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Abstract

This article discusses the relevance of in situ quality assurance in metal additive manufacturing for cost-efficient product

qualification. It presents an approach for monitoring the laser powder bed fusion (LPBF) process using an area-scan

hyperspectral camera to predict the surface roughness Rz with the help of a convolutional neural network. These

investigations were carried out during LPBF processing of the magnesium alloy WE43 that, due to its bioresorbability and

compatibility, holds significant potential for biomedical implants. A data acquisition and processing methodology has been

set up to enable efficient management of the hyperspectral data. The hyperspectral images obtained from the process were

labeled with the surface roughness Rz as determined by a confocal microscope. The data was used to train a convolutional

neural network whose hyperparameters were optimized in a hyperparameter tuning process. The resulting network was able

to predict the surface roughness within a mean absolute error (MAE) of 4.1 µm over samples from three different parameter

sets. Since this is significantly smaller than the spread of the actual roughness measured (MAE = 14.3 µm), it indicates that

the network identified features in the hyperspectral data linking to the roughness. These results provide the basis for future

research aiming to link hyperspectral process images to further part properties relevant for quality assurance.

Keywords Metal additive manufacturing · Laser powder bed fusion · Process monitoring · Machine learning ·

Hyperspectral imaging

1 Introduction

Additive manufacturing in general and metal additive man-

ufacturing in particular is held as a key technology for the

decentralization and digitalization of manufacturing [20].

Compared to conventional manufacturing, however, it has

so far remained a niche technology—Laser Powder Bed

Fusion (LPBF, also PBF-LB/M), as one of the most pop-

ular metal additive manufacturing processes, holds high

potential especially for lightweight applications or biomed-

ical implants but suffers from cost, poor surface quality and

lack of reproducibility [18]. The complexity of the process

along with the completely different nature of crystal struc-

ture formation compared to traditional forging or casting
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techniques still poses a significant challenge in terms of

reproducibility and quality assurance [2, 14, 15].

For metal additive manufacturing to gain industrial rel-

evance, product qualification has to be ensured already

during the process without the need for long and expensive

post-process procedures (e.g. X-ray computed tomography)

[5]. The process monitoring techniques most relevant for

industrial use will be those that allow in situ determination

of part properties. A range of process monitoring modalities

aiming to allow more reliable manufacturing processes have

been a major research focus in the past years [10].

Electromagnetic as well as acoustic process emissions

have been recorded with a variety of sensor technologies

and were linked to process quality with diverging success.

Depending on whether the sensor is integrated on- or off-

axially, it receives emissions from either only the melt pool

or the entire build platform. Spatially integrated on-axis sen-

sors like photodiodes or pyrometers are the most widely

adapted monitoring tools on the market [16, 23]. Refer-

ence signals are gathered for certain parts and materials and

compared to the signals measured in the process at hand.
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Besides, spatially resolved sensors like high-speed or bolo-

metric cameras have been applied as well, both on- and

off-axially [4, 12]. The process emissions could be linked to

material properties and pore formation.

There are yet other approaches providing spectral infor-

mation about the process zone [24], but sacrificing temporal

and spatial information. In optical coherence tomography

(OCT), low-coherence interferometry allows to detect sur-

face topologies during the process, which has been used to

detect subsurface defects [6]. Fringe detection, on the other

hand, has been shown to be suitable for detecting coating

errors [27]. In some studies, the data acquired has been

evaluated using simple methods of machine learning like

a support vector machine [9, 21] or advanced methods of

deep learning like complex convolutional neural networks

[17, 26].

None of the methods described, however, could suc-

cessfully be implemented for on-line product qualification

within an industrial environment [10]. This motivates the

new approach presented below using hyperspectral imag-

ing to predict part properties using a convolutional neural

network.

Laser powder bed fusion of magnesium and magnesium

alloys is inherently difficult. Due to the high oxidation ten-

dency of magnesium, MgO, which has a relatively high

melting point (2800 ◦C) compared to the evaporation point

of pure magnesium (1090 ◦C) [11], has to be molten in every

layer of the process. The process window is thus very small

and smoke formation is very common. Some researchers

reported using higher pressures and atmospheres enriched

with hydrogen to tackle these challenges [7]. Despite all,

especially the magnesium alloy WE43 with its good biore-

sorbability and compatibility is considered a material with

high potential for additive manufacturing of biomedical

implants [1]. This is why the investigations about a novel

hyperspectral monitoring presented in this article were con-

ducted while processing this alloy.

The main goal of this work is to investigate the potential

of hyperspectral imaging for on-line product qualification

in laser powder bed fusion. Using hyperspectral data with

a convolutional neural network to predict industrially rel-

evant part properties is a quality assurance approach that

has not yet been reported elsewhere. The prediction of

the roughness Rz as presented herein is only the first step

towards predicting a range of spatially resolved part proper-

ties. Section 2 of this article explains the sensor technology

(2.1) and provides powder (2.2) and machine (2.3) specifics.

Subsections 2.4 and 2.5 give insight into how the data was

acquired and processed as well as into how the surface

roughness was determined, respectively. Section 3 presents

results of the data evaluation by convolutional neural

networks and a discussion thereof. Section 4 finally draws

a conclusion including an assessment of the findings and an

outlook on future research.

2Materials andmethods

2.1 Area-scan hyperspectral camera

The area-scan hyperspectral camera MQO22HG-IM-SM5X5-

NIR from Ximea (Table 1) was used in this work to capture

process emissions. The special characteristic that makes this

sensor unique is a coating of the CMOS sensor with 25

different Fabry-Pérot interference filters that each covers an

individual pixel. These filters are arranged in 5 * 5 mosaics

covering the 2048 * 1088 pixels from the entire sensor

resulting in a reduced spatial resolution of 409 * 217 but

with added spectral resolution represented by 25 channels.

With a 875-nm short pass filter protecting the pixels from

laser light reflections at 1070 nm, these 25 spectral bands

lie between 600 and 875 nm. The filter also annihilates the

second harmonic in the Fabry-Pérot filter’s spectral

transmittance.

Figure 1a illustrates the pattern of the Fabry-Pérot inter-

ference filters on the CMOS sensor chip. The height of the

filters correlates with the wavelength they are transmissive

to. Figure 1b shows the plot of the quantum efficiencies

of the 25 bands taking into account the effect of the short

pass filter. The sensitivity in one pixel is not confined to

one narrow wavelength band around the peak, but has sev-

eral minor peaks at other wavelengths. This effect can be

accounted for by a so-called correction matrix. Besides, the

configuration is prone to noise from crosstalk induced by

non-parallel light beams. Further noise is caused by dark

current, vignetting effects as well as chromatic aberration of

the optical setup.

The major benefit of this sensor technology, namely the

combination of spectral as well as spatial resolution, comes

with certain costs: comprehensive correction/calibration,

reduced spatial and temporal resolution when compared to

Table 1 Specifications of hyperspectral sensor

Specification Ximea MQO22HG-IM-SM5X5-NIR

Dimensions 26 mm * 26 mm * 31 mm

Mass 32 g

Pixel resolution Original: 2048 * 1088; spatial: 409 * 217

Spectral range 600 – 975 nm; 25 bands

Sensor 2/3” CMOS

Frame rate 170 fps at full resolution
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Fig. 1 Illustration of 5 * 5

mosaic patterns and spectral

characteristics of hyperspectral

camera

high-speed cameras [25], and reduced spectral resolution

when compared to spectrometers [13]. Area-scan hyper-

spectral imaging thus fulfills a niche whose potential shall

be evaluated and discussed in the remainder of this article.

2.2 Powder properties

Since powder properties strongly affect the reproducibility

and quality of the LPBF process [19, 22], several powder

characteristics were determined. Table 2 summarizes the

crucial properties. The LPBF process is most reliable as

long as powder particles are spherical and hence show good

flowability. The SEM images in Fig. 2 give a qualitative

reference for the particle’s shape whereas the so-called

Dynamic Particle Image Analysis provides a quantitative

measure for the particles sphericity. These results along

with the Hausner-ratio imply an adequate flowability even

though the SEM image reveals some fine particles that

usually impede flowability [3]. It is also critical that the

powder be sufficiently dry which was shown in the Karl

Fischer Titration method.

Table 2 Magnesium alloy WE43: crucial properties of the powder

material

Powder material WE43 Measurement

method

Composition Mg: 92.2; Y: 4.3 EDX

Nd: 3.4 (in wt%)

Particle size D10: 13.6; D50: 31.4 Dynamic Particle

distribution D90: 58.5 (in µm) Image Analysis

Sphericity SHP < 0.8: 15.3%

SHP < 0.9: 53.1%

Hausner 1.26 ISO 3953

ratio

H2O-content 0.05% Karl Fischer

Titration

2.3 Machine setup

The experiments were conducted with a laboratory LPBF

machine providing high flexibility with regard to process

control as well as hardware accessibility. The machine is

schematically shown in Fig. 3a where the camera is inte-

grated off-axially. The features of the machine are summa-

rized in Table 3.

The area-scan hyperspectral camera was integrated off-

axially at a tilt angle of 20◦ such that the depth of focus

of was sufficient to ensure a sharp image. The objective’s

working distance was fixed at 190 mm, the magnification

×1.0, and its field of view (FOV) thus corresponding to

the sensor size. Figure 3b shows the orientation of the

manufactured part on the magnesium AZ31 substrate. One

rectangular layer was built with the dimensions 14 mm *

10 mm with the camera’s FOV in the center with dimensions

of 10 mm * 6 mm. This way, a maximum number of frames

is collected from the center of the scan vectors. During the

LPBF process, all parameters except laser power and scan

speed were kept constant.

2.4 Data acquisition and preprocessing

Data acquisition and preprocessing scripts were imple-

mented using the camera manufacturer’s application pro-

gramming interface for the programming language Python.

This was beneficial for subsequent data evaluation through

methods of machine learning since these also rely on

Python. Figure 4 shows schematically how data acquisition,

storage and subsequent evaluation were organized. At the

start of the process, the frames were continually captured

and the maximum grey value was determined. As soon as

the laser spot reached the FOV of the camera, this value

quickly shot up. The storage of the images therefore started

when the maximum grey value had reached a threshold of

20 for at least 20 ms (at an exposure time of 4 ms this

corresponds to five consecutive frames). The frames were
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Fig. 2 SEM images from WE43

powder particles

then saved at full resolution as a numpy-array data type and

were successively put into a list until the grey value dropped

below 20 for 20 ms. This was the case when the laser spot

moved out of the camera’s FOV and the coating process

started. Then, the first data processing occurred: for every

frame, the pixel coordinates of the maximum grey value

were determined which then served as the center for con-

verting the 2048 * 1088 frame to a 100 * 100 frame. The

cropping was then done such that the spectral bands’ pixel

locations were identical for each post-processed frame. Effi-

cient data processing requires manageable amounts of data

and so the rest of the image was discarded.

All frames that were captured in one layer were saved

after cropping in a so-called pickle-file that served as a

container of the Python list. The processing of the frames

is usually interrupted as soon as the next layer is built. For

the experiments presented here, however, only one layer

was built. The following data processing happened only

after the build job has finished. At first, the 100 * 100 *

1 frames were dissected into 20 * 20 * 25 frames to sort

the different spectral channels. As soon as the samples were

investigated and the quantities of interest were determined,

each frame could be assigned a label—in this case the

surface roughness Rz. The result was a Python list where

each element was again a list containing the frame as a

numpy-array and the label as a float. This list could be used

as input for a convolutional neural network.

2.5 Measurement of surface roughness

The target value of the investigations was the surface

roughness of additively manufactured WE43 alloy. In order

to keep ambient conditions as reproducible as possible,

only one layer was manufactured while the process was

monitored with the hyperspectral camera. Three parameter

combinations of laser power and scan speed were selected

from literature [8]. One was reported to lead to dense parts

and good reproducibility (50 W; 75 mm/s), one to too much

energy input (50 W; 40 mm/s), and the final one to too

little energy input (20 W; 75 mm/s). The roughness Rz was

measured according to DIN EN ISO 4288 using a Keyence

VK X1050 confocal microscope. The cut-off wavelengths

λC and λS were set to 2.5 mm and 8 µm, respectively. The

measuring section ln was therefore 12.5 mm long. With a

FOV of 10 mm * 6 mm, the roughness was measured only

along one direction so that most of the measuring section

lay within the FOV. Figure 5a shows the confocal image

of the first sample and the location of the five measuring

sections. The average of the five roughness values was taken

as the final value that was used as a label for all the camera

Fig. 3 a Sketch of experimental

setup for LPBF process

monitoring; b magnesium

substrate with laser melted part

and field of view of the camera
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Table 3 Machine setup for of the magnesium alloy WE43

Laser source Single mode CW Fiber laser

YLR-50 (IPG Photonics)

50 W; 1070 nm

Laser deflection system intelliScan 14

RTC-5 card (Scanlab AG)

SL2-100 Protocol

Objective Focal distance 100 mm, telecentric

Focal diameter 19 µm

Shielding gas atmosphere Ar with crossjet < 1000 ppm 02

Coating Carbon fiber coater

40-µm layer thickness

Build platform AZ31-substrate ø 50 mm

Hatch Stripe pattern

10 µm Hatch distance

images taken at the respective sample. For each sample, the

model is thus provided with a large number of images that

are labeled with the identical roughness value. This means

that the model is trained to find features in the hyperspectral

data hinting at global process characteristics leading to a

certain global roughness.

3 Results and discussion

3.1 Surface roughness

Table 4 shows the surface roughness measured of the

different samples. Sorted by parameter set, for each sample,

the average measured roughness Rz is given along with the

number of frames acquired from the hyperspectral camera

for this particular sample in brackets. The right column

finally displays the mean roughness for the parameter set

and the mean absolute error (or deviation) of that set.

These values will help evaluate the prediction power of the

convolutional neural network used subsequently.

3.2 Predicting the surface roughness using
a convolutional neural network

The correlation between the surface roughness and the

hyperspectral process recordings shall be determined. As

laid out in previous sections, the images contain spatial as

Fig. 4 Illustration of data

acquisition and processing

during and after the LPBF

process
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Fig. 5 The hyperspectral images are dissected into 25 channels to be used as input for the convolutional neural network. The images are labeled

with the surface roughness Rz

well as spectral information about the process emissions.

This information could potentially contain crucial features

for the prediction of the surface roughness. Since these

features are unknown, a method from machine learning,

a so-called convolutional neural network, is applied. The

hyperspectral measurement is done in the high-temperature

melt pool environment. Therefore, the temperature has an

obvious influence on the hyperspectral measurement. Since

the training data is labeled with the roughness, however, the

model is trained to extract precisely the features related to

roughness, not temperature.

Typically, the input data for a CNN are images with one

or three color channels. The process recordings in this case,

however, entail 25 channels, such that the network topology

is adapted accordingly. Therefore, pre-trained networks that

have achieved exceedingly high classification accuracies

in other areas (e.g. ResNet-models) cannot be applied in

this case.

On the one hand, the CNN shall provide a high prediction

accuracy while on the other hand it may not require more

computation power than was available, both for the training

and for the later classification process. That is why an

approach with four convolutional layers was chosen (Fig. 6)

whose number of channels is doubled in each except for

the last layer. The dimension of the convolutional matrix

was fixed at 3 * 3. The ReLU-function served as activation

function. The input data in the form of the process images

entailed a large number of channels (25) but was otherwise

very small (20 * 20) which is why no max-pooling layers

were applied. To avoid overfitting, a dropout layer was

added to the network followed by a fully connected layer

before the final output is given. The mean squared error

was chosen as a loss function to penalize high deviations

between prediction and label during training. As evaluation

metric, the mean absolute error was used, so that it could

directly be compared to the values in Table 4. To compare

Table 4 Overview over

measured surface roughnesses

of all samples fabricated with

three different parameter sets

Parameter set Roughness Rz[µm]

(number of frames)

Set A: 20 samples 30.8 (3606); 32.4 (3593); 25.8 (3567) R̄z = 32.7 µm

50 W Laser power 37.5 (3592); 31.4 (3579) 31.6 (3611) MAE = 2.2 µm

75 mm/s Scan speed 32.3 (3611); 33.2 (3585); 36.4 (3602)

33.9 (3599); 33.3 (3583); 31.2 (3620)

37.7 (3600); 31.3 (3589); 29.6 (3593)

35.4 (3606); 30.4 (3598); 33.9 (3591)

30.8 (3584); 35.0 (3587)

Set B: 10 samples 49.3 (6272); 36.2 (6689); 43.0 (6672) R̄z = 36.3 µm

50 W 34.3 (6749); 31.7 (6069); 38.0 (6764) MAE = 5.1 µm

40 mm/s 32.4 (6773); 40.3 (6770); 26.9 (6778)

30.9 (6800)

Set C: 10 samples 64.6 (1146); 70.1 (2109); 63.2 (2131) R̄z = 71.1 µm

20 W 57.8 (3343); 77.4 (1530); 75.4 (3075) MAE = 8.4 µm

75 mm/s 81.4 (3077); 92.4 (2243); 67.3 (2037)

61.8 (1821)
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Fig. 6 Network topology of the

CNN used for the prediction of

the surface roughness. During

hyperparameter tuning, the

dropout rate (0.4; 0.6) the

optimizer (Adam; Nadam) as

well as the number of

perceptrons in the fully

connected layer were varied,

affecting the number of

trainable parameters

the prediction power of different network topologies, a

hyperparameter tuning was conducted during which the

dropout rate (0.4 and 0.6), the number of perceptrons in the

fully connected layer (8, 16, 32), and the optimizer (Adam

and Nadam) were varied. Table 5 shows the results of the

training for 10 epochs, respectively, with a batch size of

20 with the corresponding hyperparameters. Of the data

available, 70% was used as training, 20% as validation, and

the remaining 10% as test data. The test data was used to

determine the prediction accuracies shown.

For better clarity, the results are visualized in Fig. 7, such

that the influence of individual hyperparameters becomes

apparent. It can be seen, for instance, that the Nadam-

optimizer allows higher prediction accuracies than the

Adam optimizer. The smallest mean absolute error and

thus the highest prediction accuracy was achieved using the

Nadam optimizer, a dropout rate of 0.6 and 16 perceptrons

in the fully connected layer. A simplified scheme of this

network topology is shown in Fig. 6.

With these hyperparameters, a longer training process

of 40 epochs was carried out. To ensure that for each

parameter set the same proportion of data went into training,

validation and test set, the parameter sets were divided

separately. This means that for each parameter set, 70%

of the data was allocated to the training, 20% to the

validation, and 10% to the test data set. Only after that,

the training and validation data was shuffled. The test

data was kept separate so that the prediction accuracy

could be evaluated for each parameter set individually. This

allows to determine whether the CNN really recognizes
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Table 5 Prediction accuracy of network topologies with a different

number of perceptrons in the fully connected layer, dropout rate, and

optimizer

No. of perceptrons Dropout Optimizer MAE Rz [µm]

in fully conn. layer rate CNN prediction

8 0,4 Adam 4.70

8 0,4 Nadam 4.21

8 0,6 Adam 4.20

8 0,6 Nadam 4.18

16 0,4 Adam 4.25

16 0,4 Nadam 4.37

16 0,6 Adam 4.20

16 0,6 Nadam 4.12

32 0,4 Adam 4.21

32 0,4 Nadam 4.15

32 0,6 Adam 4.20

32 0,6 Nadam 4.14

The networks were trained for 10 epochs each

different surface roughnesses or only distinguishes between

parameter sets.

Figure 8 shows the evolution of the loss function during

the training process for training and validation data. Despite

the high dropout rate of 0.6, overfitting can be observed

starting at around epoch 22. The network learns the features

of the training data “too well”.

Table 6 shows how accurately the CNN can predict the

surface roughness based on the test data. For the complete

data set, all three parameter sets were used. The prediction

accuracy of the CNN can be expressed by an MAE of

4.1 µm which is much lower than the MAE of the roughness

within the data set of 14.3 µm. It should be noted that the

results of parameter set A contribute slightly more to this

result than the other parameter sets due to sheer number of

images in each set. As a next step, the separate test data

Fig. 7 Illustration of the hyperparameter tuning

Fig. 8 Evolution of the loss function (mean squared error) for training

and validation set during training of the CNN

containing only frames from one parameter set were used

as input for the CNN. Table 6 shows that for parameter set

A (50 W; 75 mm/s), the parameter itself is recognized, but

the roughness cannot be predicted more accurately than is

already implied by the statistical spread within that set. For

parameter set B (50 W; 40 mm/s), on the other hand, the

roughness can be predicted more accurately than implied

by the inherent spread. For this set, there must be features

in the hyperspectral data that contain information about the

surface roughness. Parameter set C (20 W; 75 mm/s) shows

a high spread and the roughness can be predicted even less

accurately.

First of all, these results show that the different param-

eters can be recognized fairly well. Within the different

parameter sets, however, the surface roughness Rz can be

predicted with diverging accuracy when compared to the

statistical spread in that set. The spread of the roughness in

parameter set A is very small, making a more accurate pre-

diction difficult. Parameter set C consists of a very low laser

power, so that too little light was available for a more accu-

rate prediction. Parameter set B, on the other hand, contains

sufficient statistical spread as well as enough light so that

the prediction is more accurate than the statistical spread.

Table 6 Prediction accuracy of the convolutional neural network for

different parameter sets compared to the inherent statistical spread

within each set

Parameter set MAE Rz [µm] MAE Rz [µm]

measured CNN-Prediction

Complete data set 14.3 4.1

A (50 W; 75 mm/s) 2.2 2.3

B (50 W; 40 mm/s) 5.1 4.3

C (20 W; 75 mm/s) 8.4 9.6
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Besides, the largest amount of training data was available

for this parameter set.

4 Conclusion

The aim of the research presented in this article was to inves-

tigate the correlation of hyperspectral recordings from the

process and part properties, in this case the surface rough-

ness Rz. To this end, the area-scan hyperspectral camera

was adapted to the process and integrated into a laboratory

machine. As a material particularly relevant for biomedical

applications, the magnesium alloy WE43 was used in the

experiments. The most relevant powder properties like par-

ticle size distribution, sphericity and moisture content were

determined to ensure a reliable process.

The area-scan hyperspectral camera is a compromise

between spatial and spectral resolution and as such

generates large amounts of data. The data processing

methodology developed in this work has proven to enable

efficient data handling nonetheless by extracting only the

relevant parts. In order to establish the link between

the multi-channel data and the surface roughness, a

convolutional neural network was adapted to the input and

a hyperparameter tuning was carried out. During training of

the final network topology for 40 epochs, overfitting was

observed despite an integrated dropout layer. The overall

prediction accuracy over the entire data including three

different parameter sets corresponds to an MAE of 4.1 µm

compared to an MAE of the actual roughness of 14.3 µm.

The MAE of the prediction within a parameter set, however,

is not always smaller than that of the actual roughness in

that set.

Overall, the results suggest that hyperspectral data does

provide crucial information about the LPBF process and

that hyperspectral imaging could potentially help establish

on-line product qualification. It has yet to be investigated,

however, whether other part properties apart from the

surface roughness and spatially resolved process defects

can be predicted as well. This will also show whether

the compromises in terms of spatial, spectral and temporal

resolution that go along with this kind of sensor are justified.

This should be the subject of future research in this area.
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