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Abstract— Deep learning models have shown excellent 

performance in the hyperspectral remote sensing image (HSI) 

classification. In particular, convolutional neural networks (CNNs) 

have received widespread attention because of their powerful 

feature-extraction ability. Recently, a capsule network (CapsNet) 

was introduced to boost the performance of CNNs, marking a 

remarkable progress in the field of HSI classification. In this 

paper, we propose a novel deep convolutional capsule neural 

network (DC-CapsNet) based on spectral–spatial features to 

improve the performance of CapsNet in the HSI classification, 

while significantly reducing the computation cost of the model. 

Specifically, a convolutional capsule layer based on the extension 

of dynamic routing using 3D convolution is used to reduce the 

number of parameters and enhance the robustness of the learned 

spectral–spatial features. Furthermore, a lighter and stronger 

decoder network composed of deconvolutional layers as a better 

regularization term and capable of acquiring more spatial 

relationships is used to further improve the HSI classification 

accuracy with low computation cost. In this study, we tested the 

performance of the proposed model on four widely used HSI 

datasets: the Kennedy Space Center, Indian Pines, Pavia 

University and Salinas datasets. We found that the DC-CapsNet 

achieved high classification accuracy with limited training 

samples and effectively reduced the computation cost. 

 
Index Terms— capsule neural network, convolutional neural 

network, hyperspectral image classification 

I. INTRODUCTION 

YPERSPECTRAL remote sensing images have been 

widely used in various fields because of their rich spectral 

and spatial information; these fields include precision 

agriculture [1], land change monitoring [2], mineral 

exploitation [3], and scene recognition [4]. Hyperspectral 

remote sensing image (HSI) classification has become a hot 

topic in the field of remote sensing in recent years [5–8]. In the 
1
past few decades, a large number of methods have been 

proposed for HSI classification. There are some traditional 

methods based on spectral information used to classify HSIs, 

such as k-nearest neighbor (k-NN) [9], extreme learning 
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machine (ELM) [10], support vector machine (SVM) [11], and 

wavelet transform [12]. However, due to only using the spectral 

information of pixels for classification, they do not have good 

noise robustness. Therefore, some methods based on 

spectral–spatial information have been proposed to improve the 

accuracy of HSI classification [13], which can fully mine and 

utilize the dependence between local pixels within HSIs. In a 

previous study [14], a 3D Gabor-wavelet-based method that 

implemented a set of complex Gabor wavelets to extract 

spectral–spatial features from HSIs was used. With the 

improvement of SVMs, the morphological profiles and the 

Markov random field were introduced to advance the HSI 

classification accuracy [15,16]. Nevertheless, these methods 

can only extract the shallow features of the input HSIs. 

Typically, HSI data have a high dimension and highly 

nonlinear structure. Moreover, the spatial and spectral 

resolution of HSIs have been improved with the development 

of sensor technology, resulting in the ground objects have more 

obvious details and more complex spectral characteristics. The 

phenomenon of different objects having the same spectrum and 

the same objects having different spectra is becoming 

interesting due to more and more abundant spectral information. 

In this instance, it is difficult to obtain a good classification 

result using only the shallow features of HSIs. Deep learning 

methods can automatically extract abstract features from low to 

high levels in an end-to-end manner, which can learn more 

robust features and provide an accurate HSI classification result. 

Some typical deep learning models have been used for HSI 

classification, including stacked autoencoder (SAE) [17], deep 

belief network (DBN) [18], recurrent neural network (RNN) 

[19], and convolutional neural networks (CNNs) [20–22], 

which greatly improved the accuracy of HSI classification. 

Owing to the inherent characteristics of weight sharing and 

local connection, CNN has attracted much attention in the field 

of image processing. For instance, a 1D convolutional neural 

network (1D-CNN) was proposed to accurately classify HSIs 

by extracting spectral features [23]. However, the 1D-CNN 

takes the feature vector of the spectral signal as the input of the 

model, while ignoring many spatial information of HSIs. To 

consider the rich spatial information in HSIs, 2D convolutional 

neural networks (2D-CNNs) have been proposed to extract 

spatial and spectral information and reduce the dimension of 
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the spectral domain of the origin HSI using descending 

dimension algorithms [24–26]. Nevertheless, these methods 

usually lead to the spatial information lost during the 

preprocessing stage. To make full use of the spectral-spatial 

information in HSIs, 3D convolutional neural networks 

(3D-CNNs) [27,28] have been presented to simultaneously 

extract the spectral–spatial features from the original HSI data 

and obtain better classification accuracy. Generally, the deeper 

features are more discriminative, but repeating convolution 

layers causes optimization difficulties. To solve this problem, 

residual learning and dense connectivity have been introduced 

into the CNN to form a spectral–spatial residual network 

(SSRN) [29] and a deep&dense CNN [30], which can obtain 

deeper networks and provide a good performance. Furthermore, 

some powerful techniques have been combined with CNNs to 

enhance the performance of HSI classification. Zhang et al. 

[31,32] and Mu et al. [33] introduced feature fusion techniques 

to combine different scale information to enhance the 

robustness of deep networks against overfitting. Liu et al. [34] 

performed transfer learning between different HSI datasets to 

improve the HSI classification for small-sample conditions. To 

learn more representative features from the original HSI, sparse 

representation [35], metric learning [36], and attention 

techniques [37] are also used for refining the learned 

spectral–spatial features. Moreover, some learning-based 

methods introduced the generative adversarial network (GAN) 

to improve the classification accuracy and mitigate the 

overfitting risk [38,39]. 

Although deep learning models, especially CNN-based 

models, have achieved considerable progress in the field of HSI 

classification, there are still some disadvantages limiting the 

performance of the model. Firstly, CNN-based methods have a 

complex network structure and require a large number of 

labeled samples to train the model. However, the number of 

labeled samples is limited which is a common bottleneck in the 

HSI classification field. Secondly, CNNs usually use max 

pooling operations to reduce the computation cost and advance 

the invariance of features which can capture more 

discriminative features but lose the relationship between the 

features of geographic objects. Thus, it can only learn shallow 

spatial features, while ignoring the important knowledge of 

spatial relationships and patterns for HSIs. Thirdly, owing to 

the complexity of HSIs, the scalar value used to represent 

features in CNNs shows poor representation ability. A novel 

type of deep learning model called capsule network (CapsNet) 

[40], which uses dynamic routing-by-agreement and 

vector-output capsules to encode the relationships between 

different features and enhance the feature representation ability 

of the model has been previously proposed to improve the 

performance of CNNs. The length of the activity vector output 

by the capsule represents the estimated probability that the 

target object exists in the input image, and the orientation of the 

vector indicates the capsule properties. It can effectively dig 

deep information of spatial knowledge implied in HSIs, namely, 

spatial relationships and patterns, which plays an important 

factor in the high-level cognition of the ground object. It is true 

that CapsNet can significantly improve the performance of 

deep learning models in the HSI classification [41-43]. In a 

previous study [44], a spectral–spatial capsule network is 

proposed to accurately classify HSIs. Unfortunately, owing to 

the fully connected method in dynamic routing, the model has a 

large number of trainable parameters and massive computation 

cost. It is easily overfitted with insufficient training samples, 

which have a negative influence on the HSI classification 

performance of the model. Therefore, Yin et al. [45] used 

transfer learning to initialize the convolutional parameters of 

CapsNet and dramatically enhance the classification accuracy. 

Lei et al. [46] proposed a non-local CapsNet combined 

attention technique and CapsNet to capture non-local 

spectral-spatial features. Li et al. [47] introduced the maximum 

correntropy criterion (MCC) to generate a robust 3-D-CapsNet. 

Another way to address the aforementioned problems is to 

conduct architecture improvements. Zhang et al. [48] and Zhu 

et al. [49] introduced a convolutional capsule layer based on 

local connections and shared transform matrices during 

dynamic routing to address the lack of labeled samples and 

ensure high precision. Nevertheless, simply shared transform 

matrices in the local receptive field could not generate the 

appropriate prediction vector for each child capsule, leading to 

a limited performance of the HSI classification model. 

Furthermore, the complex preprocessing will damage the 

spectral information of HSIs, and a large spatial size of input 

data generally leads to the training and test samples being very 

overlapped, which could increase the additional calculation 

cost [48,49]. 

In this study, we developed a novel deep convolutional 

capsule network (DC-CapsNet) for effective HSI 

classifications, which is based on 3D convolutional capsule 

layers. In DC-CapsNet, an extension of dynamic routing 

inspired by 3D convolution [50] is used to reduce the number of 

parameters and suppress the adverse effect of stacking capsule 

layers. It will be able to capture more robust higher-level 

feature information, enabling the model to provide accurate 

classification results with limited training samples and a low 

computation cost. Moreover, the reconstruction loss, which is 

generated by the decoder network, consists of several fully 

connected layers used in [40] and shows great potential for 

reducing overfitting and improving the HSI classification 

performance of CapsNet-based models [44-47]. However, the 

decoder network composed of the fully connected layers has 

too many parameters, which lead to massive computational 

consumption during the training stage of the model. Moreover, 

the fully connected layer makes it difficult to capture spatial 

information, and the introduction of additional layers implicitly 

increases the complexity of the model. Therefore, in this study, 

a lighter and stronger decoder network composed of 

deconvolutional layers is used as a better regularization term 

that can acquire more spatial relationships to further improve 

the HSI classification accuracy and lower the computation cost.  

The major contributions of this paper are listed as follows. 

1) We propose a novel deep convolutional capsule network, 

which can dig deep information of spatial and spectral 

knowledge implied in HSIs, especially, spatial relationships 

and patterns of the ground object; a novel dynamic routing 
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based on 3D convolution is used to boost the classification 

performance and reduce the trainable parameters of 

DC-CapsNet. 

2) A lighter and stronger decoder network consisting of 

deconvolutional layers is proposed to further improve the 

classification accuracy of HSIs and lower the computation cost. 

3) The proposed model is evaluated on four well-known HSI 

datasets and provides promising classification results with 

limited training samples. Moreover, the DC-CapsNet can 

effectively reduce the computation cost. 

  The remainder of this paper is organized as follows: Section Ⅱ 

describes the detailed architecture of the DC-CapsNet, Section 

Ⅲ presents the results of the experiments and discussion, and 

Section Ⅳ concludes the paper.  

II. PROPOSED FRAMEWORK 

Inspired by the success achieved by CNNs (by going deeper) 

and the fact that the deep features are generally more 

discriminative, in this study, we considered a deeper capsule 

network based on CapsNet with more layers to solve the 

problem of limited labeled samples in the HSI classification. In 

this section, we explain the specific details of the DC-CapsNet.  

A. 3D convolutional capsule layer 

CapsNet [40] is a novel neural network architecture that 

generally has a simpler structure than CNN-based models used 

for HSI classification. It uses a capsule encapsulated by a group 

of neurons as the base unit, and each capsule outputs an activity 

vector rather than a scalar value to represent a specific type of 

entity. The length of the vector indicates the probability that the 

geographic entity exists in the input HSI image, whereas the 

orientation denotes the properties of the geographic entity, such 

as translation, rotation, and scale. It shows a more powerful 

representation ability for the complex surface environment and 

higher dimensionality of HSIs. Furthermore, CapsNet replaces 

max pooling with dynamic routing to capture the spatial 

relationship between different features, which is important for 

HSI classification. Compared with max pooling, using dynamic 

routing allows the model to independently adjust the strength of 

the connection between the child capsule and the potential 

parent capsules through iteration. It is much more effective than 

max pooling in improving the invariance of the extracted HSI 

features. 

However, the original capsule layer is fully connected and 

contains a large number of trainable parameters. Simply 

stacking additional capsule layers can compromise the 

performance of the model and result in computationally 

inefficiency [51]. In particular, it is easy to overfit because of 

the limited number of training samples in the HSI classification. 

Thus, the local connection and capsule layer are combined to 

form a 3D convolutional capsule layer, which could 

significantly reduce the trainable parameters and computational 

cost as well as enhance the representation capacity of activity 

vectors output by using capsules. Thus, it can allow the model 

to provide accurate classification results in the case of limited 

training samples. 

To construct a robust deep convolutional capsule network for 

HSI classification, an extension of dynamic routing based on 

3D convolution [50] was used to boost the performance of 

DC-CapsNet (Fig. 1). The output of capsule layer l, denoted as                  , was composed of   capsule tensors, which 

in turn were composed of      —a spectral–spatial capsule 

with    dimensions, where      was the spatial size of the 

feature maps. First,    was reshaped to a 3D tensor     with a 

shape of     and convolved by          —the number of 3D 

convolution kernels. To maintain the integrity of the 

information output by the capsule, both the depthwise stride 

and depthwise kernel size of the 3D convolution were set to   . 
Then, the prediction U was be obtained using a reshape 

operation, having the shape of                         .  

                                                 (1) 

Generally, the convolutional operations are the foundation of 

the capsule layers, which can result in adjacent capsules sharing 

similar information. This means that a specific type of 

geographic entity is represented by an adjacent set of capsules. 

Using a 3D convolutional operation with a height and width 

kernel to generate prediction vectors allows us to predict a 

parent capsule using several adjacent sets of child capsules and 

focus on detailed information. This could help us to obtain 

more robust spectral–spatial features from HSIs. For example, 

we used 8 capsule sets, in which each set contains an adjacent 3 

×3 child capsule, to predict a parent capsule in this study. 

Therefore, the capsules were integrated into groups for routing 

instead of individual routing. 

As shown in Fig. 1, each capsule tensor      in layer l 

generates a prediction   , which consists of      the number of 

capsule tensors. In other words, the capsule in any position (p, q, 

r) of layer l+1 is related to all capsule tensors in layer l, where                and         Thus, the coupling 

coefficients of the prediction    (                     ) can 

be obtained using a 3D version softmax function [50] for all s: 

                                             ,                              (2) 

                                                              ,                         (3) 

where the logits of the prediction    (                     ) 
are initialized to zero at the beginning and updated by the 

iterative dynamic routing process.       and       indicate the 

coupling coefficient and logit that in the position (p, q, r) of    

and   , respectively. In addition, the sum of all       is 1 for all 

s. 

Then, the total input to the capsule in layer l+1 (      is a 

weighted sum of all prediction vectors       . The final output      can be obtained through a squash function [40], which is 

used to ensure that the length of the capsule vector is between 0 

and 1. 

                                                ,                            (4) 

                                                           ,                           (5) 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3101511, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

 4 

 
Fig. 1. Dynamic routing based on 3D convolution [50]

where      represents the capsule output in the position (p, q, 

r) of layer l+1, and the logit       updated by measuring the 

agreement between      and      . 

                                              ,                             (6)                        

The output of capsule layer l+1, denoted as                            , can be obtained using     . This process 

not only extracts the spectral–spatial features from the input 

feature maps but also models the part–whole data relationships 

of the target geographic object. 

B. Encoder Network 

The main framework of the encoder network is shown in Fig. 

2. The input data of the encoder network is a 3D cube with a 

size of w × w × L from the original HSI. Here, w is the height 

and width of the input image, and L indicates the spectral 

dimension of the input data. Because of the complexity of HSI 

data, two traditional convolutional layers were introduced in 

shallow layers to capture robust higher-level spectral–spatial 

features from the input HSI data; this was fed to the capsule 

layer. The third layer, namely, the PrimaryCaps layer, was the 

first capsule layer which converted the neurons into capsules. 

Its foundation is the traditional convolutional operation. This 

layer outputs a 4D tensor composed of c
1
 feature maps, with a 

spatial size of w
1 

× w
1
, where the dimension of each feature 

map is n
1
 (the number of neurons for each capsule). The fourth 

layer, namely, the 3D convolutional capsule layer, is the core of 

the DC-CapsNet. Unlike simply shared transform matrices in 

the local receptive field, dynamic routing based on 3D 

convolution was adopted to obtain more robust higher-level 

capsules in this layer. Its output consists of c
2
 feature maps, 

with n
2
 dimensions and the spatial size of each feature map 

being w
2 

× w
2
. The last layer was a fully connected capsule 

layer, with an output of n_class (the number of classes) capsule, 

and each capsule yielded a vector to represent a specific class of 

geographic entity. The length of the vector indicates the 

probability that the center pixel of the input data belongs to one 

class. Furthermore, the output vectors of these capsule layers 

provide the details about the target geographic object or part of 

the object of interest for HSI classification, including pose, 

orientation, and scale. The dynamic routing allows the model to 

capture the spatial relationships and patterns between features 

that are beneficial for accurate HSI classification. 

 

 
Fig. 2. Encoder network

In this paper, the margin loss [40] was used to calculate the 

difference between the output of the network and the expected 

output. It could enhance the length of the vector output by the 

top-level capsule corresponding to the target object, while 

suppressing the length of other vectors when that object is 

present in the input cube. 

                                                      
,      (7) 

where    = 1 if class j is present in the input image, otherwise 

it is set to 0,    is the lower limit of correct classification, i.e., 

the current input image belonging to class j when            . Similarly,    denotes the upper bound of error 

classification, which means that the current input image does 

not belong to class j when            . We set    and    

to 0.9 and 0.1, respectively. Considering that the absent 

geographic object may stop the initial learning, we set   to 0.5 

to control its effect. 
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Fig. 3. Decoder network 

C. Decoder network 

The decoder network used in this study was composed of 

several deconvolutional layers (Fig. 3). It utilizes the activity 

vector output by the encoder network to reconstruct the input 

data and encourages the encoder network to extract the most 

relevant features of the target geographic object from the input 

HSI. In contrast to the original decoder network consisting of 

fully connected layers proposed in [40], because of the 

deconvolutional operations, the proposed decoder network 

could acquire more spatial relationships which are important 

for accurate HSI classification. Furthermore, only the activity 

vector output by the true class corresponding capsule is fed into 

the decoder network during the training stage in this study, 

which could enable the decoder network focus on the features 

most related to the true class. Simultaneously, the proposed 

decoder network had a small computational requirement that 

effectively reduced the training time of the model. 

To effectively avoid overfitting risks, especially with a 

limited training sample of HSIs, a reconstruction loss was 

introduced as a regularization method in the training stage, and 

the total loss of DC-CapsNet is a sum of the margin loss and the 

reconstruction loss. 

                                                  ,                  (8) 

                                             ,                        (9)                     

where   is the input data,        is the reconstruction data 

from the decoder network, and   is a regularization factor that 

controls the effect of the reconstruction loss. 

D. Proposed network architecture for HSI classification 

The entire structure of the DC-CapsNet is a combination of 

the encoder and decoder networks (Fig. 4). The encoder 

network is the principal part of the model, which plays the role 

of a feature extractor, mainly responsible for extracting 

spectral–spatial features from input HSI data. The decoder 

network is a regularization method in this study which 

reconstructs the input HSI data to ensure that the features 

captured by the encoder network are the most relevant for HSI 

classification. Moreover, it could mitigate the overfitting issue 

when the number of training samples is limited in the HSI 

classification. 

The main architecture of the DC-CapsNet for HSI 

classification is shown in Table Ⅰ. In the encoder network, the 

first 2 layers adopted 3×3 convolutional kernels to extract the 

spectral–spatial features from the input HSI data, and the 

number of filters was 128 and 64, respectively. The next layer, 

namely, the PrimaryCaps layer, was composed of 8 

convolutional capsule units, with a 3×3 kernel size, and the 

dimension of each convolutional capsule unit was 16. The 

fourth layer was a 3D convolutional capsule layer, which used 

3D convolution, with a 3×3×8 kernel size to output 8 

8-dimension convolutional capsule units. The last layer was a 

fully connected capsule layer; there were a total of n_class 

capsules, and each capsule provided a 16-dimension activity 

vector. The length of the activity vector represents the 

probability that the corresponding geographic entity exists in 

the current input data. Thus, the final HSI classification result 

can be obtained using the length of the activity vector. 

Furthermore, there are three routing iterations between the 

consecutive capsule layers in the DC-CapsNet. In the decoder 

network, a fully connected layer followed by four 

deconvolutional layers was used to reconstruct the input HSI 

data. 
Table I Architecture of DC-CapsNet 

Encoder Network 

Convolutional layer 

Layer Kernel size stride 
Bath 

normalization 

Activation 

function 

L1 (3 × 3) × 128 (1, 1) YES Relu 

L2 (3 × 3) × 64 (1, 1) YES Relu 

Primary capsule layer 

Layer Kernel size stride 
Bath 

normalization 

Activation 

function 

L3 (3 × 3) × 16 × 8 (2, 2) YES Relu, Squash 

3D convolutional capsule layer 

Layer Kernel size stride 
Bath 

normalization 

Activation 

function 

L4 (3 × 3 × 8) × 8 × 8 (2, 2, 8) NO Squash 

Dense capsule layer 

Layer Output size 
Activation 

function 

L5       ×16 Squash 

Decoder Network 

Fully-connected layer 

Layer Number of neurons 
Bath 

normalization 

Activation 

function 

L6 7 × 7 × 16 YES Relu 

Deconvolutional layers 

Layer Kernel size stride 
Bath 

normalization 

Activation 

function 

L7 (3 × 3) × 64 (1, 1) NO Relu 

L8 (3 × 3) × 32 (1, 1) NO Relu 

L9 (3 × 3) × 16 (1, 1) NO Relu 

L10 (3 × 3) × C (1, 1) NO Relu 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we introduced four common HSI datasets–the 

Kennedy Space Center (KSC), Indian Pines (IN), Pavia 

University (UP), and Salinas (SA) datasets to explore the 

performance of DC-CapsNet for HSI classification. The input 

data for all HSI datasets were normalized to values, with unit 

variance. For all datasets, the batch size was set to 32 after 

experiments. To speed up the convergence rate of the 

DC-CapsNet and avoid overfitting when the training samples 
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were limited, the dynamic learning rate and early stopping were 

introduced. This means that, in the training stage, if the 

validation loss did not decrease after 30 epochs, the training 

process was stopped, and the maximum value of the training 

epochs was 200. If the validation loss was no longer decreasing 

after 10 epochs, the learning rate was decreased by half until the 

training process stopped or the learning rate became 0. The 

initial learning rate was set to 0.001 after the experiments. In 

addition, some regularization strategies were adopted to further 

improve the generalization ability of the proposed model, such 

as L2 norm, batch normalization (BN) [52], and reconstruction 

loss. Moreover, we used the He initialization method [53] as the 

initialization method and Relu [54] as the activation function 

(together) to boost the training process of the model. The 

overall accuracy (OA), average accuracy (AA), and kappa 

coefficient (K) were used to quantitatively evaluate the 

classification performance of the proposed model. In this paper, 

the experimental hardware platform was a desktop computer 

with an Intel i5-8500k CPU, GTX1080Ti GPU, and 64 GB 

memory. The software environment was composed of 

Windows 10 x64 as an operating system, CUDA 9.0, and 

cuDNN 7.4.1. Keras 2.2.4 framework using TensorFlow 1.5.0 

was used as a backend, and Python 3.6.5 was the programing 

language.

 
Fig. 4. Framework of DC-CapsNet for HSI classification

A. Experimental Datasets 

The KSC dataset contains 176 bands. It consists of 512 × 614 

pixels and 13 classes. There are a total of 200 effective bands 

with 145 × 145 pixels in the IN dataset, and the ground truth 

available was divided into 16 classes. The UP dataset contains 

103 spectral bands with 610 × 340 pixels. The available land 

objects can be divided into nine classes. The SA dataset was 

consisting of 204 bands with 512 × 217 pixels. A total of 16 

classes were included in the ground-truth data. 

B. Influence of Parameters 

In this study, the input data were the w × w × L neighboring 

pixel blocks split from the original image. The larger the 

neighboring pixel block size, the more spatial–spectral 

information obtained. Thus, the neighboring pixel block size 

can influence the final HSI classification result, and it is an 

important factor for DC-CapsNet. In addition, the 

convolutional layers were used as feature extractors; they 

captured high-level features from the original input image and 

imported into the capsule layers. The convolutional kernel sizes 

used in the convolutional layers and the number of 

convolutional layers impact the classification performance of 

the model. We will explore the influence of these parameters on 

the performance of the DC-CapsNet. In this study, the 

performance of the proposed decoder network is also discussed.  

It is worth mentioning that the decoder network is not 

introduced into the model when we evaluated the influences of 

the spatial size of the input cube, convolutional kernel sizes, 

and number of convolutional layers. In other words, only the 

encoder network was used in our experiments. This is because 

the encoder network is mainly a part of DC-CapsNet, which 

captures spectral–spatial features and classifies the input HSI 

data. In this study, we aim to select the best encoder network to 

extract spectral–spatial features from HSIs and then introduce 

the decoder network to further enhance the generalization 

ability of the encoder network. Furthermore, for all 

experiments in this study, the IN and KSC datasets randomly 

choose 3 % training samples, and the UP and SA datasets 

randomly choose 0.5 % training samples. The number of 

validation samples was the same as that in the training set, and 

the remaining samples were used to test the performance of the 

model. 

1) Neighboring pixel block size 

In this section, we discuss the classification performance for 

the neighboring pixel block sizes of 7, 9, 11, 13, and 15, 

individually. The convolutional kernel size and number of 

convolutional layers were set to 3 and 2. Table Ⅱ shows the 

classification results for the four datasets. It can be seen that the 

OA increases as the neighboring pixel block size gradually 

increases, and a threshold effect exists. For KSC, IN, and UP 

datasets, the changing trend of classification accuracy is similar. 

When the neighboring pixel block size was 9 and 13, the 

accuracy will increase greatly. The highest OA was obtained 

when the neighboring pixel block size was set to 13. However, 

the classification accuracy decreases when we chose a 15 × 15 

spatial size of the pixel block. For SA, the performance of 
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classification was optimal when the neighboring pixel block 

size was 15, but the improvement was very small when the 

neighboring pixel block size was 13. Therefore, we chose 13 as 

the neighboring pixel block size for the DC-CapsNet. Fig. 5 and 

Fig. 7 show the tendencies in loss and accuracy of the training 

and validation sets for different neighboring pixel block sizes 

over the IN and UP datasets. Similarly, with the increase in the 

spatial size of the input cube, the changes in loss and accuracy 

were more stable, and they were the most stable when the 

neighboring pixel block size was 13. 

Table II Overall accuracy (%) for different spatial size of neighboring pixel 

blocks 

Data Set 7 9 11 13 15 

KSC 81.30 88.86 91.33 94.86 93.37 

IN 81.83 87.71 87.90 93.94 90.75 

UP 90.32 93.04 93.65 96.46 94.28 

SA 91.42 93.02 93.81 95.76 95.78 

 

 

 
Fig. 5. Tendencies in loss and accuracy of training and validation sets under different neighboring pixel block size over Indian Pines dataset for different 

neighboring pixel block sizes: (a) 7, (b) 9, (c) 11, (d) 13 and (e) 15. 

  
Fig. 6. Tendencies in loss and accuracy of training and validation sets under different neighboring pixel block size over Pavia University dataset for different 

neighboring pixel block sizes: (a) 7, (b) 9, (c) 11, (d) 13 and (e) 15. 
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2) Convolutional kernel sizes 

In this section, the influences of different convolutional 

kernel sizes are explored. Owing to the limitation of the input 

cube sizes, we only discuss the classification result for the 

convolutional kernel sizes of 3 and 5. The neighboring pixel 

block size and the number of convolutional layers were set to 

13 and 2, respectively. The classification accuracy is shown in 

Table Ⅲ. When the convolution kernel size is 3, the OAs of the 

model on KSC, IN, UP, and SA datasets reached 94.86%, 

93.94%, 96.46%, and 95.76% respectively, which is 5.51%, 

5.77%, 0.38%, and 1.86% higher than that of the convolution 

kernel of 5. Fig. 7 and Fig. 8 show the tendencies in the loss and 

accuracy of the training and validation sets for different 

convolutional kernel sizes over the IN and UP datasets. It is 

obvious that the classification result of the DC-CapsNet is 

optimal when the convolutional kernel size is 3. Moreover, it 

makes the optimization procedure more stable and the 

convergence speed faster. 
Table III Overall accuracy (%) for different convolutional kernel sizes and 

different number of convolutional layers 

Data Set 
Kernel size No. convolutional layers 

3 5 1 2 3 

KSC 94.86 89.35 94.48 94.86 90.46 

IN 93.94 88.17 92.24 93.94 89.36 

UP 96.46 96.08 95.28 96.46 93.41 

SA 95.76 93.90 95.61 95.76 94.37 

  
Fig. 7. Tendencies in loss and accuracy of training and validation sets under different convolutional kernel sizes over Indian Pines dataset for neighboring pixel 

block sizes (a) 3 and (b) 5. 

  
Fig. 8. Tendencies in loss and accuracy of training and validation sets under different convolutional kernel sizes over Pavia University dataset for neighboring pixel 

block sizes (a) 3 and (b) 5. 

 

  

Fig. 9. Tendencies in loss and accuracy of training and validation sets under different number of convolutional layers over Indian Pines dataset for neighboring 

pixel block sizes of (a) 1, (b) 2 and (c) 3. 
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Fig. 10. Tendencies in loss and accuracy of training and validation sets under different number of convolutional layers over Pavia University dataset for 

neighboring pixel block sizes of (a) 1, (b) 2 and (c) 3. 

3) Number of convolutional layers 

We analyzed the performance of the model in four datasets 

when the number of convolutional layers were 1, 2, and 3. The 

neighboring pixel block size and convolutional kernel sizes 

were set to 13 and 3, respectively. As shown in Table Ⅲ, the 

best classification result was provided by using two 

convolutional layers, that is 94.86 %, 93.94 %, 96.46 %, and 

95.76 % respectively on the KSC, IN, UP and SA datasets. As 

the number of convolutional layers increased to 3, the accuracy 

of the DC-CapsNet decreased significantly, by 4.8 %, 4.58 %, 

3.5 %, and 1.39 % on the four datasets. Fig. 9 and Fig. 10 show 

the tendencies in the loss and accuracy of the training and 

validation sets for different convolutional kernel sizes over the 

IN and UP datasets. We found that one convolutional layer 

could not capture the robust spectral–spatial features 

effectively, and three convolutional layers led to the worst 

result. Therefore, we deduce that using two convolutional 

layers in shallow layers to extract features from the original 

HSI data may be a good choice. 

4) Selection of decoder network 

In this study, a decoder network was used to reconstruct 

the input image using the final output activity vector. The 

selection of the decoder network in the model is very important. 

Thus, we consider the parameters numbers of the original 

decoder network represented in [40] and the proposed decoder 

network in this study over KSC, IN, UP, and SA datasets, as 

well as the classification results when adopting the original 

decoder network, proposed decoder network, and no decoder 

network under the condition of different ratios of the training 

set. A 13 × 13 spatial size of the input cube, kernel size of 3, and 

2 convolutional layers are used in this section. The weight 

coefficient of reconstruction loss α is set to 0.0005. Table Ⅳ 

shows the parameters numbers of different kind of decoder 

network. Obviously, the original decoder network has a large 

number of parameters because of the fully connected layers. 

Due to the difference of the number of spectral dimensions, the 

parameters of the original decoder network are quite different 

over KSC, IN, UP, and SA datasets. The original decoder 

network has the least number of parameters in the UP dataset, 

which is more than 18 million, and has the most parameters in 

the SA dataset—nearly 36 million. In contrast, the proposed 

decoder network consists of deconvolutional layers, which is 

much lighter than the original decoder network. On the four 

HSI datasets, the parameters of the proposed decoder network 

are only 75340 at most, less than 1 / 400th of the original 

decoder network. 

The classification results are listed in Table Ⅴ. The 

original decoder network results in overfitting when the 

number of training samples is limited owing to a large number 

of trainable parameters. It has limited improvement in 

classification accuracy and even makes the model performance 

of classification worse when the number of training samples is 

insufficient. In particular, for the IN dataset (having uneven 

sample distribution), the OA of the model can be significantly 

reduced by using the original decoder network when the ratios 

of the training set are 0.5 %, 1 %, and 3 %. Similarly, because 

we chose 0.5 % training sample on the UP and SA datasets, the 

original decoder network will also lead to a decrease in the OA 

of the model. The proposed decoder network, by contrast, can 

significantly improve the classification accuracy. The 

improvement in the classification performance was particularly 

obvious when the training samples were relatively small. When 

the ratios of training samples are set to 0.5 %, the DC-CapsNet 

with the proposed decoder network has highest OA that reached 

values of 77.54 %, 72.76 %, 96.71 %, and 97.14 % on KSC, IN, 

UP, and SA datasets, receptively. With the increase of the 

training samples, the decoder network’s improvement in 
classification accuracy decreased slightly. When the proportion 

of the training set was greater than 5 % for UP and SA datasets 

and 7 % for KSC and IN datasets, the advantages of the 

proposed decoder network became less obvious. As the ratios 

of the training set are 10 % for KSC, IN, UP, and SA datasets, 

the accuracy of DC-CapsNet with the proposed decoder 

network receptively reached 99.57 %, 99.16 %,99.89 %, and 

99.98 %, with an improvement of 0.21 %, 0.05 %, 0.02 %, and 

0.03 %. This is because the performance of deep learning 

models is usually related to the number of training samples. The 

classification accuracy increases rapidly with the increasing 

training samples, even higher than 99% so that the 

improvement of the proposed decoder network is not obvious. 
Table IV The parameters of different kind of decoder network 

Data Set original proposed 

KSC 31,119,920 71,280 

IN 35,301,896 74,760 

UP 18,441,727 60,695 

SA 35,994,796 75,340 
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Table V  overall accuracy (%) for different kind of decoder network 

Data Set Decoder network 0.5 % 1 % 3 % 5 % 7 % 10 % 

KSC 

no 73.61±2.92 90.07±2.37 94.86±1.30 96.26±1.77 98.49±0.45 99.36±0.18 

original 74.04±11.99 90.44±1.52 95.51±0.52 97.63±0.32 98.79±0.57 99.42±0.15 

proposed 77.54±0.62 91.47±0.44 95.97±1.16 97.73±0.49 98.90±0.44 99.57±0.07 

IN 

no 72.40±1.62 79.32±2.27 93.94±1.30 96.06±0.82 98.11±0.10 99.11±0.28 

original 71.12±1.61 79.09±1.75 93.66±0.94 96.61±0.62 98.14±0.25 99.13±0.16 

proposed 72.76±1.61 79.65±1.64 94.42±1.11 96.43±0.65 98.15±0.11 99.16±0.23 

UP 

no 96.46±0.27 97.76±0.14 99.26±0.08 99.69±0.06 99.79±0.04 99.87±0.03 

original 95.82±0.68 97.86±0.14 99.33±0.06 99.71±0.02 99.81±0.03 99.87±0.04 

proposed 96.71±0.38 97.92±0.25 99.48±0.12 99.76±0.06 99.84±0.04 99.89±0.04 

SA 

no 95.76±0.70 96.50±0.46 98.91±0.13 99.81±0.03 99.88±0.07 99.95±0.03 

original 95.24±1.11 96.95±0.16 98.93±0.12 99.82±0.07 99.90±0.06 99.97±0.00 

proposed 97.14±0.32 97.79±0.31 99.27±0.09 99.85±0.04 99.91±0.05 99.98±0.00 

To better understand the effect of the proposed decoder 

network, we further investigated the tendencies in loss and 

accuracy of the training and validation sets for the model using 

a different type of decoder network on the IN and UP datasets, 

with a specific number of training samples (for the IN dataset, 

we chose 3 % training samples; for the UP dataset, we chose 

0.5 % training samples). As shown in Fig. 11 and Fig. 12, the 

introduction of the decoder network improved the robustness of 

the model. Furthermore, the performance of the proposed 

decoder network outperformed the original network. It is 

noteworthy that the loss and accuracy curves of the model 

introducing the proposed decoder network fluctuated relatively 

greatly on the IN dataset, but the final result was optimal and 

effective. 

McNemar’s test [55] is a statistical procedure that can be 

used to compare two classification models that are dependent or 

correlated. To better show the effectiveness of the proposed 

decoder network, we performed some statistical analysis, using 

McNemar’s test, on the SA dataset (chose 3 % training samples 

and 10 % training samples) for the no decoder and the original 

decoder network, as well as the original decoder and the 

proposed decoder network, respectively. The contingency 

tables of these three cases are listed in Table VI-IX. By 

calculation, the corresponding probability p is 1.57 × 10
-16

 and 

1.92 × 10
-19

 respectively when we chose 10 % training samples. 

At the significance level of 0.05, the data provide sufficient 

evidence to conclude that the performance of the model is 

significantly different when using different kinds of decoder 

networks. In other words, the decoder network improves the 

classification accuracy of the model, to a certain extent, and the 

effect of the proposed decoder network in this paper is better 

than that of the original decoder network. When the ratio of the 

training set is 10 % for SA dataset, the p is 1.94 × 10
-8

 and 0.27 

respectively. It means that the decoder network can improve the 

final classification result using the 0.05 significance level, but 

the performance of the original decoder network and the 

proposed decoder network is almost the same. It is because the 

deep learning models are data-driven approaches. When the 

number of training samples is sufficient, we can get a better 

original decoder during the training stage. On the other hand, 

the classification accuracy is higher than 99.95 %, it is hard to 

make a big improvement. Thus, the performance difference 

between the proposed decoder network and the original 

decoder network is not obvious when the number of training 

samples is relatively large. 

Table VI The contingency table for the no decoder and the proposed decoder 

network over SA dataset with 3% training samples 

Original decoder 
No decoder 

Total 
Correct Incorrect 

Correct 50148 217 50365 

Incorrect 75 421 496 

Total 450223 638 50861 

Table VII The contingency table for the original decoder and the proposed 

decoder over SA dataset with 3% training samples 

Proposed decoder 
Original decoder 

Total 
Correct Incorrect 

Correct 50291 233 50524 

Incorrect 74 263 337 

Total 50365 496 50861 

Table VIII The contingency table for the no decoder and the original decoder 

over SA dataset with 10% training samples 

Original decoder 
No decoder 

Total 
Correct Incorrect 

Correct 43249 34 43283 

Incorrect 2 8 10 

Total 43251 42 43293 

Table IX The contingency table for the proposed decoder and the original 

decoder over SA dataset with 10% training samples 

Proposed decoder 
Original decoder 

Total 
Correct Incorrect 

Correct 43274 9 43283 

Incorrect 4 6 10 

Total 43278 15 43293 
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Fig. 11. Tendencies in loss and accuracy of training and validation sets under different kind of decoder network over Indian Pines dataset: (a) no decoder, (b) original 

decoder and (c) proposed decoder 

  
Fig. 12. Tendencies in loss and accuracy of training and validation sets under different kind of decoder network over Pavia University dataset: (a) no decoder, (b) 

original decoder and (c) proposed decoder 

 

5) Weight coefficient of reconstruction loss 

In this paper, the reconstruction loss output by the decoder 

network is a regularization method during the training stage, 

and its weight coefficient α directly influent the performance of 

the model. In this part, we observed the influences of the 

reconstruction loss on the classification performance of the 

proposed model when α was 0.0001, 0.0003, 0.0005, 0.0007, 

0.001, 0.003, 0.005, 0.007, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.7, 

and 1. The neighboring pixel block size, convolutional kernel 

sizes, and convolutional layers were set to 13, 3, and 2, 

respectively. The classification results as shown in Fig. 13. The 

results on the KSC and UP datasets first improve significantly 

as α increases and then degrade slightly. DC-CapsNet provides 

the highest OA when the weight coefficient was 0.0005, 

namely 95.97 % and 96.71 % receptively. For the IN and SA 

datasets, we observe that the OA declines at first and then 

increase significantly. Similar to the other two HSI datasets, the 

performance of classification was optimal when α was 0.0005. 

Moreover, when α continued to improve on all four datasets, 

OA declines dramatically and then fluctuated lightly. This is 

because the encoder network is mainly a part of DC-CapsNet, 

which is responsible for extracting spectral–spatial features 

from input HSI data. The decoder network is a regularization 

method which the class capsule to encode the spectral-spatial 

information of the target geographic object. Appropriate 

regularization term can enhance the generalization ability of the 

model. When the regularization term is too large, the 

performance of the model will be adversely affected. By 

contrast, when the regularization term is too small, it can't give 

full play to its role, and cannot effectively enhance the 

performance of the model. Thus 0.0005 may be a good choice 

for the weight coefficient of reconstruction loss. The 

reconstruction loss does not dominate the margin loss during 

training stage on the one hand, on the other hand, it could 

improve the classification accuracy of DC-CapsNet. 
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Fig. 13. Overall accuracy (%) under different weight coefficients over KSC, IN, UP, and SA dataset

C. Experiment Results and Analysis 

In our study, the KSC, IN, UP, and SA datasets were used to 

evaluate the performance of the DC-CapsNet. We chose the 

model having 2 traditional convolutional layers in shallow 

layers, and the convolutional kernel sizes were set to 3. The 

weight coefficient of the reconstruction loss generated by the 

decoder network was set to 0.0005. The spatial size of the input 

HSI cube was selected as 13 × 13. To further explore the 

potential of DC-CapsNet in the HSI classification field, we 

compared it with SVM [12], 3D-CNN [29], SSRN [30], deep 

feature dense network (DFDN) [32], and 3D-CapsNet [43] 

models on the KSC, IN, UP, and SA datasets. For the KSC and 

IN datasets, the ratios of training samples and validation 

samples were set to 3 %. For the UP and SA datasets, the ratios 

of training samples and validation samples were set to 0.5 %. 

For 3D-CapsNet, we adjusted the number of feature maps 

output by the PrimaryCaps layer under the condition of existing 

training samples and selected the parameters with the best 

performance. With the exception of 3D-CapsNet, the 

architecture of these models of SVM [12], 3D-CNN [29], 

SSRN [30] and DFDN [32] was the same as in their papers. 

Table X shows the classification results of all models on the 

KSC, IN, UP, and SA datasets. The classification of 

DC-CapsNet has the highest classification accuracy on the 

KSC dataset. The highest OA, AA, and K reached values of 

95.97 %, 93.43 %, and 0.9551, with an improvement of 2.69 %, 

1.81 % and 0.03 for the SSRN, respectively. For the IN dataset, 

the proposed method performed better than other compared 

models, which improved the OA, AA and K of the SSRN by 

2.93 %, 4.8 % and 0.034, respectively. For the UP dataset, our 

proposed model achieved the best classification result; 

compared with the SSRN, the OA, AA and K increased by 

1.48 %, 1.77 % and 0.0188, respectively. A similar result was 

observed for the SA dataset. The OA, AA and K values of our 

model were found to be 97.14 %, 98.06 % and 0.9682, 

respectively, which are higher than those of other 

state-of-the-art methods. Furthermore, the SSRN obtains the 

second-best result among all the datasets, while the SVM 

performance was particularly poor. The SSRN involves several 

spectral residual blocks and spatial residual blocks, which 

provide a lighter and deeper network structure to classify HSI 

data. Thus, the SSRN can achieve a better classification result 

than 3D-CapsNet, 3D-CNN and DFDN. Moreover, both 

3D-CapsNet and 3D-CNN have a relatively shallow network 

architecture. We found that the performance of 3D-CapsNet is 

generally better than that of 3D-CNN by comparing their 

classification results. However, the 3D-CNN is superior to 

3D-CapsNet on the KSC dataset. This is because there are too 

many parameters of 3D-CapsNet that easily lead to overfitting, 

while the training samples of the KSC dataset are less than 

those of the other datasets. Similar results also arise with the 

DFDN.  

Table X Classification results of different models on Kennedy Space Center, Indian Pines, Pavia University and Salinas 

Data set SVM 3D-CNN SSRN DFDN 3D-CapsNet DC-CapsNet 

KSC 

OA (%) 81.83±0.04 87.65±1.89 93.28±1.25 88.43±0.88 83.63±1.26 95.97±1.16 

AA (%) 73.86±2.33 85.69±2.40 91.62±1.02 87.58±1.44 78.80±1.20 93.43±1.84 

K×100 79.73±0.05 86.24±2.11 92.51±1.41 87.11±0.96 81.74±1.42 95.51±1.29 

IN 

OA (%) 53.55±1.70 79.15±1.20 91.49±1.14 81.89±3.10 80.44±2.40 94.42±1.11 

AA (%) 31.26±2.36 79.79±6.54 86.93±6.51 81.07±1.91 79.66±1.07 91.73±1.11 

K×100 43.23±2.45 76.17±1.38 90.24±1.31 79.61±3.41 77.57±2.78 93.64±1.26 

UP 

OA (%) 78.53±0.74 86.55±0.97 95.23±0.57 88.77±1.47 91.73±0.46 96.71±0.38 

AA (%) 69.94±0.91 82.76±2.07 93.74±0.52 86.06±1.36 88.76±0.89 95.51±0.41 

K×100 70.68±0.92 81.96±1.29 93.75±0.77 84.96±2.01 88.96±0.62 95.63±0.50 

SA 

OA (%) 83.69±1.39 87.81±1.72 95.29±0.26 88.80±1.78 89.69±2.29 97.14±0.32 

AA (%) 86.34±2.05 92.18±1.81 97.40±0.13 90.53±2.24 94.19±0.71 98.06±0.43 

K×100 81.75±1.57 86.36±1.96 94.76±0.28 87.51±1.99 88.53±2.52 96.82±0.35 
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To further consider the performance of the DC-CapsNet, the 

tendencies in loss and accuracy of the training and validation 

sets for comparison of deep learning models and DC-CapsNet 

on the four datasets were observed (Fig. 14–17). For DFDN, it 

was obvious that there was a large fluctuation in the loss on the 

validation set, and overfitting occurred on all four datasets. 

Moreover, compared with 3D-CNN, SSRN, DFDN and 

3D-CapsNet, DC-CapsNet had better convergence results and 

achieved the most stable loss and accuracy curves on the 

validation set. 

  
Fig. 14. Tendencies in loss and accuracy of training and validation sets under different models over Kennedy Space Center dataset: (a)–(e) classification results of 

3D-CNN, SSRN, DFDN, 3D-CapsNet and DC-CapsNet 

  
Fig. 15. Tendencies in loss and accuracy of training and validation sets under different models over Indian Pines dataset: (a)–(e) classification results of 3D-CNN, 

SSRN, DFDN, 3D-CapsNet and DC-CapsNet 
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Fig. 16. Tendencies in loss and accuracy of training and validation sets under different models over Pavia University dataset: (a)–(e) classification results of 

3D-CNN, SSRN, DFDN, 3D-CapsNet and DC-CapsNet 

  
Fig. 17. Tendencies in loss and accuracy of training and validation sets under different models over Salinas dataset: (a)–(e) classification results of 3D-CNN, SSRN, 

DFDN, 3D-CapsNet and DC-CapsNet 

Fig. 18–21 show the classification maps of the comparison 

models and DC-CapsNet on the KSC, IN, UP and SA datasets. 

We found that the classification results of the SVM contained 

more noise than the other methods. It is a common problem 

with spectral-based methods because only spectral information 

is considered in the HSI classification. Generally, models based 

on spectral–spatial information, both CNN-based and 

CapsNet-based methods, can generate better results than 

spectral-based approaches. The SSRN results in the 

classification maps were better than those obtained by using 

3D-CapsNet and other CNN-based models. Nevertheless, the 

classification map obtained using DC-CapsNet is more 

accurate and smoother than other methods. 

The training and test times indicate the computational 

efficiency of the model. As reported in Table XI, the 

computation cost of SVM is far less than that of deep learning 

models. The DFDN takes more time for training than other 

deep learning models because of the complex network structure; 

moreover, its test time is also much longer than that of other 

models. Compared with SSRN and 3D-CapsNet, DC-CapsNet 

converges fast on the IN and UP datasets, but not on the KSC 

and SA datasets. It may be attributed to the fact that some 

classes in these images have similar spectral-spatial property, 

which may cause the model to need more training time to learn 
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the differences between these classes and provide a better 

classification result. Furthermore, DC-CapsNet requires more 

training and test times than 3D-CNN.  

We could also observe the number of parameters of the 

different deep learning networks from Table ⅩI. For 

CapsNet-based models, namely 3D-CapsNet and DC-CapsNet, 

it is obvious that the DC-CapsNet is much lighter than 

3D-CapsNet due to the 3D convolutional capsule layer. 

Especially, the parameter quantity of DC-CapsNet is two orders 

of magnitudes lower than that of 3D-CapsNet on the KSC, IN, 

and SA datasets. Compared with CNN-based models, 

DC-CapsNet works well with the fewer parameters than 

3D-CNN and DFDN. However, the parameters of DC-CapsNet 

are about 100 thousand more than that of SSRN. In the 

following work, we will try to reduce the number of parameters 

and the computation cost of DC-CapsNet under the premise of 

ensuring classification accuracy. 

 

Table XI Training, test time and parameters under different models 

Data Set 
Methods SVM 3D-CNN SSRN DFDN 3D-CapsNet DC-CapsNet  

KSC 

Train (s) 0.01 36.41 60.08 798.56 72.45 98.40  

Test (s) 0.11 1.54 5.29 35.49 6.93 2.96  

Parameters - 2,087,553 309,845 1,244,410 23,366,784 409,728  

IN 

Train (s) 0.06 64.73 112.01 1740.35 239.37 96.21  

Test (s) 0.13 3.13 3.88 68.84 14.06 6.13  

Parameters - 2,401,756 346,784 1,247,776 30,745,728 449,664  

UP 

Train (s) 0.03 46.24 67.65 659.64 101.68 47.42  

Test (s) 0.83 8.67 11.39 151.76 41.89 20.01  

Parameters - 832,349 199,153 1,239,922 1,436,800 309,248  

SA 

Train (s) 0.05 61.44 125.94 1562.30 250.48 129.61  

Test (s) 2.54 18.86 26.63 373.50 79.32 32.65  

Parameters - 2,401,756 352,928 1,247,776 31,925,376 454,272  

 

  
Fig. 18. Classification results of different models for Kennedy Space Center dataset: (a) false color image, (b) ground-truth labels, (c)–(h) classification results of 

SVM, 3D-CNN, SSRN, DFDN, 3D-CapsNet and DC-CapsNet 
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Fig. 19. Classification results of different models for Indian Pines dataset: (a) false color image, (b) ground-truth labels, (c)–(h) classification results of SVM, 

3D-CNN, SSRN, DFDN, 3D-CapsNet and DC-CapsNet 

  
Fig. 20. Classification results of different models for Pavia University dataset: (a) false color image, (b) ground-truth labels, (c)–(h) classification results of SVM, 

3D-CNN, SSRN, DFDN, 3D-CapsNet and DC-CapsNet 
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Fig. 21. Classification results of different models for Salinas dataset: (a) false color image, (b) ground-truth labels, (c)–(h) classification results of SVM, 3D-CNN, 

SSRN, DFDN, 3D-CapsNet and DC-CapsNet 

To evaluate the generalization ability and robustness of the 

proposed method, we randomly selected 0.5 %, 1 %, 3 %, 5 %, 

7 % and 10 % labeled samples as the training set for the KSC, 

IN, UP and SA datasets. Fig. 22 illustrates the OAs of the 

compared models and DC-CapsNet. Compared with the SVM, 

the classification results generated using deep learning models 

were superior. Moreover, the OA of deep learning models 

increased rapidly as the number of training samples increased. 

DC-CapsNet provides better OA than other deep learning 

models, especially under the condition of a small training set. 

Nevertheless, when the proportion of the training set was 

greater than 7 %, the advantages of DC-CapsNet over other 

deep learning models became less obvious. This is because the 

performance of deep learning models is usually related to the 

number of training samples. 3D-CNN, SSRN, DFDN and 

3D-CapsNet have achieved relatively high classification 

accuracy because of the increase in the number of training 

samples. Therefore, the accuracy improvement of the 

DC-CapsNet was limited. 

  
Figure 22. Overall accuracy under different models with different ratios of training sets: (a) Kennedy Space Center, (b) Indian Pines, (c) Pavia University and (d) 

Salinas 
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IV. CONCLUSION 

In this paper, we proposed a novel deep convolutional 

capsule network named DC-CapsNet for the HSI classification. 

This model can effectively extract deep spectral–spatial 

features from HSIs in an end-to-end manner. Dynamic routing 

based on 3D convolution, which is the core of the convolutional 

capsule layer, is introduced to reduce the trainable parameters 

and enhance the robustness of the CapsNet. It uses a set of 

lower-level capsules rather than a single capsule to predict a 

higher-level capsule, which allows the model to capture more 

discriminative spectral–spatial features and effectively reduce 

the complexity of the model. Moreover, a lighter and stronger 

decoder network consisting of deconvolutional layers is 

designed as a regularization method to suppress overfitting and 

further improve the performance of DC-CapsNet. We tested 

our model on the KSC, IN, UP and SA datasets under the 

condition of a limited number of training samples. The 

experiments demonstrated that DC-CapsNet achieves a better 

classification performance than other state-of-the-art models, 

with a low computation cost. Furthermore, DC-CapsNet has a 

much simpler architecture than CNN-based models.  

Inspired by the potential of DC-CapsNet in the HSI 

classification field, we will further consider using it to solve 

HSI processing tasks in other fields in the future, such as target 

detection and semantic segmentation.  
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