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1. Introduction 

Since the advent of remote sensing in the second half of 20th century, nowadays there have 
been great changes in theory and technology. The advent of hyperspectral was one of the 
most significant breakthroughs in remote sensing. Hyperspectral remote sensing has higher 
spectral resolution as the same time retain higher spatial resolution, so its capability of 
distinguishing the different and describing the same ground objects in details enhanced 
greatly. It acquires image in a large number (typically over 40), narrow (typically 10 to 20 
nm in width) and contiguous spectral bands to enable the extraction of reflectance spectra at 
a pixel scale, so it can produce data with sufficient resolution for the direct identification of 
those materials with diagnostic spectral features (Goetz et al., 1985). The objective of 
hyperspectral remote sensing is to measure quantitatively the components of the Earth 
System from calibrated spectra acquired as images for scientific research and applications 
(Vane & Goetz, 1988). The rationale behind this technology for geological applications is that 
mineral species have diagnostic absorption features from 20 to 40 nm wide in 
electromagnetic wavelength ranges which is larger than hyperspectral spectral resolution 
(van der Meer & Bakker, 1997). Goetz demonstrated firstly that direct identification of 
carbonates and hydroxyl-bearing minerals is possible by remote measurement from Earth 
orbit (Goetz et al., 1982).  
There are two main categories of extracting information method from hyperspectral remote 
sensing image: based on feature space and based on spectral space. Many statistics-based 
classification methods based on feature space have been successfully applied to multi-
spectral remote sensing data in the past years (Pal & Mather, 2003, Wen et al., 2008b). 
However, they are not effective for hyperspectral remote sensing data. The problem is 
caused by curse of dimensionality and Hughes phenomenon (Hsu, 2007), which refer to the 
fact that the sample size required for training  a specific classifier grows exponentially with 
the number of spectral bands. Usually simple but sometimes effective ways to overcome this 
problem is to increase sample numbers or to reduce the dimensionality of hyperspectral 
remote sensing data. The former needs a lot of sample numbers, so it will cost many human 
and material resources; the latter will lead to some useful information lost. The Matched 
Filtering methods based on spectral space are successfully used in hyperspectral data. These O
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methods based on the hypothesis that all spectra have been calibrated to apparent 
reflectance and the dark current of sensor and path radiation is removed. It is only the ideal 
state for these effects are hard to remove successfully, especially in low reflectance object, so 
this will lead to error using Matched Filtering. 
In order to obtain the best classification performance in pattern recognition, the data set 
should be classified using different methods, and then choose the best classification result as 
the final conclusion. With the complexity of pattern recognition increased and novel 
algorithm developed, researchers find that although different classifiers have different 
classification performance, their misclassification set are not consistent with each other. That 
is, some sample misclassified by one classifier may be recognized by another classifier. 
Different classifiers are complementary to each other. If only the best performance classifier 
is chose, some valuable information from other classifiers may be ignored. In order to solve 
this problem, multiple classifiers combination was put forward. This chapter proposed the 
methods to improve the hyperspectral remote sensing classification accuracy using multiple 
classifiers combination. The method included two parts: one is to improve the performance 
of the single classifier, and the other is to combine multiple classifiers. In the former, the 
chapter investigated the methods of atmospheric correction and extracting the purer 
endmember, and a novel endmember extracting method combining multi-segmentation and 
geology map was proposed. In the latter, combining multiple classifiers based on decision 
tree was proposed.  
The study area is located in southwest of China, and the composition of the deposits is 
mainly dioritic porphyrite. Firstly, the image was atmospherically corrected before 
processing, and a endmember was extracted by PPI algorithm from the intersection area of 
multi-segmentation and geology map; Secondly, dioritic porphyrite area was extracted from 
hyperspectral remote sensing image by Spectral Angle Mapper (SAM), Multi Range Spectral 
Feature Fitting (Multi Range SFF) and Mixture Tuned Matched Filtering (MTMF) using the 
extracted endmember respectively. At last, final classification results was outputted by 
combining three classification results using Classification and Regression Trees (CART). 
Comparing all classification results and geology map, it is concluded that combining 
multiple classifiers has the best classification performance and Multi Range SFF has the 
better capable of pixel un-mixing than SAM and MTMF. 

2. Study area and hyperspectral remote sensing data 

The study area is located at Pulang porphyry copper and gold deposit in Shangri-La of 
Yunnan province in southwest of China (fig. 1). The longitude and latitude scope are 
between 26º54'N - 28º43'N and 99º37'E – 100º10'E. Its ore-bearing lithology mainly contains 
dioritic porphyrite. The hyperspectral remote sensing employed in this paper was acquired 
by Hyperion sensor on board EO-1 satellite in December 2, 2003. The EO-1 satellite was 
launched on November 21, 2000 as part of a one-year technology validation/demonstration 
mission by NASA. The original EO-1 Mission was successfully completed in November 
2001. As the end of the Mission approached, an agreement was reached between NASA and 
the USGS to allow continuation of the EO-1 Program as an Extended Mission based on the 
remote sensing research and scientific communities interest and willingness to assist in 
funding continued operations. The three primary instruments on the EO-1 spacecraft are the 
Advanced Land Imager (ALI), the Hyperion, and the Linear Etalon Imaging Spectrometer 
Array (LEISA) Atmospheric Corrector (LAC). The Hyperion covers 400-2500 nm with 242 
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spectral bands over a 7.5 km wide swath at approximately 10nm (sampling interval) spectral 
resolution and 30m spatial resolution on a 705 km orbit.  

 
Fig. 1. China provincial boundaries and study area 

3. Atmospheric correction of hyperspectral remote sensing data 

Atmospheric effects play a dominant role in the optical part of the electromagnetic 
spectrum. It generates a variety effects upon the satellite image that must subsequently be 
accounted for through atmospheric corrections. To have lasting quantitative value, remotely 
sensed data must be calibrated to physical units of reflectance (Smith & Milton, 1999). In 
order to remove accurately atmospheric absorption and scattering effects, atmospheric 
correction algorithms have evolved from the earlier empirical line method and flat field 
method to more recent methods based on rigorous radiative transfer modeling. MODTRAN, 
the Air Force Research Laboratory/Geophysics Directorate moderate spectral resolution (2 
cm-1) background radiance and transmittance model, has been widely used to analyze 
hyperspectral data to its computational speed and its ability to model molecular and 
aerosol/cloud emissive and scattered radiance contributions as well as the atmospheric 
attenuation (Berk et al., 1998). It accurately and efficiently calculates the scattering and 
absorption signatures of realistic molecular, aerosol and cloudy environments in the lower 
and middle atmosphere. There are several MODTRAN-based atmospheric correction 
software packages, such as FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral 
Hyper-cubes) (Anderson et al., 1999), ATCOR (Atmospheric and Topographic Correction) 
(Richter, 1996) and others. ATCOR was originally developed by Richter at DLR, the German 
Aerospace Centre. The algorithm is a fast atmospheric correction for imagery of medium 
and high spatial resolution satellite sensors. There are two ATCOR models available, one for 
satellite imagery, the other one for airborne imagery. For historic reasons, the satellite codes 
are called ATCOR-2 (Richter, 1996) and ATCOR-3 (Richter, 1998). ATCOR-2 is used for flat 
terrain and ATCOR-3 is for Mountainous Terrain. ATCOR3 includes all of the capabilities of 
ATCOR2 and can be integrated with a DEM for atmospheric correction of images depicting 
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rugged terrain. FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) 
is being developed by the Air Force Research  Laboratory, Hanscom AFB, and Spectral 
Sciences, Inc., to support current and planned SWIR/visible/UV hyperspectral and 
multispectral sensors, typically in image format. 
In order to compare correction effect of different algorithms, in this chapter, ACTOR-2, 
ACTOR-3 and FLAASH were used to remove atmospheric effects from the hyperspectral 
data. Fig. 3 is the reflectance of the same pixel from Hyperion remote sensing data corrected 
atmospherically by ACTOR-2, ACTOR-3 and FLAASH. Due to complex terrain of study 
area, where maximum elevation difference is greater than 1200 KM (fig.2), the correction 
effect of ACTOR-3 is not efficient. Some reasons may be originated from the rough DEM 
data and geometric correction error. As a result, the Hyperion remote sensing data 
calibrated to apparent reflectance using the FLAASH was selected to extract information. 
 

 
Fig. 2. Digital elevation model ( DEM) of study area (left) and 3D surface view image using 
hyperion remote sensing data 
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Fig. 3. The reflectance of the same pixel using different atmospheric correction model 
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4. Methodology 

4.1 Endmember extraction 
Mineral mixtures and mixtures with vegetation in an individual pixel can be separated if the 
components have unique spectral features (endmember). Many researchers have used an n-
dimensional analysis approach to determine key endmember and map their distribution 
and abundance (Boardman, 1993). A variety of methods have been proposed to find 
endmembers in multispectral and hyperspectral images. Iterated Constrained Endmembers 
(ICE) is an automated statistical approach to identifying endmembers from hyperspectral 
images (Berman et al., 2004). Winter proposed to find a unique set of purest pixels based 
upon the geometry of convex sets (Winter, 1999). Probably the most widely used algorithm 
is Pixel Purity Index (PPI) (Boardman et al., 1995). PPI usually used to find the most 
spectrally pure (extreme) pixels in multi-spectral and hyperspectral images. (Kruse, 2005) 
used multi-resolution segmentation (Baatz & Schäpe, 2000) to separate adjacent regions in 
an image, then using PPI to extract endmember. Multi-resolution segmentation is a bottom 
up region-merging technique starting with one-pixel objects. In numerous subsequent steps, 
smaller image objects are merged into bigger ones. It can slice the image into a network of 
homogeneous image regions at any chosen resolution, even when the regions themselves 
are characterized by a certain texture or noise. In this chapter, multi-resolution segmentation 
regions in hyperspectral remote sensing image were intersected with the dioritic porphyrite 
area in geologic map (fig. 4), so the overlay areas contain homogeneous dioritic porphyrite 
area. Then, one overlap area was selected to extract dioritic porphyrite endmember using PPI. 
 

   

Fig. 4. The hyperspectral remote sensing image (left) and the overlap area where multi-
resolution segmentation intersects dioritic porphyrite area in geologic map (right) 

4.2 Matched filtering methods 
Each pixel in the image is a mixture of responses from multiple materials and nearly no pure 
pixels are present in the image due to large sampling distance (30 m). Matched Filtering 
(MF) method can find the abundances of user-defined endmembers using a partial un-
mixing. There are many MF methods. SAM, MTMF and Multi Range SFF are widely used to 
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extract specific materials based on matches to library or image endmember spectra and does 
not require knowledge of all the endmembers within an image scene.  

4.2.1 SAM algorithm 
SAM is a physically-based spectral classification that uses an n-dimension angle to match 

pixels to endmember spectra. The algorithm determines the spectral similarity between two 

spectra by calculating the angle between the spectra, treating them as vectors in a space with 

dimensionality equal to the number of bands (Kruse et al., 1993). The endmember spectra 

can be either laboratory or field spectra or extracted from the image. This method assumes 

that the data have been reduce to apparent reflectance, with all dark current and path 

radiance biases removed. This technique, when used on calibrated reflectance data, is 

relatively insensitive to illumination and albedo effects. SAM algorithm has successfully 

used in geological mapping based on remote sensing data (Baugh et al., 1998, Wen et al., 

2007b). It computes the "spectral angle" between pixel spectra and the endmember spectra. 

Smaller angles represent closer matches to the endmember spectra. The result is a rule 

image that indicates the radian of the spectral angle (fig. 6(a)). The radian of the spectral 

angle calculated by applying the following equation:  
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Where nb=the number of bands, 
i
t  =pixel spectrum, 

i
r =endmember spectrum. 

4.2.2 Multi range SFF 
SFF is an absorption-feature-based methodology. The endmember spectra are scaled to 

match the image spectra after the continuum is removed from both data sets. Multi Range 

SFF uses Continuum Removal (CR) to normalize reflectance spectra so individual 

absorption features from a common baseline can be compared. An apparent continuum in a 

reflectance spectrum is modeled as a mathematical function that is used to isolate a 

particular absorption feature for analysis, and this continuum should be removed by 

dividing it into the reflectance spectrum for each pixel in the image (Clark & Roush, 1984):  

 
CR

SS
C

=  (2) 

Where: 
CR

S = Continuum removed spectra, S = Original spectra, C = Continuum curve. 

The continuum curve is a convex hull fit over the top of a spectrum using straight-line 

segments that connect local spectra maxima, so the first and last spectral data values are on 

the hull, therefore, the first and last bands in the output continuum removed data are equal 

to 1.0. Absorption feature analysis using CR has been shown to enhance the differences in 

shape between the absorption features of interest (Kokaly & Clark, 1999). Multi Range SFF 

compares the CR of image spectra to the CR of endmember spectra at each wavelength 

using a least-squares technique. Scale image and RMS image are output for each 
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endmember spectrum. The scale image is a measure of absorption feature depth, which is 

related to material abundance. The brighter pixels in the scale image indicate a better match 

to the endmember material in those pixels. The RMS error is calculated for each endmember 

spectrum, and dark pixels in the RMS image indicate a low error. Finally, the fit image with 

the higher abundance and a low error value which was calculated by dividing RMS image 

into the Scale image is output for the endmember spectrum (fig. 6(b)). 

4.2.3 MTMF 
MTMF combines the best parts of the Linear Spectral Mixing model and the statistical 

Matched Filter model while avoiding the drawbacks of each parent method (Boardman, 

1998).  It is a useful Matched Filter method without knowing all the possible endmembers in 

a landscape especially in case of subtle, sub-pixel occurrences. Firstly, pixel spectra and 

endmember spectra require a minimum noise fraction (MNF) (Green et al., 1988, Boardman, 

1993) transformation. MNF reduces and separates an image into its most dimensional and 

non-noisy components. Once the data is in a less noisy form, it can then be compared to 

endmember through MTMF processes to determine composition. Its results appear as two 

gray-scale images for a selected endmember spectrum, one scale image estimate the relative 

degree of match to the endmember spectrum and the approximate sub-pixel abundance, the 

other is an infeasibility image used to reduce the number of false positives. Better matched 

spectra from combination image which was calculated by dividing infeasibility image into 

the scale image will have a higher abundance and a low infeasibility value (fig. 6(c)).  

4.3 Multiple classifiers combination 
Due to the complexity of land cover, statistical distribution characteristics of the remote 

sensing data vary in time and space, so the classification accuracy of different classifiers are 

obviously different. Experiments reported by the authors and other researchers have clearly 

shown that the superiority of one algorithm over another cannot be claimed for remote-

sensing image classification (Giacinto et al., 2000). Multiple classifiers combination will 

improve the classification accuracy by using different classifiers complementarities. 

Multiple classifiers systems are special cases of approaches that integrate several data-

driven models for the same problem. Its key goal is to obtain a better composite global 

model, with more accurate and reliable estimates or decisions (Ghosh, 2002). The theory of 

multi-classifier systems can be traced back at least as far as 1965 (Nilsson, 1965). Previous 

multiple classifiers combination algorithm include the voting (Lam & Suen, 1994), Bayes 

rule (Xu et al., 1992), Dempster-Shafer theory (Mandler & Schuermann, 1988), decision tree 

and other methods. Based on classifier outputs, the multiple classifiers combination 

methods can be classified into three different levels: abstract level, ranked list of classes, and 

measurements (Suen & Lam, 2000, Xu et al., 1992). Based on manipulating training samples, 

they can be classified into two approaches: boosting (Freund & Schapire, 1996) and bagging 

(Breiman, 1996). Ideally, the combination should take advantage of the merit of the 

individual classifiers, avoid their weaknesses and improve classification accuracy. 

Multiple classifiers combination was successfully used in remotely sensed data 

classification. However, the standard multiple classifiers combination methods were seldom 

used in remotely sensed data classification. (Wen et al., 2007a) combined three MF results 
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using adjusting threshold method, and demonstrated the result was better than only one MF 

result. However, it is hard to get the effective split value only using adjusting the threshold 

by hand. In this chapter, CART (Brieman et al., 1984, Wen et al., 2008a) was used to extract 

the rock body information from the hyperspectral remote sensing image by combine three 

MF results. CART method was suggested by Breiman et al.  It partitions the data into two 

subsets of records with similar values for the target attribute so that the records within each 

subset are more homogeneous than in the previous subset. It is a recursive process: each of 

those two subsets is then split again, and the process repeats until the homogeneity criterion 

is reached or until some other stopping criterion is satisfied. It allows unequal 

misclassification costs to be considered in the tree growing process. The decision trees 

produced by CART are strictly binary, containing exactly two branches for each decision 

node. The CART algorithm grows the tree by conducting for each decision node, an 

exhaustive search of all available variables and all possible splitting values, selecting the 

optimal split according to the certain criteria. 

5. Conclusion 

The decision tree constructed by CART algorithm is shown in fig. 5. “Y” in the rectangle 
means the pixel contains dioritic porphyrite. On the contrary, “N” in the rectangle means 
the pixel contains no dioritic porphyrite. The value near the rectangle is confidence. From 
fig. 5, when the value of Multi Range SFF and MTMF rule image are greater than the certain 
threshold, it concludes the pixel contains dioritic porphyrite. They are coincided with their 
physical meaning for that the higher value of Multi Range SFF and MTMF rule image is 
 

 

Fig. 5. Decision tree constructed by CART algorithm 

related to higher material abundance. However, when the value of SAM rule image is 

greater than the certain threshold, it concludes the pixel contains dioritic porphyrite. It is 

inconsistent with its physical meaning for the smaller value of SAM rule image represents 

closer matches to the endmember spectra. The reason maybe is that SAM only compares the 
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shape of spectra, so its ability of pixel un-mixing is limited. Comparing three methods, the 

decision tree also show that Multi Range SFF has great pixel un-mixing ability; followed by 

MTMF; SAM is the least. Most alteration minerals have diagnostic spectral absorption 

features in the short wave and mid-infrared. Multi Range SFF compares enhanced spectra 

absorption features, so it is effective. Three MF results and combining three MF results using 

CART were used to extract dioritic porphyrite respectively. The rule images generated by 

different methods are shown in fig. 6. Comparing four rule images, the combination rule 

image is better than others significantly. Using dioritic porphyrite areas in geologic map as 

ground truth, the classification accuracy are calculated and results are shown in table 1. As 

is shown from table 1, multiple classifier combination has the best classification 

performance, and it generates the highest overall accuracy and hit/false alarm. The final 

Dioritic porphyrite map of Pulang using combining multiple classifiers is shown in fig. 7. 

Comparing with the field data and geology map, it concludes that this method is effective. 
 

       
                 (a) SAM            (b) Multi Range SFF             (c) MTMF                (d) Combination 

Fig. 6. Rule images generated by different methods 

 

Method Hit (pixels) False alarm (pixels) Overall accuracy Hit/false alarm 

SAM 1858 2972 0.769 0.625 

Multi SFF 6971 9137 0.756 0.763 

MTMF 6809 13702 0.698 0.497 

Combination 2524 2239 0.786 1.127 

Table 1. The classification result using different method 

SAM is a physically-based spectral classification that determines the spectral similarity. 

Multi Range SFF is an absorption feature based methodology. MTMF, a special type of 

spectral mixture analysis, is based on well-known signal processing methodologies. 

Combining of three matched filtering method can take full advantage of three MF methods, 

so the classification accuracy is significant improvements than only one approach. 
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Map Projection: Gauss Kruger, False Easting: 500 kilometer, Central Meridian: 99º. 

Fig. 4. Dioritic porphyrite map of Pulang using combining multiple classifiers 

6. Reference 

Anderson, G. P., et al., (1999). FLAASH and MODTRAN4: state-of-the-art atmospheric 
correction for hyperspectral data. IEEE Proceedings of Aerospace Conference, pp. 177-
181, Snowmass at Aspen, CO, USA. 

Baatz, M. & Schäpe, A., (2000). Multiresolution segmentation-an optimized approach for 
high quality multiscale image segmentation. AGIT XIII, pp. 12-23, Wichmann, 
Heidelberg, Germany. 

Baugh, W. M., et al., (1998). Quantitative geochemical mapping of ammonium minerals in 
the southern Cedar Mountains, Nevada, using the airborne visible/infrared 

www.intechopen.com



Hyperspectral Remote Sensing Data Mining Using Multiple Classifiers Combination 

 

139 

imaging spectrometer (AVIRIS). Remote Sensing of Environment, Vol. 65, No. 3, 292-
308. 

Berk, A., et al., (1998). MODTRAN Cloud and Multiple Scattering Upgrades with 
Application to AVIRIS. Remote Sensing of Environment, Vol. 65, No. 3, 367-375. 

Berman, M., et al., (2004). ICE: a statistical approach to identifying endmembers in 
hyperspectral images. Geoscience and Remote Sensing, IEEE Transactions on, Vol. 42, 
No. 10, 2085-2095. 

Boardman, J. W., (1993). Automated spectral unmixing of AVIRIS data using convex 
geometry concepts: in Summaries. Fourth JPL Airborne Geoscience Workshop, pp. 11–
14, Arlington, Virginia, JPL Publication. 

Boardman, J. W., (1998). Leveraging the high dimensionality of AVIRIS data for improved 
sub-pixel target unmixing and rejection of false positives: mixture tuned matched 
filtering. Summaries of the Seventh Annual JPL Airborne Geoscience Workshop, pp. 55-
56, Pasadena, CA: NASA Jet Propulsion Laboratory, JPL Publication 97-1. 

Boardman, J. W., et al., (1995). Mapping Target Signatures Via Partial Unmixing of Aviris 
Data. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, pp. 23-26, 
Washington, D. C, JPL Publication 95-1. 

Breiman, L., (1996). Bagging Predictors. Machine Learning, Vol. 24, No. 2, 123-140. 
Brieman, L., et al., (1984). Classification and Regression Trees, Chapman & Hall/CRC Press. 

Boca Raton, FL. 
Clark, R. N. & Roush, T. L., (1984). Reflectance spectroscopy-Quantitative analysis 

techniques for remote sensing applications. Journal of Geophysical Research, Vol. 89, 
No. B7, 6329-6340. 

Freund, Y. & Schapire, R. E., (1996). Experiments with a new boosting algorithm. Machine 
Learning: Proceedings of the Thirteenth International Conference, pp. 156, Morgan 
Kauffman, San Francisco. 

Ghosh, J., (2002). Multiclassifier Systems: Back to the Future. Proceedings of the Third 
International Workshop on Multiple Classifier Systems, pp. 1-15, Cagliari, Italy, 
Springer. 

Giacinto, G., et al., (2000). Combination of neural and statistical algorithms for supervised 
classification of remote-sensing images. Pattern Recognition Letters, Vol. 21, No. 5, 
385-397. 

Goetz, A. F. H., et al., (1982). Mineral Identification from Orbit: Initial Results from the 
Shuttle Multispectral Infrared Radiometer. Science, Vol. 218, No. 4576, 1020-1024. 

Goetz, A. F. H., et al., (1985). Imaging Spectrometry for Earth Remote Sensing. Science, Vol. 
228, No. 4704, 1147-1153. 

Green, A. A., et al., (1988). A transformation for ordering multispectral data in terms of 
imagequality with implications for noise removal. Geoscience and Remote Sensing, 
IEEE Transactions on, Vol. 26, No. 1, 65-74. 

Hsu, P.-H., (2007). Feature extraction of hyperspectral images using wavelet and matching 
pursuit. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 62, No. 2, 78-92. 

Kokaly, R. F. & Clark, R. N., (1999). Spectroscopic Determination of Leaf Biochemistry Using 
Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear 
Regression. Remote Sensing of Environment, Vol. 67, No. 3, 267-287. 

Kruse, F. A., (2005). Multi-resolution segmentation for improved hyperspectral mapping. 
Proceedings, SPIE Symposium on Defense & Security, pp. 161, Orlando, FL. 

www.intechopen.com



 Data Mining and Knowledge Discovery in Real Life Applications 

 

140 

Kruse, F. A., et al., (1993). The Spectral Image-Processing System (SIPS) - Interactive 
Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of 
Environment, Vol. 44, No. 2-3, 145-163. 

Lam, L. & Suen, C. Y., (1994). A theoretical analysis of the application of majority voting 
topattern recognition. Proceedings of the 12th IAPR International Conference on Pattern 
Recognition and Computer Vision & Image Processing, pp. 418 - 420, Jerusalem. 

Mandler, E. & Schuermann, J., (1988). Combining the classification results of independent 
classifiers based on the Dempster/Shafer theory of evidence. Pattern Recognition and 
Artificial Intelligence, pp. 381-393, Amsterdam, Netherlands, Elsevier Science. 

Nilsson, N. J., (1965). Learning machines, McGraw-Hill. New York. 
Pal, M. & Mather, P. M., (2003). An assessment of the effectiveness of decision tree methods 

for land cover classification. Remote Sensing of Environment, Vol. 86, No. 4, 554-565. 
Richter, R., (1996). A spatially adaptive fast atmospheric correction algorithm. International 

Journal of Remote Sensing, Vol. 17, No. 6, 1201-1214. 
Richter, R., (1998). Correction of satellite imagery over mountainous terrain. Applied Optics, 

Vol. 37, No. 18, 4004 - 4015. 
Smith, G. M. & Milton, E. J., (1999). The use of the empirical line method to calibrate 

remotely sensed data to reflectance. International Journal of Remote Sensing, Vol. 20, 
No. 13, 2653-2662. 

Suen, C. Y. & Lam, L., (2000). Multiple classifier combination methodologies for different 
output levels. Proceedings of First International Workshop on Multiple Classifier Systems 
(MCS 2000), pp. 52–66, Sardinia, Italy, Springer. 

van der Meer, F. & Bakker, W., (1997). Cross correlogram spectral matching: Application to 
surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada. 
Remote Sensing of Environment, Vol. 61, No. 3, 371-382. 

Vane, G. & Goetz, A. F. H., (1988). Terrestrial imaging spectroscopy. Remote Sensing of 
Environment, Vol. 24, No. 1, 1-29. 

Wen, X., et al., (2007a). Combining the Three Matched Filtering Methods in Mineral 
Information Extraction from Hyperspectral Data. Journal of China University of 
Geosciences, Vol. 18, No. Special Issue, 294-296. 

Wen, X., et al., (2007b). A Simplified Method for Extracting Mineral Information From 
Hyperspectral Remote Sensing Image Using SAM Algorithm. 12th Conference of 
International Association for Mathematical Geology, Geomathematics and GIS Analysis of 
Resources, Environment and Hazards, pp. 526-529, Beijing, China. 

Wen, X., et al., (2008a). CBERS-02 remote sensing data mining using decision tree algorithm. 
First International Workshop on Knowledge Discovery and Data Mining, pp. 86-89, 
Adelaide, Australia. 

Wen, X., et al., (2008b). An investigation of the relationship between land cover ratio and 
urban heat island. 2008 International Congress on Image and Signal Processing, pp. 682-
686, Sanya, Hainan, China. 

Winter, M. E., (1999). Fast autonomous spectral endmember determination in hyperspectral 
data. Proceedings of the Thirteenth International Conference on Applied Geologic Remote 
Sensing, pp. 337-344, Vancouver, British Columbia, Canada. 

Xu, L., et al., (1992). Methods of combining multiple classifiers and their applications to 
handwriting recognition. IEEE Transactions on Systems Man and Cybernetics, Vol. 22, 
No. 3, 418-435. 

www.intechopen.com



Data Mining and Knowledge Discovery in Real Life Applications
Edited by Julio Ponce and Adem Karahoca

ISBN 978-3-902613-53-0
Hard cover, 436 pages
Publisher I-Tech Education and Publishing
Published online 01, January, 2009
Published in print edition January, 2009

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

This book presents four different ways of theoretical and practical advances and applications of data mining in
different promising areas like Industrialist, Biological, and Social. Twenty six chapters cover different special
topics with proposed novel ideas. Each chapter gives an overview of the subjects and some of the chapters
have cases with offered data mining solutions. We hope that this book will be a useful aid in showing a right
way for the students, researchers and practitioners in their studies.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Xing-Ping Wen, Xiao-Feng Yang and Guang-Dao Hu (2009). Hyperspectral Remote Sensing Data Mining
Using Multiple Classifiers Combination, Data Mining and Knowledge Discovery in Real Life Applications, Julio
Ponce and Adem Karahoca (Ed.), ISBN: 978-3-902613-53-0, InTech, Available from:
http://www.intechopen.com/books/data_mining_and_knowledge_discovery_in_real_life_applications/hyperspe
ctral_remote_sensing_data_mining_using_multiple_classifiers_combination



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

