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Abstract—Pansharpening aims at fusing a panchromatic 

image with a multispectral one, to generate an image with 

the high spatial resolution of the former and the high spectral 

resolution of the latter. In the last decade, many algorithms 

have been presented in the 

literatures for pansharpen-

ing using multispectral data. 

With the increasing availabil-

ity of hyperspectral systems, 

these methods are now be-

ing adapted to hyperspec-

tral images. In this work, we 

compare new pansharpening 

techniques designed for hy-

perspectral data with some 

of the state-of-the-art meth-

ods for multispectral pan-

sharpening, which have been 

adapted for hyperspectral 

data. Eleven methods from different classes (component 

substitution, multiresolution analysis, hybrid, Bayesian and 

matrix factorization) are analyzed. These methods are ap-

plied to three datasets and their effectiveness and robust-

ness are evaluated with widely used performance indicators. 

In addition, all the pansharpening techniques considered in 

this paper have been implemented in a MATLAB toolbox 

that is made available to the community.

I. INTRODUCTION

In the design of optical remote sensing systems, owing 

to the limited amount of incident energy, there are criti-

cal tradeoffs between the spatial resolution, the spectral 

resolution, and signal-to-noise ratio (SNR). For this rea-

son, optical systems can provide data with a high spatial 

resolution but with a small number of spectral bands (for 

example, panchromatic data with decimetric spatial reso-

lution or multispectral data with three to four bands and 

metric spatial resolution, like PLEIADES [1]) or with a high 

spectral resolution but with reduced spatial resolution (for 

example, hyperspectral data, subsequently referred to as 

HS data, with more than one hundred of bands and deca-

metric spatial resolution like HYPXIM [2]). To enhance the 

spatial resolution of multispectral data, several methods 

have been proposed in the literature under the name of 

pansharpening, which is a form of superresolution. Fun-

damentally, these methods solve an inverse problem which 

consists of obtaining an enhanced image with both high 

spatial and high spectral resolutions from a panchromatic 

image and a multispectral image. The huge interest of the 

community on this topic is evidenced by the existence of 

sessions dedicated to this topic in the most important re-

mote sensing and earth observation conferences as well as 

by the launch of public contests, of which the one spon-

sored by the data fusion committee of the IEEE Geoscience 

and Remote Sensing society [3] is an example.

A taxonomy of pansharpening methods can be found 

in the literature [4], [5], [6]. They can be broadly divided 

into four classes: component substitution (CS), multi-

resolution analysis (MRA), Bayesian, and variational. The 

CS approach relies on the substitution of a component 

(obtained, e.g., by a spectral transformation of the data) 

of the multispectral (subsequently denoted as MS) image 

by the panchromatic (subsequently denoted as PAN) im-

age. The CS class contains algorithms such as intensity-

hue-saturation (IHS) [7], [8], [9], principal component 

analysis (PCA) [10], [11], [12] and Gram-Schmidt (GS) 

spectral sharpening [13]. The MRA approach is based 

on the injection of spatial details, which are obtained 

through a multiscale decomposition of the PAN image 

into the MS data. The spatial details can be extracted ac-

cording to several modalities of MRA: decimated wavelet 

transform (DWT) [14], undecimated wavelet transform 

(UDWT) [15], “à-trous” wavelet transform (ATWT) [16], 

Laplacian pyramid [17], nonseparable transforms, either 

based on wavelets (e.g., curvelets [19]) or not (e.g., con-

tourlets [18]). Hybrid methods have been also proposed, 

which use both component substitution and multiscale 

decomposition, such as guided filter PCA (GFPCA), de-

scribed in Section II-C. The Bayesian approach relies on 

the use of posterior distribution of the full resolution tar-

get image given the observed MS and PAN images. This 

posterior, which is the Bayesian inference engine, has two 

factors: a) the likelihood function, which is the probabil-

ity density of the observed MS and PAN images given the 

target image, and b) the prior probability density of the 

target image, which promotes target images with desired 

properties, such as being segmentally smooth. The selec-

tion of a suitable prior allows us to cope with the usual ill-

posedness of the pansharpening inverse problems. The 

variational class is interpretable as particular case of the 
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Bayesian one, where the target image is esti-

mated by maximizing the posterior probabil-

ity density of the full resolution image. The 

works [20], [21], [22] are representative of the 

Bayesian and variational classes. As indicated 

in Table 1, the CS, MRA, and Hybrid classes 

of methods are detailed in Sections II-A, II-

B, and II-C, respectively. Herein, the Bayesian 

class is not addressed in the MS+PAN context. 

It is addressed in detail, however, in Section 

II-D in the context of HS+PAN fusion.

With the increasing availability of HS sys-

tems, the pansharpening methods are now ex-

tended to the fusion of HS and panchromatic 

images [23], [24], [25], [26]. Pansharpening of 

HS images is still an open issue, and very few 

methods are presented in the literature to ad-

dress it. The main advantage of HS image with respect to MS 

one is the more accurate spectral information they provide, 

which clearly benefits many applications such as unmixing 

[27], change detection [28], object recognition [29], scene 

interpretation [30] and classification [31]. Several of the 

methods designed for HS pansharpening were originally 

designed for the fusion of MS and HS data[32]–[36], the MS 

data constituting the high spatial resolution image. In this 

case, HS pansharpening can be seen as a particular case, 

where the MS image is composed of a single band, and thus 

reduces to a PAN image. In this paper, we divide these meth-

ods into two classes: Bayesian methods and matrix factor-

ization based methods. In Section II-D, we briefly present 

the algorithms of [33], [36], and [35] of the former class and 

in Section II-E the algorithm of [32] of the latter class.

As one may expect, performing pansharpening with 

HS data is more complex than performing it with MS data. 

Whereas PAN and MS data are usually acquired almost in 

the same spectral range, the spectral range of an HS image 

normally is much wider than the one of the correspond-

ing PAN image. Usually, the PAN spectral range is close to 

the visible spectral range of 0.4−0.8nm (for example, the 

advanced land imager–ALI–instrument acquires PAN data 

in the range 0.48−0.69nm). The HS range often covers the 

visible to the shortwave infrared (SWIR) range (for exam-

ple, Hyperion acquires HS data in the range 0.4−2.5nm, the 

range 0.8−2.5nm being not covered by the PAN data). The 

difficulty that arises, consists in defining a fusion model 

that yields good results in the part of the HS spectral range 

that is not covered by PAN data, in which the high resolu-

tion spatial information is missing. This difficulty already 

existed, to some extent, in MS+PAN pansharpening, but it 

is much more severe in the HS+PAN case.

To the best of the authors’ knowledge, there is currently 

no study comparing different fusion methods for HS data, 

particularly on datasets where the spectral domain of the 

HS image is larger than the one of the PAN image. This 

work aims at addressing this specific issue. The remainder 

of the paper is organized as follows. Section II reviews the 

methods under study, i.e., CS, MRA, hybrid, Bayesian, and 

matrix decomposition approaches. Section III summarizes 

the quality assessment measures that will be used to assess 

the image fusion results. Experimental results are presented 

in Section IV. Conclusions are drawn in Section V.

II. HYPERSPECTRAL PANSHARPENING TECHNIQUES

This section presents some of the most relevant methods 

for HS pansharpening. First, we focus on the adaptation of 

the popular CS and MRA MS pansharpening methods for 

HS pansharpening. Later, we consider more recent methods 

based on Bayesian and matrix factorization approaches. A 

toolbox containing MATLAB implementations of these al-

gorithms can be found online1.

Before presenting the different methods, we introduce 

notation used along the paper. Bold-face capital letters refer 

to matrices and bold-face lower-case letters refer to vectors. 

The notation Xk  refers to the thk  row of X. The operator ()T  

denotes the transposition operation. Images are represent-

ed by matrices, in which each row corresponds to a spec-

tral band, containing all the pixels of that band arranged in 

lexicographic order. We use the following specific matrices:

 ◗ X , ,x x Rn
m n

1 f !=
#m6 @  represents the full resolution 

target image with mm  bands and n pixels; XW  represents 

an estimate of that image.

 ◗ Y ,RH
m m

!
#m  Y ,RM

n n
!

#m  and P R
n1

!
#  represents, re-

spectively, the observed HS, MS, and PAN images, nm 

denoting the number of bands of the MS image and m  

the total number of pixel in the YH  image.

 ◗ Y RH
m n

!
#mL  represents the HS images YH  interpolated at 

the scale of the PAN image.

We denote by /d m n=  the down-sampling factor, as-

sumed to be the same in both spatial dimensions.

A. COMPONENT SUBSTITUTION

CS approaches rely upon the projection of the higher 

spectral resolution image into another space, in order to 

1http://openremotesensing.net

TABLE 1. SUMMARY OF THE DIFFERENT CLASSES OF METHODS 
 CONSIDERED IN THIS  PAPER. WITHIN PARENTHESES, WE INDICATE 
THE ACRONYM OF EACH METHOD,  FOLLOWED BY THE NUMBER OF 
THE  SECTION IN WHICH THAT METHOD IS DESCRIBED.

METHODS ORIGINALLY DESIGNED FOR MS PANSHARPENING

Component substitution (CS, II-A)
Principal Component Analysis (PCA, II-A-1)
Gram Schmidt (GS, II-A-2)

Multiresolution analysis (MRA, II-B)
Smoothing filter-based intensity 
 modulation (SFIM, II-B-1)
Laplacian pyramid (II-B-2)

Hybrid methods (II-C)
Guided Filter PCA (GFPCA)

Bayesian methods
Not discussed in this paper

METHODS ORIGINALLY DESIGNED FOR HS PANSHARPENING

Bayesian Methods (II-D)
Naive Gaussian prior (II-D-1)
Sparsity promoting prior (II-D-2)
HySure (II-D-3)

Matrix Factorization (II-E)
Coupled Non-negative Matrix 
 Factorization (CNMF)
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separate spatial and spectral information [6]. Subsequent-

ly, the transformed data are sharpened by substituting the 

component that contains the spatial information with the 

PAN image (or part of it). The greater the correlation be-

tween the PAN image and the replaced component, the 

less spectral distortion will be introduced by the fusion 

approach [6]. As a consequence, a histogram-matching 

procedure is often performed before replacing the PAN im-

age. Finally, the CS-based fusion process is completed by 

applying the inverse spectral transformation to obtain the 

fused image.

The main advantages of the CS-based fusion techniques 

are the following: i) high fidelity in rendering the spatial 

details in the final image [37], ii) fast and easy implemen-

tation [8], and iii) robustness to misregistration errors and 

aliasing [38]. On the negative side, the main shortcoming 

of this class of techniques is the generation of a significant 

spectral distortion, cause by the spectral mismatch between 

the PAN and the HS spectral ranges [6].

Following [4], [39], a formulation of the CS fusion 

scheme is given by

 ,X Y P OgH
k k

k L= + -^ hLW  (1)

for , , ,k m1 f= m  where X
k
W  denotes the thk  band of the es-

timated full resolution target image, , ,g gg m
T

1 f= m6 @  is a 

vector containing the injection gains, and OL  is defined as

 ,O Yw HL
i

m

i
i

1

=

=

m

L/  (2)

where the weights w , , , ,w w wi m
T

1 f f= m6 @  measure the 

spectral overlap among the spectral bands and the PAN im-

age [6], [40].

The CS family includes many popular pansharpening 

approaches. In [26], three approaches based on principal 
component analysis (PCA) [9] and Gram-Schmidt [13], [37] 

transformations have been compared for sharpening HS 

data. A brief description of these techniques follows.

1) Principal Component Analysis: PCA is a spectral trans-

formation widely employed for pansharpening applica-

tions [9]. It is achieved through a rotation of the original 

data (i.e., a linear transformation) that yields the so-called 

principal components (PCs). The hypothesis underlying 

its application to pansharpening is that the spatial infor-

mation (shared by all the channels) is concentrated in the 

first PC, while the spectral information (specific to each 

single band) is accounted for the other PCs. The whole fu-

sion process can be described by the general formulation 

stated by Eqs. (1) and (2), where the vectors w  and g  of 

coefficient vectors are derived by the PCA procedure ap-

plied to the HS image.

2) Gram-Schmidt: The Gram-Schmidt transformation, of-

ten exploited in pansharpening approaches, was initially 

proposed in a patent by Kodak [13]. The fusion process 

starts by using, as the component, a synthetic low resolu-

tion PAN image IL  at the same spatial resolution as the HS 

image2. A complete orthogonal decomposition is then per-

formed, starting with that component. The pansharpening 

procedure is completed by substituting that component 

with the PAN image, and inverting the decomposition. 

This process is expressed by (1) using the gains [37]

 
,

var
cov

O
Y O

g
H

k
L

k
L

=
^

^ h

hL
 (3)

for , , ,k m1 f= m  where cov ,$ $^ h and var $^ h denote the co-

variance and variance operations. Different algorithms are 

obtained by changing the definition of the weights in (2). 

The simplest way to obtain this low-resolution PAN image 

simply consists of averaging the HS bands (i.e., by setting 

/ ,w m1i = m  for , , .i m1 f= mh  In [37], the authors proposed 

an enhanced version, called GS Adaptive (GSA), in which 

IL  is generated by the linear model in (2) with weights es-

timated by the minimization of the mean square error be-

tween the estimated component and a filtered and downs-

ampled version of the PAN image.

B. MULTIRESOLUTION ANALYSIS

Pansharpening methods based on MRA apply a spatial fil-

ter to the PAN image for generating details to be injected 

into the HS data. The main advantages of the MRA-based 

fusion techniques are the following: i) temporal coher-

ence [5] (see Sect.27.4.4), ii) spectral consistency, and iii) 

robustness to aliasing, under proper conditions [38]. On 

the negative side, the main shortcomings are i) the imple-

mentation is more complicated due to the design of spatial 

filters, ii) the computational burden is usually larger when 

compared to CS approaches. The fusion step is summa-

rized as [4], [39]

 ,X Y G P PH
k k

k L7= + -^ hLW  (4)

for , , ,k m1 f= m  where PL  denotes a low-pass version of P, 

and the symbol 7  denotes element-wise multiplication. 

Furthermore, an equalization between the PAN image 

and the HS spectral bands is often required. P PL-  is often 

called the details image, because it is a high-pass version of 

P, and Eq. (4) can be seen as describing the way to inject 
details into each of the bands of the HS image. According 

to (4), the approaches belonging to this category can differ 

in i) the type of PAN low pass image PL  that is used, and 

iih the definition of the gain coefficients G .k  Two common 

options for defining the gains are:

1) 1Gk=  for , , ,k m1 f= m  where 1 is an appropriately 

sized matrix with all elements equal to 1. This choice 

identifies the so-called additive injection scheme;

2) G Y PHk
k

L8= L  for , , ,k m1 f= m  where the symbol 8  de-

notes element-wise division. In this case, the details are 

weighted by the ratio between the upsampled HS im-

age and the low-pass filtered PAN one, in order to re-

produce the local intensity contrast of the PAN image 

2GS is a more general method than PCA. PCA can be obtained, in GS, by 
using the first PC as the low resolution panchromatic image [41].
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in the fused image [42]. This coefficient selection is of-

ten referred to as high pass modulation (HPM) method or 

multiplicative injection scheme. Some possible numerical 

issues could appear due to the division between YH
kL  and 

PL  for low value of PL  creating fused pixel with very high 

value. In our toolbox this problem is addressed by clip-

ping these values by using the information given by the 

dynamic range.

In the case of HS pansharpening, some further consid-

erations should be taken into account. Indeed, the PAN and 

HS images are rarely acquired with the same platform. Thus, 

the ratio between the spatial resolutions of the PAN and HS 

images may not always be an integer number, or a power of 

two. This implies that some of the conventional approaches 

initially developed for MS images cannot be extended in a 

simple way to HS images (for example, dyadic wavelet-based 

algorithms cannot be applied in these conditions).

1) Smoothing Filter-based Intensity Modulation (SFIM): The 

direct implementation of Eq. (4) consists of applying a sin-

gle linear time-invariant (LTI) low pass filter (LPF) hLP  to 

the PAN image P  for obtaining P .L  Therefore, we have

 X Y P Pg hH LP
k k

k )= + -^ hLW  (5)

for , , ,k m1 f= m  where the symbol ) denotes the convolu-

tion operator. The SFIM algorithm [43] sets hLP  to a simple 

box (i.e., an averaging) filter and exploits HPM as the de-

tails injection scheme.

2) Laplacian Pyramid: The low-pass filtering needed to 

obtain the signal PL  at the original HS scale can be per-

formed in more than one step. This is commonly referred 

to as pyramidal decomposition and dates back to the semi-

nal work of Burt and Adelson [17]. If a Gaussian filter is 

used to lowpass filter the images in each step, one obtains 

a so-called Gaussian pyramid. The differences between con-

secutive levels of a Gaussian pyramid define the so-called 

Laplacian pyramid. The suitability of the latter to the pan-

sharpening problem has been shown in [44]. Indeed, 

Gaussian filters can be tuned to closely match the sen-

sor modulation transfer function (MTF). In this case, the 

unique parameter that characterizes the whole distribution 

is the Gaussian’s standard deviation, which is determined 

from sensor-based information (usually from the value of 

the amplitude response at the Nyquist frequency, provided 

by the manufacturer). Both additive and multiplicative details 

injection schemes have been used in this framework [42], 

[45]. They will be referred to as MTF-Generalized Laplacian 
Pyramid (MTF-GLP) [45] and MTF-GLP with High Pass Modu-
lation (MTF-GLP-HPM) [42], respectively.

C. HYBRID METHODS

Hybrid approaches use concepts from different classes of 

methods, namely from CS and MRA ones, as explained next.

1) Guided Filter PCA (GFPCA): One of the main challeng-

es for fusing low-resolution HS and high-resolution PAN/

RGB data is to find an appropriate balance between spectral 

and spatial preservation. Recently, the guided filter [46] has 

been used in many applications (e.g. edge-aware smooth-

ing and detail enhancement), because of its efficiency and 

strong ability to transfer the structures of the guidance im-

age to the filtering output. Its application to HS data can be 

found in [47], where the guided filter was applied to trans-

fer the structures of the principal components of the HS im-

age to the initial classification maps.

Here, we briefly describe an image fusion framework 

which uses a guided filter in the PCA domain (GFPCA) 

[48]. The approach won the “Best Paper Challenge” award 

at the 2014 IEEE data fusion contest [48], by fusing a low 

spatial resolution thermal infrared HS image and a high 

spatial resolution, visible RGB image associated with the 

same scene. Fig. 1 shows the framework of GFPCA. In-

stead of using CS, which 

may cause spectral distor-

tions, GFPCA uses a high 

resolution PAN/RGB image 

to guide the filtering process 

aimed at obtaining super-

resolution. In this way, GF-

PCA does not only preserve 

the spectral information 

from the original HS im-

age, but also transfers the 

spatial structures of the high 

resolution PAN/RGB image 

to the enhanced HS image. 

To speed up the processing, 

GFPCA first uses PCA to 

decorrelate the bands of the 

HS image, and to separate the information content from 

the noise. The first p m% m  PCA channels contain most of 

the energy (and most of the information) of an HS image, 

and the remaining m p-m  PCA channels mainly contain 

noise (recall that mm  is the number of spectral bands of the 

HS image). When applied to these noisy (and numerous) 

m p-m  channels, the guided filter amplifies the noise and 

causes a high computational cost in processing the data, 

which is undesirable. Therefore, guided filtering is used 

to enlarge only the first k  PCA channels, preserving the 

structures of the PAN/RGB image, while cubic interpola-

tion is used to upsample the remaining channels.

FIGURE 1. Fusion of HS and PAN/RGB images with the GFPCA 

framework.
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Let PC ,i  with ,i p#^ h  denote the thi  PC channel ob-

tained from the HS image Y ,H  with its resolution increased 

to that of the guided image Y  (Y  may be a PAN or an RGB 

image) through bicubic interpolation. The output of the 

filtering, ,PCi
l  can be represented as an affine transforma-

tion of Y  in a local window j~  of size d d2 1 2 1#+ +^ ^h h 

as follows:

 Y , .PC a b ii j j j6 ! ~= +
l  (6)

The above model ensures that the output PCi
l  has an edge 

only if the guided image Y  has an edge, since .PC Yaid d=
l^ h  

The following cost function is used to determine the coef-

ficients a j  and :b j

 PCY( , ) ( ) ,E a b a b aj j j j i j
i

2 2

j

e= + - +

!~

6 @/  (7)

where e  is a regularization parameter determining the de-

gree of blurring for the guided filter. For more details about 

the guided filtering scheme, we invite the reader to consult 

[46]. The cost function E  leads the term Ya bj j+  to be as 

close as possible to ,PCi  in order to ensure the preservation 

of the original spectral information. Before applying in-

verse PCA, GFPCA also removes the noise from the remain-

ing PCA channels PCRest  using a soft-thresholding scheme 

(similarly to [49]), and increases their spatial resolution to 

the resolution of the PAN/RGB image using cubic interpola-

tion only (without guided filtering).

D. BAYESIAN APPROACHES

The fusion of HS and high spatial resolution images, e.g., 

MS or PAN images, can be conveniently formulated within 

the Bayesian inference framework. This formulation allows 

an intuitive interpretation of the fusion process via the pos-

terior distribution of the Bayesian fusion model. Since the 

fusion problem is usually ill-posed, the Bayesian methodol-

ogy offers a convenient way to regularize the problem by de-

fining an appropriate prior distribution for the scene of in-

terest. Following this strategy, different Bayesian estimators 

for fusing co-registered high spatial-resolution MS and high 

spectral-resolution HS images have been designed [33]–

[36], [50]–[54]. The observation models associated with the 

HS and MS images can be written as follows [50], [55], [56]

 
Y XBS N

Y RX N

H H

M M

= +

= +
 

(8)

where X, Y ,H  and YM  were defined in Section II, and

 ◗ B R
n n

!
#  is a cyclic convolution operator, correspond-

ing to the spectral response of the HS sensor expressed 

in the resolution of the MS or PAN image,

 ◗ S R
n m

!
#  is a down-sampling matrix with down-sam-

pling factor ,d
 ◗ R R

n m
!

#m m  is the spectral response of the MS or PAN 

sensor,

 ◗ NH  and NM  are the HS and MS noises, assumed to have 

zero mean Gaussian distributions with covariance ma-

trices HK  and ,MK  respectively.

For the sake of generality, the formulation in this sec-

tion assumes that the observed data is the pair of matrices 

Y Y, .H M^ h  Since a PAN image can be represented by YM  with 

,n 1=m  the observation model (8) covers the HS+PAN fu-

sion problem considered in this paper.

Using geometrical considerations well grounded in the 

HS imaging literature devoted to the linear unmixing prob-

lem [27], the high spatial resolution HS image to be esti-

mated is assumed to live in a low dimensional subspace. 

This hypothesis is very reliable when the observed scene 

is composed of a finite number of macroscopic materials 

(called endmembers). Based on the model (8) and on the low 

dimensional subspace assumptions, the distributions of YH  

and YM  can be expressed as follows

 
Y U UBS I

I

H

Y U RHU,

| , , ,

,|

MN

MN

,H

M ,

H

M

m m m

nn n K
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+

Km

m ^

^

h

h
 

(9)

where MN  represents the matrix normal distribution [57], 

the target image is X HU,=  with H R
m m

!
#m mN  containing in 

its columns a basis of the signal subspace of size m m%m m
N  

and U R
m n

!
#mN  contains the representation coefficients of 

X  with respect to H. The subspace transformation matrix 

H can be obtained via different approaches, e.g., PCA [58] 

or vertex component analysis [59].

According to Bayes’ theorem and using the fact that the 

noises NH  and NM  are independent, the posterior distribu-

tion of U  can be written as

 U Y Y Y U Y U U| , | |p p p pH M H M?^ ^ ^ ^h h h h (10)

or equivalently3
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(11)

where XXTrX
def

F
T

= ^ h  is the Frobenius norm of X. An 

important quantity in the negative log-posterior (11) is the 

penalization term Uz^ h which allows the inverse problem 

(8) to be regularized. The next sections discuss different 

ways of defining this penalization term.

1) Naive Gaussian prior: Denote as , ,i nu 1i f=^ h the 

columns of the matrix U  that are assumed to be mutually 

independent and are assigned the following Gaussian prior 

distributions

 | , ,p u Ni i i i in nR R=^ ^h h (12)

3We use the symbol 0 to denote equality apart from an additive constant. 
The additive constants are irrelevant, since the functions under consider-
ation are to be optimized, and the additive constants do not change the 
locations of the optima.
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where in  is a fixed image defined by the interpolated HS 

image projected into the subspace of interest, and iR  is an 

unknown hyperparameter matrix. Different interpolations 

can be investigated to build the mean vector .in  In this 

paper, we have followed the strategy proposed in [50]. To 

reduce the number of parameters to be estimated, the ma-

trices iR  are assumed to be identical, i.e., .n1 gR R R= = =  

The hyperparameter R  is assigned a proper prior and is 

estimated jointly with the other parameters of interest. To 

infer the parameter of interest, namely the projected high-

ly resolved HS image U, from the posterior distribution 

U Y Y ,| ,p MH^ h  several algorithms have been proposed. In 

[33], [34], a Markov chain Monte Carlo (MCMC) method 

is exploited to generate a collection of NMC  samples that 

are asymptotically distributed according to the target pos-

terior. The corresponding Bayesian estimators can then be 

approximated using these generated samples. For instance, 

the minimum mean square error (MMSE) estimator of U  

can be approximated by an empirical average of the gen-

erated samples U U/ ,N N1 MC biMMSE
( )

t N

N t

1bi

MC
. -

= +
^ hX /  where 

Nbi  is the number of burn-in iterations required to reach 

the sampler convergence, and U t^ h is the image generated 

in the tht  iteration. The highly-resolved HS image can 

finally be computed as X HU .MMSE MMSE=W X  An extension 

of the proposed algorithm has been proposed in [53] to 

handle the specific scenario of an unknown sensor spec-

tral response. In [60], a deterministic counterpart of this 

MCMC algorithm has been developed, where the Gibbs 

sampling strategy of [33] has been replaced with a block 

coordinate descent method to compute the maximum a 

posteriori (MAP) estimator. Finally, very recently, a Sylves-

ter equation-based explicit solution of the related optimi-

zation problem has been derived in [61], [87] leading to a 

significant decrease of the computational complexity.

2) Sparsity promoted Gaussian prior: Instead of incorpo-

rating a simple Gaussian prior or smooth regularization 

for the HS and MS fusion [34], [50], [51], a sparse repre-

sentation can be used to regularize the fusion problem. 

More specifically, image patches of the target image (pro-

jected onto the subspace defined by H) are represented as 

a sparse linear combination of elements from an appro-

priately chosen over-complete dictionary with columns 

referred to as atoms. Learning the dictionary from the ob-

served images instead of using predefined bases [62]–[64] 

generally improves image representation [65], which is 

preferred in most scenarios. Therefore, an adaptive sparse 

image-dependent regularization can be explored to solve 

the fusion problem (8). In [36], the following regulariza-

tion term was introduced:

 U U U D A ,log p 2
1

P F
k

m

k k k
2

1

? 0z - -

=

m

r r

u

^ ^ ^h h h/  (13)

where

 ◗ U Rk
n

!  is the thk  band (or row) of U ,R
m n

!
#mu  with 

, , ,k m1 f= mu

 ◗ :R RP
n n n 1patp

7$
# #^ h  is a linear operator that averages 

the overlapping patches4 of each band, npat  being the 

number of patches associated with the thi  band,

 ◗ D Rk
n natp

!
#

r  is the overcomplete dictionary of the ith 

band, whose columns are basis elements of size np  (cor-

responding to the size of a patch), nat  being the number 

of dictionary atoms, and

 ◗ A R
n n

k
at pat

!
#r  is the code of the ith band.

Inspired by hierarchical models frequently encountered 

in Bayesian inference [67], a second level of hierarchy can 

be considered in the Bayesian paradigm by including the 

code A  within the estimation, while fixing the support 

, , m1 f_X X X m
r r r

u" , of the code A. Once D,Xr r  and H have 

been learned from the HS and MS data, maximizing the 

posterior distribution of U  and A  reduces to a standard 

constrained quadratic optimization problem with respect 

to U  and A. The resulting optimization problem is difficult 

to solve due to its large dimension and due to the fact that 

the linear operators H BD$^ h  and P $^ h cannot be easily di-

agonalized. To cope with this difficulty, an optimization 

technique that alternates minimization U  and A  has been 

introduced in [36] (where details on the learning of D,Xr r  

and H can be found). In [61], the authors show that the 

minimization w.r.t. U  can be achieved analytically, which 

greatly accelerates the fusion process.

3) HySure: The works [35], [54] introduce a convex reg-

ularization problem which can be seen under a Bayesian 

framework. The proposed method uses a form of vector 

total variation (VTV) [68] for the regularizer U ,z^ h  taking 

into account both the spatial and the spectral character-

istics of the data. In addition, another convex problem is 

formulated to estimate the relative spatial and spectral re-

sponses of the sensors B and R  from the data themselves. 

Therefore, the complete methodology can be classified as 

a blind superresolution method, which, in contrast to the 

classical blind linear inverse problems, is tackled by solving 

two convex problems.

The VTV regularizer (see [68]) is given by

 ] [ ,U UD UDh j
k

v j
k

k

m

j

n
2 2

11

z = +

==

m

^ ^ ^h h h7 A# -
N
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where A j
k  denotes the element in the k th row and jth col-

umn of matrix A, and the products by matrices Dh  and Dv  

compute the horizontal and vertical discrete differences of 

an image, respectively, with periodic boundary conditions.

The HS pansharpened image is the solution to the fol-

lowing optimization problem

 
minimize

,

Y HUBS Y RHU

U

2
1

2 MH
U

F
m

F
2 2m

m z

- + -

+ z ^ h
 

(15)

where mm  and mz  control the relative weights of the differ-

ent terms. The optimization problem (15) is hard to solve, 

essentially for three reasons: the downsampling operator 

4A decomposition into overlapping patches was adopted, to prevent the oc-
currence of blocking artifacts [66].
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BS is not diagonalizable, the regularizer Uz^ h is nonqua-

dratic and nonsmooth, and the target image has a very large 

size. These difficulties were tackled by solving the problem 

via the split augmented lagrangian shrinkage algorithm 

(SALSA) [69], an instance of ADMM. As an alternative, the 

main step of the ADMM scheme can be conducted using an 

explicit solution of the corresponding minimization prob-

lem, following the strategy in [61].

The relative spatial and spectral responses B and R  were 

estimated by solving the following optimization problem:

 minimize RY Y BS B RH M
B,R

B B R R
2 m z m z- + +^ ^h h (16)

where B $z ^ h and R $z ^ h are quadratic regularizers and 

, 0RB $m m  are their respective regularization parameters.

E. MATRIX FACTORIZATION

The matrix factorization approach for HS+MS fusion es-

sentially exploits two facts: 1) A basis or dictionary H for 

the signal subspace can be learned from the HS observed 

image ,YH  yielding the factorization HX U= ; 2) using this 

decomposition in the second equation of (8) and for neg-

ligible noise, i.e., ,N 0M -  we have Y RHUH = . Assuming 

that the columns of HR  are full rank or that the columns of 

U  admit a sparse representation w.r.t. the columns of HR ,  

then we can recover the true solution, denoted by U,X  and 

use it to compute the target image as X HU=W X . The works 

[32], [70]–[74] are representative of this line of attack. In 

what follow, we detail the application of the coupled non-

negative matrix factorization (CNMF) [32] to the HS+PAN 

fusion problem.

The CNMF was proposed for the fusion of low spatial 

resolution HS and high spatial resolution MS data to pro-

duce fused data with high spatial and spectral resolutions 

[32]. It is applicable to HS pansharpening as a special case, 

in which the higher spatial resolution image has a single 

band [75]. CNMF alternately unmixes both sources of data 

to obtain the endmember spectra and the high spatial reso-

lution abundance maps.

To describe this method, it is convenient to first brief-

ly introduce linear mixture models for HS images. These 

models are commonly used for spectral unmixing, owing 

to their physical effectiveness and mathematical simplic-

ity [27]. The spectrum at each pixel is assumed to be a lin-

ear combination of several endmember spectra. Therefore, 

X R
m n

!
#m  is formulated as

 X HU=  (17)

where H R
m p

!
#m  is the signature matrix, containing the 

spectral representations of the endmembers, and U R
p n

!
#  

is the abundance matrix, containing the relative abundanc-

es of the different endmembers at the various pixels, with 

p  representing the number of endmembers. By substituting 

(17) into (8), YH  and YM  can be approximated as

 
Y HU

Y H U

H H

M M

.

.

 
(18)

where U UBSH =  and H RHM = . CNMF alternately unmix-

es YH  and YM  in the framework of nonnegative matrix fac-

torization (NMF) [76] to estimate H and U  under the con-

straints of the relative sensor characteristics. CNMF starts 

with NMF unmixing of the low spatial resolution HS data. 

The matrix H can be initialized using, for example, the ver-

tex component analysis (VCA) [59], and H and UH  are then 

alternately optimized by minimizing Y HUH H F
2

-  using 

Lee and Seung’s multiplicative update rules [76]. Next, U  

is estimated from the higher spatial resolution data. HM  is 

set to HR  and U  is initialized by the spatially up-sampled 

matrix of UH  obtained by using bilinear interpolation. For 

HS pansharpening ,n 1=m^ h  only U  is optimized by mini-

mizing Y H UM M F
2

-  with the multiplicative update rule, 

whereas both HM  and U  are alternately optimized in the 

case of HS+MS data fusion. Finally, the high spatial resolu-

tion HS data can be obtained by the multiplication of H  

and U . The abundance sum-to-one constraint is imple-

mented using a method given in [77], where the data and 

signature matrices are augmented by a row of constants. 

The relative sensor characteristics, such as BS and R , can 

be estimated from the observed data sources [78].

III. QUALITY ASSESSMENT OF FUSION PRODUCTS

Quality assessment of a pansharpened real-life HS image is 

not an easy task [79], [9], since a reference image is gener-

ally not available. When such an image is not available, two 

kinds of comparisons can be performed: i) Each band of the 

fused image can be compared with the PAN image, with an 

appropriate criterion. The PAN image can also be compared 

with the PAN image reconstructed from the fused image. 

ii) The fused image can be spatially degraded to the resolu-

tion of the original HS image. The two images can then be 

compared, to assess to what extent the spectral information 

has been modified by the fusion method.

In order to be able to use a reference image for quality 

assessment, one normally has to resort to the use of semi-

synthetic HS and PAN images. In this case, a real-life HS 

image is used as reference. The HS and PAN images to be 

processed are obtained by degrading this reference image. A 

common methodology for obtaining the degraded images is 

Wald’s protocol, described in the next subsection. In order 

to evaluate the quality of the fused image with respect to 

the reference image, a number of statistical measures can be 

computed. The most widely used ones are described ahead, 

and used in the experiments reported in Section IV-B.

A. WALD’S PROTOCOL

A general paradigm for quality assessment of fused imag-

es that is usually accepted in the research community was 

first proposed by Wald et al. [79]. This paradigm is based on 

two properties that the fused data have to have, as much as 

possible, namely consistency and synthesis properties. The 
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first property requires the reversibility of the pansharpening 

process: it states that the original HS image should be ob-

tained by properly degrading the pansharpened image. The 

second property requires that the pansharpened image be as 

similar as possible to the image of the same scene that would 

be obtained, by the same sensor, at the higher resolution. 

This condition entails that both the features of each single 

band and the mutual relations among bands have to be pre-

served. However, the definition of an assessment method 

that fulfills these constraints is still an open issue [80], [81], 

and closely relates to the general discussion regarding image 

quality assessment [82] and image fusion [83], [84].

Wald’s protocol for assessing the quality of pansharpening 

methods [79], depicted in Fig. 2, synthetically generates simu-

lated observed images from a reference HS image, and then 

evaluates the pansharpening methods’ results against that 

reference image. The protocol consists of the following steps:

 ◗ Given a HS image, X , to be used as reference, a simulat-

ed observed low spatial resolution HS image, YH , is ob-

tained by applying a Gaussian blurring to X , and then 

downsampling the result by selecting one out of every 

d  pixels in both the horizontal and vertical directions, 

where d  denotes the downsampling factor.

 ◗ A simulated PAN image, P , is obtained by multiplying 

the reference HS image, on the left, by a suitably chosen 

spectral response vector, r X.P T
=

 ◗ The pansharpening method to be evaluated is applied 

to the simulated observations YH  and P , yielding the 

estimated superresolution HS image, .Xt

 ◗ Finally, the estimated superresolution HS image and 

the reference one are compared, to obtain quantitative 

quality measures.

B. QUALITY MEASURES

Several quality measures have been defined in the litera-

ture, in order to determine the similarity between esti-

mated and reference spectral images. These measures can 

be generally classified into three categories, depending on 

whether they attempt to measure the spatial, spectral or 

global quality of the estimated image. This review is lim-

ited to the most widely used quality measures, namely the 

cross correlation (CC), which is a spatial measure, the spec-
tral angle mapper (SAM), which is a spectral measure, and 

the root mean squared error (RMSE) and erreur relative globale 
adimensionnelle de synthèse (ERGAS) [85], which are global 

measures. Below we provide the formal definitions of these 

measures operating on the estimated image X R
m n

!
#mW  and 

on the reference HS image X R
m n

!
#m . In the definitions, 

x jV  and x j  denote the j th columns of XW  and X , respec-

tively, the matrices ,A B R
n1

!
#  denote two generic single-

band images, and Ai  denotes the ith element of A .

1) Cross correlation: The CC, which characterizes the geo-

metric distortion, is defined as

 CC , CCS , ,X X X Xm
1 i i

i
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1

=
m
=

m

^ _h iW W/  (19)

where CCS is the cross correlation for a single-band image, 
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^ h/  is the sample mean of A . The 

ideal value of CC is 1.

2) Spectral angle mapper: The SAM, which is a spectral 

measure, is defined as

 SAM , SAM , ,X X x xn
1

j j
j

n

1

=

=

^ _h iW V/  (20)

where, given the vectors , ,a b R
m

!
m

 ( ) ,SAM a,
a b
a,

b arccos
b

; ;; ;

G H
= d n  (21)

a, ab bTG H=  is inner product between a  and b, and $  is 

the 2,  norm. The SAM is a measure of the spectral shape 

preservation. The optimal value of SAM is 0. The values of 

SAM reported in our experiments have been obtained by 

averaging the values obtained for all the image pixels.

3) Root mean squared error: The RMSE measures the 2,  

error between the two matrices X  and XW

 ,RMSE X X
X X

n m
F

)

=

-

m

^ hW
W

 (22)

FIGURE 2. Flow diagram of the experimental methodology, de-

rived from Wald’s protocol (simulated observations), for synthetic 

and semi-real datasets.
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where traceX X XF
T

= ^ h  is the Frobenius norm of X . The 

ideal value of RMSE is 0.

4) Erreur relative globale adimensionnelle de synthèse: ER-

GAS offers a global indication of the quality of a fused im-

age. It is defined as

 ERGAS( , )
RMSE

,X X d m100 1
k

k

k

m 2

1
n=

m
=

m

a kW /  (23)

where d  is the ratio between the linear resolutions of the 

PAN and HS images, defined as 

HS linear spatial resolution
PAN linear spatial resolution

,d =

andRMSE / ,nX Xk
k k

F kn= -_ iW  is the sample mean of 

the k th band of X . The ideal value of ERGAS is 0.

IV. EXPERIMENTAL RESULTS

A. DATASETS

The datasets that were used in the experimental tests were 

all semi-synthetic, generated according to the Wald’s pro-

tocol. In all cases, the spectral bands corresponding to the 

absorption band of water vapor, and the bands that were too 

noisy, were removed from the reference image before further 

processing. Three real-life HS images have been used as ref-

erence images for the Wald’s protocol. In the following, we 

describe the datasets that were generated from these images. 

Table 2 summarizes their properties. These datasets are ex-

pressed in spectral luminance (nearest to the sensor output, 

without pre-processing) and are correctly registered.

1) Moffett field dataset: This dataset represents a mixed ur-

ban/rural scene. The dimensions of the PAN are 185 # 

395 with a spatial resolution of 20m whereas the size 

of the HS image is 37 # 79 with a spatial resolution of 

100m (which means a spatial resolution ratio of 5 be-

tween the two images). The HS image has been acquired 

by the airborne hyperspectral instrument airborne vis-

ible infrared image spectrometer (AVIRIS). This instru-

ment is characterized by 224 bands covering the spec-

tral range 0.4–2.5nm.

2) Camargue dataset: This dataset represents a rural area 

with different kinds of crops. The dimensions of the 

PAN image are 500 # 500 with a spatial resolution of 

4m whereas the size of the HS image is 100 # 100 with a 

spatial resolution of 20m, (which means a spatial reso-

lution ratio of 5 between the two images). The HS image 

has been acquired by the airborne hyperspectral instru-

ment HyMap (Hyperspectral Mapper) in 2007. The hy-

perspectral instrument is characterized by 125 bands 

covering the spectral range 0.4–2.5nm.

3) Garons dataset: This dataset represents a rural area with a 

small village. The dimension of the PAN image are 400 

# 400 with a spatial resolution of 4m whereas the size of 

the HS image is 80 # 80 with a spatial resolution of 20m, 

(which means a spatial resolution ratio of 5 between the 

two images). This dataset has been acquired with the 

HyMap instrument in 2009.

B. RESULTS AND DISCUSSION

Methods presented in Section II have been applied on the 

three datasets presented in Section IV-A and analyzed fol-

lowing the Wald’s Protocol (Section III-B). Tables 3, 4, 5 

report their quantitative evaluations with respect to the 

quality measures detailed in Section III-B.

Figures 3, 4, and 5 represent the RMSEs per pixel between 

the image estimated by some methods and the reference 

TABLE 2. CHARACTERISTIC OF THE THREE DATASETS.

DATASET DIMENSIONS SPATIAL RES N INSTRUMENT

Moffett PAN 185 # 395
HS 37 # 79

20m
100m

224 AVIRIS

Camargue PAN 500 # 500
HS 100 # 100

4m
20m

125 HyMap

Garons PAN 400 # 400
HS 80 # 80

4m
20m

125 HyMap

TABLE 3. QUALITY MEASURES FOR  
THE MOFFETT FIELD  DATASET.

METHOD CC SAM RMSE ERGAS

SFIM 0.96762 7.8313 257.6388 4.6072

MTF-GLP 0.97148 6.9604 253.5582 4.2867

MTF-GLP-HPM 0.96925 7.7301 260.9860 4.5329

GS 0.91722 12.9589 420.5469 7.2204

GSA 0.95304 10.4024 325.1781 5.5938

PCA 0.90664 13.4512 445.1298 7.6215

GFPCA 0.91614 11.3363 404.2979 7.0619

CNMF 0.95633 9.0464 309.9017 5.3469

Bayesian Naive 0.97785 7.1308 220.0310 3.7807

Bayesian Sparse 0.98170 6.6253 200.1856 3.4262

HySure 0.97086 7.3508 253.0972 4.3315

TABLE 4. QUALITY MEASURES FOR  
THE CAMARGUE DATASET.

METHOD CC SAM RMSE ERGAS

SFIM 0.95296 3.6067 488.4061 2.6419

MTF-GLP 0.95384 3.6339 487.2906 2.563

MTF-GLP-HPM 0.95633 3.5973 472.7066 2.5159

GS 0.92901 3.8802 603.6007 3.2624

GSA 0.94898 3.5911 498.8250 2.7418

PCA 0.91829 4.7033 657.2954 3.6624

GFPCA 0.89042 4.8472 745.6006 4.0001

CNMF 0.92986 4.4263 592.1969 3.1799

Bayesian Naive 0.95195 3.6428 489.5634 2.6286

Bayesian Sparse 0.95862 3.3480 449.4029 2.4767

HySure 0.94648 3.8648 511.0745 2.8206
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image for the three considered datasets. Note that, for sake 

of conciseness, some methods have not been considered 

here but only their improved versions are presented. More 

specifically, GS has been removed since GSA is an improved 

version of GS. Indeed, GSA is expected to give better results 

than GS thanks to its adaptive estimation of the weight for 

generating the equivalent PAN image from the HS image, 

which allows the spectral distortion to be reduced. Bayesian 

naive approach has been also removed since the sparsity-

based approach relies on a more complex prior and gives 

also better results. MTF-GLP and MTF-GLP-HPM yield simi-

lar results so only the latter has been considered.

Figures 6 and 7 show extracts of the final result obtained 

by the considered methods on the Camargue dataset in the 

visible (R= 704.39nm, G= 557.90nm, B= 454.5nm) and in 

the SWIR (R= 1216.7nm, G= 1703.2nm, B= 2159.8nm) do-

mains, respectively.

Figures 8, 9 and 10 show pixel spectra recovered by the 

fusion methods, which correspond to 10th, 50th and 90th 

percentile of RMSE, respectively. Those spectra have been se-

lected by choosing GSA as the reference for RMSE value. GSA 

have been chosen since it is a classical approach that has 

been widely used in literature and also gives good results. 

To ensure a reasonable number of figures, only visual results 

and some spectra of the Camargue dataset has been reported 

in this article. The results for the two other datasets can be 

found in the supporting document [86] available online5. In 

5http://openremotesensing.net

FIGURE 3. RMSE between the methods’ result and the reference 

image, per pixel for the Moffett field dataset.
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TABLE 5. QUALITY MEASURES FOR THE GARONS DATASET.

METHOD CC SAM RMSE ERGAS

SFIM 0.85015 5.9591 867.6333 4.3969

MTF-GLP 0.86763 5.8218 796.6888 4.1035

MTF-GLP-HPM 0.86818 5.9154 800.0304 4.0758

GS 0.83384 5.9761 984.1284 4.8813

GSA 0.85095 6.1067 833.2378 4.2233

PCA 0.84693 5.9566 966.0805 4.8107

GFPCA 0.6339 7.4415 1312.0373 6.3416

CNMF 0.83038 6.9385 892.6918 4.4832

Bayesian Naive 0.86857 5.8749 784.1298 3.9147

Bayesian Sparse 0.87642 5.6879 754.9837 3.7776

HySure 0.86020 6.0658 780.2847 4.0432
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particular, because of the nature of the Garons dataset (vil-

lage with a lot of small buildings) and the chosen ratio of 

5, worse results have been obtained than for the two first 

datasets since a lot of mixing is presented in the HS image.

A visual analysis of the result shows that most of the 

fusion approaches considered in this paper give good re-

sults, excepted two methods: PCA and GFPCA. PCA be-

longs to the class of CS methods which are known to be 

characterized by their high fidelity in rendering the spatial 

details but their generation of significant spectral distor-

tion. This is clearly visible in Figure 6 (f), where significant 

differences of color can be observed with respect to the 

reference image, in particular when examining the differ-

ent fields. GFPCA here also performs poorly. Compared 

with PCA, there is less spectral distortion but the included 

spatial information seems to be not sufficient, since the 

fused image is significantly blurred. Spatial information 

provided by PCA is better since the main information of 

HS image (where the spatial information is contained) is 

replaced by the high spatial information contained in the 

PAN image. When using GFPCA, the guided filter controls 

the amount of spatial information added to the data, so 

not all the spatial information may be added to avoid to 

modify the spectral information too much. For the Mof-

fett field dataset, GFPCA performs a little bit better since, 

in this dataset, there is a lot of large areas. Thus blur is less 

present whereas, in the Garons dataset, GFPCA performs 

worse since this image consists of numerous small features, 

leading to more blurring effects. As a consequence, in this 

case, GFPCA performs worse than PCA.

To analyze the spectrum in detail, chosen thanks to 

RMSE percentiles, some additional information about the 

corresponding pixels are needed. Fig. 9 corresponds to a 

pixel in the reference image which represents a red build-

ing. Since in the HS image this building is mixed with its 

neighborhood, we do not have the same information be-

tween the reference image (“pure” spectrum) and the HS 

image (“mixed” spectrum). Fig. 8 corresponds to a pixel in 

a homogeneous field area, no mixing is present and very 

good results have been obtained for all the methods. For 

FIGURE 6. Details of original and fused Camargue dataset HS im-

age in the visible domain. (a) reference image, (b) interpolated HS 

image, (c) SFIM, (d) MTF-GLP-HPM, (e) GSA, (f) PCA, (g) GFPCA, 

(h) CNMF, (i) Bayesian Sparse, (j) HySure.
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FIGURE 7. Details of original and fused Camargue dataset HS im-

age in the SWIR domain. (a) reference image, (b) interpolated HS 

image, (c) SFIM, (d) MTF-GLP-HPM, (e) GSA, (f) PCA, (g) GFPCA, 

(h) CNMF, (i) Bayesian Sparse, (j) HySure.
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Fig. 10, the pixel belongs to a small white building not vis-

ible in the HS image and spectral mixing is then also pres-

ent. More generally, spectra in the HS and reference images 

differ since some mixing processes occur in the HS image. 

Thus, the HS pansharpening methods are expected to pro-

vide spectra that are more similar to the HS spectra (which 

contains the available spectral information) than the ref-

erence (which has information missing in the HS which 

should not be found in the result, unless successful unmix-

ing has been conducted). However, it is important to note 

that for Fig. 9, Bayesian methods and HySure successfully 

recover spectra that are more similar to the reference spec-

trum than the HS spectrum.

Table 6 report the computational times required by 

each HS pansharpening methods on the Camargue data-

set those values have been obtained with an Intel Core i5 

3230M 2.6 GHz with 8 GB RAM. Based on this table, these 

methods can be classified as follows:

 ◗ Methods which do not work well for HS pansharpening: 

PCA, GS, GFPCA

 ◗ Methods which work well with a low time of computa-

tion (few seconds): GSA, MRA methods, Bayesian Naive

 ◗ Methods which work well with an average time of com-

putation (around one minute): CNMF

 ◗ Methods which work well (slightly better) with an impor-

tant time of computation (few minutes, depends greatly 

on the size of the dataset): Bayesian Sparse and HySure.

FIGURE 8. Luminance of the pixel corresponding to the 10th 

percentile of the RMSE (Camargue dataset).
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FIGURE 9. Luminance of the pixel corresponding to the 50th per-

centile of the RMSE (Camargue dataset).
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FIGURE 10. Luminance of the pixel corresponding to the 90th 

percentile of the RMSE (Camargue dataset).

TABLE 6. COMPUTATIONAL TIMES OF THE DIFFERENT  
METHODS (IN SECONDS).

METHOD MOFFETT CAMARGUE GARONS

SFIM 1.26 3.47 2.74

MTF-GLP 1.86 4.26 4.00

MTF-GLP-HPM 1.71 4.25 2.98

GS 4.77 8.29 5.56

GSA 5.52 8.73 5.99

PCA 3.46 8.92 6.09

GFPCA 2.58 8.51 4.36

CNMF 10.98 47.54 23.98

Bayesian Naive 1.31 7.35 3.07

Bayesian Sparse 133.61 485.13 259.44

HySure 140.05 296.27 177.60
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To summarize, the comparison of the different methods 

performances for RMSE curves and quality measures con-

firms than PCA and GFPCA does not provide good results 

for HS pansharpening (GFPCA is know to perform much 

better on HS+RGB data). The other methods perform well, 

with Bayesian approaches having better results. The compu-

tational cost of Bayesian approaches depends on the chosen 

prior, i.e., Bayesian approach with Gaussian naive prior has 

low cost while the one with 

sparse prior has higher cost. 

The favorable fusion per-

formance obtained by the 

Bayesian methods can be ex-

plained, in part, by the fact 

that they rely on a forward 

modeling of the PAN and HS 

images and explicitly exploit 

the spatial and spectral deg-

radations applied to the target 

image. However, these algo-

rithms may suffer from per-

formance discrepancies when 

the parameters of these degra-

dations (i.e., spatial blurring 

kernel, sensor spectral response) are not perfectly known. 

In particular, when these parameters are fully unknown and 

need to be fixed, they can be estimated jointly with the fused 

image, as in [53], or estimated from the MS and HS images in 

a preprocessing step, following the strategies in [78] or [35]. 

CS methods are fast to compute and easy to implement. They 

provide good spatial results but poor spectral results with sig-

nificant spectral distortions, in particular when considering 

PCA and GS. GSA provides better results than the two other 

methods thanks to its adaptive weight estimation reducing 

the spectral distortion of the equivalent PAN image cre-

ated from the HS image. MRA methods are fast, MTF-based 

methods give better results than SFIM and perform as well as 

the most competitive algorithms with higher computational 

complexity. SFIM does not perform as well than the other 

MRA methods since it uses a box filter which should give 

less good result. In our experimentations, results from SFIM 

are not so different from those obtained with the MTF-based 

methods. This may come from the fact that semi-synthetic 

datasets are used so MTF may not be fully used to its poten-

tial. Table 7 reports these pro and cons associated with each 

HS pansharpening method.

Finally, note that, in our experimentations, no registra-

tion error and temporal misalignment have been considered, 

which suggests that the robustness of the different methods 

has not been fully analyzed. When such problems may oc-

cur, CS and MRA methods may perform better thanks to 

their great robustness. In particular, CS methods are robust 

against misregistration error and aliasing, whereas MRA ap-

proaches are robust against aliasing and temporal misalign-

ment. It is also worthy to note that the quality of a fusion 

method should also be related to a specific application (such 

TABLE 7. PROS AND CONS OF EACH METHOD.

METHOD PROS CONS

SFIM II.B.1 1)  Low computational complexity 1)  Reduced performance when compared to MTF methods 
(since it uses a box filter)

MTF-GLP II.B.2 1)  Performs well
2)  Low computational complexity

MTF-GLP-HPM II.B.2 1)  Performs well
2)  Low computational complexity

GS II.A.2 1)  Spatial information is well preserved
2)  Low computational complexity
3)  Easy implementation

1)  Low performance for HS images
2)  Significant spectral distortion

GSA II.A.2 1)  Spatial information is well preserved
2)  Spectral distortion is reduced (compared to GS)
3)  Low computational complexity
4)  Easy implementation

PCA II.A.1 1)  Spatial information is well preserved
2)  Low computational complexity
3)  Easy implementation

1)  Low performance for HS images
2)  Significant spectral distortion

GFPCA II.C.1 1)  Spectral information is well preserved
2)  Low computational complexity

1)  Low performance for HS images (work better with RGB 
images)

2)  Not enough spatial information added (lot of blur)

CNMF II.E.1 1)  Good results (spatial and spectral) 1)  Sensor characteristics required
2)  Medium computational cost

Bayesian Naive II.D.1 1)  Good results (spatial and spectral)
2)  Low computational complexity

1)  Sensor characteristics required

Bayesian Sparse II.D.2 1)  Good results (spatial and spectral) 1) High computational cost
2)  Sensor characteristics required

HySure II.D.3 1)  Good results (spatial and spectral) 1) High computational cost

FOLLOWING WALD’S 

PROTOCOL, THE EVALUATION 

INCLUDES QUALITATIVE 

VISUAL ASSESSMENT, AS 

WELL AS QUANTITATIVE 

EVALUATION WITH A 

NUMBER OF CRITERIA 

MEASURING SPATIAL AND 

SPECTRAL DISTORTIONS.
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as classification or target detection). Indeed, a method pro-

viding images with good performance metrics may or may 

not be the best for this specific application.

V. CONCLUSION

In this paper a qualitative and quantitative comparison of 

11 different HS pansharpening methods was conducted, 

considering classical MS pansharpening techniques adapt-

ed to the HS context, and methods originally designed for 

HS pansharpening. More precisely, five classes of methods 

were presented: CS, MRA, Hybrid, Bayesian and matrix 

factorization. Those methods were evaluated on three dif-

ferent datasets representative of various scenario: mixed ur-

ban/rural area, rural area and urban area.

A careful analysis of their performances suggested a 

classification of these methods into four groups: i) Meth-

ods with poor fusion results (CS-based methods (GS and 

PCA) and GFPCA), ii) Methods with good fusion per-

formances and low computational costs (MRA methods, 

GSA and Bayesian naive) that may be suitable for fusing 

large scale images, which is often the case for spaceborne 

hyperspectral imaging missions, iii) Methods with good 

fusion performances and reasonable computational costs 

(CNMF), iv) Methods with slightly better fusion results 

but with higher computational costs (HySure and Bayesian 

Sparse). Those results were obtained with semi-synthetic 

datasets with no registration error or temporal misalign-

ment. Thus robustness of the methods against these issues 

were not taken into account. When such problems may 

happen, different results could be obtained and classical 

pansharpening methods (CS and MRA) may give better 

results thanks to their robustness to these specific issues.

The experiments and the quality measures presented 

in this paper were performed using MATLAB implemen-

tations of the algorithms. A MATLAB toolbox is made 

available online6 to the community to help improve and 

develop new HS pansharpening methods and to facilitate 

comparison of the different methods.
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