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Abstract This work address hyperspectral imaging sys-

tems use for maritime target detection using unmanned

aerial vehicles. Specifically, by working in the creation of

a hyperspectral real-time data processing system pipeline.

We develop a boresight calibration method that allows to

calibrate the position of the navigation sensor related to

the camera imaging sensor, and improve substantially the

accuracy of the target geo-reference. We also develop an

unsupervised method for segmenting targets (boats) from

their dominant background in real-time. We evaluated the

performance of our proposed system for target detection in

real-time with UAV flight data and present detection results

comparing favorably our approach against other state-of-

the-art method.
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1 Introduction

The importance of hyperspectral imaging systems has

grown significantly in recent years. The huge increase in

hyperspectral computational systems capacity, together with

the reduction of their dimensions and weight, has encour-

aged its potential use in several domains such as: agricul-

ture [28], industry [47], inspection [31] and surveillance

[41]. Moreover, the development of novel computational

methods and processors, some of them enabling parallel

hardware/software implementations, thus more capable of

processing the vast amount of generated data contributed to

the increase hyperspectral cameras range of applications.

In this paper we address hyperspectral imaging acquisi-

tion and processing in real time, using Unmanned Aerial

Vehicles (UAV) for maritime surveillance applications. We

develop an unsupervised detection method that allows to

separate a target (boat) from the background image clutter in

radiance spectrum domain. Therefore, decreasing the huge

amount of data that needs to be transmitted from the UAV

to a remote ground station for further processing.

Up until now, hyperspectral imaging systems were

mostly used in offline applications. The collected infor-

mation was simply too much for the data to be acquired

and processed in real time. However, there is an increasing

need to detect novel features on heterogeneous applica-

tions scenarios, and also to rush the decision call based on

acquired hyperspectral imaging information. In order for this

to happen, information must become available on the fly.

The work presented in the paper displays develop-

ments undertook during the SUNNY project (http://www.

sunnyproject.eu/) framework. The project objectives aim
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to develop novel sensors and algorithms for autonomous

aerial surveillance of European maritime borders. Briefly,

summarizing the project idea. SUNNY uses a two-tier

intelligent heterogeneous UAV network for providing large

coverage surveillance. The first tier sensors fly at medium

altitude, using long-endurance UAVs and detecting suspi-

cious targets while providing global situation awareness.

The second-tier UAVs fed with information from the first-

tier will carry other sensor payloads in order to recognize

and identify the target. Alloying to couple on-board sensor

processing with preliminary results and innovative active

sensor techniques, and replace technologies that rely only

on sensor information communications to land, by a higher

abstraction level of information.

For the hyperspectral imaging sensor, our purpose within

SUNNY is to detect the target solely using hyperspectral

information. Based on this detection, we crop the hyper-

spectral image data that contains the target information and

send it to a remote ground station, where it can be fur-

ther analyzed. With this pre-processing on-board during the

flight, we can diminish the amount of required data to be

transmitted, and thus make hyperspectral information useful

for flight analysis during the surveillance flights.

In order to be able to distinguish and process the hyper-

spectral data on-board the UAV, we co-develop an hyper-

spectral imaging real-time data processing pipeline. To

analyze the hyperspectral data scan line throughput in flight.

Based on this analysis the derivative unsupervised method

detects the targets, geo-reference their position and perform

the crops.

In this paper we detail the developments for building a

hyperspectral processing pipeline and how to perform the

target detections in real-time. We present results obtained

during flights and compare our unsupervised approach against

other state-of-the-art approach. Furthermore complemen-

tary results of the boresight calibration used to determine the

detect target position more accurately are also presented.

The remaining of the paper is structured in the following

way: in the ensuing section, holds the related work hyper-

spectral imaging sensors. In Section 3 the hardware solution

is presented and all hardware components are detailed. The

hyperspectral data processing and the software implementa-

tion, are presented in Section 4. In Section 5, the boresight

calibration results are presented, as well as, the detection of

maritime targets using captured data in flight with ground-

truth information. Finally the remaing section presents some

conclusions and future work directions.

2 Related Work

This section starts with a brief introduction to hyperspectral

cameras and hyperspectral imaging concepts. Subsequently,

we elaborate related work inherent with this type of cam-

eras such as the atmospheric correction and the boresight

calibration. Existing applications, as well as, other comple-

mentary information relative to our developments is also

presented.

2.1 Hyperspectral Cameras

The use of an hyperspectral camera is becoming ubiqui-

tous in remote sensing operations [6, 27]. Its use in data

collection campaigns is becoming frequent in applications

that range from agriculture, landscaping georeferencing,

food processing, mineralogy to others such as surveil-

lance and inspection tasks [13, 32]. One of most promising

field of application is precision agriculture, where hyper-

spectral imaging is used to collect data from seeds, and

determine the germination of plant seeds [28]. Based on

acquired information, the authors are able to detect sig-

nificant changes in seed coat, responsible for the loss of

germination. This technology can also be used to detect

internal defects in food products [47]. Another application

is in biotechnology, for coral [5] and cells [31] studies. It is

also widely used for bacteria analysis [3, 22], and in envi-

ronmental monitoring applications that allow to measure

surface CO2 emissions, map hydrological formations, track

pollution levels [19, 40].

2.1.1 Pushbroom Cameras

The pushbroom camera allows full simultaneous spectral

data acquisition with spatial line scanning over time. The

camera acquires all spectral information exactly at the same

time, being insensitive to instrument/sample movement. The

hyperspectral system internal parts are always in a fixed

position, and can collect light from sample to camera 5 to 20

times more efficiently than tunable spectral filter. Further-

more, only a line across the sample needs to be illuminated,

which leads to 10 to 30 times more light and consequently

more speed. The data is received line by line, for all

wavelengths at the same time. Meaning that for each line

individual pixel spectrum is obtained. Figure 1 shows the

data acquisition scheme for the pushbroom camera system.

2.2 Atmospheric Correction

The hyperspectral data is captured at different wavelengths,

and numerous interferences occurs with the acquisition of

such information. The interferences are mainly due to atmo-

spheric effects that affect hyperspectral data collection.

There is light directly from the light source, as well as other

reflections from the soil. Moreover, pushbroom sensors con-

tain some non-uniformities (NUC). These derive mainly

from the variability in the response of the Focal Plane Array
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Fig. 1 UAV pushbroom scan

methodology

(FPA) elements and the small-scale roughness of the camera

entrance slit. The presence of dirt or condensation on the

entrance slit can make this non-uniformities meaningful.

For linear sensors, the NUC may consist of an offset and a

single multiplicative factor for each element on the FPA. For

nonlinear sensors, the NUC may require a higher-order rela-

tionship. The offset value is commonly computed in-flight

by collecting data with the camera aperture closed and then

averaging that data to obtain what is called a ”dark frame”.

There are several methods for performing atmospheric

correction. The methods are usually divided into two types:

model-based methods, and empirical-based methods [6].

In model-based methods, the radiance present at the sen-

sor is modeled using radiative transfer models, and data

from detailed atmospheric and sun information standard

databases such as in MODTRAN [7]. Field measurements

are not required to perform atmospheric information, and

model-based methods usually employ height and loca-

tion, flight altitude, local visibility and acquisition time

information. There are several atmospheric correction algo-

rithms that use model-based methods, namely: ATREM

[14], ATCOR [34], ACORN [1], FLAASH [2], CAM5S

[29], QUAC [8] and HATCH [33].

Concerning empirical-based methods, these only require

scene information and contrary to model-based methods do

not require physical information. In empirical-based meth-

ods, there are two types of methods, that are classified based

on the availability of ground truth information.

For the first type, the two common approaches are: flat

field methods [15], and internal apparent relative reflectance

factor methods [35]. In both cases, the raw spectral data of

each pixel is divided by a reference spectrum (in flat field,

a homogeneous bright target is used together with internal

apparent relative reflectance factor, and an average of the

scene spectrum). The main drawback of these approaches

is that relies too much on the scene. Empirical Line [11]

methods belong to second category. In this type of approach,

two (or more) targets in the scene are linearly correlated and

compared with the spectral signature obtained in laboratory.

2.3 Georectification

Unlike frame photography, each line of airborne pushbroom

images is collected at different time instants. Perspective

geometry varies with each pushbroom line. Therefore, each

line has different 6-Degrees Of Freedom (DOF) exterior ori-

entation parameters, leading to different line displacement,

and thus turning the rectification process more difficult.

However, one of the main purposes for acquiring hyperspec-

tral data is to find and classify objects or materials with

spectral signatures. Therefore, it is necessary to georefer-

ence the hyperspectral data, which is the projection of the

point from the image reference frame to the world reference

frame (ground).

To perform this step, there are three different approaches:

– Direct georetification;

– Indirect georetification;

– Integrated georetification.

The first case implies that the air vehicle is equipped with

navigation sensors, and the output is individual line exte-

rior parameters obtained by the hyperspectral camera [12,

16, 26, 27]. The method works regardless of control points

existence on the ground, being however quite susceptible to

positioning errors between the camera and the navigation

sensor. The position errors are called boresight errors, and

are discussed in detail in the following subsection.

For indirect georectification methods, features from a

reference image are used and matched with features of

the acquired lines to project them on the ground [36, 44,

45]. Therefore, it is not required to use navigation sensors

information. Usually the methodology is to collect ground

control points, which can later be identified in the refer-

ence image, or in the scan line, using a bundle adjustment
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process. The method requires human intervention to collect

the ground control points and match them from one dataset

to another. The last approach, performs the georectification

using a mixture of direct/indirect methods [9].

2.4 Boresight Calibration

Our system uses a direct georeferencing method. This type

of methods requires camera position and attitude informa-

tion. Usually this information is obtained from the Inertial

Navigation System (INS) of the UAV or from the INS that

is attached to the camera. Since there are misalignments

between the imaging sensor and the INS we need to correct

this angle difference, denoted as boresight angles. Boresight

errors are prone to increase with the UAV altitude. Usu-

ally, the error leads to misalignment in all 3-axis. However,

since the INS position is physically coupled with the camera

position, the errors are constant and can be compensated.

Typical applications for determining boresight angles

uses control points on the ground, followed by bundle

adjustment methods (such as iterative least squares method)

to determine the value of boresight angles [46]. Some authors

suggest the use of digital elevation maps information for

projecting the points and finding the boresight errors [18,

23]. There are other approaches that convert the hyperspec-

tral data to RGB images, then acquire RGB images from

a EO camera. Later, using bundle adjustment, combine the

two RGB images to determine the boresight errors [4, 20].

2.5 Material Identification using Spectral Information

Hyperspectral imaging sensors are advanced digital color

cameras with fine spectral resolution at given wavelengths

of illumination. Instead of measuring the three colors -

red, green and blue - these sensors measure the radiation

reflected by each pixel at a large number of visible or invis-

ible frequency (or wavelength) bands. Such an instrument

is called an imaging spectrometer. The spectrometers are

instruments that divide the impinging electromagnetic radi-

ation into a number of finite bands and measure the energy

in each band. Depending on the design of the spectrometer,

the bands may be contiguous or not, and with equal width.

Therefore, the measured discrete spectrum is usually not a

uniformly sampled version of a continuous one.

There are two main approaches for performing target

identification based on spectral information:

– Spectral Anomaly Detection Algorithms [24]: This type

of algorithms do not require spectral information from

targets of interest. Therefore, all pixels which spec-

trum does not fit the background model are marked

as targets. These methods do not allow to distinguish

between spectral anomalies generated by man-made

objects, natural objects or targets of interest. Conse-

quently, the atmospheric correction is not a prerequisite

for the application of anomaly detection algorithms;

– Spectral Matching Detection Algorithms [24]: Need

spectral information on targets of interest, and attempts

to identify pixels whose spectrum display a high degree

of correlation with the desired spectral signature. The

spectral signature of the target can be obtained from

a spectral library or from an identified scene in target

pixel.

An example of the first type of methods is the RX algo-

rithm [10]. The method identifies a spectral zone or with

different colors within a region of tests which may be the

whole dataset or only a portion thereof. The RX algorithm

uses the pixel being analyzed as signal matched, since it uses

the sample covariance matrix to take into account the sam-

ple spectral correlation. It is ideal for situations where the

targets are small in comparison to the background.

In addition to this, there is a variation called KRX [42],

which involves applying the same context as the previous

algorithm, but using a sliding window. However, its compu-

tationally very expensive because it requires to calculate the

covariance matrix and its inverse for every single pixel.

As for the second type of methods, such as: ACE [30],

GLRT [25] and JSD [37]. They make use of probabilistic

methods to model the target spectrum, and determine what

is the probability of this being a given pixel.

2.6 Real-time Algorithms

Up until now, there are not many approaches for hyperspec-

tral real time data processing. The work presented by Trym

Vegard Haavardsholm et al. [17], describes a target detec-

tion system in real time with GPU. It uses a hyperspectral

system able to detect 160 wavelengths, and also able to set

a background model. It detects possible targets that don’t

match the background. Although it was tested in a UAV, the

processing of CPU was not on-board. In the work devel-

oped by Yuliya Tarabalka et al. [43], a model background

by fitting normal multivariate mix to a spatial subset of the

image was used, then a background probability for each

given pixel was computed, in order to detect and estimated

value that was afterwards use to detect anomalous pixels

based on empirical values.

3 Hyperspectral Data Acquisition and Processing

The hyperspectral system setup, displayed in Fig. 2, com-

prises the following subsystems:

– Hyperspectral System: contains the Hyperspectral PC

and Control Electronics, hyperspectral camera and a
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Fig. 2 Hyperspectral hardware system

GPS/IMU unit. It is responsible for performing the cam-

era acquisition and generate a timestamp navigation

message for the georectification process:

– Hyperspectral camera: It comprises the sensor,

spectrometer and lens necessary for data acquisi-

tion in the frequency range. The sensor is a Bobcat

640 CL-V,1 manufactured by Xenics. It collect data

by Camera Link interface, while still allowing the

use of an external trigger that triggers the acquisi-

tion of the image. Camera Link interface for data

acquisition guarantees sufficient transfer capacity

even at the maximum data rates from the camera;

– PC and Control Electronics:

• Computer motherboard (CPU) - With Win-

dows 7 operating system;

• SSD in a swappable slot;

• Framelink Express frame grabber (Camera

Link) - Device which makes the connection

between the sensor and the CPU, for acquire

the data;

• Hyperspectral Control Board, for synchroniza-

tion between image data and GNSS/IMU data

acquisition with 0.1 ms accuracy, and also for

the hyperspectral camera shutter control.

• Power regulator.

– GPS/IMU: GPS receiver and inertial system. It

allows to detect the position and attitude of the

UAV when the data was obtained. It is physical

coupled to the camera and it’s necessary to per-

form a calibration in order to eliminate alignment

errors between the GPS/IMU and the sensor, called

1http://www.xenics.com/pt/camera/bobcat-640-cl

boresight calibration. If this is not performed,

it can lead to significant errors during the geo-

rectification of the collected points. The inertial

system selected was the OXTS xNAV550 due to its

small size and low weight.

– Data Processing System: its composed by the Data

Processing CPU (with Ubuntu 14.04) and an Elec-

tro Optical camera. It is responsible for acquiring and

processing the hyperspectral camera data, as well as,

acquire and process data from an Electro-Optical (EO)

Camera. The selected EO camera was the Blackfly 3.2

MP Color GigE PoE (Sony IMX265) model.

The hyperspectral CPU connects directly to the hyper-

spectral camera using serial and Camera Link interfaces.

The serial connection is used to control the external camera

hardware trigger based on the synchronization PPS trig-

ger pulse that the hyperspectral CPU board receives from

the GPS/IMU. The Camera Link interface deals with image

data acquisition part. The Data Processing CPU receives the

images from the hyperspectral CPU board via Ethernet, and

also receives the PPS synchronization pulse via serial port.

Therefore, the two boards are synchronized with a common

timestamp that is given by the GPS/IMU sensor.

Our objective is to acquire, process, detect and georef-

erence targets position in real-time. To do so, first we need

to perform boresight calibration, which requires a flight for

pure calibration purposes. The flight must be conducted

over land, typically passing through areas with runways.

The data is then pos-processed to obtain the boresight

compensation angles, and thus be able to detect and geo-

reference targets position in real-time. The full processing

pipeline is illustrated in Fig. 3.

Our processing system is divided into two main steps:

– First, there is a offline procedure that computes the off-

sets associated with the dark frames. The dark frames

http://www.xenics.com/pt/camera/bobcat-640-cl
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Fig. 3 Hyperspectral Software System - Processing pipeline

values change from flight to flight, and to obtain

accurate data values, dark frames should be captured at

the beginning of the flight.

– Second, concerning the data processing in flight. The

image is acquired and synchronized with GPS/IMU

data. As soon as a valid target is detected based on his

spectral response when compared to the background, a

target crop with all spectral signatures is performed to

be dispatched to a remote station for further processing.

The data transmitted data is already georeferenced.

3.1 Boresight Calibration

As aforementioned in the related work section, the bore-

sight errors are responsible for inducing position errors in

hyperspectral data georeference. In order to calibrate the

boresight errors, a direct georeference method based on

a bundle adjustment procedure is utilized. Ground control

points (GCP) belonging to the UAV runway treadmills are

selected, and the control points are re-projected (3D-2D)

from the ground plane to the image plane and compared

with the points collected during the flight. Afterwards, a

bundle adjustment procedure is used to minimize the error

difference and compute the boresight angles, as described in

Eq. 1:

We also need to compensate the lens distortion. For

compensating the lens calibration parameters, a laboratory

calibration is required to map each pixel to a corresponding

incidence angle. By comparing these values, with the lens

field of view, we obtain a new pixel value to analyze.

p̂c = R̂Sensor
IMU R̂ψ ′ θ ′ φ′R̂IMU

T

R̂IMU
UT M(p̂World − p̂UAV ) (1)

being:

– p̂c is a vector that holds the ground control world

points re-projected to the camera reference frame, p̂c =

[pc1
, pc2

, pc3
, 0] in homogeneous coordinates. How-

ever, in order to obtain the image coordinates of the

point, this result must be normalized. The image coor-

dinates xi and yi are given by:

xi =
pc1

pc3

· (−f ) (2)

yi =

(
pc2

pc3

· (−f )

)
+ 320 (3)

where f corresponds to the focal length in pixels.

– R̂Sensor
IMU is the rotation matrix from the IMU reference

frame to the camera reference frame;

– R̂ψ ′ θ ′ φ′ is the matrix that represents the angle between

the sensor and IMU in homogeneous coordinates (bore-

sight angles);

– R̂IMU
T

is the IMU rotation matrix that represent the

angles (roll, pitch and yaw) during flight;

– R̂IMU
UT M is the rotation matrix that converts the World

Reference frame to the IMU reference frame;

– p̂world are the ground control points in UTM coordinates;

– p̂UAV is the UAV position in UTM coordinates.

The results of the re-projection error minimization using

a nonlinear least squares solver are the boresight angles.

This values corresponds to calibration angles (roll, pitch,

heading) between the image sensor and GPS/IMU position.

3.2 Spectrum Processing

Now we turn our attention to the actual hyperspectral data

processing. One of the first procedures that is required

before analyzing spectral data is to use a reference pattern.

The reference pattern is established by analyzing and sub-

tracting to the acquired data the average of the dark frames

value (dark frames are images taken with the camera shutter
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closed). Only then we can convert the raw sensor data into

radiance at-sensor values as defined in Eq. 4:

Lλ = Gain × P ixel V alue + Off set (4)

where the system offset is set to zero.

After the data is converted into radiance at-sensor, it

can be further converted into reflectance factor by perform-

ing the atmospheric correction. This procedure allows the

elimination of almost all atmospheric effects, leaving only

the surface materials and some residual among other com-

ponents. However, for our maritime detection application

radiance data is suffice, since in normal flight conditions the

spectral response of the target (boat) material, will be signif-

icantly different from the background (water). This assump-

tion holds even when water has different light reflection

patterns.

It is important to mention that is also necessary to take

into account, that our maritime detection method must be

able to detect targets (boats) built with different materi-

als, making more difficult to use methods that require a

comparison between spectrums for target detection.

Therefore, we implemented a processing method de-

noted as Hyperspectral Derivative Anomaly Detection

(HYDADE) that analyzes the transitions/existing peaks in

the spectrum response, by processing the first and second

derivative of the acquired spectrum for each pixel.

In order to segment the target pixels from the background

with HYDADE, two procedures are met, namely: first, test

if the first derivatives of a given pixel are higher than a pre-

determined threshold (that was found empirically based on

the acquired data). If its higher than the threshold, it means

that the pixel is a good candidate (possible target pixel), if

its value is below the threshold then the pixel is classified as

background. This ”binarization” allows us to quickly sepa-

rate target candidate pixels from the background. However,

if only this procedure was used, we would end up with a

large amount of false positives candidate pixels. Therefore

a deeper analysis to the candidate pixels spectral response is

required.

For that we count the number of peaks of the first and

second derivative of each candidate pixel. The number of

peaks is compared with an adaptive threshold number for

each derivative. The adaptive thresholds are initialized with

zero already in flight, when the aircraft reaches its cruise

altitude, and their value is changed throughout the flight,

according to the data received. Based on this procedure we

are able to quickly perceive the spectrum data smoothness

and detect transitions in the spectrum data between adjacent

pixels in the camera pushbroom scan line. Since we detect

the transitions in the spectrum, we group the different pixels

into clusters based on their similarity information. As soon

as a cluster is closed and we get a candidate target (hyper-

spectral data ”blob”), we perform a crop of the hyperspectral

data cube and dispatch this information to the ground where

the cluster can be further analyzed.

At the same time, we are also able to determine the target

geoposition, by converting the image point from the image

frame to the world reference frame (Fig. 4). The world

coordinates are represented in UTM coordinates. For the

IMU, the reference frame considered for the roll, pitch and

heading angles was the North-East-Down (NED) reference

frame. We will also have the camera reference frame, thus

we are able to obtain the relation between the object coordi-

nates measured in the image and the real world coordinates,

as shown in Eq. 5.

⎛
⎝

x

y

z

⎞
⎠

UT M

Object

=f UT M
geo

⎛
⎝

x

y

z

⎞
⎠

geo

Sensor

+ s RWorld
IMU RIMU RIMU

Sensor

⎛
⎝

0

yi

−f

⎞
⎠

Sensor

Object

(5)

where:

–

⎛
⎝

0

yi

−f

⎞
⎠

Sensor

Object

corresponds to the target position in the

image. x is 0 due to the model of pushbroom camera,

while yi corresponds to the Eq. 6, where N is the total

Fig. 4 World, Camera and IMU

reference frames
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number of samples (pixels) of the image and i is the

pixel to be analyzed, f is the focal length in pixels;

yi = −
N − 1

2
+ i, with i = 0, . . . , N − 1 (6)

– RIMU
Sensor is the Rotation matrix that converts sensor

reference frame to the IMU reference frame;

– RIMU is the matrix that implements the rotations

obtained by the IMU. This matrix can be represented in

terms of Euler angles (roll (ψ), pitch (θ ) and yaw (φ)),

according to the Eq. 7 [39].

RUT M
IMU = Rx(ψ) Ry(θ) Rz(φ) (7)

– s corresponds to the scale factor. This can be approx-

imated using the Ground sampling distance (GSPy),

which corresponds to the resolution that is on the floor.

The Ground sampling distance in y is given by the Eq.

8, where �y is the pixel size, and h
f

is considered an

approximation for the scale (h is the altitude of the UAV,

and f is the focal length in pixels);

GSPy = �y · mb = �y ·
h

f
(8)

– f UT M
geo

⎛
⎝

x

y

z

⎞
⎠

geo

Sensor

is the vector containing the UAV

position when the target has been detected, in UTM

coordinates.

Even though computationally simple the method is

very useful for hyperspectral target maritime detection in

SUNNY project (http://www.sunnyproject.eu/). Since the

method allows to positively separate the target from the

background without using other spectrums for comparing

scan line with scan line solely using hyperspectral data

information in real-time. Meaning that there is the need

to know the material of the boat, and we can also cluster

different materials on the boat (this depends on the flight

altitude since it depends on the pixel resolution), but most

of all allows us to dispatch only the target information from

the UAV to a ground station, where the data can be further

analyzed. Otherwise it would be difficult to send all the

hyperspectral data cube through the UAV communications

network.

4 Results

In this section, we present the results for the hyperspec-

tral imaging for real-time maritime target detection using

an unmanned aerial vehicle. To validate our proposed solu-

tion, we installed the experimental setup into Portuguese

Air Force UAV, and performed flight tests at OTA Air Force

Base for collecting synchronized data, in order to perform

boresight calibration.

The boresight calibration procedure consists on the use

of multiple ground control points, that were obtained using

a RTK/GPS Septentrio receiver. For this procedure, we used

the crosswalk at the end of OTA Air Force Base runway to

obtain the control points.

The second flight tests were performed in a maritime

surveillance scenario at Santa Cruz, Peniche. The objective

of these flight trials was to test the detection and georefer-

ence of maritime targets using HYDADE method based on

purely hyperspectral imaging data. In both flights, UAV has

a altitude of 300m and 26 m/s velocity.

In order to validate HYDADE detection results, we

compare the performance with our implementation of the

Spectral Angle Mapper (SAM) [21] state-of-the-art method,

with manually annotate ground truth information.

4.1 Experimental Setup

The experimental setup was already described in detail in

[38]. It was installed in a fixed-wing Portuguese Air Force

Unmanned Aerial Vehicle, called ANTEX shown in Fig. 5.

In Fig. 6, we see the payload configuration on the UAV.

The sensors are placed in the bottom structure so that all the

cameras can be placed near/outside the bottom fuselage of

the UAV, while the data recording and processing CPUs are

placed on top layer.

Fig. 5 ANTEX UAV

http://www.sunnyproject.eu/
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Fig. 6 UAV payload used in the data collection trials [38]

In Table 1 is displayed the SPECIM AisaKESTREL 16

characteristics.

4.2 OTA Boresight Calibration Flights

The first flights occur at OTA Air Force Base, Alenquer.

OTA Air Force Base is the primary center for Portuguese

Air Force flight trials. The ANTEX UAV was the aircraft

used to carry the sensor payload in the field tests.

Table 1 SPECIM AisaKESTREL 16 characteristics

Parameter KESTREL 16

Spectral range 600-1650 nm

Spectral sampling 4 nm

F/# F2.4

Smile/Keystone <0.15 pixels

Polariation sensitivity < ±2%

SNR (Peak) 800

Spatial resolution 320 or 640 pixels

Integration time Adjustable within frame period

FOV 21.7 or 40 degrees

Electro-mechanical shutter Yes

Data interface Cameralink 14-bit

The Antex UAV performed a pre-determined flight tra-

jectory, that consisted on flying over the crosswalk in

different directions in order to collect crosswalk image data

with different heading directions. Figure 7 depicts the UAV

flight trajectory.

We collected control points with a RTK/GPS sensor,

in stationary position at each control point position at the

runway. Figure 8 shows the ground control points position.

The purpose of this flight was to perform boresight

calibration. We performed two tests: First, we used the nav-

igation data from the GPS/IMU obtained during the flight;

Second, we post-processed the navigation data, obtained

using a manufacturer’s software, called RT Post-process.2

4.2.1 Results: Data GPS/IMU obtained during flight

We start by analyzing the results using the navigation data

obtained during the flight. For boresight angles using the

optimization procedure we obtained the following values:

– ψ’ = -0.2416◦

– θ ’ = 0.6660◦

– φ’ = -1.3151◦

Figure 9 shows the error (in pixels) in X and Y with and

without the boresight calibration, where the dash lines are

the results without the boresight calibration, and the contin-

uous lines represents the results with boresight calibration.

The results match each flight passage over the crosswalk.

The boresight calibration represents a 86.72% improve-

ment in X and 3.55% in Y , compared with the results

without calibration.

4.2.2 Results: Data GPS/IMU post processed

After the flight, the data obtained by the GPS/IMU was

processed, allowing a new analysis of the boresight angles.

With this, we computed the boresight angles, obtaining

the following values:

– ψ’ = -0.2815◦

– θ ’ = 0.7567◦

– φ’ = -1.0762◦

Figure 10 shows the error in X and Y with and with-

out the boresight calibration, where the dash lines are the

results without the boresight calibration, and the continuous

lines represents the results with the boresight calibration.

The results are always analyzed for each passage over

the runway.

2http://www.oxts.com/rt-post-process-support-for-multiple-base-stations

-improves-productivity/ accessed on 08/03/2016

http://www.oxts.com/rt-post-process-support-for-multiple-base-stations-improves-productivity/
http://www.oxts.com/rt-post-process-support-for-multiple-base-stations-improves-productivity/
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Fig. 7 UAV ANTEX flight path

The boresight calibration represents a 87.31% in X and

4.97% in Y improvement compared with the results without

applying the calibration procedure.

In the Table 2 is possible to observe the mean and stan-

dard deviation (considering absolute value) of the error for

each passage, considering the boresight angles equal to zero,

and considering the values obtained for boresight error. It is

noteworthy that for all passages the error values are lower

when the boresight angles are considered.

Fig. 8 Ground control points collected at OTA Air Force Base runway

As show in Table 2, there is a difference between the

results obtained with the GPS/IMU data acquired during

flight and post processed for the heading. This offset is

because the sensor used is of the Attitude and Heading

Reference System (AHRS) type.

Finally, we present the projected points on the ground,

with and without boresight angles, as shown in Fig. 11. It

is necessary to take into account that the Ground Control

Points were obtained using a GPS RTK, with very high

accuracy. However, the satellite representation of Google

Earth has a larger error, and in this case is only used for

visual reference, and should not be considered as ground

truth. Therefore, the Ground Control Points with the color

green in Fig. 11, are not exactly coincident with the points

marked in the Fig. 8.

4.3 Santa Cruz Maritime Detection Flights

For the maritime detection tests, the flights were performed

at Santa Cruz Airfield, Peniche. The airfield is located in a

coastal area, allowing the UAV to quickly head out to sea

and fly over boats. The boat carries a RTK GPS sensor on-

board, allowing to save the boat trajectory over time for

ground truth georeference purposes.

The ANTEX UAV flight trajectory and the vessel

ground-truth position information are displayed in Fig. 12.

During this flight, the UAV passed over the boat on

three separate occasions, for explanation purposes we will

address this detections individually.
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Fig. 9 Error in X and Y for all

passages: dash lines are the

results without boresight

calibration, and the continuous

lines represents the results with

boresight calibration

We start by analyzing the spectral signature, comparing

two pixels for each detection: a target pixel, and one pixel in

the background, to distinguish a target from the background.

In order to verify the spectral results in detail, we used

ENVI (http://www.harrisgeospatial.com/productsandsolutions/

geospatialproducts/envi.aspx) software. We also manually

classified all boat pixels in order to have ground-truth infor-

mation of the detections, for comparison effects between

HYDADE and a supervised state of the art method as

Spectral-Angle-Mapper (SAM) processing results.

Fig. 10 Error in X and Y for all

passages: dash lines are the

results without boresight

calibration, and the continuous

lines represents the results with

boresight calibration

http://www.harrisgeospatial.com/productsandsolutions/geospatialproducts/envi.aspx
http://www.harrisgeospatial.com/productsandsolutions/geospatialproducts/envi.aspx
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Table 2 Boresight Calibration
Without boresight With boresight

Error in pixels X Y X Y

Flight data

1 10.6 6.8 1.7 6.2

Mean 2 13.0 6.0 1.5 6.8

3 11.7 11.9 1.5 10.8

Standard 1 2.3 4.7 1.3 4.0

Deviation 2 2.1 3.9 1.0 4.0

3 2.1 9.3 1.0 7.7

Post-processed data

1 11.7 7.1 1.7 6.3

Mean 2 14.7 6.0 1.7 6.8

3 12.7 12.1 1.5 10.8

Standard 1 2.1 5.2 1.3 4.0

Deviation 2 1.8 3.9 1.0 4.0

3 2.0 9.6 1.2 7.6

In Figs. 13, 14 and 15, we display the detections detailing

the following information:

– Comparison between the image obtained with hyper-

spectral camera and with the EO image;

– Spectral analysis - background versus target;

– First and second derivate of the spectrum analysis;

– Presentation of the spectra obtained using ENVI;

Fig. 11 Points obtained with and without boresight corrections pro-

jected on the ground. Green color represents the ground control points,

yellow color represents the points without boresight. In red color the

projected points considering the boresights angles

– Results of georeference for the boat position.

For the three detections, we display the hyperspectral

camera versus EO camera (first and second image). The yel-

low cross in the first image represents the point analyzed to

obtain the spectrum of the boat, while the green cross marks

the water spectrum pixels. On the bottom figures in Figs. 13,

14 and 15, we present the target and background first and

second derivative (first and second image) and also the tar-

get and background spectrum obtained with ENVI (third

and fourth image).

Having analyzed the acquired data, and after trying to

obtain ground-truth information of all the pixels to classify

the target (boat) for all three detections. We can now com-

pare HYDADE unsupervised detection method results that

were obtained in real-time during the flight, with the results

we obtain using other supervised state of the art method

as Spectral-Angle-Mapper (SAM). In order to compare the

detection results, we implemented a version of SAM, which

is a supervised approach that requires reference spectra as

input, we perform three different tests, using different num-

bers of boat pixels as reference input for SAM, namely: 5,

35, and 165 boat pixels, the latter correspond to all boat

pixels in detection 1. In addition, since SAM requires a

threshold, for each previously described tests, three differ-

ent thresholds were applied: 0.01 radians, 0.05 radians and

0.1 radians. Figures 16, 17 and 18, depicts HYDADE versus

SAM results for each target detection.

From the aforementioned figures, it is possible to observe

that HYDADE does not produce lots of false positives, con-

trary to SAM, that produces lots of false positives specially

given more boat pixel inputs as reference samples. Both

methods are able to detect totally or partially the target on
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Fig. 12 In red color the

ANTEX UAV flight trajectory

during the flight, and in white

color the boat ground-truth

position information

Fig. 13 Results for detection 1: On the left EO camera information, first and second derivative of the target and of the background. On the right

radiance spectrum comparison between the processed data and ENVI software

Fig. 14 Results for detection 2: On the left EO camera information, first and second derivative of the target and of the background. On the right

radiance spectrum comparison between the processed data and ENVI software
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Fig. 15 Results for detection 3: On the left EO camera information, first and second derivative of the target and of the background. On the right

radiance spectrum comparison between the processed data and ENVI software

all detections, depending on the threshold (SAM), while

HYDADE being an unsupervised approach is able to clas-

sify the target boat in all three detections. In addition, we

analyzed the results of the applied threshold, and is possible

to observe that the same threshold gives on to different

outcomes on all the detections, making safe to conclude

that SAM is more sensible to the applied threshold than

HYDADE.

To have a better understanding of the results, we com-

puted the precision and recall values of all detections using

both methods. The results for HYDADE method are presen-

ted in Table 3. Analogously, but considering all the tests va-

rying the number of spectra given as input and the threshold

variation, we present in Table 4 the results obtained with

SAM method. Figure 19 displays the precision versus recall

of both methods.

Fig. 16 HYDADE results are displayed on the left figure, and on the

right figure SAM method results for detection 1 are displayed. In the

case of the SAM results, the first line shows the results obtained with

the 5 input spectra, varying the threshold between 0.01 rad, 0.05 rad

and 0.1 rad. The results of the following line were obtained using 35

input spectra, varying in the same way the threshold. Finally the bot-

tom line contains the results obtained with 165 input spectra for the

same threshold variation
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Fig. 17 Following the same demonstration as in the previous figure, on the left are the results with HYDADE method and in the right figure with

SAM method for the detection 2. SAM does not work equally for all detections with the same threshold, and also detects many false positives

with 165 boat spectrum

Fig. 18 Following the same demonstration as in the previous figures, on the left are the results with HYDADE method and in the right figure

with SAM method for the detection 3. In this case the same happens as in detection 2, besides that in certain situations it detects 0 or very few

points of the boat
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Table 3 HYDADE precision

and recall results Detection Ground truth number of

pixels p/ boat

Precision (%) Recall (%)

HYDADE 1 165 54,76 27,88

2 313 82,97 84,03

3 209 81,33 29,19

From the aforementioned tables and figure we can

observe that HYDADE has higher precision values than

SAM for most of the detections, and that SAM is very

sensible to the threshold, which decreases its precision

results, even though it has sometimes higher recall rates

than HYDADE. Even in the best tuned SAM scenario (in

terms of input boat pixel and threshold), the results are

comparable to the ones obtained by HYDADE in all three

detections. Since our application is intended for detecting

the target and crop the hyperspectral data cube for transmis-

sion, the fact that HYDADE produces less false positives

and is unsupervised will favor its application in maritime

scenario.

To complete such statement and since we want to detect

the target during flight, it is still necessary to take into

account the method execution time. The processing time per

received line was analyzed for each detection, using a stan-

dard dual-core CPU, and the mean value is displayed in

Table 4 SAM precision and recall results

Detection Ground truth number

of pixels p/ boat

Number of pixels as

reference input

Threshold (rad) Precision (%) Recall (%)

SAM 1 165 5 0.01 77,78 4,35

0.05 62,89 62,11

0.1 0,55 93,79

35 0.01 72,92 21,21

0.05 13,13 89,10

0.1 0,46 97,58

165 0.01 60,57 64,24

0.05 5,47 91,52

0.1 0,38 98,18

2 313 5 0.01 0 0

0.05 67,77 78,59

0.1 3,27 88,50

35 0.01 100 0,32

0.05 36,10 93,29

0.1 2,53 99,36

165 0.01 100 0,64

0.05 18,10 94,89

0.1 1,80 100

3 209 5 0.01 0 0

0.05 66,82 71,29

0.1 2,12 90,43

35 0.01 0 0

0.05 37,55 95,22

0.1 1,68 99,04

165 0.01 0 0

0.05 19,38 98,57

0.1 1,20 100
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Fig. 19 HYDADE versus SAM - Precision and Recall. With the ’*’

marker are found the results with HYDADE method, while with the ’+’

marker are presented the results with SAM method. The color differ-

entiates the three detections: pink markers corresponds to the detection

1, blue to detection 2 and green to detection 3

seconds, in Table 5 for the HYDADE and in the Table 6 for

the SAM.

As expected, SAM processing time increases signifi-

cantly with the number of spectra that receives as input.

However, even in the situation where it only receives five

spectra as input, the processing time per line is approxi-

mately the double than the HYDADE method.

Finally, we also analyzed the target projection, in order to

obtain the point in the world. The error difference between

the point obtained by RTK/GPS on the boat and the pro-

jected point for all three detections is:

– Detection 1: 13 meters error;

– Detection 2: 8 meters error;

– Detection 3: 5 meters error;

Which given the fact that both the target and the UAV had

relative motion is pretty accurate and suits the application

needs.

Table 5 HYDADE Processing time per hyperspectral scan line

HYDADE

Detection 1 Detection 2 Detection 3

0.0309 s 0.0290 s 0.0278 s

Table 6 SAM Processing time per hyperspectral scan line

SAM

Number of boat

pixels as refer-

ence input

Detection 1 Detection 2 Detection 3

5 0.0686 s 0.0795 s 0.0882 s

35 0.4468 s 0.4629 s 0.4419 s

165 2.4035 s 2.1373 s 1.9675 s

5 Conclusions and Future Work

Our work focused on the development of hyperspectral

imaging techniques for real-time maritime target detection

and recognition. We developed the following methods and

applications:

– First, we co-develop and implemented an hyperspec-

tral image acquisition solution, that allows to extract

synchronized image and navigation data of the hyper-

spectral camera in near real-time.

– Second, we develop a boresight calibration procedure,

that allows to calibrate the physical relation between the

hyperspectral inertial navigation system and the imag-

ing sensor. The boresight calibration procedure consists

on the development of a bundle adjustment method that

optimized the re-projection error between control points

on the ground and the observed image points.

– Third, we develop a method (HYDADE) that based

on the real-time data acquisition hyperspectral setup,

detects based on the first and second derivative anal-

ysis of the radiance spectrum the presence of targets

(boats) on a pre-defined background (water). Allowing

to reduce the amount of generated data that is required

to be transmitted to a remote station. The crop of image

data is georeferenced to provide accurate location of the

target. We compared our approach to a standard state-

of-the-art approach SAM, where our method proved to

produce high precision results comparable or better than

SAM in most situations, but with lower false positive

rate.

– Finally, we integrated all previously mentioned con-

tributions, into a unmanned aerial vehicle solution,

that was validate in real flights for maritime border

surveillance scenario with target ground-truth position

information.

Our future work efforts will be based on the following

procedures:

– Further develop the data processing steps in order to

develop methods that can identify the type of material
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based on the radiance spectrum. The separation of the

target spectrum from the one in the background is

already a improvement to current systems. Extend to

actually identify the specter response will further extend

the range of applications of the current solution;

– Further improve the boresight calibration using factor

graphs. We can use EO information to complement

the hyperspectral data and help reduce the bundle-

adjustment errors.

– Implement a dual target identification mechanism using

Electro-Optical information and Hyperspectral data

information;

– Create a data spectrum library for maritime target iden-

tification;

– Extend the range of applications of the develop system

to other scenarios.
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