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Dry grassland sites are amongst the most species-rich habitats of central Europe
and it is necessary to design effective management schemes for monitoring of their
biomass production. This study explored the potential of hyperspectral remote
sensing for mapping aboveground biomass in grassland habitats along a dry-mesic
gradient, independent of a specific type or phenological period. Statistical models
were developed between biomass samples and spectral reflectance collected with
a field spectroradiometer, and it was further investigated to what degree the cali-
brated biomass models could be scaled to Hyperion data. Furthermore, biomass
prediction was used as a surrogate for productivity for grassland habitats and the
relationship between biomass and plant species richness was explored. Grassland
samples were collected at four time steps during the growing season to capture nor-
mally occurring variation due to canopy growth stage and management factors.
The relationships were investigated between biomass and (1) existing broad- and
narrowband vegetation indices, (2) narrowband normalized difference vegetation
index (NDVI) type indices, and (3) multiple linear regression (MLR) with individ-
ual spectral bands. Best models were obtained from the MLR and narrowband
NDVI-type indices. Spectral regions related to plant water content were identi-
fied as the best estimators of biomass. Models calibrated with narrowband NDVI
indices were best for up-scaling the field-developed models to the Hyperion scene.
Furthermore, promising results were obtained from linking biomass estimations
from the Hyperion scene with plant species richness of grassland habitats. Overall,
it is concluded that ratio-based NDVI-type indices are less prone to scaling errors
and thus offer higher potential for mapping grassland biomass using hyperspectral
data from space-borne sensors.

1. Introduction

Grasslands belong to the earth’s largest biomes and represent the most important
source of livestock feeding. More important, however, is their contribution to eco-
logical goods and services, and to the diversity and cultural history of rural and
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agricultural landscapes. Grasslands are one of the major sources of biodiversity in
Europe, where they cover 50% of the total cultivated area (Tueller 1998) and represent
a promising opportunity to restore or conserve biodiversity in agricultural land-
scapes (Duelli and Obrist 2003). Productivity of these grasslands has a strong effect
on both species competition and human management schemes, since highly produc-
tive grasslands are more prone to be converted to, or remain as, agricultural areas.
Development of robust and timely biomass estimates is of critical importance for mon-
itoring and designing effective management practices that optimize sustainability of
these ecosystems and their goods and services over time.

Traditional methods for mapping grassland biomass involve direct measurements,
which are time-consuming, expensive and require extensive field work. Furthermore,
reliable estimates are restricted to local scales only, whereas ecologists and managers
require estimates at the landscape scale. One of the major sources of information for
the study of landscapes and for estimating biomass over large areas is remote sensing
(Kumar et al. 2001, Wulder et al. 2004). Attempts to estimate biomass using broad-
band sensors with spatial resolutions of 30 m to 1 km have resulted in a wide range
of accuracies and precision (Todd et al. 1998, Wylie et al. 2002, Kogan et al. 2004,
Geerken et al. 2005, Dengsheng 2006). Even though averaging of spectral information
over broad bandwidths can result in loss of critical information (Blackburn 1998), the
quantity and spatial distribution of grassland biomass, in most of these studies, was
estimated through the use of broadband vegetation indices (VIs).

Recently, hyperspectral sensors that acquire images in a large number of narrow
spectral channels (over 40) have been developed (Van der Meer et al. 2001). Studies
using hyperspectral data to estimate biomass have been carried out under controlled
laboratory conditions (Mutanga and Skidmore 2004a, b) and in the field for yield
estimation of agricultural crops such as wheat and corn (Osborne et al. 2002, Hansen
and Schjoerring 2003, Zarco-Tejada et al. 2005, Xavier et al. 2006). A limited number
of studies exist that have investigated the relationship between hyperspectral remote
sensing and biomass production of mixed grassland ecosystems (Rahman and Gamon
2004, Mirik et al. 2005, Tarr et al. 2005, Beeri et al. 2007, Cho et al. 2007) and only
a few exist (Filella et al. 2004, Geerken et al. 2005, Boschetti et al. 2007) that have
extended such analyses over the growing season.

Furthermore, statistical relationships between biomass and spectral information
have often been established between field spectrometer measurements and biomass
(Thenkabail et al. 2000, Künnemeyer et al. 2001, Osborne et al. 2002, Filella et al.

2004, Mutanga and Skidmore 2004a, Shen et al. 2008), field spectrometer measure-
ments resampled to match band definition of existing hyperspectral or broadband
sensors and biomass (Hansen and Schjoerring 2003, Xavier et al. 2006) and between
spectral reflectance extracted directly from hyperspectral sensors and concurrent field
biomass sampling (Mirik et al. 2005, Zarco-Tejada et al. 2005, Kooistra et al. 2006).
Only very few studies have attempted to up-scale field-developed statistical models to
the sensor level (Zha et al. 2003, Anderson et al. 2004) and none, to our knowledge,
have attempted to up-scale statistical models calibrated using observations collected
over the span of the growing season.

A common characteristic of many of the above-mentioned studies is that they do not
attempt to answer specific ecological questions using remote sensing-derived products.
The relationship between productivity and species richness has been of long-standing
interest to ecologists, because understanding the mechanisms driving this relationship
can help us comprehend the determinants of biodiversity (Waide et al. 1999). Many
ecological studies have shown that biomass is a surrogate for productivity (Mittelbach
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et al. 2001, Bischoff et al. 2005), especially in herb-dominated communities like grass-
lands (Scurlock et al. 2002). Attempts to correlate species richness with the normalized
difference vegetation index (NDVI, Gould 2000, Oindo and Skidmore 2002, Oindo
et al. 2003) and pure hyperspectral reflectance (Carter et al. 2005) have been reported
in the literature but, to our knowledge, no study exists that examines the relationship
between species richness and biomass estimates derived from hyperspectral remote
sensing data.

The main objective of our study was to develop a method, using field spectrometer
data, for estimating aboveground biomass in grassland habitats along a dry-mesic gra-
dient. The method should be independent of specific habitats or phenological period.
A further aim was to investigate to what degree the calibrated biomass estimation
could be scaled to hyperspectral data recorded from the Hyperion sensor, to evaluate
the potential to scale models calibrated from plot-based estimates to larger landscapes
as seen from space-borne sensors. Finally, a secondary objective was to use the esti-
mated biomass distribution maps produced from the Hyperion scene to explore the
relationship between species richness and biomass that is a central theme in ecological
diversity studies.

2. Materials and methods

2.1 Study area

The study was conducted on the central part of the Swiss Plateau (8◦ 02′ E, 47◦ 25′ N)
near the city of Aarau with an elevation ranging from 350 to 500 m. Grassland sam-
ples were collected from four characteristic, low-elevation grassland types (see table 1),
previously mapped in a national mapping campaign (Eggenberg et al. 2001). The
four semi-natural grassland types sampled (AE, AEMB, MBAE, MB) were purposely
selected because of their differences in species composition and nutrient availability.
These differences enabled the collection of a wider range of biomass samples. In par-
ticular, AE is a species-rich Arrhenatherion-type managed grassland, that is mesic
and nutrient-rich. The mesic and species-rich type AEMB includes tall, dense and
multilayered stands, composed of many grasses and several herb species, and is still
comparably nutrient-rich (Eggenberg et al. 2001). The type MBAE stands between
AEMB and MB in respect of species richness, nutrients and canopy height. Finally,
true semi-dry MB grasslands (Mesobromion type) are comparably nutrient-poor and
are generally dominated by Bromus erectus or Brachypodium pinnatum with stems
standing well above the surrounding shorter herb vegetation. These stands are gen-
erally colourful and rich in herbs. The main management practice on the grasslands
in the study area is production of hay, and very few areas are used as pastures.

Table 1. Description of the four grassland types sampled.

Type code Phytosociology Description

AE Species-rich Arrhenatherion type Mesic, species-rich, nutrient-rich,
managed

AEMB Transition Arrhenatherion to
Mesobromion

Moderately mesic, species-rich

MBAE Transition Mesobromion to
Arrhenatherion

Moderately dry, species-rich

MB Mesobromion type Species-rich, semi-dry grassland

D
o
w

n
lo

ad
ed

 b
y
 [

E
T

H
 Z

u
ri

ch
] 

at
 0

0
:0

2
 1

5
 N

o
v
em

b
er

 2
0
1
1
 



9010 A. Psomas et al.

2.2 Biomass–species richness sampling

A total of 11 fields belonging to the four grassland types were selected from the exist-
ing national campaign map. The fields were chosen to have a total area larger than
five Hyperion pixels and were checked for purity: only grasslands where the major
vegetation type covered at least 75% of the mapped polygon were kept. Sampling was
performed four times during the growing season of 2005 (10 June, 23 June, 28 July, 10
August). This was done to ensure that normally occurring variation due to phenology
(Butterfield and Malmstrom 2009), canopy growth stage and management factors was
recorded. Biomass samples were clipped at ground level using a 32 cm radius metal
frame. Within each field, three randomly selected plots were sampled to account for
the spatial variability of biomass. A total of 155 biomass samples were collected from
the 11 grassland fields during the growing season of 2005. The collected material was
stored in pre-weighed air-sealed plastic bags and brought to the laboratory where the
total fresh biomass was measured. Samples were then dried in the oven at 65◦C for 72
h and weighed again to measure the total dry biomass. The plant water content was
calculated as the difference between fresh and dry weight. Finally, the mean value of
the three fresh biomass samples collected at each field was assigned as the measured
biomass at that field.

Grassland species richness data were extracted from a data set that was collected
during a previous mapping project (Eggenberg et al. 2001) and covered scattered pat-
terns throughout Switzerland. Aboveground biomass recorded in 2005 was related to
plant species richness data recorded before 2001. It was not expected to see large differ-
ences in species richness patterns between pre-2001 and 2005. The grassland habitats
under investigation have been given a protected status, thus management practices
are regulated by law, and therefore no changes in land use (e.g. intensification of pro-
duction) or in management practices that could have a subsequent (clear) effect on
species composition and richness of these habitats are allowed. Furthermore, research
on similar species-rich dry grasslands in Switzerland (Stampfli and Zeiter 2001, 2004),
over periods of 10 and 13 years respectively, has shown that locally sampled species
have persisted and were identified continuously during the whole period, and that no
new species had invaded the study sites. Finally, with respect to the potential impact
of extreme climatic conditions, in particular the summer drought of 2003, evidence
from the 13-year study of Stampfli and Zeiter (2004) has shown that drought had
an effect on the relative cover (i.e. abundance) of different species but not on the
species composition, or on the number of species (species richness), which is inves-
tigated in this article. For every grassland field that was mapped in the national
campaign, a circular sampling plot with a radius of 3 m was established and each
individual plant species and its abundance were recorded. The total number of indi-
vidual plant species at the sampling plot was recorded and used to express the species
richness of the particular mapped grassland (Rocchini et al. 2007). A total of 106
grassland fields, with a maximum distance of 14 km from our sampling sites, were
available within the Hyperion scene. These fields were selected and used for further
analyses.

2.3 Field spectral sampling for estimating aboveground biomass patterns in grassland

habitats

Parallel to biomass sampling, canopy spectral profiles of the grassland fields
were collected using an Analytical Spectral Devices (ASD) FieldSpec Pro FR
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spectroradiometer. This spectrometer has a 350–2500 nm spectral range and 1 nm
spectral resolution, with a 25◦ field of view (ASD 2000). Collected spectra were
converted to absolute reflectance by reference measurements over a Spectralon
reflectance panel (Labsphere, North Sutton, NH, USA) with known spectral proper-
ties. Calibration of the spectrometer was made every 20 measurements to minimize
changes in atmospheric condition. Measurements were collected under sunny and
cloud-free conditions between 10:00 and 16:00, while walking along two diagonal
transects across the length of each field. This resulted in 60–100 spectral measure-
ments covering the whole extent of the grassland fields and not specifically the plots
where biomass samples were collected. The ASD field spectra were then resampled
to simulate Hyperion spectral bands using the spectral centre wavelength (CWL) and
full-width half-maximum (FWHM) information for each individual Hyperion band
(Barry 2001). After investigation for erroneous spectral measurements, the mean spec-
tral reflectance of each grassland field was calculated as the mean of the 60–100
spectral measurements collected over the whole extent of the field.

2.4 Hyperion imagery processing and analysis

Hyperion radiometrically corrected (level 1R) data were acquired over the study
area from a nadir (overhead) pass on 10 August 2005 at 10:06:49 Greenwich Mean
Time (GMT). The EO-1 satellite has a sun-synchronous orbit at 705 km altitude.
The Hyperion sensor collects 256 pixels with a spatial resolution of 30 m over a
7.65 km swath with a maximum acquisition length of 180 km. Data are acquired in
‘pushbroom’ mode with two spectrometers. One operates in the visible near infrared
(VNIR) range (70 bands between 356 and 1058 nm with an average FWHM of 10.90
nm) and the other in the shortwave infrared (SWIR) range (172 bands between 852
and 2577 nm, with an average FWHM of 10.14 nm) (Pearlman et al. 2003). Of the 242
level 1R bands, 44 are set to zero by software (bands 1–7, 58–76, 225–242). The length
of the Hyperion stripe for this particular study was 75 km.

After removal of Hyperion bands that (1) were set to zero, (2) were in the spectral
range of 1350–1415 nm or 1800–1950 nm and thus seriously affected by atmospheric
water vapour absorption or (3) overlapped between the two spectrometers, a total
of 167 bands were available for further analysis (426–2355 nm). Post-processing of
Hyperion level 1R data comprised correction for striping pixels, smoothing using a
minimum noise fraction (MNF) transformation, atmospheric correction and image
orthorectification. Correction for striping pixels and smoothing using forward and
inverse MNF was applied as described by Datt et al. (2003). Atmospheric correction of
the Hyperion data was performed using ATCOR-4 software (Richter 2003). Since the
grassland fields were relatively flat and the field of view of the Hyperion sensor is small,
topographic illumination effects were not accounted for. The following atmospheric
parameters were selected for the correction: rural aerosol model, water vapour column
of 1.0 g m–2 and visibility of 40 km. The resulting atmospheric correction yielded
absolute reflectance differences for grassland surfaces between the Hyperion and the
ASD measurements of 7% at 740 nm and 5% at 1500 nm. A digital terrain model
(DTM) of Switzerland with a resolution of 25 m (Swisstopo 2007) was used for the
orthorectification of the Hyperion scene. Analysis was performed with the software
package PCI Geomatica Orthoengine, which uses the parametric sensor model (PCI
Geomatics 2006). The nearest neighbour resampling method was used to preserve the
original radiometry of the image (Eckert and Kneubühler 2004). Hyperion orbit and
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scene parameters were selected and a total of 25 ground control points (GCPs) were
collected, with an overall geo-registration error of 10.38 m.

2.5 Statistical approaches for estimating aboveground grassland biomass

The mean spectral reflectance of the 60–100 spectral measurements (collected with
the ASD and then resampled to simulate Hyperion bands) and the mean biomass of
the three samples collected at each grassland field were used in the statistical analysis.
Biomass samples and spectral reflectance recorded at 11 grassland fields, repeated for
four time steps during the 2005 growing season, were used to calibrate the statistical
models. This was done to ensure that normally occurring variation in biomass and
spectral reflectance due to vegetative growth stage or management practices on the
different grassland types was included in the models. As a result, models could account
for a larger temporal and across-grassland type variability than those calibrated using
samples collected from only one date. Initial data screening revealed a heavily skewed
distribution of the biomass data. Therefore, to improve the regression modelling, the
biomass data were log-transformed to approach a normal distribution.

The relationship between biomass and several hyperspectral and broadband VIs
was investigated. These were VIs (see table 2 for abbreviation) related to vegetation
structure (NDVI, RDVI, SR, SAVI, TSAVI, OSAVI and MTVI1), to vegetation water
status (NDWI, SRWI, PWI and WDVI), to chlorophyll and the red edge (RESP, GMI,
CI_1, CI_2, VOGa, VOGb, VOGc, MCARI and TRVI) and other features (CAI,
CAI_ATSAVI, TVI and PRI), which themselves are related to biomass. A detailed
description of the properties and advantages of these VIs can be found in Broge and
Leblanc (2001), Haboudane et al. (2004) and Zarco-Tejada et al. (2005). All VIs were
used individually but also in combination with each other, to calibrate linear and mul-
tiple linear regression models to explain the biomass sampled in the field. Multiple
linear regressions models were calibrated using VIs that were only weakly correlated
(r ≤ 0.5) to avoid collinearity problems.

Most of the above-mentioned VIs consider only certain parts of the spectrum, pri-
marily the chlorophyll absorption region (680 nm), the near-infrared (NIR) reflectance
(800 nm) and/or the green reflectance peak (550 nm). Given this limitation, and
in an attempt to use the depth of information included in the large number of
bands of hyperspectral data, we built narrowband NDVI-type indices (nb_NDVItype)
(Thenkabail et al. 2000) as shown in equation (1):

nb_NDVItype[b1, b2] =
b1 − b2

b1 + b2
. (1)

All possible two-pair combinations were used in equation (1), where b1 and b2 were the
Hyperion simulated bands from the field reflectance measurements. A total of 27 889
narrowband indices were calculated. These indices were used in linear regression
models to determine their predictive power to explain measured biomass.

The disadvantage of existing VIs and of the nb_NDVItype indices is that they
only consider very few of the available hyperspectral bands. Although much of
the information provided by neighbouring bands is often redundant (Thenkabail
et al. 2004), it is still possible that the spectral information is not optimally used by
these indices. Therefore, multiple linear regression (MLR) that selected the best com-
bination of linear predictors from the Hyperion simulated bands was used for biomass
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estimation. Branch-and-bound (Miller 2002) variable search algorithms were chosen
to identify spectral bands that best explained biomass variability. A branch-and-
bound algorithm searches the complete space of solutions for a given problem
for the best solution. Since explicit enumeration is normally impossible owing to
the exponentially increasing number of potential solutions, the use of bounds for
the function to be optimized combined with division of sets of solutions into
subsets enables the algorithm to search parts of the solution space only implic-
itly (Clausen 1999). In this study, models were built using one to four spectral
bands, in an attempt to avoid multicollinearity (Curran 1989, De Jong et al.

2003) or overfitting of the models (Crawley 2005), and because preliminary results
showed that accuracies improved only marginally when using more than four bands.

The overall capability of each model to explain the variability in the biomass sam-
ples was evaluated by the adjusted coefficient of determination (adj.R2) (Hill and
Lewicki 2006). Adj.R2 was used since it will only increase if the new variable added
will improve the model more than would be expected by chance (Crawley 2005). The
model prediction error for estimating biomass was assessed by using a four-fold cross-
validation (CV) (Diaconis and Efron 1983). The four-fold cross-validation randomly
split all mean biomass measurements per grassland field (n = 50) into four bins, then
it iteratively determined regression parameters using a sample of three bins and tested
the resulting model on the remaining bin. This procedure was repeated until each bin
had been left out once. Since predicted samples were not used to build the model,
the calculated cross-validation root mean square error (CV-RMSE) is a good indica-
tor of the model accuracy and predictive power. In addition, to investigate the effect of
seasonal variability on the predictive power of the models, a four-fold ‘date’ CV proce-
dure was used. For this, models were calibrated using data collected from three dates
and then their predictions validated with data collected on the fourth. This process
was repeated four times until each date had been used once for validation of model
predictions.

2.6 Up-scaling of field-calibrated models

Statistical models with the highest accuracy and predictive power were up-scaled to
the geometrically and atmospherically corrected Hyperion scene to predict the spa-
tial distribution of biomass over the study area. Owing to the differences between
the two instruments (ASD–Hyperion), certain measures had to be taken to ensure
accurate spectral and spatial scaling of these models. Spectral up-scaling was achieved
by resampling the ASD spectral bands to simulate those of the Hyperion sensor
before any regression modelling was performed, and by applying atmospheric cor-
rection to the acquired Hyperion scene. Thus, the at-sensor radiance recorded by the
Hyperion sensor was transformed to top-of-canopy reflectance after accounting for
solar and sensor geometries, atmospheric optical properties and sensor band specifi-
cations (Richter 2003). To account for the 30 m spatial resolution of the spectral signal
recorded by the Hyperion sensor, each grassland was assigned the aggregated mean
signal of the 60–100 spectral signatures collected with the ASD spectroradiometer
along transects over the whole extent of the field. In addition, to ensure the ‘purity’ of
the Hyperion pixels extracted from the scene, a procedure was followed to only select
pixels from the centre of the grassland field. In particular, a buffer of 17 m towards the
centre of the grassland field was created, and any pixel whose centre was within this
area was removed from further analyses. Thus, pixels adjacent to the edges of the fields
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were excluded since chances were high that the spectral signal recorded was mixed with
the contribution of other land-use types. Finally, to deal with the spatial scaling differ-
ence between the 30 m Hyperion pixel size and the relatively small size of the biomass
sampling plots, we averaged the multiple biomass samples within each of the grass-
lands and assigned this value to the whole grassland field (White et al. 1997). This
was done because sampling of biomass was performed within already mapped and
outlined grassland fields (Eggenberg et al. 2001). The borders of these fields were pri-
marily identified via aerial photograph interpretation, and then every field was visited
by field teams, who updated, if required, the pre-selected borders so that the grassland
area was homogeneous from structural and species composition perspectives across
the whole extent of its area. It was within this extent of these grassland polygons that
biomass samples were taken.

On the date of the Hyperion data acquisition, two sources of canopy reflectance
measurements existed for the sampled grassland fields, that is, reflectance mea-
surements from the ASD field spectroradiometer (that were resampled to simulate
Hyperion spectral bands) and reflectance measurements from the Hyperion sensor.
Therefore, VIs and nb_NDVItype indices were calculated for the sampled grasslands
using both the ASD and the Hyperion sensor reflectance measurements. Then, differ-
ences (measured in RMSE) between the absolute reflectance, VIs and the nb_NDVItype

indices derived from these two sources were calculated. Only models whose predictors
(VIs, nb_NDVItype indices, absolute reflectance) had the smallest differences between
the ASD and the Hyperion sensor estimates were selected. These models were subse-
quently used to up-scale biomass predictions to the Hyperion scene and to create the
biomass distribution maps across the landscape. Finally, biomass estimates for 106
grassland fields, where species richness data were available, were extracted.

While we recognize that empirical regressions between biophysical parameters and
reflectance or VIs are limited to the place and time over which the ground data are
collected (Verstraete et al. 1996) we believed that this did not pose a problem with up-
scaling the biomass prediction models following the above-mentioned methodology.
This is because extracted biomass estimations were restricted only to comparable low-
elevation grassland types growing under the same environmental and management
conditions as the grasslands from where our samples were collected.

3. Results

A summary of the biomass measurements is reported in table 3 and figure 1. The
highest variability of biomass was observed at the first (10 June) and second (23 June)
sampling dates. Sampled grasslands represent a dry-mesic gradient having differ-
ent availabilities of water and nutrients, which eventually lead to different rates of
growth and biomass accumulation. Lower biomass variability observed later in the
season could be partly attributed to the management practices applied to these fields.
Furthermore, analyses on the individual biomass samples collected showed that the
average standard deviation of the three samples was 21% of the mean biomass
measured within each grassland field.

The best five models from the different VI categories for predicting biomass are
presented in table 4. Overall, models developed with existing VIs gave low adj.R2 val-
ues. Higher values were obtained by VIs related to canopy water content (e.g. NDWI,
adj.R2

= 0.33).
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Table 3. Summary statistics for original and log-transformed measured biomass at 50 grassland
fields over four time steps during the 2005 growing season.

Biomass

n Mean Std Min Max Range

Original measurements
(kg m−2)

50 0.7756 0.5704 0.1785 3.3180 3.1395

Log-transformed
measurements
log(kg m−2)

50 −0.4523 0.6186 −1.7230 1.1990 2.9220

Note: Std, standard deviation.

Models using VIs that minimize the soil background influences in the spectral sig-
nal, like TSAVI (Baret et al. 1989), did not improve the results (adj.R2

= 0.28), while
models using the traditional NDVI and a modified version of it that is more suitable
for low and high LAI values (RDVI) (Haboudane et al. 2004) gave similar adj.R2 (0.29,
0.28 for NDVI and RDVI respectively). Comparably poor results (adj.R2

= 0.28) were
also obtained using the Carter index 2 (CI_2), which had been found to indicate plant
stress (Carter 1994). Calibration of linear regression models using more than one VI
did not improve biomass predictions, thus no results thereof are presented below.

All possible two-band combinations were used to create nb_NDVItype indices.
Results for the adj.R2 achieved between biomass and each nb_NDVItype index are
graphically presented in figure 2. Values for adj.R2 ranged from 0.01 to 0.74, reflect-
ing a wide variation in the strength of the relationship between nb_NDVItype indices
and biomass. Highest adj.R2 values were observed for nb_NDVItype indices with wave-
lengths from the NIR and the SWIR namely: 720, 1200, 1700 and 2280 nm. The best
NDVItype index model for each one of the above four regions is presented in table 4.

Results of the best two MLR models for each number of predictors (one to four
bands) that were identified from the exhaustive branch-and-bound selection algorithm
are reported in table 4. Adj.R2 ranged from 0.52 for one-band models to 0.86 for
four-band models. Primarily, the bands selected by these analyses were in the spectral
regions of 478, 518, 1205 and 2235 nm.

The overall performance of the above models to predict biomass was also evaluated.
Cross-validated biomass prediction errors (CV-RMSE) of the best VIs, nb_NDVItype

indices and MLR models are presented in figure 3 and table 4. Models that used
existing VIs predicted comparably poorly, with CV-RMSE from ∼ 0.55 to ∼ 0.52
log(kg m–2) of biomass. The new nb_NDVItype indices improved the predictive power
of the models by reducing the CV-RMSE to 0.36 log(kg m–2). These predictions
were superior to one-band MLR models that had a CV-RMSE of 0.42 log(kg m–2).
Inclusion of additional bands in the MLR models further increased their predictive
power by reducing the CV-RMSE to 0.31, 0.27 and 0.24 log(kg m–2) for two, three
and four band MLR models, respectively.

Overall, models calibrated with biomass samples collected on the first two sam-
pling dates of the season (date 1 = 10 June, date 2 = 23 June) predicted biomass
with lower RMSE contrary to models calibrated using samples from only one of
these dates that gave poorer predictions. For example, the best nb_NDVItype index
model for estimating biomass when calibrated with samples from dates 1 and 2
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Figure 1. Mean biomass (log(kg m–2)) measurements of individual sampled fields during the
growing season. Dashed horizontal lines represent the mean biomass measured per sampling
date.

(C-1,2,4/V-3, C-1,2,3/V-4) yielded RMSE of 0.30 and 0.34 log(kg m–2). On the con-
trary, when the model was calibrated with samples from late dates in the season
(C-2,3,4/V-1, C-1,3,4/V-2; date 3 = 28 July, date 4 = 10 August), it was not able to
extrapolate to the large range of biomass observed early in the season and thus cre-
ated higher ‘date’ cross-validated errors. In particular, RMSE of biomass prediction
increased to 0.46 and 0.43 log(kg m–2).

For the date of the Hyperion data acquisition, differences between model pre-
dictors (VIs, nb_NDVItype indices, absolute reflectance) calculated using ASD field
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Table 4. Adjusted coefficient of determination (adj.R2) and cross-validated biomass predic-
tion error (CV-RMSE) of the best models calibrated with biomass (log(kg m–2)) and spectral
information (VIs, nb_NDVItype indices, MLR), collected at 50 grassland fields over the whole
growing season using an ASD field spectroradiometer, with bands resampled to simulate those

of the Hyperion band widths.

Model

Adj.R2 of models
calibrated from ASD field

spectral measurements

CV-RMSE of predicted
biomass from ASD field
spectral measurements

NDWI 0.33 0.51
TSAVI 0.29 0.53
RDVI 0.29 0.52
NDVI 0.28 0.53
CI_2 0.28 0.52
nb_NDVItype b1326, b1710 0.65 0.36
nb_NDVItype b1084, b1205 0.56 0.39
nb_NDVItype b1074, b2264 0.52 0.41
nb_NDVItype b722, b1669 0.51 0.42
MLR-1 band b1710 0.52 0.42
MLR-1 band b1699 0.51 0.43
MLR-2 band b478, b1780 0.77 0.31
MLR-2 band b468, b1780 0.77 0.31
MLR-3 band b518, b1699, b1710 0.82 0.27
MLR-3 band b1185, b1205, b1235 0.82 0.29
MLR-4 band b518, b1205, b1235,

b1710
0.86 0.22

MLR-4 band b518, b1215, b1225,
b1720

0.86 0.24

spectral measurements and spectral measurements from the Hyperion sensor, for nine
sampled grassland fields, are reported in table 6. The smallest difference between
field–sensor calculated model predictors was observed for the b1084 nm-b1205 nm
nb_NDVItype index. Overall, differences were lower between field–sensor calculated
VIs and nb_NDVItype indices than between field–sensor measured reflectance.

Using the spectral recordings of the Hyperion sensor and the statistical models
developed with seasonal spectral and biomass field measurements, biomass of nine
grassland fields was predicted on the date of the Hyperion data acquisition. Results of
the RMSE between predicted and actual biomass measured on these nine grassland
fields are presented in table 7. The smallest prediction RMSE was observed for the
b1084 nm-b1205 nm nb_NDVItype index model, with 0.25 log(kg m–2) of biomass.

This model was chosen for up-scaling biomass estimations to the Hyperion scene
because of its small prediction error, but also since Datt et al. (2003) reported that VIs
calculated using Hyperion bands from the NIR region had minimal absolute value
differences from those calculated from ASD reflectance measurements on the ground.
Even though using a ratio composed only of NIR bands could cause a conflict with
the high NIR reflectance of soils in arid or semi-arid areas, Geerken et al. (2005) stated
that this would not be a problem in areas that have already been identified as being
covered by vegetation, like our grassland fields. The resulting map of the biomass
distribution of the grassland habitats within our study area is presented in figure 4,
and shows distinct differences in biomass patterns across the landscape. Using this
map of biomass distribution, estimates for the 106 mapped grasslands were extracted.
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Figure 2. Result of the narrowband NDVI-type vegetation index analyses (nb_NDVItype). The
graph shows the adjusted coefficient of determination (adj.R2) from the regression of biomass
against the nb_NDVItype indices, calculated from any band pairs among the simulated Hyperion
bands. Light red areas indicate higher adj.R2. White gaps represent water absorption regions
that were removed from the analysis.

The relationship between biomass estimates and the species richness recorded for these
grasslands is presented in figure 5.

4. Discussion

The main purpose of this study was to explore the potential of hyperspectral remote
sensing for mapping aboveground biomass in grassland habitats along a dry-mesic
gradient, independent of a specific type or phenological period. Several statistical
models were developed to serve this objective.

Even though models using existing VIs gave low adj.R2 values, our results indicated
that higher values were obtained by VIs related to canopy water content. This can
be explained by the strong relationship between canopy water content and biomass
(Mutanga et al. 2003, Anderson et al. 2004). Asner (1998) has shown that an increase
in biomass leads to an increase in canopy water content. Furthermore, the reason
why VIs that minimize the soil background influences did not improve the models can
mainly be attributed to the fact that the grasslands sampled for this study are rich in
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Figure 3. Best measured vs predicted biomass estimates from regression models of (a) existing
VIs, (b) nb_NDVItype, and (c)–(f ) one to four spectral band MLR, optimized with a four-fold
cross-validation using samples from all four sampling dates. Biomass values are in logarithmic
scale.
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9022 A. Psomas et al.

Table 5. Biomass (log(kg m–2)) prediction errors of best models built with three approaches.
Models were calibrated on three dates and validated on the fourth. C-2,3,4/V-1 means that
regression models were calibrated on dates 2, 3 and 4 and validated on date 1. Recording dates

were date 1 = 10 June; date 2 = 23 June; date 3 = 28 July and date 4 = 10 August.

RMSE

Existing VIs nb_NDVItype

1-band
MLR

2-band
MLR

3-band
MLR

4-band
MLR

Calibration-
validation
dates NDWI

nb_NDVItype

b1326, b1710
MLR-
b1710

MLR-
b478,
b1780

MLR-
b1185,
b1205,
b1235

MLR- b518,
b1205,
b1235,
b1710

C-2,3,4/V-1 0.61 0.46 0.57 0.4 0.35 0.31
C-1,3,4/V-2 0.62 0.43 0.49 0.35 0.28 0.38
C-1,2,4/V-3 0.47 0.30 0.36 0.21 0.18 0.15
C-1,2,3/V-4 0.45 0.34 0.45 0.27 0.25 0.24
Resubstitution-
RMSE

0.49 0.39 0.42 0.28 0.25 0.21

Note: Bold numbers correspond to the lowest prediction error for each model.

Table 6. RMSE between spectral reflectance, VIs and nb_NDVItype indices calculated using
spectral measurements collected in the field with an ASD and spectral measurements from the
Hyperion sensor, for nine grassland fields sampled at the date of the Hyperion data acquisition.
RMSE between field and sensor-estimated VIs and nb_NDVItype indices are expressed as the
percentage (%) of their possible value range. Possible value range for VIs and nb_NDVItype

indices is 0–1 and for spectral reflectance 0–100. Since CI_2 is a ratio index and not a normalized
difference index, the RMSE between field and sensor estimates is expressed as a percentage of

the observed value range of CI_2 calculated using ASD field spectral measurements.

Model predictors

RMSE between field-measured
and Hyperion-derived model

predictors (reflectance and
indices) %

NDWI 5
TSAVI 10
RDVI 9
NDVI 8
CI_2 11
nb_NDVItype b1326, b1710 7
nb_NDVItype b1084, b1205 3
nb_NDVItype b1074, b2264 8
nb_NDVItype b722, b1669 8
MLR-1 band b1710 4.9
MLR-1 band b1699 5
MLR-2 band b478, b1780 1.4/4.1
MLR-2 band b468, b1780 2.1/4.1
MLR-3 band b518, b1699, b1710 1.1/5/4.9
MLR-3 band b1185, b1205, b1235 9.6/11.8/11.5
MLR-4 band b518, b1205, b1235, b1710 1.1/11.8/11.8/4.9
MLR-4 band b518, b1215, b1225, b1720 1.1/11.6/11.3/5.3
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Biomass estimation and species richness of grasslands 9023

Table 7. Biomass (log(kg m–2)) prediction errors (RMSE) for nine grassland fields at the date of
the Hyperion data acquisition (10 August 2005). Hyperion sensor spectral measurements were

used to predict biomass according to the field-calibrated regression models.

Model
RMSE of biomass predicted from Hyperion sensor

spectral measurements

NDWI 0.28
TSAVI 0.33
RDVI 0.41
NDVI 0.32
CI_2 0.29
nb_NDVItype b1326, b1710 0.70
nb_NDVItype b1084, b1205 0.25
nb_NDVItype b1074, b2264 0.35
nb_NDVItype b722, b1669 0.40
MLR-1 band b1710 0.43
MLR-1 band b1699 0.44
MLR-2 band b478, b1780 2.72
MLR-2 band b468, b1780 3.92
MLR-3 band b518, b1699, b1710 1.71
MLR-3 band b1185, b1205, b1235 3.10
MLR-4 band b518, b1205, b1235, b1710 1.94
MLR-4 band b518, b1215, b1225, b1720 2.79

herbs and have high canopy cover during the growing season (Eggenberg et al. 2001),
thus soil reflectance was minimal.

An important finding of this study was that our analyses using nb_NDVItype indices
identified regions from the NIR and the shortwave infrared (SWIR) that resulted in
more accurate models for estimating biomass than do existing VIs that primarily use
the red and NIR regions. Specifically, the best nb_NDVItype indices used the wave-
lengths 720, 1200, 1700 and 2280 nm. The 720 nm is the red-edge part of the spectrum,
where the maximum change in the slope of the vegetation reflectance spectra occurs
(Filella and Peñuelas 1994, Thenkabail et al. 2000). Vegetation stress is best detected
in the red-edge region (Elvidge and Chen 1995, Thenkabail et al. 2004) and additional
information about chlorophyll and nitrogen status of plants can be extracted (Carter
1994, Elvidge and Chen 1995, Clevers and Jongschaap 2001). The other regions (1200,
1700 and 2280 nm) are strongly associated with plant leaf water content, which is cor-
related with canopy biomass and LAI (Hunt 1991) and to cellulose, starch, lignin and
nitrogen concentrations (Kumar et al. 2001). In particular, Asner (1998) has shown
that the water absorption feature around 1200 nm (Curran 1989) exhibits an obvious
deepening as LAI and subsequently biomass are increasing. Our results confirm find-
ings of earlier studies (Cook et al. 1989, Hunt 1991, Gong et al. 2003) that correlate
the ratio between NIR and SWIR to productivity and LAI. Additionally, Geerken
et al. (2005) have shown that strongest correlations between biomass of annual grasses
and narrowband indices were found between NIR-NIR and NIR-SWIR constructed
narrowband ratios.

Another finding of our study was that MLRs using the exhaustive branch-
and-bound selection algorithm were successful in estimating aboveground biomass.
Although the selection of spectral bands was solely based on statistical optimization,
these bands were primarily located at key spectral regions with respect to physical
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Estimated biomass
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Figure 4. Biomass prediction map (kg m–2) created using Hyperion spectral band values, using
an nb_NDVItype index regression model constructed with bands at b1084 nm and b1205 nm.
Forest areas are masked with green.

processes of plants and vegetation biomass. The 478 and 518 nm bands from the
visible region are highly correlated with chlorophyll content of vegetation (Curran
1989, Kumar et al. 2001), the 1205 nm band from the NIR and the 1710 nm band
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Figure 5. Relationship between species richness and biomass estimated from the b1084
-b1205 nm nb_NDVItype index model. The quantile regression models are of type: rich-
ness = b0 + b1biomass + b2biomass2, between species richness and estimated biomass for 106
grassland fields. The mean (50% quantile) represents a simple quadratic regression model, while
the higher quantiles represent a model fit through the top 30% (70% quantile) and the top 10%
(90% quantile) of the data range.

from the SWIR are related to plant moisture and leaf mass (Hunt 1991, Asner 1998,
Thenkabail et al. 2004). Finally, the 2235 nm band has been related to biochemical
canopy properties like cellulose, starch and lignin concentrations (Elvidge 1990). Even
though different MLR models used slightly different bands, these were neighbouring
and highly correlated to the ones mentioned above, and thus provided the same type
of information. In general, MLR can be considered a successful approach to optimize
the retrieval of physical properties from spectral information.

The results of this study indicate the importance of using multiple dates for cali-
brating models in order to capture a large range of variability and to increase model
stability. In particular, results from the four-fold ‘date’ CV analyses showed a clear
pattern; models calibrated with biomass samples collected on the first two sampling
dates of the season predicted biomass with higher accuracy. The reason for this pat-
tern probably originated from the high variability of the biomass samples collected
on date 1 and date 2 (figure 1). At the beginning of the season, vegetation is devel-
oping at different rates, which yields differences in biomass accumulation, percentage
of canopy closure and, subsequently, differences in spectral reflectance (Jensen 2000).
Spectral and biomass sampling on these dates captured differences between the grass-
land types along a dry-mesic gradient. Thus, models calibrated with data from these
dates could account for a much broader range of variability of biomass with relation
to spectral reflectance.

In addition, our analyses showed that it was possible to up-scale field-developed
statistical models to the Hyperion sensor level for estimating biomass at the land-
scape scale. The smallest differences between field–sensor calculated model predictors

D
o
w

n
lo

ad
ed

 b
y
 [

E
T

H
 Z

u
ri

ch
] 

at
 0

0
:0

2
 1

5
 N

o
v
em

b
er

 2
0
1
1
 



9026 A. Psomas et al.

were observed for VIs and nb_NDVItype indices (see table 6). Vegetation indices can
minimize external effects such as atmosphere, sun and viewing angle, and thus nor-
malize effects like canopy background variation and soil variations (Jackson and
Heuete 1991). Additionally, differences in absolute reflectance recorded in the field
and recorded by the sensor were higher in the NIR and SWIR compared to the visible
(VIS) region of the spectrum. We attribute this to a poor calibration of the SWIR spec-
trometer of the Hyperion sensor and to difficulties in the atmospheric correction of the
data. Lack of knowledge on the exact state of the atmosphere at the date of the acqui-
sition and, in particular, not accurate information on parameters like water vapour
content, has been found to have a more pronounced effect on the near and shortwave
infrared parts of the spectrum (Liang 2004). With respect to model predictive power,
except for MLR models using two or more spectral bands, all other models produced
comparable low biomass prediction RMSE. The main reason for these small RMSEs
was that statistical models were calibrated with measurements of biomass and spec-
tral reflectance which were collected and transformed in such a way that they matched
the spectral and spatial resolution of the Hyperion sensor. In particular, biomass sam-
ples were randomly selected within the extent of a homogeneous area and then were
averaged to represent a single value per field, while ASD wavebands were resampled
to simulate Hyperion spectral bands. Furthermore, the sensor-predicted biomass per
field was the aggregated estimation of all ‘pure’ pixels within the grassland field. The
smoothing effect of this aggregation reduced the variance of estimated biomass. Thus
the value approached that of the field measurement, being the mean of several biomass
measurements on the grassland field.

Finally, results of this study showed the potential of hyperspectral remote sensing
for exploring plant species richness patterns of grassland habitats. The relationship
between predicted grassland biomass and species richness appeared to be unimodal,
with species richness peaking at intermediate levels of biomass. Our results agree
with a number of ecological studies that have related plant biomass as a measure of
productivity with plant diversity (e.g. Mittelbach et al. 2001) and have identified a
hump-shaped (unimodal) relationship. The explanation for that relationship is that at
low levels of productivity or high disturbance, fewer species can survive, hence richness
is lower. Alternatively, at high levels of productivity or low disturbance, comparably
few species can monopolize the available resources and outcompete other species. It
is only at intermediate levels of productivity or moderate disturbance that species
richness is peaking (Palmer and Hussain 1997). Our results show that higher species
richness is mainly observed at intermediate levels of biomass. However, this relation-
ship is not statistically significant since there are a number of low species richness
values at intermediate biomass levels as well. The main reason for this is possibly
related to the time during the growing season when the Hyperion scene was acquired.
In particular, many of the highly productive grasslands (and thus the ones with low
species richness) were already cut and were at the stage of accumulating new biomass.
Therefore, the estimated biomass from the Hyperion scene did not reliably represent
the productivity of these grassland habitats. We believe that these grasslands would
have been towards the highly productive end of the unimodal curve if the scene had
been acquired earlier, and in particular at the peak of the growing season.

5. Conclusions

The results presented in this article demonstrate the potential of hyperspectral remote
sensing for estimating biomass of grassland habitats throughout a whole growing
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Biomass estimation and species richness of grasslands 9027

season. Our analyses actually highlight the importance of acquiring multitemporal
spectral and biomass measurements especially at the beginning of the growing season,
in order to capture a larger range of biomass and seasonal variability and there-
fore to be able to create reliable and phenology-independent models. An additional
conclusion of this study is that appropriate spectral and spatial scaling of field obser-
vations can assist towards successful up-scaling of field-developed statistical models
to satellite-recorded remote sensing data. Even though MLR models using spec-
tral bands gave better estimates and predictions on the field level, they could not
be scaled easily to the sensor level. Therefore, for up-scaling field-developed models
and for better estimation of grassland biomass, we propose using narrowband NDVI-
type vegetation indices, constructed with bands in spectral regions related to canopy
water content. Finally, our research has exhibited the potential and the need to link
the high accuracy hyperspectral remote sensing products (e.g. biomass) with nature
conservation areas like biodiversity monitoring.
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