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Abstract—In this letter, an ensemble learning approach, Ro-
tation Forest, has been applied to hyperspectral remote sensing
image classification for the first time. The framework of Rotation
Forest is to project the original data into a new feature space
using transformation methods for each base classifier (decision
tree), then the base classifier can train in different new spaces
for the purpose of encouraging both individual accuracy and di-
versity within the ensemble simultaneously. Principal component
analysis (PCA), maximum noise fraction, independent component
analysis, and local Fisher discriminant analysis are introduced
as feature transformation algorithms in the original Rotation
Forest. The performance of Rotation Forest was evaluated
based on several criteria: different data sets, sensitivity to the
number of training samples, ensemble size and the number of
features in a subset. Experimental results revealed that Rotation
Forest, especially with PCA transformation, could produce more
accurate results than bagging, AdaBoost, and Random Forest.
They indicate that Rotation Forests are promising approaches for
generating classifier ensemble of hyperspectral remote sensing.

Index Terms—Classification, decision tree, ensemble learning,
hyperspectral remote sensing image, Rotation Forest.

I. Introduction

HYPERSPECTRAL remote sensing image classification
is a challenging problem because of its high dimen-

sional inputs (hundreds of bands), many class outputs, and
limited availability of reference data [1], [2]. Therefore, we
require some powerful techniques to improve the accuracy
of classification results. Since it is always difficult to select
an optimal classifier, an attractive type of machine learning
algorithm called the multiple classifier system (MCS) or
classifier ensemble is rapidly developing and enjoying a lot of
attentions due to their potential to improve the classification
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accuracy of hyperspectral remote sensing image significantly
[1], [3].

MCS integrates the outputs of individual classifiers accord-
ing to a certain combination approach (such as majority vote,
Bayesian rule, etc.) or based on an iterative error minimization
[3]–[7]. The outputs can be generated by the same classifier
of different training samples, or the different classifiers of
same/different training set. Previous studies demonstrated that
a successful MCS should be one where the member clas-
sifiers are accurate as well as the diversities among them
are obvious, because combining similar classification results
would not further improve the accuracy [8]–[10]. Two popular
approaches for creating strong ensembles are boosting and
bagging [4], [11]. Boosting processes data with iterative re-
training, and the weights of misclassified samples are increased
to concentrate the learning algorithm on specific samples [4],
[12]. In contrast, bagging can produce accurate ensemble
by training many classifiers on boot-strapped samples from
training set [11]. Diversity in bagging is provided with further
randomization yielding Random Forest ensemble approach
[13]. Random Forest adopts decision trees trained on bootstrap
samples and the diversity is promoted with random choice
of features at each node while constructing the trees. It can
overcome the drawbacks of bagging and boosting algorithms
(e.g., high computational cost and sensitivity to noise) [7].
In addition, limiting the number of variables in Random
Forest used for a spilt, the computational complexity can be
reduced and the correlation between the trees be decreased.
This enables Random Forest to deal with high-dimensional
datasets [9].

Rotation Forest, proposed by Rodriguez et al. [14] is based
on the idea of Random Forest. The main idea of Rotation
Forest is to encourage simultaneously both member diversities
and individual accuracy within a classifier ensemble. In the
framework of Rotation Forest, each classifier is independently
constructed using decision tree method, and each tree is trained
on the training samples in a rotated feature space derived from
principal component analysis (PCA) transformation. One of
the most important point of ensemble methods is to select
the base classifier. Decision tree is always used for rotation
task because of its sensitivity to rotation of the feature axes
[15]. Though Rotation Forest performs much better than other
ensemble methods (bagging, AdaBoost, Random Forest) on
some benchmark classification from UCI repository [14], [16],
the performance for classify hyperspectral remote sensing im-

1545–598X c© 2013 IEEE



240 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 1, JANUARY 2014

age has not been investigated. The objective of this letter is to
adapt Rotation Forest to classify hyperspectral remote sensing
image and compare it with other approaches (SVM, bagging,
AdaBoost, and Random Forest) to evaluate its performance
and applicability. Furthermore, the capability of different fea-
ture transformation algorithms, including PCA, independent
component analysis (ICA), maximum noise fraction (MNF),
and local Fisher discriminant analysis (LFDA) is also explored.

The remainder of this letter is arranged as follows. In
Section II, we briefly introduce the Rotation Forest approach.
Experimental results and discussion are given in Section III.
Finally, Section IV draws the conclusions and addresses the
future work.

II. Rotation Forest

Let x = [x1, ..., xn]T be a training sample characterized by n

features and X represents the training set of an N × n matrix.
Y = [y1, ..., yN ]T is defined as the class labels {1, ..., c}, where
c is the total number of classes. Denote by �1, ..., �L the
classifiers in the ensemble, and F is the feature set.

The steps for training classifier �i, i = 1, ..., L are handled
in the following [14]–[16].

1) F is split into K feature sets and each subset contains
M = n/K number of features.

2) Let Fi,j be the jth, j = 1, .., K subset of features for �i,
and Xi,j be the features in Fi,j from X. X

′
i,j is denoted as

a new training set which is selected from Xi,j randomly
with the 75% size using bootstrap algorithm. Then, we
transform X

′
ij to get the coefficients a

(1)
i,j , ..., a

(Mj)
i,j , the

size of a
′
i,j is M × 1.

3) A sparse rotation matrix Ri is organized with the above
coefficients

Ri =

⎡
⎢⎢⎢⎣

a
(1)
i,1 , ..., a

(M1)
i,1 0 · · · 0

0 a
(1)
i,2 , ..., a

(M2)
i,2 · · · 0

...
...

. . .
...

0 0 · · · a
(1)
i,K, ..., a

(MK)
i,K

⎤
⎥⎥⎥⎦

The columns of Ri is rearranged to Ra
i with respect to the

original feature set. Then, the training set will become
XRa

i . In this case, all classifiers will be trained in parallel
style.

For a given test sample χ, the confidence is calculated for
each class by the average combination method

μk(χ) =
1

L

L∑
i=1

γi,k

(
χRa

i

)
, k = 1, ..., c (1)

where, γi,k

(
χRa

i

)
is the probability generated by the classifier

�i to the hypothesis that χ belongs to class k.
Finally, χ will be assigned to the class with the largest

confidence. It is very important to note 2), selecting of the
sample size X

′
i,j smaller than Xi,j aims at two aspects: one

is to avoid obtaining the same coefficients of the transformed
components if the same features are chosen, and the other is to
enhance the diversity among the generated ensemble member
classifiers.

The success of Rotation Forest relies on the base classifier
and the rotation matrix created by the transformation methods.
Decision tree is always adopted for Rotation Forest because
it is sensitive to rotation of the axes. Here, we selected
classification and regression tree (CART) as the base classifier
[17].

CART is based on the Gini index, which is treated as node
impurity criterion [9], [17]

Gini(t) =
c∑

i=1

Pωi
(1 − Pωi

) (2)

where c is the number of classes and Pωi
is the probability of

class ωi at node t. Pωi
is defined as

Pωi
=

nωi

N
(3)

where nωi
is the number of samples of class ωi and N is the

total number of training samples.
The summed Gini index selects the split that maximizes the

decrease in impurity. By employing this rule, CART generates
a sequence of subtrees by growing a large tree and pruning
it back until only the root node is left. Then it uses cross-
validation to estimate the misclassification cost of each subtree
and chooses the one with the lowest estimated cost [18].

In [19], the authors compared the performance of different
transformation algorithms (e.g., PCA, NDA, and RP) and
found that PCA produced the best results. In this letter, we
will further examine the efficiency of common transformation
algorithms applied to hyperspectral remote sensing image
classification, such as PCA [20], maximum noise fraction
(MNF) [21], [22], independent component analysis (ICA) [23],
[24], and LFDA. PCA, MNF, and ICA are all unsupervised
feature extraction methods, while LFDA is supervised. PCA
and MNF maximize the amount of data variance and signal-to-
noise ratio (SNR), respectively, yielding a transformed data set
in a new uncorrelated coordinate system, while ICA transforms
the data into maximally independent components [20]–[22],
[24]. However, PCA, MNF, and ICA all maximize the informa-
tion contained in the first transformed components, relegating
variations of less significant size to low-order components
[25]. LFDA effectively combines the ideas of Fisher discrim-
inant analysis (FDA) and locality-preserving projection (LPP)
[26]. That makes LFDA can both maximize between-class
separability and preserves with-class local structure. More
details about LFDA can be seen in [26]. In order to preserve
the variability information in the images, all components using
the above three transformation methods are retained.

III. Experiments and Result Analysis

In order to assess the performance of Rotation Forest
algorithm, we conduct the experiments with three widely
used hyperspectral images obtained from NASA’s Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS), Reflective
Optics System Spectrographic Imaging System (ROSIS), and
Digital Airborne Imaging Spectrometer (DAIS) owned by the
German Aerospace Center (DLR). AVIRIS dataset is captured
over a vegetation area of Indian Pines, Indiana, USA. The
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TABLE I

Training and Test Samples of the Three Hyperspectral Images

AVIRIS ROSIS DAIS
Class name Training set Test set Class name Training set Test set Class name Training set Test set
Soybeans-min till 493 2468 Asphalt 548 6641 Water 202 4281
Grass/pasture 99 497 Meadows 540 18649 Trees 205 2424
Hay-windrowed 98 489 Gravel 392 2099 Meadows 206 1251
Soybeans-clean till 123 614 Trees 524 3064 Bricks 315 2237
Corn-no till 287 1434 Metal Sheets 265 1345 Soil 205 1475
Grass/tree 149 747 Soil 532 5029 Asphalt 204 1704
Soybeans-no till 194 968 Bitumen 375 1330 Bitumen 202 685
Woods 259 1294 Bricks 514 3682 Parking lot 201 287
Corn-min till 167 834 Shadows 231 947 Shadows 119 241

TABLE II

Overall Accuracies (%) for the Indian Pines AVIRIS Image Using Different Number of Training Samples

Number of Training sample CART Bagging AdaBoost RF RoF (PCA) RoF (ICA) RoF (MNF) RoF (LFDA) SVM LORSAL
Case 1 57.25 66.5 66.98 71.38 79.65 76.1 76.78 71.66 76.82 84.3
Case 2 62.26 73.12 73.3 75.82 84.87 84.52 82.03 77.78 82.02 87.46
Case 3 67.74 76.86 77.6 80.31 87.51 86.58 84.39 81.26 84.57 89.13
Case 4 68.57 80.76 80.35 83.96 88.6 88.36 86.59 84.01 87.06 90.01

image contains 145 × 145 pixels, with 200 spectral bands
after removing 20 water absorption bands (104–108, 150–163,
and 220). The spatial resolution is 20 m/pixel. ROSIS image
with 115 spectral channels is acquired over the University of
Pavia, Italy. The image size is 610 × 340 with the spatial
resolution of 1.3 m. Twelve noisy channels were removed and
the remaining 103 bands with a spectral range from 0.43 to
0.86 μm were used for the experiments. The DAIS image was
collected at 1500 m flight altitude over the city of Pavia, Italy,
with ground resolution of 5 m and size of 400 × 400 pixels
with 80 spectral bands. Training and test samples are detailed
in Table I.

In all cases, the performance achieved by Rotation Forest
is illustrated using the following designs.

1) Number of features in each subset: M = 10.
2) Number of classifiers in the ensemble: L = 10.
3) Feature extraction method: PCA [20], ICA [23], MNF

[21], and LFDA [26].
4) Base classifier: CART.

Furthermore, the popular methods, including bagging [11],
AdaBoost [4], Random Forest (RF) [13], support vector
machine (SVM) [27] and logistic regression via variable
splitting and augmented Lagrangian (LORSAL) [28] are
added to be compared with Rotation Forest. The required
parameters of SVM with RBF are the penalty factor C

and kernel width γ . We use a fivefold cross-validation grid
search method to find the best combination of C and γ

within the set C ∈ {
21, 22, 23, 24, 25, 26, 27, 28

}
and γ ∈{

2−3, 2−2, 2−1, 20, 21, 22, 23
}

. The number of neighbors in
LFDA is chosen from {1, 3, 5, 7} using fivefold cross valida-
tion. In the following experiments, we employed RoF (PCA,
ICA, MNF, and LFDA) as the abbreviations of Rotation
Forest with PCA, ICA, MNF, and LFDA transformations.
Overall accuracy (OA) is used as the quantitative index. In
order to investigate the impact of the labeled samples on the

classification accuracy, we randomly select the labeled samples
with replacement from the original training samples whose
sizes correspond to four cases: 25% (case 1), 50% (case 2),
75% (case 3), 100% (case 4) rate of original size of training
samples. In order to increase the statistical significance of the
results, each value of OA reported in this letter is obtained as
the average of 10 Monte Carlo (MC) runs.

A. Results of Indian Pines AVIRIS Image

Table II shows the classification accuracies (OA%) obtained
by the Rotation Forest approaches as well as other algorithms
using different training samples. We highlight the highest OA
of each case in bold font. It can be seen that RoF (PCA,
ICA) achieve good results than other ensemble approaches
(bagging, Adaboost, and Random Forest), where the OA
is always increased as the number of training samples is
increased. For instance, in case 1, CART, bagging, Adaboost,
and RF acquired an OA of 57.25%, 66.5%, 66.98%, and
71.38, respectively. RoF (PCA) and RoF (ICA), respectively,
increased the OA to 79.65% and 76.78%, while the OA of
RoF (MNF) and RoF (LFDA) were improved to 76.78% and
71.66%. LORSAL yielded the highest OA and RoF (PCA)
gave the better performance than SVM in all cases. In addition,
we have compared the computation time of these methods on
an Intel(R) Xeon(R) CPU X5660 @ 2.80 GHz 2.79 GHz, two
processors, 12 GB memory. In case 2, the computation time
of RoF (PCA), RoF (MNF), RoF (ICA), RoF (LFDA), SVM,
and LORSAL was 8.53 s, 9.28 s, 9.16 s, 36.84 s, 42.65 s, and
3.18 s, respectively. The computation time of Rotation Forest
approaches is longer than the one of bagging, Adaboost, and
Random Forest. For the approaches of SVM and RoF (LFDA),
the computational time also included the time consumed on
the parameter determination. So RoF (PCA), RoF (MNF), and
RoF (ICA) are more efficient than RoF (LFDA) and SVM.
Among them, LORSAL method is the fastest.
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TABLE III

Overall Accuracies (%) for the University of Pavia ROSIS Image Using Different Number of Training Samples

Number of Training sample CART Bagging AdaBoost RF RoF (PCA) RoF (ICA) RoF (MNF) RoF (LFDA) SVM LORSAL
Case 1 59.33 67.38 66.83 66.77 78.38 71.92 70.45 73.02 76.42 71.28
Case 2 62.82 68.26 67.8 68.9 80.71 76.37 71.48 75.2 77.35 76.97
Case 3 63.39 69.64 70.13 69.9 82.89 75.91 72.59 75.73 77.86 78.08
Case 4 64.93 70.11 70.3 71.11 83.14 78.04 73.28 75.57 79.98 80.09

TABLE IV

Overall Accuracies (%) for the Center of Pavia DAIS Image Using Different Number of Training Samples

Number of Training sample CART Bagging AdaBoost RF RoF (PCA) RoF (ICA) RoF (MNF) RoF (LFDA) SVM LORSAL
Case 1 87.95 90.89 91.83 93.12 95.64 95.2 95.06 95.52 93.95 93.76
Case 2 90.51 91.49 92.45 93.93 95.76 95.36 94.91 95.6 94.17 94.45
Case 3 91.25 92.09 92.22 93.95 95.78 95.64 95.15 95.57 94.67 94.47
Case 4 91.57 92.17 92.61 94.8 95.81 95.48 95.28 95.92 95.1 94.8

Fig. 1. Impact of OA using different number of L and M obtained from ROSIS image (case 1).

B. Results of University of Pavia ROSIS Image

Table III reports the OA for each approaches using different
number of training samples. From Table III, it can be observed
that RoF (PCA) outperform other algorithms in all cases. RoF
(LFDA) gave the better performance than RoF (MNF). In case
4, the corresponding OA of RoF (PCA) achieved on the test
set was 83.14%, higher than the one of SVM (79.98%) and
LORSAL(80.09%). More details can be seen in Table III. The
computation complexity is similar with the previous AVIRIS
experiment. The computation complexity of RoF (PCA), RoF
(MNF), and RoF (ICA) are much less than the one of SVM
and RoF (LFDA). And LORSAL method is more effective
than RoF (PCA) algorithm.

C. Results of Center of Pavia DAIS Image

The global accuracies of different method using different
number of samples are reported in Table IV. The Pavia
Center DAIS data set was easy to classify since even the
CART acquires extraordinarily high classification accuracy.
Regarding the global accuracies, Rotation Forest with different
transformation algorithms are all superior to other compared
approaches. In case 1–3, RoF (PCA) achieved the best global
accuracies with the OA (95.58%). And RoF (LFDA) yielded
the highest OA (95.92%) in case 4.

D. Sensitivity of Parameters

Ensemble size (L) and the number of features in a subset
(M) are the key parameters of Rotation Forest, also known as
an indicator of the operating complexity. In order to investigate
the impacts of these parameters, we have performed the
classification results using different ensemble size when the
number of subset M is fixed to 10, different number of features
in a subset when ensemble size L is fixed to 10.

Fig. 1 shows the OA (%) using different number of L and M

obtained from ROSIS image (case 1). With the increment of L,
the classification results are significantly improved. Different
approaches achieved the best classification result at different
number of L and M. For instance, when M was fixed, RoF
(PCA) obtained the best OA when L equals to 50, RoF (MNF)
obtained the best result when L equals to 80. Furthermore, we
also conducted the similar experiments on AVIRIS and DAIS
images.

IV. Conclusion

A method for generating ensemble of classifiers, Rotation
Forest, was introduced into hyperspectral remote sensing im-
age classification. It consists in splitting the feature set into
K subsets, running transformation algorithms separately on
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each subset and then reassembling a new extracted feature
set while keeping all the components. CART decision tree
classifier is used as the base classifier. Different splits of the
feature set lead to different rotations. Thus diverse classifiers
are obtained. Thus, we target diversity and accuracy together.
We have applied Rotation Forest using different transforma-
tion approaches, including PCA, MNF, ICA, and LFDA to
classify hyperspectral remote sensing image and compared
with bagging, AdaBoost, Random Forest, and other advance
classifiers. Experimental results have shown that RoF (PCA)
outperformed other methods in terms of accuracies. The key
parameters of Rotation Forest are also explored in this letter.
Future studies will be focused on the integration of Rotation
Forest with other ensemble approaches, the selection of an
optimized decision tree model, and the use of other effective
feature extraction algorithms.
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