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Abstract

Background: The detection and characterization of resistance reactions of crop plants against fungal pathogens

are essential to select resistant genotypes. In breeding practice phenotyping of plant genotypes is realized by time

consuming and expensive visual rating. In this context hyperspectral imaging (HSI) is a promising non-invasive

sensor technique in order to accelerate and to automate classical phenotyping methods.

A hyperspectral microscope was established to determine spectral changes on the leaf and cellular level of barley

(Hordeum vulgare) during resistance reactions against powdery mildew (Blumeria graminis f.sp. hordei, isolate K1).

Experiments were conducted with near isogenic barley lines of cv. Ingrid, including the susceptible wild type (WT),

mildew locus a 12 (Mla12 based resistance) and the resistant mildew locus o 3 (mlo3 based resistance), respectively.

The reflection of inoculated and non-inoculated leaves was recorded daily with a hyperspectral linescanner in the visual

(400 – 700 nm) and near infrared (700 – 1000 nm) range 3 to 14 days after inoculation.

Results: Data analysis showed no significant differences in spectral signatures between non-inoculated genotypes.

Barley leaves of the near-isogenic genotypes, inoculated with B. graminis f.sp. hordei differed in the spectral reflectance

over time, respectively. The susceptible genotypes (WT, Mla12) showed an increase in reflectance in the visible range

according to symptom development. However, the spectral signature of the resistant mlo-genotype did not show

significant changes over the experimental period. In addition, a recent data driven approach for automated discovery

of disease specific signatures, which is based on a new representation of the data using Simplex Volume Maximization

(SiVM) was applied. The automated approach - evaluated in only a fraction of time revealed results similar to the time

and labor intensive manually assessed hyperspectral signatures. The new representation determined by SiVM was also

used to generate intuitive and easy to interpretable summaries, e.g. fingerprints or traces of hyperspectral dynamics of

the different genotypes.

Conclusion: With this HSI based and data driven phenotyping approach an evaluation of host-pathogen interactions

over time and a discrimination of barley genotypes differing in susceptibility to powdery mildew is possible.
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Introduction

In agricultural production the demands on efficient crop

plants are manifold. Improved quantitative and qualitative

plant traits are desired, along with enhanced stress resist-

ance, especially against plant pathogens. The development

of resistant cultivars is a challenging task in plant breeding.

Fungal plant pathogens affect almost all relevant crops in

different stages of their development and impair the yield

and product quality. In barley production powdery mildew

is one of the main damaging diseases in Europe and other

temperate regions [1]. The disease is caused by the bio-

troph ascomycete Blumeria graminis f.sp. hordei (Bgh) and

is spread during the vegetation period by wind with coni-

diospores. Bgh is able to colonize barley plants within

24 hours after the first contact. A haustorium - the feeding

organ of Bgh – develops within penetrated epidermal cells,

which remain vital. The new epiphytic mycelium grows

over the leaf surface to penetrate other epidermal cells and

develop new haustoria. Finally, Bgh produces conidio-

phores bearing new conidia. This asexual life cycle is com-

pleted in approximately five days and is repeated by

multiple generations per season. The application of fungi-

cides and the cultivation of resistant barley varieties are the

main methods for controlling barley powdery mildew [2].

Unfortunately, the farmers face fungicide resistances devel-

oped by Bgh [3]. This emphasises the importance of resist-

ant barley genotypes generated in breeding programs.

A well-known resistance mechanism of barley against

Bgh is the non-race specific mildew locus o (mlo) based

resistance [4]. In all mlo mutants, Bgh cannot penetrate the

epidermal cell, because a cell wall apposition (papilla) is de-

veloped under the penetration point [5] that possesses a

high electron density [6]. The basic components of this cell

wall apposition are a complex of lignin, cellulose, callose,

peroxidases, phenols, proteins and further cell-wall mate-

rials [7]. The mildew locus a (Mla) gene based resistance is

an another resistance reaction of barley against Bgh and is

associated with a hypersensitive reaction of epidermal cells

attacked by Bgh [7-9].

These resistance properties are used in plant breeding

programs to improve the resistance of barley plants to

powdery mildew. However, one main drawback of recent

breeding programs is their time consuming and labor in-

tensive nature. The traditional breeding procedure of

common crop plants still takes 7 to 17 years and requires

a high amount of plant material and human effort on the

way to a desired cultivar [10]. In this complex breeding

process, manifold steps in different environments - under

controlled and under field conditions - at different plant

levels - from single organs to the canopy - are executed.

Hereby the selection process of predominant genotypes

and relevant crop traits by genotyping and phenotyping

methods is crucial and determines the time span and the

success of the breeding process.

In recent years the genotyping of plants has been sig-

nificantly accelerated by advances in molecular profiling

and sequencing technologies [11]. Marker-assisted selec-

tion, bi-parental recombinant inbred lines, or the increasing

number of completely sequenced species in genomic data-

bases provides solutions to current breeding challenges

[12]. To bridge the gap from genomic characterization to

plant function and agricultural traits, the expression of the

genome in a given environment has to be tested carefully.

This step is defined as the phenotyping process. Several au-

thors have addressed the labor-intensive and costly nature

of conventional phenotyping processes as the limiting and

time-consuming factor in plant breeding. This challenge

has been identified as the phenotyping bottleneck [11-13].

Innovative technologies, e.g. optical and non-invasive

sensors, have been characterised as new phenotyping

methods with potential to overcome this bottleneck and

to improve the breeding process. Various optical imaging

methods using e.g. RGB [11], 3D [14], fluorescence [15],

thermography [16] and HSI [17] sensors are able to

characterize different plant parameters and could poten-

tially be implemented in automated, high-throughput

phenotyping pipelines.

Among these methods, hyperspectral imaging (HSI) is

one of the most promising techniques to assess functional

plant traits [17-19]. Using HSI, the spectral characteristics

of plants can be visualised non-invasively over time and on

different scales. The sensitivity of sensors enable a high

spectral and spatial resolution and the reflectance per pixel

can be analysed in narrow wavelengths. Characteristic spec-

tral signatures provide information about the physiological

status of plants and for plant breeding on the reaction of

different genotypes to biotic or abiotic stress factors [20].

Leaf pigments, like chlorophylls and carotenoids are the

main factors influencing the spectral information in the

visual range (VIS, 400–700 nm) [21]. The near infrared

range (NIR, 700–1000 nm) is mainly affected by scattering

processes in the spongy mesophyll, and additionally by ab-

sorptions due to proteins, fatty acids, starch, water and cel-

lulose with different specific absorption wavelengths. The

leaf water content, including further chemical compounds,

can be derived from the short wave infrared range (SWIR,

1000–2500 nm).

Various researchers have demonstrated that plant dis-

eases and processes during pathogenesis can be detected

by hyperspectral sensors [22-24]. Plants diseased by fun-

gal pathogens could be distinguished from healthy plants

at different stages of the pathogenesis and at different

disease severities. Since first interaction sites and pri-

mary symptoms of fungal plant diseases are in the range

of sub-millimeters, highly sensitive sensor systems and

powerful subsequent data analysis routines are required

for a reliable evaluation of plants under biotic stress.

Few researchers postulate, that early modifications of the
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cellular leaf structure occur due to fungal toxins or plant

resistance reactions and that these subtle changes are

detectable via HSI [25,26]. They focused on small-scale

studies with HSI or on the detection and identification

of plant diseases before visible symptoms appear. Based

on these insights the development of a HSI routine to

estimate the susceptibility of plants and to characterise

defence mechanisms against fungal pathogens is a desirable

task. However, it requires methodological adaptions and

technical advances to exploit the potential of hyperspectral

sensors for the implementation in resistance screenings.

The hypothesis of this study is that subtle processes

during compatible and incompatible plant-pathogen inter-

actions have an effect on optical properties of plants. It is

expected that specific regions of the electromagnetic

spectrum are influenced depending on the type of inter-

action. The detection of these changes demands specific

sensor setups with a high spatial and spectral resolution

combined with sophisticated, data analysis methods. To

proof this hypothesis a HSI microscope, a measuring proto-

col for detached barley leaves and an automated data ana-

lysis approach was established in this study. This approach

can be used in resistance screening for the differentiation of

barley genotypes and for a characterization of their inter-

action with Bgh, the causal agent of powdery mildew. As an

application model susceptible and resistant genotypes with

different, well known genetic backgrounds were monitored

visually and by hyperspectral imaging in time-series experi-

ments at small-scale level.

To uncover the full information from high-dimensional

HSI data, characteristic spectra were extracted both manu-

ally and using data mining techniques. A qualitative and au-

tomated analysis of reflectance data was realized using a

data driven approach based on the matrix factorisation

technique Simplex Volume Maximisation (SiVM) [27].

With this methodological approach, (i) processes during

pathogenesis on the different genotypes could be character-

ized, (ii) stages of pathogenesis were automatically visual-

ized and (iii) spectral dynamics were evaluated over time.

Results and discussion

The pathogenesis of powdery mildew and early interactions

on different barley genotypes was characterized on the leaf

and tissue level using a hyperspectral microscope (Figure 1).

Figure 1 Hyperspectral imaging microscope setup for small-scale image analysis. The spectral reflectance of detached barley leaves on phyto

agar was measured with a hyperspectral camera, which was mounted on a magnification lens to enable a magnification up to 7.3x. Two linear

light emitters with a vertical orientation of 30° illuminated the samples in a distance of 20 cm. The samples were moveable due to a XY moving

stage. A spectral resolution of up to 2.73 nm and a maximum spatial resolution of 7.5 μm per pixel was obtained. The field of view ranged from

4.1 to 0.95 cm, dependent on the magnification.
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A high spatial resolution of a pixel size as low as 7.5 μm

allowed the detection of subtle processes.

Hyperspectral imaging can improve disease detection

through a better examination of host pathogen interactions

[28]. This has been demonstrated by researchers, using a

diversity of hyperspectral sensors with different crops and

their relevant diseases on different scales ranging from re-

mote to proximal sensing [24,29]. Since imaging sensors

allow for a pixel-wise attribution of disease-specific symp-

toms, primary infection sites can be identified and analyzed

spectrally [25]. In contrast to our new plant phenotyping

approach, existing HSI microscopes are prohibited due to

destructive nature [30,31].

Phenotypic development of healthy and inoculated

barley leaves

The phenotypes of detached, healthy and Bgh inoculated

leaves of barley genotypes WT, Mla12 and mlo3 were

assessed visually on phyto agar (Figure 2). Mla12 leaves

were included as an additional susceptible genotype to

analyze differences during the pathogenesis between near-

isogenic lines, respectively. Non-inoculated leaves of the

three genotypes did not show any visible symptoms during

the first 6 days after inoculation (dai). Symptoms of senes-

cence occurred 6 dai on healthy mlo3 leaves, indicated by

yellowing of the leaves. The WT and Mla12 started to be-

came chlorotic 10 dai. This senescence process developed

further until 14 dai. The relative long life span and vitality

of detached leaves in this investigations indicated consistent

conditions for HSI of the plant system in a controlled envir-

onment, for a period of 14 days.

Bgh inoculated leaves showed no visible symptoms dur-

ing the first 5 dai. Characteristic powdery mildew pustules

occurred 6 dai on the susceptible WTand the near-isogenic

Mla12 line. On Mla12 leaves the pustules were distributed

homogeneously on the leaf surface compared to clustered

pustules on WT leaves. Pustules expanded and covered

nearly the complete leaf surface of the susceptible WT and

Mla12 leaves 10 dai. Furthermore, the leaves became light-

green and chlorotic in areas without powdery mildew pus-

tules 10 dai. Necrotic tissue occurred with the exception of

powdery mildew dominated leaf areas, which showed light-

green to yellow discoloration 14 dai. The resistant mlo3

leaves did not show any powdery mildew symptoms during

the experiment. The leaves were healthy and green with a

delayed senescence. First signs of senescence of inoculated

mlo3 leaves appeared only 14 dai. Further studies are

required for an explicit interpretation of the decelerated

senescence of the inoculated mlo3 leaves.

Spectral similarity of non-inoculated near-isogenic barley

lines over time

Detached non-inoculated (healthy) and inoculated leaves of

the near-isogenic lines cv. Ingrid WT, Mla12 and mlo3

were measured daily 3 to 14 dai in order to assess changes

in the spectral signatures. Healthy leaves of the different

near-isogenic lines exhibited a typical spectral pattern of

healthy plants with low reflectance from 400 – 700 nm, a

characteristic green peak at 500 – 570 nm, a steep reflect-

ance increase at the red edge inflection point and a high re-

flectance plateau in the NIR 3 days after detachment

(Figure 3a). This pattern slightly changed over time. The re-

flectance between 420 and 680 nm increased every day due

to changes in the pigment composition [32-34]. Other

ranges of the spectrum were not affected (Figure 3a).

Spectral changes indicated senescence processes of

non-inoculated, healthy leaves over time, which were in

accordance to the leaf phenotype. However, differences

in the development of individual leaves were reflected

by the relative standard deviation (RSD) of 0.6 – 6.8%

over time and measured wavelength range. The highest

RSD was calculated in the NIR range for WT 10 dai,

for Mla12 13 dai, and for mlo3 13 dai. The low RSD in-

dicate the practicability and robustness of a detached

leaf system for the assessment of phenotypic differences

due to resistance reactions. The similarity between re-

flectance spectra of healthy Mla12 and mlo3 leaves to

healthy WT leaves was due to the identical genomic

background of the near-isogenic lines.

Consequently, healthy leaves of the near-isogenic lines

cv. Ingrid WT, Mla12 and mlo3 showed a high spectral

similarity and a similar performance on the phyto agar

plates. The assessed barley spectra were characteristic

reflectance patterns of healthy plant tissue [25,26,35,36].

Reflectance of the detached leaves between 420 – 740 nm

increased with each day due to senescence. The absorption

features in this range are related to chlorophyll and other

pigments linked to photosynthesis [21,33,34]. Increased

hyperspectral reflectance indicated a reduction to the

chlorophyll activity and content. This effect is well de-

scribed as one main process during plant senescence [32].

The course of reflectance changes due to senescence coin-

cided with the phenotypic senescence processes observed

(Figure 2).

Spectral signatures of near-isogenic barley lines during

powdery mildew pathogenesis

The susceptible near-isogenic genotypes cv. Ingrid WT

and Mla12 and the Bgh isolate K1 were used to evaluate

the progress of powdery mildew pathogenesis and to

identify spectral fingerprints of the barley-Bgh system.

Inoculated WT leaves showed minor differences to

healthy WT leaves 3 dai (Figure 3b). The reflectance of

inoculated WT leaves increased between 534 – 563 nm.

An overall increase of reflectance in the entire range was

observed already 4 dai and the shift to higher reflect-

ance, continued the following days. Within this period of

time, the increased reflectance was in accordance with
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the Bgh ontogenesis on barley leaves. The reflectance al-

terations in the VIS of inoculated WT leaves indicated

changes in photochemical processes and pigment con-

tent, which are associated to the photosynthetic activity

[32-34]. Reflectance in the NIR from 743 – 830 nm de-

creased 5 dai. This NIR response turned to an increased

reflectance again 6 dai, when first powdery mildew pustules

occurred on the WT leaf surface. Subsequently, the reflect-

ance in the NIR from 743 – 830 nm decreased stepwise

until 14 dai. Symptoms were accompanied by significant re-

flectance changes over the full range. This gradual increase

of reflectance was prominent from 400 – 680 nm and from

Figure 2 Phenotypes of detached barley leaves non-inoculated (healthy) and inoculated with Blumeria graminis f.sp. hordei (Bgh) of near-isogenic

lines cv. Ingrid (WT, Mla12 and mlo3) 0, 3, 6, 10 and 14 dai, on phyto agar. Non-inoculated leaves of the genotypes showed natural senescence

over the experimental period. First characteristic powdery mildew pustules became visible 6 dai on inoculated leaves of the susceptible WT and

the near-isogenic line Mla12. The resistant near-isogenic mlo3 leaves did not show any powdery mildew symptoms. Senescence of inoculated

near-isogenic mlo3 leaves was delayed until 14 dai. Images were taken with a digital camera (EOS 6D, Canon, Tokio, Japan) and a 100 mm object

lens (EF Lens Ultrasonic EF 100 mm 1:2.8 L Macro IS USM, Canon, Tokio, Japan).
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700 – 740 nm. The reflectance in the VIS increased daily

according to the growth of powdery mildew mycelium until

9 dai. The course of the spectral pattern changed from 10

to 14 dai and the reflectance from 420 – 500 nm decreased

again due to the occurrence of first necrosis and tissue col-

lapse below powdery mildew pustules. Increased green re-

flectance was in accordance with senescence chloroses,

associated to a reduction and breakdown of chlorophyll

(Figure 2). The reflectance spectrum 14 dai represented a

necrotic leaf tissue covered with powdery mildew. The RSD

among the inoculated WT leaves was 1 – 14.7% over time

and wavelengths. The highest RSD was calculated 14 dai

over the full spectral range. The spatial distribution of the

Bgh mycelium and the vitality of the individual leaves

influenced the leaf phenotypes, which explained the higher

RSD of the hyperspectral reflectance compared to non-

inoculated leaves.

The hyperspectral reflectance pattern of Bgh pathogenesis

described for WT was also monitored for the near-isogenic

line Mla12 (Figure 3d). The appearance of first tiny pow-

dery mildew pustules 4 dai was associated to first increase

of leaf reflectance between 420 to 680 nm. In contrast to

inoculated WT leaves, reflectance did not decrease in the

blue range 10 dai and later. Reflectance of Mla12 leaves in

the range 500 – 742 nm increased day by day in contrast to

the WT leaves. This effect can be explained by a faster de-

velopment of Bgh onMla12 leaves compared to WT leaves.

In addition, the diseased area and the density of mycelium

Figure 3 Spectral signatures of non-inoculated (healthy) barley leaves cv. Ingrid WT (a), Mla12 (c), mlo3 (e) and barley leaves inoculated with Blumeria

graminis f.sp. hordei (Bgh) (b, d, f), from 3 to 14 dai. Reflectance spectra of healthy leaves of the near-isogenic lines are similar. During the measuring

period, the reflectance of healthy leaves increased in the visible range. Reflectance of inoculated, susceptible genotypes (WT and Mla12) increased in

the VIS and WT had decreased reflectance in the NIR. The inoculated, resistant mlo3-genotype showed significant differences to healthy leaves in the

reflection from 530 – 680 nm only 14 dai. (n = 3).
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and conidia on the leaves was higher than on the WT

leaves. Similar to inoculated WT leaves, reflectance in-

creased stepwise until 14 dai, except from 743 to 830 nm

the reflectance did not change significantly over time. Inter-

estingly, the reflectance between 743 to 830 nm 5 dai was

lower compared to the other days. This phenomenon was

also observed for inoculated WT leaves 5 dai. The RSD of

reflectance among inoculated Mla12 leaves was 3 – 14%

over time and wavelengths. The highest RSD was calculated

between 500 – 680 nm 14 dai. Also the range 420 –

500 nm showed high RSD among the inoculated Mla12

leaves from 6 dai until 14 dai.

In contrast, susceptible near-isogenic lines WT and

Mla12 showed slightly differences in the spectral reflect-

ance during the pathogenesis. Nevertheless, reflectance

patterns of Bgh pathogenesis on the susceptible geno-

types were characterized by a reflectance increase be-

tween 400 – 700 nm over time. This increase is due to

white powdery epiphytic mycelium and conidia. Similar

patterns were observed for powdery mildew diseased

leaves of sugar beet and winter wheat on different scales

[25,37]. The results demonstrate a similarity of spectral

patterns and dynamics during powdery mildew patho-

genesis, independently of the scale of investigations, but

with a higher sensitivity of the HSI microscope because

of the higher spatial resolution.

Mlo3 inoculated leaves showed no powdery mildew

infestation over time

The spectral reflectance of Bgh inoculated mlo3 leaves

(Figure 3f ), differed from that of inoculated, susceptible

WT and Mla12 leaves. Resistant mlo3 leaves showed a

spectral pattern similar to non-inoculated leaves of all

genotypes until 9 dai. No visible symptoms were

assessed on the inoculated mlo3 leaves. Interestingly, in-

oculated mlo3 leaves showed no effects of natural senes-

cence on reflectance until 13 dai. The reflectance was

constant over time with low RSD of 5-7% in the full

spectral range. A first increase in reflectance was ob-

served from 540 – 680 nm 13 dai, and first symptoms of

senescence occurred.

Swarbrick et al. [38] reported an induced cell-death

and a reduction of the photosynthetic activity during the

resistance reaction of mlo5 leaves inoculated with Bgh

isolate A6. In contrast, Bgh isolate K1 inoculated mlo3

leaves in this study did not change the chlorophyll content

until 13 dai. This is indicated by constant low reflectance

from 420 – 680 nm [32-34]. Moreover, the constant reflect-

ance over time, especially at 680 – 700 nm, allowed to dis-

tinguish between susceptible and resistant leaves already 4

dai. Specific resistance reactions of barley genotypes, such

as lignification, controlled cell death, or formation of papilla

may be assessed only by using a HSI system with higher

spatial resolution [25]. The hyperspectral microscope is an

important methodological innovation to elucidate subtle re-

sponses of plants to biotic stress. However, specific reflect-

ance patterns of the barley mlo3 resistance reaction were

not assessed in this experiment. Further investigations of

the first 48 hours after inoculation are required, since most

defense mechanisms of plants against fungal pathogens take

place within the first hours after plant-pathogen-contact,

attempted penetration and early infection [39]. The mlo5

based papilla formation against Bgh, for instance is com-

pleted within the first 16 – 30 h after the contact of conidia

and plant surface [9]. To improve the results from the HSI

microscope exact spatial referencing of images from subse-

quent days is necessary. A better spatial orientation within

the image could be realized by placing localization plates

beside the leaf area of interest.

An automated approach for hyperspectral image analysis

for plant phenotyping

The effective analysis and interpretation of HSI data are

limiting factors for an implementation into plant pheno-

typing [36]. The 3-dimensional complexity of HSI data

requires high input of human intervention and labelling

of disease specific image pixels. Automated analysis

pipelines are required to optimize the use of HSI for

phenotyping or precision agriculture. Within this study

an automated analysis cascade using Simplex Volume

Maximization was adopted (Figure 4). Reflectance spec-

tra of inoculated WT leaves assessed by this automatic

approach (Figure 5a) showed patterns similar to the

manually assessed reflectance spectra. Differences be-

tween manually and automatically extracted reflectance

were calculated to highlight the similarity of the results

(Figure 5b,d). According to both methods of data ana-

lysis, no differences between healthy and diseased leaves

were observed 3 dai. An increase of reflectance between

420 and 742 nm was detected in the automated ap-

proach already 4 dai indicating a higher sensitivity when

spectral information is defined automatically from all

pixels of an image. Further differences were detected in

the NIR range 4 and 5 dai (Figure 5b). The next days

showed a spectral trend similar to the manual analysis.

The differences between automated and manually

assessed reflectance values were low and reached only

−0.04 [%/100] at 680 nm. The automatically assessed re-

flectance spectra of inoculated Mla12 leaves were in ac-

cordance to those assessed manually (Figure 5c);

differences varied from −0.02 to 0.03 [%/100] over time

and wavelengths (Figure 5d). The present results high-

light a standardized system with detached leaves for a

HSI microscopy and automated data mining suitable for

plant phenotyping. Interestingly, the automatically

assessed reflectance spectra showed more details among

days (Figure 5) as all image pixels were considered,
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Figure 4 Interpretable matrix factorization for hyperspectral images. Each hyperspectral data cube is transformed into a dense matrix. Then,

extreme components/signatures on all matrices are computed, using Simplex Volume Maximization. The final step includes the computation of

the new representation of all signatures in a space, spanned by the extremes.

Figure 5 Automatically determined mean signatures of barley leaves cv. Ingrid WT (a) and Mla12 (c) inoculated with Blumeria graminis f.sp.

hordei from 3 to 14 dai. The automatically assessed spectra were similar to signatures assessed manually. The differences between automatically

and manually analyzed data for WT were −0.04 – 0.04 [%/100] (b), −0.02 – 0.03 [%/100] for Mla12 (d), respectively, over the wavelengths

and time.
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whereas the manually assessed spectra are only from a

few selected pixels.

Based on the automatically assessed reflectance spec-

tra a binary map system of Bgh inoculated susceptible

leaves was established (Figure 6). The binary maps

visualize Bgh diseased leaf tissue over time. Black pixels

indicate healthy leaf tissue, while white pixels indicate

sites with powdery mildew. This allows the observation

of disease development on susceptible plant genotypes

with rapid visual identification of relevant pixels. Powdery

mildew symptoms were absent on RGB images 3 dai. The

corresponding binary map was almost completely black,

however some white pixels appeared before visible symp-

toms occurred. First tiny powdery mildew pustules became

visible on RGB images 4 dai and were accurately detected

in the binary map. Senescent leaf tissue was not included in

the binary maps due to the consideration of natural senes-

cence of detached, healthy leaves. Characteristic spectral

patterns could be identified without human intervention.

The binary maps illustrates disease specific pixels and al-

lows the operator to control the automated results by

comparing the binary maps with the corresponding RGB

images. In complex biological systems and for resistance

screenings, it will be an advantage to take spatial properties

of spectral dynamics into account [25,40]. This unsuper-

vised and data driven approach requires no a-priori know-

ledge such as pre-defined endmembers from a spectral

libraries used in existing classification or machine learning

approaches [20].

Extraction of spectral dynamics of healthy and Bgh

inoculated barley leaves

The spectral dynamics of healthy and inoculated near-

isogenic lines over time were used to elucidate differ-

ences among the near-isogenic lines illustrated as traces

(Figure 7) according to Kersting et al. [41]. The spectral

traces are an example of an interpretable summary of

high dimensional hyperspectral imaging data, highlight-

ing the phenotypic evolution and processes during the

interaction of Bgh with susceptible and resistant barley

genotypes. With this interactive approach, an adaption

Figure 6 RGB images and binary infestation maps for automatic localization of barley tissue diseased by Blumeria graminis f.sp. hordei 3 to 13 dai.

Black color indicates Bgh free tissue, white color highlights Bgh diseased barley tissue. Image section varies from day to day. No powdery mildew

symptoms were visible 3 dai on RGB images. The binary map was almost completely black with small exceptions. First tiny powdery mildew

pustules occurred in the RGB image 4 dai, which were detected and illustrated as white areas on the binary map.
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of known data mining methods to plant phenotyping

tasks is demonstrated.

Figure 7a illustrates the mean traces of healthy and

inoculated WT, Mla12 and mlo3 genotypes. Each line

describes the spectral trace of three leaves 3 to 13 dai.

The similarity among healthy leaves is indicated by the

close trends of the traces. They developed in the same

direction and had similar dynamics in time, indicated

by short traces. Differences in the spectral traces of dis-

eased WT and Mla12 leaves were apparent. A variation

in symptom development and time can be concluded

from slightly different traces of the inoculated geno-

types. During the experimental time, the mean trace of

resistant mlo3 overlapped with the traces for all healthy

leaves and finally differed from them. The traces in

Figure 7a allowed for an overall overview of the disease

development over time. In order to reach this global

view, we used the averaged mean signatures over all

images of the leaves of the same type and treatment.

To visualize specific details (Figure 7b-d), traces for

each particular leave are provided for each genotype

(WT, Mla12 and mlo3) and treatment (healthy and in-

oculated) separately.

Differences in the spectral traces in direction and

length, between the healthy and diseased genotypes are

indicated (Figure 7b,c). For inoculated, susceptible

genotypes WT and Mla12, differences within genotype

and treatment resulted from different disease severities

and development stages of powdery mildew over time.

Likewise, inoculated mlo3 leaves gave different spectral

traces (Figure 7d).

Conclusions

Spectral information and phenotypes, assessed with a

detailed microscopic HSI approach correspond to re-

flectance data from single plants or crop stands, whereby

the HSI microscope enables a higher spatial resolution

and richness of details. In microscopic HSI, the small

pixel size (7.5 μm) eliminates the problem of pixels with

mixed information from initial sites of pathogen infec-

tion. The proposed phenotyping set up is a promising

new approach for the hyperspectral assessment and

characterization of plant diseases and early processes

during pathogenesis. In incompatible host-pathogen sys-

tems, specific resistance reactions may be identified from

spectral reflectance data. The data analysis cascade based

on data driven, automated machine learning methods,

reduces the required human input in disease resistance

screening systems (Figure 8) and in the evaluation of the

performance of a set of plant genotypes under different

environmental conditions.

Figure 7 Leaf traces to uncover hyperspectral dynamics of healthy and Blumeria graminis f.sp. hordei inoculated near-isogenic lines of cv. Ingrid

leaves (WT, Mla12, mlo3) over time. Healthy leaves had a similar spectral pattern and trend, indicated by a minor distance among their traces (a).

This is shown also for inoculated WT and Mla12 leaves (a). Between the individual leaves, hyperspectral dynamics are illustrated by their spectral

traces (b, c). The traces of inoculated, resistant mlo3 leaves differed from healthy and inoculated, susceptible (WT and Mla12) leaves over the

measuring period (a). Inoculated mlo3 leaves, showed differences (d).
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Materials and methods

Plant cultivation and inoculation of Blumeria graminis

f.sp. hordei

Near-isogenic barley (Hordeum vulgare) lines cv. Ingrid-

wild type (WT), Ingrid -I10 containing resistant mildew

locus a 12 (Mla12) [42] and Ingrid -M. C. 20 containing re-

sistant mildew locus o 3 (mlo3) [43] were grown in a com-

mercial substrate (Klasmann-Deilmann GmbH, Germany)

in plastic pots (10×10×20 cm) in a greenhouse at 23/20°C

(day/night), 60% relative humidity (RH) and a photoperiod

of 16 h. One week after sowing, the primary leaves (with an

approx. length of 10 cm) were detached and transferred on

to aseptic phyto agar (Duchefa Biochemie, Haarlem,

Netherlands) containing 0.034 mM benzimidazole.

For each genotype, three leaves were inoculated with

fresh spores of Blumeria graminis f.sp. hordei isolate K1

(Bgh-K1), and four leaves were kept untreated as healthy

control. Bgh-K1 is virulent to cv. Ingrid WT and Ingrid

I10 [42] and avirulent to Ingrid M. C. 20 [43]. Fresh co-

nidia were obtained from heavily infected barley (cv.

Leibniz). Twenty-four hours before plant inoculation,

the conidia of Bgh-K1 infested plants were shaken off

and discarded in order to assure homogenous and vital

conidia for the inoculation. Conidia of a recently formed

powdery mildew pustule (7 dai) are transferred to the

prepared leaves on phyto agar using an aseptic inocula-

tion loop. The agar plates were sealed with Parafilm M®

(Bemis, Oshkosh, USA) and incubated in a controlled

environment at 19°C, 1100 m−2 · cd illuminance and a

photoperiod of 16 h per day.

Hyperspectral time series imaging and data

preprocessing

Spectral reflectance was measured with an hyperspectral

imaging line scanner (spectral camera PFD V10E, Specim,

Oulu, Finland) mounted on a stereo microscope foreoptic

(Z6 APO, Leica, Wetzlar, Germany) with a magnification

up to 7.3x (Figure 1). The line scanning spectrograph has a

spectral range from 400 to 1000 nm and a spectral reso-

lution of up to 2.73 nm. The maximum image size of the

30 μm sensor slot results in 1300 pixels per line, with a sen-

sor pixel size of 0.0074 mm. Depending on this measure-

ment setup and the magnification, a maximum spatial

resolution of 7.5 μm per pixel was obtained. For image re-

cording the leaf samples were placed nadir on a XY-moving

stage (H105/2/0 ProScan Upright Stage, Prior Scientific,

Jena, Germany), controlled with a joystick and Oasis soft-

ware (Oasis Controller, Objective Imaging Ltd., Cambridge,

England). The samples were illuminated by two linear light

emitters (Dual line Lightlines, Schott, Mainz, Germany)

with a vertical orientation of 30° and a distance of 20 cm to

the sample besides the foreoptic. As a light source a 150

watt halogen tungsten lamp connected to the line lights via

a non-absorbing fiber was used (DCR® Light Source EKE,

Polytec, Waldbronn, Germany). Hyperspectral measure-

ments were performed in a dark room after 60 minutes

Figure 8 Workflow of the manual and automated hyperspectral image analysis, starting after preprocessing of hyperspectral images. Manual

analysis requires high input of human experts and hence is time and cost intensive while still subjective. The automated analysis cascade

improves the analysis of hyperspectral images due to the reduction of human input, the economization of time and the consideration of all

image pixels.
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pre-heating of the light source in order to realize constant

and reproducible illumination conditions. The software

SpectralCube (Spectral Imaging Ltd., Oulu, Finland) was

used for controlling the HSI line scanner and for acquiring

the hyperspectral images. Images on the leaf surface level

were taken with spectral binning 1 and spatial binning 1.

Frame rate and exposure time were adjusted to the object.

The reflection in the range from 400 to 1000 nm was

measured daily 3 to 14 days after inoculation (dai) with

a magnification of 7.3x. For image normalization and

subsequent calculation of reflectance, four hyperspectral

images per sample were taken. First, a white reference bar

(SphereOptics GmbH., Uhldingen-Mühlhofen, Germany)

was recorded, followed the dark current image. Subse-

quently, the leaf sample and a corresponding dark current

image were recorded. Additionally, RGB images of each

leaf were taken daily with a digital camera (EOS 6D,

Canon, Tokio, Japan) and a 100 mm object lens (EF Lens

Ultrasonic EF 100 mm 1:2.8 L Macro IS USM, Canon,

Tokio, Japan).

Pre-processing of hyperspectral images

Because reflection data was noisy at the extremes, only

data values between 420 to 830 nm were analysed. The

reflectance of samples, was calculated by normalizing

the images relative to the white reference reflection and

the dark current measurements using the software ENVI

5.1 + IDL 8.3 (ITT Visual Information Solutions, Boulder,

USA). Furthermore, the spectral signals are smoothed by

employs the Savitzky-Golay filter [44]. Parameters for the

smoothing process were 25 supporting points to the left

and right, respectively, and a third degree polynomial. The

pre-processed images were used for further analysis using

ENVI 5.1 + IDL 8.3 and data mining methods.

Spectral signature extraction, analysis and

characterization

In a first step, spectral signatures of pixels from

healthy and diseased regions were extracted manually.

Therefore >300 pixel were extracted daily from the

same area by an ellipsoid region of interest from each

non-inoculated leaf. When powdery mildew pustules

became visible the symptomatic area was extracted as

region of interest, thus the amount of pixels extracted

increased depending on symptom development.

Data driven approach for fast analysis of hyperspectral

dynamics

Following the method of Wahabzada et al. [36] a data

driven approach was applied, allowing an automated

analysis of hyperspectral data. Simplex Volume Maxi-

mization (SiVM) applied for fast and interpretable

factorization [27], using an implementation based on the

Python™ Matrix Factorization Module (PyMF) library

(https://code.google.com/p/pymf/). SiVM represents the

hyperspectral data in terms of only few extreme compo-

nents determined across all images considered. Since the

components are real extreme signatures, they are easily in-

terpretable and uncover the variations existing in the data

(Figure 4). The signatures within all hyperspectral images

were then represented as combination of these extreme

components.

Given the new representation opens door to statistical

data mining on a massive scale. That is, the representa-

tion can be used to discover disease specific signatures

within diseased leaves. This procedure avoids the risk of

losing valuable information when selecting disease specific

signatures manually at some diseased spots only. Following

Wahabzada et al. [36] the differences for each particular

signature was computed using likelihood ratios LLR(s) to-

gether with the distributions computed using simplex rep-

resentation of the data. That is, the LLR(s) for a signature s

of a diseased leaf at day d were computed in terms of the

distributions of non-inoculated healthy leaf at day d and of

a subsequent day r (we used r = d + 2) of the diseased leaf

as the reference. For the latter days (d≥ 8 dai) we used the

distribution determined from the image 10 dai for the dis-

eased leaf as reference, as we assumed to observe the most

diseased specific hyperspectral characteristics at this day.

For the binary maps of the location of disease spots a

Gaussian filter was placed on the computed differences

LLR(s) and set all positive values to 1 and 0 otherwise.

The leaf traces were computed by applying the Dirichlet

aggregation regression on the representation determined

by SiVM [45]. For interpolated mean signatures a 2-

dimensional map was computed by the simplex traces

approach [41]. This uncovers hyperspectral dynamics

of diseased and non-inoculated (healthy) leaves of the

different genotypes over time.
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