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ABSTRACT

Coupled non-negative matrix factorization (CNMF) is ap-
plied to hyperspectral, multispectral, and panchromatic data
fusion. This unmixing based method extracts and fuses hy-
perspectral endmember spectra and high-spatial-resolution
abundance maps using these three data. An experiment with
the synthetic data simulating ALOS-3 (advanced land observ-
ing satellite 3) dataset shows that the CNMF method has a
possibility to produce fused data which have both high spatial
and spectral resolutions with smaller spectral distortion.

Index Terms— Data fusion, non-negative matrix factor-
ization, spectral unmixing

1. INTRODUCTION

Panchromatic, multispectral, and hyperspectral data analysis
plays an important role in remote sensing. There is always
some engineering trade-off between spatial and spectral res-
olutions in the optical sensor design. The hyperspectral and
multispectral mission named HISUI (hyperspectral imager
suite) is the Japanese next-generation spaceborne radiometers
[1]. The performance of the hyperspectral radiometer is 30
m ground sampling distance (GSD), 30 km swath width, and
186 spectral channels over 400-2500 nm. The performance
of the multispectral radiometer is 5 m GSD, 90 km swath
width, and 4 spectral channels over 450-900 nm. HISUI will
be launched on advanced land observing satellite 3 (ALOS-3)
of Japan aerospace exploration agency (JAXA) in FY2014.
ALOS-3 also includes the high-spatial-resolution (approxi-
mately 1 m GDS) and wide-swath-width (50km) panchro-
matic sensor with a stereo view. Data fusion of hyperspectral,
multispectral, and panchromatic data has a possibility to pro-
duce data with both higher spatial and spectral resolutions,
which contribute to the accurate identification and classifica-
tion of the observed materials at fine spatial resolution.

In this work, we propose coupled non-negative matrix
factorization (CNMF) for hyperspectral, multispectral, and
panchromatic data fusion. In recent decades, non-negative
matrix factorization (NMF) has become a useful hyperspec-
tral unmixing method [2]-[4]. Given a non-negative matrix
V, NMF looks for two non-negative matrix factors W and
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H such that V. = WH [5], [6]. We applied NMF to hyper-
spectral, multispectral, and panchromatic data fusion. Since
it is based on spectral unmixing, the CNMF fused data have
little spectral distortion while enhancing spatial resolution
of all hyperspectral band images. The CNMF is applied to
the ALOS-3 simulation dataset generated from real airborne
hyperspectral data taken over vegetation areas.

2. THE CNMF ALGORITHM

The objective of this work is to estimate unobservable
high-spatial-resolution hyperspectral data (Z € R »*L»)
from observable low-spatial-resolution hyperspectral (X;, €
RA»*Er) multispectral (X,,, € R*»*Lm) and panchromatic
data (X, € R'*L»). Here, A, and \,,, denote the numbers of
spectral channels of hyperspectral and multispectral sensors,
respectively. Ly, L,,, and L, denote the numbers of pixels
of hyperspectral, multispectral, and panchromatic images,
respectively.

2.1. Observation Model

The relation between the low- and high-spatial-resolution hy-
perspectral data can be modeled in matrix form by

Xy, =Z8Sp, + Ny, (D

where S;, € RI»*In is the spatial s}Pread transform ma-
trix with each column vector {s;},", representing the
transform from the point spread function of the high-spatial-
resolution hyperspectral data to that of the & th pixel value
in the low-spatial-resolution hyperspectral data. N is the
residual error. Similarly, the multispectral data is modeled as

where R,, € R ** is the spectral response transform
matrix with each row vector {rm,i}j‘;"l representing the
transform from the spectral response function of the hy-
perspectral data to that of the i th band in the multispectral
data. S,, € RLr*Lm ig the spatial slg)read transform ma-

trix with each column vector {s,,x},™, representing the



transform from the point spread function of the high-spatial-
resolution hyperspectral data to that of the & th pixel value in
the multispectral data. N,,, denotes the residual error. The
panchromatic data is also modeled as

X, =R,Z+N,, 3)

where R, € R'*An is the spectral response transform vec-
tor which represents the transform from the spectral response
function of the hyperspectral data to that of the panchromatic
data. N,, denotes the residual error. In the simulation of this
work with synthetic data, Sy, S,,,, R, and Ry, are given.

For real data, S;, and S,,, can be determined by image reg-
istrations and estimation of point spread functions. R, and
R,, can be also derived from radiometric calibration to obtain
spectral response functions.

2.2. Coupled NMF Unmixing

With the linear spectral mixture assumption, Xp, X,,, and X,,
are expressed as follows:

X, = W,H;, + E;, 4
X, = W,,H,, + E,, %)
X, = W,H, + E,. (6)

Here, W), € R*»*P H, € RP*In and E, € RM*In
are the endmember, abundance, and residual matrices of the
low-spatial-resolution hyperspectral data, respectively. D is
the number of endmember. W,,, € R**P H,, € RP*Lm,
and E,, € R *Im are those of the multispectral data. In
the same way, W,, € R*P H,, € RP*L» and E, € R1*L»
are those of the panchromatic data. It is physically reason-
able to assume that the high-spatial-resolution hyperspectral
data contains the same endmember spectra as the low-spatial-
resolution hyperspectral data and the same abundance maps
as the panchromatic data. Therefore, Z can be approximated
as

7~ Wth. (7)

This is the key idea of unmixing based data fusion. CNMF is
composed of two steps based on NMF, i.e., 1) the unmixings
of Xj, and X,,,, and 2) the estimation of H,, using Wj, and H,,,.
Finally, by combining W, and H,,, the high-spatial-resolution
hyperspectral data can be obtained. Other unmixing and end-
member detection algorithms are also applicable for this data
fusion. But, to minimize the residual errors in the spectral
mixture models taking account of sensor properties, NMF is
straightforward to formulate and easy to implement.

2.2.1. Unmixings of hyperspectral and multispectral data

First, X, and X,,, are alternately unmixed by NMF to esti-
mate Wy, and H,,,. NMF spectral unmixing is commonly per-
formed to minimize the squared Frobenius norm of the resid-
ual matrix in the linear spectral mixture model expressed as

|En||% and ||E,, ||% for (4) and (5), respectively. Lee and Se-
ung proposed a multiplicative update rule that is guaranteed
to converge to a locally optimal matrix factorization under
the non-negative constraints of two factorized matrices. We
use the multiplicative update rule for NMF unmixings of Xj,
and X,,,. From (1), (2), (4), (5), and (7), the endmember and
abundance matrices are related as

Hh ~ Hms;ky,v (8)

W, = R,,Wj,. )
S; € RLmxLn ig the spatial spread transform matrix with

Ly
each column vector {s,j k} representing the transform

from the point spread function of the multispectral data to
that of the k th pixel value in the hyperspectral data, which
can be obtained from S;, and S,,,. X}, and X,,, are alternately
unmixed to estimate Wy, and H,,, under constraints of (8) and
).

The CNMF algorithm starts from NMF of X, to use its
spectral advantage. First, with the number of endmember D
set to a certain number, Wy, is initialized by vertex component
analysis (VCA) [7], which is one of the most advanced geom-
etry based endmember extraction methods with pure pixel as-
sumption. Hp, is initialized with a constant value 1/D. Next,
W, and H;, are optimized by the multiplicative update rule.
However, as the initialization phase, only Hj, is updated un-
til convergence with Wy, fixed. In the subsequent rounds, the
value of Hj, that is initialized by (8) is used and Wy, is up-
dated with Hj, fixed until convergence to inherit the reliable
abundance information obtained from NMF of X,,,.

The alternate step is NMF of X,,,. W, is initialized by
(9) and H,,, is set as a constant value 1/D. As the initializa-
tion phase, H,,, is updated until convergence with W,,, fixed
to inherit the reliable endmember spectra obtained from NMF
of X,. Next, W,, and H,,, are optimized by the multiplica-
tive update rule. We refer to the alternate NMF unmixings as
the outer loops and the update processes in each NMF unmx-
ing as the inner loops. As a convergence condition, we use
the condition that the change ratio of cost function achieves
a value below a given threshold. Considering practical use, a
maximum number of iterations is set for each loop. Two pa-
rameters are set for the outer and inner loops, respectively, as
different values.

2.2.2. Estimation of high-spatial-resolution abundance ma-
trix from panchromatic data

In the last step, the high-spatial-resolution abundance matrix
is estimated from the panchromatic data by NMF. Since the
panchromatic data have only one band, the initial value of W,
and H,, is significantly important for the accurate NMF of X,,,.
From (3), (6), and (7), W,, is approximated as

W, ~ R,W,. (10)



We estimate W, by (10) using W, obtained in the previous
phase. H,, are initialized by the spatially up-sampled matrix
of H,,, using bilinear interpolation. Only H,, is optimized be-
cause the panchromatic data have no spectral information. To
inherit the abundance information of H,,,, we minimize the
following cost function: ||E,||% + «||H, — H,,||%, where
H,, € RP*Lr denotes bilinearly up-sampled H,,, and « is
a penalty parameter. The multiplicative update rule of H,, is
given by

Hp — Hp'*(WPTXP_O‘(Hp_ﬁm))'/(WpTWpHp), (11)

where (-)7 denotes the transposition of the matrix and . and
./ denote element-wise multiplication and division, respec-
tively. H,, is optimized by (11) until convergence. Finally, the
high-spatial-resolution hyperspectral data are obtained by the
multiplication of Wj, and H,,.

3. DATA AND METRIC

The proposed data fusion technique is applied to the ALOS-3
simulation dataset generated from real airborne hyperspectral
data. The image was taken over a vegetation area in Japan
by the compact airborne spectrographic imager (CASI) sensor
with 68 spectral bands in the 400-1060 nm region in 2008. We
selected a 480 x 480 pixel size image with 47 bands in the 450-
900 nm region and generated the panchromatic, multispectral,
and low-resolution hyperspectral data by down-sampling the
original hyperspectral data in the spectral, both spectral and
spatial, and spatial domains, respectively.

The panchromatic data was produced with a uniform
spectral response function in the 450-900 nm region. The
multispectral data was produced by averaging 5x5 pixel
blocks of the original high-resolution hyperspectral data with
uniform spectral response functions corresponding to mul-
tispectral bands 1-4 of HISUI, which cover the 450-520,
520-600, 630-690, and 760-900 nm regions, respectively [1].
The low-resolution hyperspectral data was generated by av-
eraging 30x30 pixel blocks of the original high-resolution
hyperspectral data. In this simulation, we assume completely
identical atmospheric and illumination conditions between
the three sensors.

We evaluate the spatial and spectral qualities of the fused
data compared with the original data using the peak signal-
to-noise ratio (PSNR) and the spectral angle error (SAE), re-
spectively. The PSNR of the i th band is defined by

2
PSNR; = 10 - logy, ( . maz; - ) . (12)
Eki1(z - Wth)i,k/Lp

where max; is the maximum pixel value in the i th band im-
age. The SAE of each pixel is defined as an angle in A, spec-
tral dimensions.

Fig. 1. 472 nm, 765 nm, and 765 nm zoomed images of (a)
low-spatial-resolution hyperspectral, (b) original, (c) HM, (d)
HP, and (e) HMP data.

4. RESULTS AND DISCUSSION

We compare the quality of three fused data produced by
CNMEF, i.e., the hyperspectral and multispectral (HM), hy-
perspectral and panchromatic (HP), and hyperspectral, mul-
tispectral, and panchromatic (HMP) fused data. HM is ob-
tained in the first phase of CNMF. HP can be produced in the
second phase of CNMF substituting H;, for H,, in the ini-
tialization of H,,. Fig. 1 shows the comparison between the
low-spatial-resolution hyperspectral (HS), the original, and
the three fused data in the 472 nm and 765 nm regions. In the
two band images, HMP is most similar to the original image
regarding high spatial resolution. In the 765 nm band image,
HP seems to be comparable with HMP. However, in the 472
nm band image, the reflectance values are reversed in many
areas. This indicates that it is difficult to estimate abundance
maps with high spatial resolution (1 m) from those with low
spatial resolution (30 m).
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Fig. 2. PSNR of HM, HP, and HMP fused data.

Fig. 2 shows the PSNR of the three fused data. HMP out-
performs HM and HP in all spectral channels. This proves
that both multispectral and panchromatic data contribute to
better estimation of the high-spatial-resolution hyperspectral
data. Fig. 3 shows the histograms of SAE and the SAE dis-
tribution maps. HP shows large spectral distortion due to the
lack of spectral information in the panchromatic data. The re-
sult that HM has less spectral distortion than HP means that
the multispectral data are useful for resolution enhancement
of the low-spatial-resolution hyperspectral data while keeping
the spectral distortions small. HMP is thought to be compa-
rable with HM because the panchromatic data do not con-
tribute to the improvement of spectral quality. As shown in
the SAE distribution map of HMP, SAE values are small in
almost all vegetation areas and spectral distortions occur in
non-vegetation area. The reason is as follows. Endmember
matrix (W) mainly contains vegetation spectra because the
low-spatial-resolution hyperspectral data has a large coverage
of vegetation area whose spectra is highly mixed. Therefore,
it is difficult to linearly combine the endmembers to represent
the spectra of non-vegetation materials. If we can estimate
more accurate endmember spectra in the first step of CNMF,
the mitigation of spectral distortions may be possible.

5. CONCLUSION

We proposed the CNMF algorithm for the fusion of panchro-
matic, multispectral, and hyperspectral data. First, the multi-
spectral and hyperspectral data are alternately unmixed into
the endmember and abundance matrices by NMF with the
relation between sensor properties used for the constraints.
Next, the high-spatial-resolution abundance maps are esti-
mated from the panchromatic data using the hyperspectral
endmember and multispectral abundance matrices. Finally,
the high-spatial-resolution hyperspectral data is obtained
by multiplication of the hyperspectral endmember and high-
spatial-resolution abundance matrices. Owing to an algorithm
based on unmixing, the CNMF method has a possibility to
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Fig. 3. (a) Histograms of SAE and (b) SAE distribution maps

extract and fuse all spectral and spatial information contained
in the three data. It is applicable for the high-order data
product of the ALOS-3 dataset.
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