustrated in Table 1. A 
relatively high variability covering a large scope was anticipated in �rmness, which was bene�cial in developing 
a robust calibration model. It may be assumed that the change in storage and transportation of diverse kiwifruit 
varieties and physicochemical characteristics resulted in the di�erence in �rmness. Nevertheless, the smallest 
variation was found in the measured pH with a considerably subtle range, which was likely a consequence of the 
naturally low levels of organic acids in kiwifruits.

PLSR models using full spectra. �e performances of calibration models are evaluated based on the cor-
relation coe�cient (R) between the predicted and measured values of attributes, the root mean square error 
(RMSE) and the residual prediction deviation (RPD). A good model should have a high R [calibration (Rcal), 
cross-validation (Rcv), and prediction (Rpre)], a low RMSE [calibration (RMSEC), cross-validation (RMSECV), 
and prediction (RMSEP)] and a high RPD1, 11, 32–34. In the present study, the PLSR models using the full spectra 
with a di�erent number of latent variables (LVs) were developed without variable elimination for the prediction 
of three quality attributes. �e PLSR prediction of �rmness, SSC, and pH at two spectral ranges are compared and 
summarized in Table 2. �e performances showed that the values of Rpre with various quality parameters varied 
from 0.6587 to 0.9780 for 450–1000 nm and from 0.8740 to 0.9579 for 951–1670 nm. As shown in Table 2, the 
overall �rmness and SSC had better results in the region of 450–1000 nm, with Rpre = 0.9780 (RPD = 4.71) for 
the �rmness parameter and Rpre = 0.9477 (RPD = 3.12) for SSC, which was consistent with the results obtained 
in previous studies11, 35. Contrastingly, it was observed that the improved results of pH were obtained using the 
region of 951–1670 nm, with Rpre = 0.8740 (RPD = 2.30). Speci�cally, when using the better results among two 
spectral regions, the RPD values all above 2.0 indicated that the PLSR models were robust. We selected a range 
of 450–1000 nm to predict the �rmness and SSC and 951–1670 nm to evaluate the pH for the following analyses.

Selection of the effective wavelengths. �e application with fewer wavebands is preferable for a more 
stable model and easier implementation in the subsequent multispectral imaging system36, 37. Herein, BW, SPA, 
and GAPLS were used for the selection of e�ective wavelengths (EWs), which carried the most information for 

Figure 1. �e average re�ectance spectra and standard deviation (SD) of ‘Xuxiang’, ‘Hongyang’, and ‘Cuixiang’ 
at 450–1000 nm (a) and 951–1670 nm (b).

Sample Sets Number
Quality 
parameters Range Mean SD

Calibration

88 �rmness (N cm−2) 44.086–642.213 228.559 200.688

SSC (°Brix) 13.56–18.69 16.02 1.20

pH 3.64–4.04 3.78 0.09

Prediction

45 �rmness (N cm−2) 47.756–538.324 220.682 189.78

SSC (°Brix) 13.09–18.04 15.90 1.33

pH 3.65–3.81 3.75 0.04

Table 1. Statistics of quality parameters for 133 kiwifruits measured by standard methods.
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predicting the quality parameters. �e EWs selected by the three methods are presented in Table 3. Moreover, 
BW resulting from the PLSR models were plotted to identify the sensitive wavelengths (Fig. 2). GAPLS and SPA 
were conducted by programs developed in MATLAB. Overall, GAPLS selected more EWs than the other two 
methods for quality attributes. Furthermore, the selected EWs by SPA and GAPLS were sequenced in the order 
of relevance. Di�erent EWs were found to be selected by BW, SPA, and GAPLS due to di�erent variable selection 
principles. �ere is no single, universally optimal technique for selecting EWs in a general case. �e choice of a 
selection method bases on the nature of the problem, the size of the dataset, ease of implementation and required 
accuracy of prediction20.

According to the �rmness and SSC in the spectral range of 450–1000 nm, the majority of selected EWs by 
SPA and GAPLS were exhibited in the 600–1000 nm range, which is in accordance with the previous results11, 29. 
Nonetheless, the part of EWs selected by BW were across a range encompassing the visible (450–700 nm) wave-
lengths. Most previous studies used the short-wave spectral range of NIR (700–1000 nm) to measure the internal 
fruit quality, which could be attributed to the following two reasons. First, this range is compatible with cheap sil-
icon detectors and is bene�cial to light that can penetrate much farther in the fruits of many species38. Moreover, 
this range is relevant to water and sugar since it embodies the second and third overtone of the O-H stretching 
and vibrations20. Correspondingly, a risk of masking spectral information is decreased, although there are low 
concentrations of constituents in the fruit11. Contrastingly, the EWs of pH were exhibited in 1100–1670 nm. 
�e pH values of kiwifruits are likely determined by di�erent kinds of organic acids, such as ascorbic acid, cit-
ric acid, malic acid, tartaric acid, and quinic acid. �e pH value is related to the organic molecules that contain 
bonds C–H, O–H, C–O and C–C; hence, it is possible to use NIR methods to determine the pH. Nevertheless, 
Liu34 noted a striking di�erence in the determination of organic acids of plum vinegar using this window (400–
1000 nm) and obtained good results. Although it was possible to select wavelengths corresponding to the known 
absorption peaks for the di�erent bond groups to quantify chemical compositions of the tested samples, perform-
ing this routine for several intrinsic attributes, such as pH and �rmness, was impracticable37. �is is because the 
NIR spectral region is particularly sensitive to the presence of molecules containing certain functional groups.

Calibration models and prediction performance. As a consequence of the previous analyses, di�erent 
wavelength selection methods prominently reduced the number of wavelengths. �e selected EWs were then 
applied to establish the calibration models instead of the full spectra. To predict the kiwifruit attributes accurately 
and acquire more information, we applied di�erent chemometric methods and compared them for developing 
the calibration models. �e predictions of �rmness, SSC, and pH by the MLR, PLSR and LS-SVM models with the 
abovementioned EWs are displayed and compared in Table 4. �us, the newly proposed combination of models 
were evaluated and compared. �e wavelength number was decreased by more than 90% a�er the wavelength 
selection by BW, SPA, and GAPLS, which in�uentially simpli�ed the calibration models and reduced the compu-
tation complexity. It can be observed from Table 4 that the performances of �rmness, SSC and pH varied among 
di�erent models. In conclusion, Rcal, Rcv and Rpre of all models exceeded 0.88, which indicated that the MLR, PLSR 
and LS-SVM models performed e�ciently. Particularly, Fig. 3 illustrates the performances of the best prediction 

Parameter

Spectral 
range 
(nm) Models LVs

Calibration Validation Prediction

Rcal RMSEC Rcv RMSECV Rpre RMSEP SEP RPD

�rmness
450–1000

PLSR

4 0.9850 34.3900 0.9828 36.8367 0.9780 39.3580 40.3191 4.71

951–1670 3 0.9617 54.6751 0.9582 57.1214 0.9579 53.9383 54.4646 3.48

SSC
450–1000 11 0.9510 0.3685 0.9246 0.4548 0.9477 0.4219 0.4260 3.12

951–1670 12 0.9443 0.3922 0.8806 0.5706 0.9257 0.5607 0.6611 2.01

pH
450–1000 14 0.9259 0.0322 0.8569 0.0441 0.6587 0.0750 0.0935 0.43

951–1670 4 0.9787 0.0174 0.9765 0.0185 0.8740 0.0178 0.0174 2.30

Table 2. PLSR prediction of �rmness, SSC, and pH at 450–1000 nm and 951–1670 nm.

Parameter Spectral range (nm) Methods No. Selected EWs (nm)

�rmness 450–1000

BW 7 450, 555, 677, 732, 821, 843, 969

SPA 7 555, 1,000, 638, 503, 452, 700, 822

GAPLS 8 958, 959, 960, 956, 916, 620, 621, 909

SSC 450–1000

BW 14 489, 522, 555, 584, 626, 662, 685, 704, 736, 776, 832, 912, 952, 998

SPA 14 987, 960, 487, 496, 737, 814, 450, 945, 912, 643, 558, 522, 451, 692

GAPLS 27
877, 879, 958, 956, 880, 903, 876, 910, 905, 902, 955, 469, 909, 911, 959, 470, 976, 
977, 690, 974, 468, 689, 828, 681, 691, 804, 965

pH 951–1670

BW 6 1103, 1210, 1365, 1419, 1622, 1656

SPA 5 1659, 1670, 1298, 1133, 999

GAPLS 12 1670, 1649, 1646, 1653, 1666, 1642, 1656, 1639, 1632, 1636, 1629, 1029

Table 3. �e selected EWs for quality attributes by BW, SPA and GAPLS.
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models for detecting the quality traits according to the di�erent variable selection methods: (a) the SPA-MLR 
model for �rmness, (b) the SPA-MLR model for SSC and (c) the GAPLS-LS-SVM model for pH.

Prediction of �rmness. As indicated in Table 4, the MLR, PLSR and LS-SVM models for �rmness performed 
excellently because Rcal, Rcv and Rpre of all models were over 0.95. �erefore, it is reasonable to assume that the 
reference values of �rmness covering a large scope were good for developing an accurate and robust calibra-
tion model. Brie�y, the SPA-PLSR model demonstrated a relatively worse performance than the other models, 
with a slightly lower RPD (3.21). However, the SPA-MLR and SPA-LS-SVM models performed perfectly, with 
Rpre (0.9812), RMSEP (36.3219) and Rpre (0.9821), RMSEP (35.7833), respectively. �e overall indicator RPD of 
SPA-MLR (5.17) was higher than that of SPA-LS-SVM (5.07); thus, the SPA-MLR model was deemed the best 
prediction model for �rmness (Fig. 3a). �e RPDs of the SPA-MLR and SPA-LS-SVM models were over 5, which 
revealed that the EWs selected by SPA were more powerful than those of BW and GAPLS.

Notably, the radial basis function (RBF) kernel was recommended as the kernel function of LS-SVM because 
it could handle the nonlinear relationships between the spectral and target attributes and provide good perfor-
mance under general smoothness assumptions. Moreover, to achieve an optimal combination of (γ, σ2) and avoid 
over�tting problems, a two-step grid search technique was employed with leave-one-out cross-validation. �e 
ranges of γ and σ2 within 10−2–105 were set based on the experience and previous research by our team34, 39.

Prediction of SSC. As illustrated in Table 4, the SPA-MLR and SPA-LS-SVM models in the prediction of SSC 
with Rpre (0.9523), RMSEP (0.4042) and Rpre (0.9485), RMSEP (0.4176) slightly outperformed the other models, 
which were parallel to the above analyses of �rmness. Apparently, LS-SVM could take advantage of the latent 
nonlinear information of the spectral data, which contributed to a better prediction performance. Notably, the 
SPA-MLR model showed the best result (Fig. 3b), which could be related to the procedure of establishing the SPA 
according to the best MLR model. Contrastingly, the PLSR models yielded slightly poorer results than those of the 
MLR and LS-SVM models. However, RPDs of all models over 2 demonstrated that the calibration models were 
robust and accurate, except that the RPD value of 1.76 by BW-PLS was slightly lower for SSC prediction.

Prediction of pH. A comparison among Fig. 3a, b and c indicated that the predictions of �rmness and SSC per-
formed better than that of pH, which may be attributed to the fact that organic acids concentration in the intact 
fruits was relatively low11, 40. As a result, the calibration of the pH was likely to represent secondary correlations to 
attributes related to fruit maturity. In Fig. 3c, we present a new combination of the GAPLS-LS-SVM model as the 
optimal prediction performance for the determination of pH with Rpre (0.9070), RMSEP (0.0152) and RPD (2.60). 
�is indicated that the combination of GAPLS-LS-SVM was constructive and powerful for pH prediction in this 
speci�c study, although GAPLS acquired more variables than SPA and BW. Furthermore, the optimal model 
parameters (γ, σ2) in the GAPLS-LS-SVM model were achieved at 5.1 × 106 and 3.1 × 103.

Spatial distribution maps of firmness and SSC in kiwifruits. �e spectral and spatial information 
of each pixel in the hyperspectral images enabled the evaluation of the quality parameters of each pixel with 
chemometric models21, 37, 41. As the pixels having similar spectral properties would exhibit similar colours in the 
resulted chemical images, the hypercube allows for the visualization of biochemical constituents of a sample in a 
pixel-wise manner. However, the measured pH showed the smallest range and variation due to the naturally low 
levels of organic acids in kiwifruits. Moreover, the pH represented the overall quality of kiwifruit, and the pH of 
each pixel was meaningless, which might show a similar colour and make it di�cult to distinguish based on the 
pixels of high or low pH. Herein, regarding the �rmness or SSC of kiwifruits, the SPA-MLR models obtained the 
best results with the least EWs, which were best-suited and applied to predict the �rmness and SSC of each pixel. 
�e promising quantitative relationship between the spectral re�ectance values and the values of �rmness or SSC 
was established through the SPA-MLR models. Two multi-linear functions for �rmness and SSC prediction of 
kiwifruits were obtained:

Figure 2. Weighted regression coe�cients (BW) resulting from the partial least squares regression (PLSR) 
models using full spectra for (a) �rmness, (b) SSC and (c) pH analysis.
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47 22904 502 9426 50 60174 (2)

SSC 987 nm 960 nm 487 nm

496 nm 737 nm 814 nm 450 nm

945 nm 912 nm 643 nm 558 nm

522 nm 451 nm 692 nm

where Xi nm is the spectral re�ectance value at the wavelength of i nm; Y�rmness is the predicted �rmness of kiwi-
fruits; YSSC is the predicted SSC of kiwifruits.

Therefore, the prediction maps of firmness and SSC in the representative kiwifruit generated from the 
SPA-MLR models were achieved and are spatially presented in Fig. 4. �e colour bar in the �gure indicates the 
scale of the values. Pixels providing a similar spectral information in the original hyperspectral images would 
produce similar colours in the resultant chemical images. Compared with the images of the original samples, 
the di�erence in the SSC or �rmness and colouring within a sample could be easily identi�ed visually. Figure 4 
revealed the changing spatial tendencies of SSC and �rmness, which were in alignment with the measured values 
(SSC = 15.3 °Brix, Firmness = 48.922 N cm−2). Remarkably, the noises of the hyperspectral image a�ected the 
spectrum of each pixel, which may result in the predicted contents in maps exceeding the range of the calibration 
set and the prediction set. �is issue will be considered by improving the model performances with wider refer-
ence value ranges and minimum noises of the spectrum in future work. Overall, the results of the prediction maps 
indicated that using hyperspectral imaging to estimate the quality parameters of each pixel was feasible.

Parameter Models EWs/LVs/(γ, σ2)

Calibration Validation Prediction

Rcal RMSEC Rcv RMSECV Rpre RMSEP SEP RPD

�rmness

BW-MLR 7/−/− 0.9874 31.5520 0.9843 35.2448 0.9711 45.2768 46.7581 4.06

BW-PLSR 7/3/− 0.9827 36.9834 0.9792 40.5159 0.9746 42.4943 43.9001 4.32

BW-LS-SVM 7/−/(677.9, 22.5) 0.9983 11.7711 0.9905 27.4618 0.9714 45.9456 47.4716 4.00

SPA-MLR 7/−/− 0.9848 34.6323 0.9811 38.6382 0.9812 36.3219 36.7222 5.17

SPA-PLSR 7/3/− 0.9777 41.9495 0.9735 45.6294 0.9646 52.1119 59.1946 3.21

SPA-LS-SVM 7/−/(266.3, 56.1) 0.9951 19.7982 0.9864 32.8200 0.9821 35.7833 37.4201 5.07

GAPLS-MLR 8/−/− 0.9883 30.4562 0.9851 34.3028 0.9765 40.7243 41.7817 4.54

GAPLS-PLSR 8/5/− 0.9873 31.7327 0.9845 34.9907 0.9733 43.2975 43.7160 4.34

GAPLS-LS-SVM
8/−/(1.1 × 107, 
4.2 × 103)

0.9928 23.8324 0.9897 28.5957 0.9695 46.2377 47.1248 4.03

SSC

BW-MLR 14/−/− 0.9282 0.4439 0.8937 0.5376 0.9227 0.5546 0.5131 2.59

BW-PLSR 14/10/− 0.9237 0.4569 0.8923 0.5423 0.9008 0.6209 0.7567 1.76

BW-LS-SVM
14/−/(1.0 × 107, 
5.5 × 104)

0.9488 0.3799 0.9100 0.4948 0.9183 0.5545 0.6522 2.04

SPA-MLR 14/−/− 0.9287 0.4423 0.8968 0.5296 0.9523 0.4042 0.4078 3.26

SPA-PLSR 14/12/− 0.9247 0.4539 0.8948 0.5341 0.9401 0.4645 0.4739 2.81

SPA-LS-SVM
14/−/(1.2 × 107, 
6.4 × 104)

0.9342 0.4295 0.8732 0.5827 0.9485 0.4176 0.4239 3.14

GAPLS-MLR 27/−/− 0.9547 0.3552 0.9029 0.5186 0.9267 0.5323 0.5052 2.63

GAPLS-PLSR 27/7/− 0.9332 0.4286 0.9181 0.4730 0.9548 0.4254 0.5161 2.58

GAPLS-LS-SVM
27/−/(1.5 × 107, 
2.4 × 104)

0.9612 0.3300 0.9211 0.4647 0.9437 0.4797 0.4797 2.77

pH

BW-MLR 6/−/− 0.9761 0.0185 0.9722 0.0200 0.8862 0.0187 0.0239 1.67

BW-PLSR 6/4/− 0.9760 0.0187 0.9722 0.0199 0.8845 0.0184 0.0169 2.37

BW-LS-SVM
6/−/(5.4 × 104, 
824.3)

0.9800 0.0169 0.9731 0.0196 0.8882 0.0181 0.0224 1.79

SPA-MLR 5/−/− 0.9801 0.0168 0.9777 0.0180 0.8905 0.0162 0.0164 2.44

SPA-PLSR 5/3/− 0.9786 0.0175 0.9770 0.0185 0.8817 0.0169 0.0171 2.34

SPA-LS-SVM
5/−/(6.0 × 105, 
2.1 × 103)

0.9864 0.0140 0.9825 0.0158 0.9013 0.0157 0.0163 2.45

GAPLS-MLR 12/−/− 0.9846 0.0152 0.9781 0.0178 0.8977 0.0164 0.0176 2.27

GAPLS-PLSR 12/3/− 0.9790 0.0173 0.9775 0.0182 0.8814 0.0176 0.0171 2.34

GAPLS-LS-SVM
12/−/(5.1 × 106, 
3.1 × 103)

0.9868 0.0137 0.9820 0.0160 0.9070 0.0152 0.0154 2.60

Table 4. �e results of �rmness, SSC, and pH by the MLR, PLSR, LS-SVM models with di�erent EWs.
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Discussion
We have demonstrated the feasibility and usefulness of hyperspectral imaging in the Vis/NIR spectral region 
(380–1023 nm) and the NIR spectral window (874–1734 nm) for the rapid prediction of quality parameters and 
mapping the spatial distributions of SSC and �rmness in kiwifruits. �ree variable selection algorithms, including 
BW, SPA and GAPLS, were used for EW selection, and di�erent calibration models (MLR, PLSR and LS-SVM) 
were applied to predict the quality parameters of kiwifruits. �is work demonstrated that (1) the spectral pro�les 
had four broadband absorption regions of approximately 673, 970, 1200, and 1460 nm, in addition to the small 
absorption region at 835 nm, which were mainly due to the pigments, carbohydrates and water in kiwifruits; (2) 
�rmness and SSC were better predicted in the region of 450–1000 nm, and the improved pH results were obtained 
using the range of 951–1670 nm by means of the full-spectral wavelengths with the PLSR model; (3) SPA and 
GA-PLS were more powerful than BW, which was the most common method used in previous studies28, 29 for the 
selection of EWs; and (4) the linear and nonlinear calibration models were established for spectral analysis using 
the EWs. �e SPA-MLR models for �rmness (Rpre = 0.9812, RPD = 5.17) and SSC (Rpre = 0.9523, RPD = 3.26) 
in the spectral region of 380–1023 nm showed excellent performance, whereas GAPLS-LS-SVM was the opti-
mal model at the spectral window of 874–1734 nm for predicting pH (Rpre = 0.9070, RPD = 2.60). In addition 
to predicting the overall average of quality parameters, hyperspectral imaging o�ers the additional advantage of 
displaying the distribution of SSC and �rmness on the tested samples.

Much pioneering work has been carried out in the kiwifruit quality assessment using spectroscopic methods. 
McGlone et al.13–15 demonstrated that NIR spectroscopy was able to predicted �rmness, dry-matter and SSC of 
kiwifruit with PLS models. Additionally, �ve di�erent wavelength ranges (A, 300–1100; B, 500–1100; C, 500–750; 
D, 750–1050; E, 800–1000 nm) were also investigated and compared to predict the internal quality parameters 
of dry-matter, SSC and �esh colour using Vis/NIR spectroscopy15. Ragni et al.17 established an instrumental 
chain consisting of a sinewave oscillator of waveguide in the microwave �eld and a frequency analyzer to nonde-
structively assess the SSC and �rmness of “Hayward” kiwifruit. �ey provided a prediction based on the whole 
fruit, as opposed to the NIR or the impact mechanical response where the measure is local. Unfortunately, the 

Figure 3. Performances of the best prediction models for detecting quality parameters according to the 
di�erent e�ective wavelengths (EWs): (a) the combination of successive projections algorithm and multiple 
linear regression (SPA-MLR) model for �rmness, (b) the SPA-MLR model for SSC and (c) the combination of 
genetic algorithm–partial least square and least squares support vector machine (GAPLS-LS-SVM) model for 
pH. Plots represent the actual vs. predicted values of (a) �rmness, (b) SSC, and (c) pH.

Figure 4. Original RGB image (a) and the distribution maps of SSC (b) and �rmness (c) in the kiwifruit (the 
measured values are on the bottom of the �gure). �e original RGB image was processed by image calibration 
and segmentation.
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spectroscopic method, acoustic or mechanical response has a great drawback compared with the hyperspectral 
imaging because it acquires the spectral data from a single point or from a small portion of the tested fruit. �e 
hyperspectral imaging, on the contrary, has advantages of receiving spatially distributed spectral responses at 
each pixel of a fruit image. With respect to some of the above mentioned technologies, HSI can obtain spectral 
signatures at every pixel of an image and o�er high resolved spatial spectral analysis, which are signi�cant for 
distribution maps.

ROI identi�cation, which is a key step in the hyperspectral image processing, should be monitored because 
the position and size of ROIs have been demonstrated to in�uence the result42. Although no signi�cant di�er-
ence was observed, this phenomenon indicated the need for careful selection of ROIs in future work. Presently, 
there are no de�ned methods or rules that can be used widely to select the ROIs of fruit samples. Evaluating fruit 
quality by segmenting a small piece of the sample from the whole fruit as ROI has shortcomings. �is is because 
the overall prediction cannot be accurately and reliably achieved by estimating the quality attributes of the ROI, 
especially when the quality properties of various areas of the fruit are distinctly di�erent27. Hence, averaging sig-
nals over the whole fruit would be better than using single, small locations for predicting the attributes of fruits. 
�e optimal selection of ROI for this research is the whole fruit region. To augment the generalization, robustness 
and practicability of the models, it is critical to make some improvements by increasing the number of specimens 
and investigating wider ranges of the quality attributes. Besides, linear kernel, polynomial kernel, and multilayer 
perceptron provided alternatives for LS-SVM method instead of just using the RBF kernel. �en the optimal 
kernel needs to be determined by speci�c cases. Further work should therefore put emphasis on the optimization 
of selected EWs, the relationship between the selected EWs and corresponding traits, and the generalization of an 
expanded model with other similar fruits.

In the light of the present results, it seems feasible to apply HSI as a rapid and accurate alternative to standard 
texture analysers, traditional digital hand-held pocket refractometers and pH-meters for measuring �rmness, 
SSC and pH, respectively. �e practical application of this trend in the fruit industry comes from the fact that 
visible light combines with the light from the NIR wavelength bands, so the responding system as outlined in this 
study could be set up for these wavelengths. Once optimized, HSI is anticipated to provide several merits over 
other traditional techniques in solving the quality control problems since it does not require any consumables or 
supporting equipment. Extensive studies have proved that di�erent fruit types require di�ering optimal wave-
lengths regarding one parameter1, 25, 43, 44. Moreover, according to our analysis, it is impossible to use only one 
MSI system to determine the �rmness, SSC and pH simultaneously. �erefore, due to fewer spectral bands and 
low spectral resolution, the MSI cannot include enough characteristic bands and be comprehensively conducted 
on the quality attributes of multiple fruit types. Conversely, HSI provides considerably more information about 
the optical properties of fruits, thus, enabling better prediction of quality parameters in multiple fruit types than 
MSI20. �e HSI technique has the potential to detect more quality attributes of fruits, which are less exploited, 
including colour, bruising, and chemical composition distribution. �us, additional studies are required before 
moving the implementation from the near-line application to an on-line approach.

Materials and Methods
Sample preparation. �ree kiwifruit varieties of ‘Xuxiang’, ‘Hongyang’, and ‘Cuixiang’ were harvested at 
commercial maturity from Zhouzhi, one of the most famous kiwifruit origins, then immediately transported to 
the laboratory at Zhejiang University, Hangzhou (120°09′E, 30°14′N), China. Good appearance of the tested fruits 
was essential. For analysis and image acquisition, we selected 133 wholesome fruits (40, 52 and 41 for ‘Xuxiang’, 
‘Hongyang’, and ‘Cuixiang’, respectively) free from any abnormal features such as bruises, diseases, defects, and 
contaminations. �e samples were individually scanned by the hyperspectral imaging system and measured for 
quality attributes.

Measurement of quality attributes. Kiwifruit quality attributes were measured a�er image acquisition. 
First, �esh �rmness was measured at four locations evenly around the equatorial region of each kiwifruit using 
a texture analyser (TA-XT2i, Stable Microsystems Texture Technologies Inc., UK) �tted with a 5-mm diame-
ter �at probe. �e penetration depth was 15 mm, and the test speed was 5 mm/s. Fruit �rmness was recorded 
as Newtons/cm2 (N cm−2). �en, the kiwifruits were juiced to determine SSC and pH by means of a digital 
hand-held pocket refractometer (PAL-1, Atago, Itabashi-ku, Japan) and a pH-meter (Sartorius PB-10, Germany) 
under a temperature of 20 °C. SSC was expressed in °Brix.

Hyperspectral image collection and processing. Hyperspectral imaging system. Figure 5 illus-
trates a typical line-scanning con�guration (also called ‘push-broom’) of the hyperspectral re�ectance imaging 
system, which records a whole line of an image rather than a single pixel at a time37. �e system was placed 
in a dark room and was composed of the following three modules: (1) A sensor module to control the image 
acquisition and recording performed with a computer through a data acquisition and system control so�ware 
(Spectral Image-V10E/N17E, Isuzu Optics Corp, Taiwan, China). (2) �e optics module equipped with two 
imaging spectrographs and cameras, where the Vis/NIR spectral range was acquired by an imaging spectro-
graph (ImSpector V10E; Spectral Imaging Ltd., Oulu, Finland), a 672 × 512 (spatial × spectral) CCD camera 
(C8484–05, Hamamatsu, Hamamatsu City, Japan) with a camera lens (OLE23; Specim, Spectral Imaging Ltd., 
Oulu, Finland). �e NIR spectral range was acquired by an imaging spectrograph (ImSpector N17E; Spectral 
Imaging Ltd., Oulu, Finland), a 320 × 256 CCD camera (Xeva 992; Xenics Infrared Solutions, Leuven, Belgium) 
with a camera lens (OLES22; Specim, Spectral Imaging Ltd.). OLE23 and OLES22 utilized in this study were the 
chromatic aberration corrected lens. (3) Lighting and sample module: an illumination unit consisting of two 
150 W tungsten halogen lamps (Fibre-Lite DC950 Illuminator; Dolan Jenner Industries Inc, Boxborough, MA, 
USA) placed on the two sides of the camera symmetrically at an angle of 45° to illuminate the camera’s �eld of 
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view. �e sample was placed on a conveyor belt driven by a stepper motor (Isuzu Optics Corp, Taiwan, China) 
with an adjustable speed.

Image acquisition and calibration. �e samples were scanned line by line along the Y-axis with the sample mov-
ing along the X-axis at a certain speed to obtain a three-dimensional hypercube, which encompasses both spatial 
and spectral information where physical and geometric features and chemical information could be pulled out. 
To acquire complete, clear and undistorted images, all image acquisition parameters, such as exposure time, 
height between lens and sample, and motor speed, were adjusted based on the system con�guration. For images 
at 380–1023 nm, the exposure time, the height and the moving speed were set as 0.09 s, 250 mm, and 1.90 mm/s, 
respectively. For images at 874–1734 nm, the exposure time, height and the moving speed were set as 4 ms, 230 
mm and 20 mm/s, respectively. Four kiwifruits were scanned on the conveyor belt with a total length of 400 mm. 
With a scanning speed of 1.90 mm/s at 380–1023 nm, the time to capture images for each fruit would be 52.63 s 

.

( )/4
mm

mm s

400

1 90 /
. And this time interval would be reduced to only 5 s ( )/4

mm

mm s

400

20 /
 for the case at 874–1734 nm, where 

the scanning speed was as high as 20 mm/s. Both the two sides around the equator with 180° interval were imaged 
for each fruit, according to the previous papers26, 28, 45. To remove the in�uence of the dark current of the camera 
sensor, the calibrated image (I) was estimated using the following equation:

=

−

−

I
I I

I I (3)

raw dark

white dark

where Iraw was the recorded hyperspectral image, Idark was the dark reference image (with 0% re�ectance) when 
the light source was turned o� and the camera lens was completely covered with its own non-re�ective opaque 
black cap to remove the thermal activities of the CCD detector, and Iwhite was the white reference image (Te�on 
white board with 99% re�ectance).

Spectral data extraction. Each time, the system was able to scan four kiwifruits simultaneously, resulting 
in a hypercube of 672 scanning lines × 1810 spatial pixels × 512 wavelengths between 380 and 1023 nm, with 
binning operations of 2 × 2 for the spatial and spectral directions, respectively. In contrast, images were binned 
during acquisition in spatial direction to provide images with spatial dimension of 320 × 858 pixels with 256 
spectral bands from 874 to 1734 nm. Segmentation was implemented to segregate each kiwifruit from the back-
ground for each hypercube and calculate their mean spectra. �e key step was to set a proper threshold and build 
mask according to the spectra di�erences between the sample region and the background at a single waveband 
(700 nm). �e ‘build mask’ is a binary image shown in white pixels (1) and the background is shown in black 
pixels (0). �en we applied mask to the calibrated image a�er background removal. �e masked image with only 
kiwifruit part is indicated in Fig. 5. �e ROI was prede�ned as the entire fruit region of each kiwifruit to extract 
spectral data. We used the average re�ectance spectrum of all pixels within the ROI to represent the sample. �e 
spectra were obtained from all hyperspectral images of tested kiwifruits and saved in a spectral matrix (X).

Effective wavelengths selection. �e spectral and spatial information of all 512 or 256 bands contained 
redundancy and collinearity, which posed a problem in wavelength selection. EWs selection is very important for 
spectral analysis46. EWs were selected from the original or preprocessed wavelengths and could be directly used 

Figure 5. Con�guration of the hyperspectral imaging system. �e system acquired hyperspectral images at two 
di�erent spectral ranges (380–1023 nm with 512 bands and 874–1734 nm with 256 bands).
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for developing the on-line or portable multispectral equipment. Furthermore, EWs could reduce the computa-
tion complexity, improve the predictive ability of calibration models, and simplify the calibration models20. �e 
wavelengths selection methods used in this research are as follows.

BW. BWs are calculated from the best PLSR calibration model were used for selecting the optimal wavelengths37, 41.  
Wavelengths with large absolute values of BW indicate that the variables have in�uential e�ects on the prediction 
of Y-variable preference, and can be selected as EWs.

GAPLS. GAPLS has been proven to be an e�ective variable selection method as proposed by Leardi47. �e basic 
principle of GAPLS is that the genetic algorithm is implemented by selecting the candidate of sensitive wave-
lengths and optimizing the number of evaluations in each run, while PLS is applied to perform and evaluate the 
selected wavelengths. We applied 100 short runs of GAPLS for the variables selection. �e sensitive wavelengths 
selected in each run were recorded, and the weighted frequency of each wavelength selected in 100 runs was cal-
culated. �e most frequently selected wavelengths were de�ned as EWs.

SPA. SPA is a feed-forward variable selection method for multivariate calibration, which can greatly reduce the 
number of variables and improve the speed and e�ciency of modelling34, 46. To select the wavelength variables 
with minimum collinearity and redundancy and a maximum projection vector, we conducted the SPA by a simple 
projection in a vector space. �e EWs were �nally determined according to the minimum root mean square error 
of validation (RMSEV) in the validation set of the MLR calibration.

Chemometric models. MLR. MLR establishes a relationship between spectra and the attributes of tested 
sample in the form of a linear equation with features which is simple and easy to be interpreted11, 33. �e regres-
sion coe�cients of this equation are determined by calculating the minimum error between measured and pre-
dicted values in a least squares sense. When the number of variables is greater than that of samples, MLR fails and 
is susceptible to collinearity between variables. Regarding to analyze hyperspectral cubes, the e�ective wavelength 
selection or dimensionality reduction is required before MLR model establishment.

PLSR. PLSR is a widely utilized multi-analysis and regression method for the quantitative spectral decomposi-
tion that is implemented to optimize the covariance between Y and the linear combinations of X by performing 
the decomposition on both the spectral and quality data simultaneously37. PLSR was carried out to perform 
the linear models of prediction between the spectral data (X-matrix, Nsamples × Kwavelengths) and the values of the 
parameters obtained from the traditional measurement (Y-matrix, Nsamples × 1). �e PLSR compresses the spectral 
data into a set of orthogonal variables called LVs, which carry the most information and maximum covariance 
between the spectral data and the reference values of the kiwifruit quality attributes. PLSR has been detailed in 
many previous studies1, 23, 41. A full cross-validation (leave-one-out) method was applied to the calibration set to 
determine the optimal number of LVs.

LS-SVM. Increasing evidence from past studies shows that LS-SVM is capable of addressing both linear and 
nonlinear multivariate analysis problems in a relatively fast way compared with the conventional chemometric 
methods2, 34. Derived from the standard SVM, LS-SVM employs a set of linear equations instead of the quadratic 
programming problems to obtain the support vectors. Moreover, LS-SVM embodies the structural risk minimiza-
tion principle to avoid over�tting compared with the traditional empirical risk minimization principle employed 
by the conventional neural networks. Optimal inputs, a proper kernel function and appropriate LS-SVM param-
eters were de�ned before the application of LS-SVM. �ere were two signi�cant parameters to be decided in 
an LS-SVM model. �e regularization parameter gam (γ) determined the tradeo� between minimizing model 
complexity and minimizing the training error. �e parameter sig2 (σ2) of RBF kernel function was the bandwidth, 
which implicitly de�ned the nonlinear mapping from the input space to some high dimensional feature space34.

Image visualization and distribution map. To observe the di�erence in kiwifruit quality attributes from 
sample to sample and even within the same sample, a reduced image space was �rst formed at the EWs to reduce 
the amount of time for image analysis. It was practically impossible to obtain the precise quality parameters of 
every pixel within a sample by chemical analysis, but the quality attributes of every pixel could be predicted by the 
optimal calibration model. �e resulting images could be drawn by using the prediction value of all pixels in the 
ROI. �e results of the distribution map in all spots of the sample facilitate the determination of the di�erence in 
the property within one sample as well as among the samples of di�erent sources37. Simple, robust, and accurate 
calibration models are needed to visualize and map the chemical constitution distribution. �e key steps for the 
whole procedure are presented in Fig. 6. Only the distribution maps of SSC and �rmness are presented in this 
study.

Model evaluation. �e statistical parameters mentioned above are de�ned as follows. Speci�cally, the 
RPD values are rated on a scale of 1–6, which indicates the quality of models: 1, inapplicable (RPD < 1); 2, poor 
(1 ≤ RPD < 1.4) 3, fair (1.4 ≤ RPD < 1.8); 4, good (1.8 ≤ RPD < 2.0); 5, very good (2.0 ≤ RPD < 2.5); 6, excellent 
(RPD ≥ 2.5)48.
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where yi is the actual value, y
i
 is the average value of yi, ŷi is the predicted value of an attribute in fruit number i, ŷ
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is the average value of ŷ
i
, N is the number of spectra (samples), and M is the number of predicted samples. Spectral 

data extraction was conducted on ENVI 4.6 (ITT, Visual Information Solutions, Boulder, USA). All computations 
and multivariate data analyses were performed with the aid of chemometric so�ware Unscrambler® 10.1 (CAMO 
AS, Oslo, Norway) and MATLAB R 2009b (�e Math Works, Natick, USA).

Figure 6. Flowchart of image preprocessing and data analysis for predicting internal quality of kiwifruits.
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