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Hyperspectral super-resolution accounting for spectral variability: coupled tensor
LL1-based recovery and blind unmixing of the unknown super-resolution image*

Clémence Prévost’, Ricardo A. Borsoit:#, Konstantin UsevichT, David Brief, José C. M.
Bermudez*, and Cédric Richard®

Abstract. In this paper, we propose to jointly solve the hyperspectral super-resolution problem and the unmix-
ing problem of the underlying super-resolution image using a coupled LL1 block-tensor decomposi-
tion. We consider a spectral variability phenomenon occurring between the observed low-resolution
images. Exact recovery conditions for the image and mixing factors are provided. We propose two
algorithms: an unconstrained one and another one subject to non-negativity constraints, to solve
the problems at hand. We showcase performance of the proposed approach on synthetic and real
images.

Key words. Hyperspectral super-resolution, spectral variability, hyperspectral unmixing, image fusion, tensor
decompositions.

AMS subject classifications. 68U10, 62H35, 94A08

1. Introduction.

1.1. Background. Hyperspectral devices are able to sample the electromagnetic spectrum
into hundred of wavelengths, allowing for the acquisition of hyperspectral images (HSIs) that
possess high spectral resolution. However, the tradeoff between spatial and spectral resolution
forces the HSIs to have a small number of relatively large pixels [41]. On the other hand, mul-
tispectral sensors produce multispectral images (MSIs) with high spatial resolution (smaller
pixels), at the cost of a restricted number of spectral bands. The composition of each pixel
in HSIs and MSIs can be approximated by a sum of a small number of spectral signatures,
or endmembers. This representation is known as the linear mixing model, and allows for
identification of the materials and their abundances in a scene, a process termed unmixing.
Many unmixing approaches have been proposed (see [3, 37, 36] and references therein).

The hyperspectral super-resolution (HSR) problem [50] was formulated to circumvent the
physical limitations of each device. This problem aims at recovering a super-resolution image
(SRI) that possesses both high spatial and high spectral resolutions from co-registered HSI
and MSI of the same scene. The high spatial and spectral resolutions of the SRI can then be
exploited in unmixing tasks.
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2 C. PREVOST, R. A. BORSOI, K. USEVICH, D. BRIE, J. M. BERMUDEZ AND C. RICHARD

Since there exist few satellites that carry both hyperspectral and multispectral sensors
[15, 29], combining an HSI and an MSI acquired onboard of different missions has become
a task of prime interest [22, 17]. Since the HSI and the MSI are acquired at different time
instants, their acquisition conditions can differ by, e.g., illumination, atmospheric or seasonal
changes [5]. This can cause variations in the underlying endmembers and impact negatively
the HSR and unmixing algorithms. This phenomenon is known as spectral variability.

In this paper, we propose to formulate the HSR problem as a coupled tensor block-term
decomposition (BTD) of the HSI and MSI, accounting for spectral variability between the
endmembers. Inspired by the works of [54, 53, 13], we propose guarantees for noiseless exact
recovery of the SRI and its latent factors based on the linear mixing model. One advantage
of using the linear mixing model is that the factors of a properly chosen decomposition can
be seen as the high-resolution spectral signatures and abundance maps corresponding to the
materials in the underlying SRI, provided that they are entry-wise non-negative. Differently
from matrix-based models, our noiseless recovery conditions do not require additional con-
straints on the low-rank factors. We also propose a unified procedure that aims at estimating
the latent mixing factors and recovering the SRI in one single step. Our experiments illus-
trate the competitive performance of the proposed approach for HSR. The performance for
unmixing of the unknown SRI is compared to that of traditional unmixing algorithms applied
on an estimated SRI.

Many approaches have been proposed to solve the HSR problem. Most matrix approaches
[51, 49, 42, 48] are based on the linear mixing model and perform a coupled low-rank fac-
torization of the matricized HSI and MSI. Some matrix approaches provide exact recovery
conditions for the SRI in noiseless cases. However, these recovery guarantees usually require
additional priors on the model. See for example [33], which promotes sparsity of the factors. In
the absence of such hypotheses, only a bound on the recovery error can be obtained [34]. Some
matrix approaches are suitable for the HSR and unmixing problem as well, which consists of
recovering the underlying SRI by means of a physically-informed low-rank approximation. See
for instance [33] and [51]. However, identifiability of the mixing model could only be obtained
under additional constraints on the low-rank factors [14, 32]. As a result, to the best of our
understanding, recovery conditions for the joint HSR and unmixing problem in the literature
only consider specific classes of problems.

More recently, tensor-based approaches were proposed for the HSR problem. The works
of [27, 28] formulate the HSR problem as a coupled canonical polyadic (CP) decomposition,
while a coupled multilinear Tucker decomposition is used in [38]. However, the factors of these
decompositions lack physical interpretation, and thus the aforementioned methods cannot be
used for unmixing. Motivated by the usefulness of tensor models, approaches based on block-
tensor decomposition [53, 13] were proposed for solving the HSR problem. This decomposition
was also successfully used to perform unmixing [39] on the SRI directly.

Most of these approaches however share a common limitation: they assume that the
acquisition conditions of the HSI and MSI are the same, hence they ignore the variability
phenomenon. In [4], a super-resolution method accounting for seasonal spectral variability
was proposed. Using a low-rank matrix formulation, the spectral signatures underlying the
HSI and MSI were allowed to be different from each other, with variations introduced by a
set of multiplicative scaling factors [25]. This algorithm led to significant performance im-
provements when the HSI and MSI are subject to spatially uniform seasonal or acquisition
variations. However, the algorithm in [4] presented high computation times and did not offer
any theoretical guarantees. In [6], two tensor-based algorithms based on the Tucker decom-
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HSR WITH VARIABILITY: LL1 FUSION AND UNMIXING 3

position were proposed, accounting for spatially and spectrally-localized changes between the
HSI and MSI. Noiseless unique recovery guarantees were proposed. Unfortunately, the Tucker
decomposition being generally non-unique, the decomposition factors were not physically in-
terpretable.

The paper is organized as follows. The remainder of Section 1 contains tensor algebra
preliminaries. Section 2 introduces the low-rank tensor model, and the model for spectral vari-
ability. Section 3 addresses recovery analysis for the joint HSR and unmixing task. Section 4
describes the proposed algorithms and their computational complexity. Finally, Sections 5
and 6 contain numerical experiments for HSR and coupled unmixing, respectively.

1.2. Definitions and notations. We follow the notations of [31, 10]. We use lower (a) or
uppercase (A) plain font for scalars, boldface lowercase (a) for vectors, boldface uppercase
(A) for matrices and calligraphic (\A) for tensors. The elements of vectors, matrices and
tensors are denoted as a;, A;; and A; ;. respectively. The transpose of a matrix A is
denoted by AT. We use Iy for the N x N identity matrix and Opxx for the L x K matrix
of zeros. Notation 1; denotes an all-ones vector of size L x 1. For a matrix X, the notation
X > 0 means that X is entry-wise non-negative. Symbols X and ® denote the Kronecker
and Khatri-Rao products, respectively. The Hadamard (element-wise) product is denoted by
(). We use vec{-} for the standard column-major vectorization of a matrix or a tensor. For
two matrices A and B, the operator Diag{A, B} produces a block-diagonal matrix whose
diagonal blocks are A and B. Each dimension of a tensor is called a mode, and the number of
dimensions is called order. A mode-p fiber of tensor X is a vector obtained from X by fixing
all but the p-th dimension. A slab or slice of a tensor X is a matrix whose columns are the
vectors of X obtained by fixing all but two of its modes. We restrict the scope of this paper
to order-3 tensors.

Definition 1.1. Quter product — The outer product between three vectors a € RI, b € R/,
c € RE is an order-3 tensor of rank 1 defined as X = a ®@ b ® ¢ € RIXV*E_ Each element of
X is accessed as X; j i, = a;bjcy.

Definition 1.2. Tensor unfoldings — The mode-p unfolding of a tensor X, denoted by
X(p), is the matriz whose rows are the mode-p fibers of X, ordered according to the vector-
ization order. For a third-order tensor X € RI*I*K e have X1 € RIEXI x(2) ¢ RIKxJ
and X®) e RIJXK

Definition 1.3. Mode product — The mode-p product between a tensor X and a matric

M is denoted by X o, M and is evaluated such that each mode-p fiber of X is multiplied by

M. For instance, the elements of the mode-1 product between X € RI*/*K gnd M e RL*!

are determined as (X o1 M)K,j,k’ = > XijxMy;, ¢ € {1,...,L}. Moreover, it holds that
K3

YV=Xeo, M =YH = x®pgT,

1.3. Block-term decomposition with ranks (L, L, 1). In this subsection, we introduce the
block-term decomposition with ranks (L, L, 1), that we will use to build our model. The main
advantage of this decomposition is to link the low-rank factors to high-resolution abundance
matrices and spectral signatures used inunmixing of the unknown SRI, under additional non-
negativity priors on the low-rank factors. We also recall some sufficient uniqueness conditions
for this decomposition, as well as useful properties.

This manuscript is for review purposes only.
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Definition 1.4. Block-term decomposition — An order-3 tensor X € RIXJXK
admits a block-term decomposition (BTD) with ranks (L, L,1) (LL1-BTD) as

generally

(1.1) X = XR: (4,B]) @c,
r=1

where A, € RI*E B, € R and ¢, € RE, for r € {1,...,R}. Moreover, we denote
A=[Ay,...,Ag] e RIXLE B = [By,...,Bg] € R7*IE and C = [¢y, ..., cp] € REXE,

Theorem 1.5. [12, Theorem 4.7] Let (A, B,C) denote an LL1-BTD of a tensor X for
r e {l,...,R} as in (1.1). Assume that (A, B,C) are drawn from certain joint absolutely
continuous distributions. If I1J > L2R and

min <L£J,R> + min <LiJ,R> + min(K, R) > 2R + 2,

then ATBI and ¢, are essentially unique almost surely for r € {1,..., R}.

Definition 1.6. Partition-wise Khatri-Rao product — The partition-wise Khatri-Rao
product between two partitioned matrices A and C defined as above can be expressed as

Co,A=[ciXA,...,cpR AR] € RIEXLE,

Property 1.7. Tensor unfoldings and LL1 — Using the above notations, the unfoldings
of a tensor X admitting an LLI1-BTD as above can be expressed as

x 1) — (C &, B) AT,
xX® =(co,A) BT,
X® =[(A1©B1)1L,...,(Ag® Bg) 1] C".

2. Proposed model.

2.1. Degradation model and indeterminacies. We consider an HSI data cube Yy €
RIaxJuxK and an MSI data cube Yy € RI*/*Em  The scalars K and K denote the
spectral dimensions, and (I, J) (resp. (Ig, Jy)) stand for the spatial dimensions. We suppose
that the spatial resolution of the MSI is higher than that of the HSI (i.e., Iy < I and Jyg < J),
while its spectral resolution is lower (K)j; < K). Most previous works [27]-[13] considered the
low resolution images as degraded versions of a single SRI Z € R/*/*K that possesses high
spatial and spectral resolutions. This model can be expressed as:

2.1
1) Yu =Ze3P3+ &y,

{yH =Ze Pie; Py + &y,

where the tensors € and &) are additive noise terms. The matrix Ps € REM*K contains
the spectral response functions for each band of the MSI sensor. The spatial degradation
matrices Py € RI#*1 and Py € R/#*/ perform Gaussian blurring and downsampling along
each spatial dimension, i.e. we suppose that the spatial degradation operation is separable,
as in the commonly used Wald’s protocol [47].

This manuscript is for review purposes only.
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However, this model implies that the acquisition conditions of Yy and Y, are the same,
thus it ignores possible variations in atmospheric, seasonal or illumination conditions [44, 52]
between the HSI and MSI. The variability phenomenon motivates the need for more flexible
models. As a result, in this paper, we adopt a more general approach. As in [6], we consider

two different SRIs Z € RIXIXK and Z € RIXIXK underlying the HST and MSI, respectively.
The SRIs Z and Z contain possibly different spectral signatures and can be linked as

(2.2) Z=Z+V,

where ¥ € R*/*K ig a tensor of spectral variability. This leads to the following model:

2.3 ~
(2:3) Yu =Ze3P3+&y.

{yH =Ze Piey Py + &€y,

In this framework, the HSR problem consists recovering Z € RIX/XK and & ¢ RIX/*K
under the assumption of the observation model (2.2)—(2.3). However, the presence of the
variability tensor ¥ makes this problem ambiguous [6], as one cannot easily separate Z and

W from Z. We recall the following theorem [6]:

Theorem 2.1. [6, Theorem 1.a)] Suppose that the HSI and MSI are generated according to
(2.3) and that the observation noise is zero (i.e. £, Ep = 0). If either Py, Py or Ps have
non-trivial nullspace, then (Z,®) cannot be uniquely recovered from Yg and Y.

In [6], approaches based on model (2.3) were proposed, using a coupled Tucker approxima-
tion. However, due to the non-uniqueness of the Tucker decomposition, the latent multilinear
factors were not guaranteed to be unique, and no non-negativity constraints were enforced.
Thus it was not possible to incorporate them into an interpretable mixing model. In what
follows, we introduce a low-rank tensor model to circumvent the fundamental ambiguities of
the proposed degradation model. Indeed, a wisely chosen low-rank decomposition might still
allow for unique recovery of portions of the tensors. We propose to use the LL1-BTD, whose
factors are suitable for physical interpretation. The LL1-BTD model was successfully used for
unmixing [39] and HSR [53, 13]. However, these works ignored any variability phenomenon.

Differently from [6] (that considered spatially and spectrally localized changes), we con-
sider that variability only impacts the spectral dimension of the SRI. This is reasonable, since
spectral variability can occur even with short acquisition time differences. This assumption
also allows for sometimes less restrictive noiseless recoverability guarantees than the ones from
[6]*. As a result, the proposed model is more suitable for scenarios with low spatial variability.
Nevertheless, we will show in Sections 5 and 6 that it is able to address large acquisition time
differences as well.

2.2. LL1-BTD mixing model for the underlying SRIs. In the linear mixing model, each
pixel of the SRI Z (and therefore, of the HSI Y ) can be represented as a sum of a small
number R of pure spectral signatures [30]. This property can be incorporated in a physically-
informed low-rank approximation model, allowing to perform both HSR and unmixing in a
unified procedure. Thus, as in [53], we can model the third-mode unfolding of Z as:

(2.4) Z®) = 8CT e RIVXK,

*because of the more general variability model.

This manuscript is for review purposes only.
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6 C. PREVOST, R. A. BORSOI, K. USEVICH, D. BRIE, J. M. BERMUDEZ AND C. RICHARD
where C = [c1,...,cg] € REXR is a matrix containing the spectral signatures of the R
endmembers underlying the SRI. The matrix S = [vec{S1},...,vec{Sr}] € RI/*f contains
the vectorized abundance maps of each material. In fact, (2.4) can be viewed as the linear
mixing model for the SRI Z, under the assumption that C and S are entry-wise non-negative!.

We assume as in [53] that the abundance maps admit low rank L. The hypothesis of low-
rank abundance matrices is reasonable, since the two spatial dimensions are often correlated
along the rows and columns, respectively. Thus we have

(2.5) S, ~A,Bl e RI*/,

where A, € R/*! and B, € R7*! admit rank L. In [7], an upper bound on the reconstruction

error of such matrices by (2.5) is provided in the general problem. In particular, this error

can be as small as desired if L is large enough, which motivates the above assumption.
Reshaping (2.4) into tensor format yields the following:

R
(2.6) Z=> (AB)ac,.

r=1

The above model can be seen as an LL1-BTD of the tensor Z with factors A = [A4,..., A,],
B =[By,...,B;] and C = [cy,...,¢,] related to the mixing factors.

State-of-the-art unmixing algorithms aim at recovering {S, = A, B }2 | and C from the
mixed pixels in Z. Here, since Z is unknown and only Y is observed with high spectral reso-
lution, these algorithms are only able to recover spatially-degraded versions of the abundance
maps [13], namely

(2.7) PSP e RIm*Ji for v € {1,... R}

Differently from those works, fusion of an HSI with an MSI with high spatial resolution allows
us to seek for abundance maps at a higher spatial resolution.

In Figure 1, our model and the joint unmixing-and-HSR strategy are summarized. Since
the true SRIs Z and Z are unknown, we utilize the fusion framework to decompose the HSI
and MSI into interpretable mixing factors. While high-resolution spectra can be obtained
from the HSI, high-resolution abundance maps can only be obtained from the MSI. The
fusion framework allows to exploit fully the information contained in the observations. Once
the mixing factors have been retrieved, the estimated SRI Z can be approximated using the
LL1-BTD!. However, the spectral variability has to be modeled first.

2.3. Modeling spectral variability. In traditional unmixing applications, which only deal
with a single SRI, spectral variability defines the fact that the spectrum of a material (e.g.,
grass or soil) changes from pixel to pixel. This sort of spectral variability is widely considered
in the literature; see e.g., [44] and references therein. However, two different images are

"In some traditional unmixing methods (see e.g. [36]), the sum-to-one constrained abundance matrices
is also enforced. However, spatial illumination changes frequently introduce scaling variations in each pixel.
Moreover, non-negativity constraints can be transformed equivalently to generalized sum-to-one constraint, as
specified in [26]. As a result, we do not consider this additional constraint in this work.

1t should be mentioned that this framework is different from a two-step procedure which would i) recover

the SRI Z from data fusion, then ii) run a traditional unmixing algorithm with the estimated SRI.

This manuscript is for review purposes only.
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Unknown Observations Unmixing _ - __ oL .l

LL1-BTD

Figure 1. Summary of the model and resolution strategy.

considered in our framework. The variability between their corresponding spectra can be
more significant, since their acquisition conditions may be very different. In this paper, we
adopt a simple model for spectral variability, which characterizes which wavelengths are more
impacted by different acquisition conditions for each material in the images. Although not
describing pixel-by-pixel spectral variability, this model is appropriate to describe variations
due to different acquisition conditions and will allow us to obtain recovery guarantees.

In [25], the generalized linear mixing model was proposed to model the spectra underlying
the MSI as

(28) 6 = 1zbrnulti o C7

where ¥, € REX i5 a matrix of positive scaling factors. In this paper, motivated by model

(2.1), we propose to use an equivalent additive model:
(2.9) C=v¢+C,

where 1 € RE*® is different from ;. The choice of the additive variability model (2.9)
allows us to keep the spectral variability explicit in 1. Moreover, both models (2.8) and (2.9)
are able to represent arbitrary endmember variations.

Since we allow only spectral variability to be present, the variability tensor ¥ also admits
an LL1-BTD with the same factors A and B as for the SRI Z, but with spectral factor
1) € REXE representing the spectral variations. This allows to write Z as

R R R
(2.10) Z=) (AB)®c,+> (AB)ayp, =) (AB]) e

r=1 r=1 r=1

zZ v

where ¢, = 9, + ¢, is the r-th column of C.

This manuscript is for review purposes only.
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From the above formulations, we can finally express (2.3) as a coupled LL1-BTD:

(211) {yH = Zf:l(PlAT(PQBr)T) &® e + £H7

Yu = Zle(ArB;r) ® Psc, + E .

Thus the joint unmixing-and-HSR problem consists in finding the LL1 factors {A,BJ}E |,
C, C under the assumption of (2.11), subject to the constraints

(2.12) {A.B"\E >0,Cc>0,C>0.

3. Recoverability analysis. The unmixing-and-HSR problem aims at recovering an SRI
Z and a variability tensor ¥ underlying the HSI in MSI, admitting a coupled LL1-BTD as
in (2.11) under the constraints (2.12). The mixing factors underlying the images must also
be recovered uniquely. In this section, we provide a noiseless recovery analysis® for the SRI
Z and variability tensor ¥. We show that our results hold for both image recovery and
estimation of the mixing factors. Although the following results are inspired by those of
[54, 13], there exist two main differences in our work. First, differently from [13], our model
accounts for variability. Second, we explicitly address unique recovery of the low-rank LL1
factors as mixing factors, which was not addressed in [13].

Theorem 3.1. Assume that the SRIs Z and Z admit BTDs as in (2.6) and (2.10), respec-

tively, that the HSI and MSI follow the coupled model (2.11), and that Ep,Ep = 0. Suppose
that { A, Br}ﬁ:p C, C are drawn from any absolutely continuous joint distributions and that
Py, Py, P3 are full row rank. Let {Af, B:}E | C* C* denote any solution to the unmizing-

and-HSR problem. Then with probability one, the true SRI Z and degraded SRI Z o3 P3 are
uniquely recovered by

R R
Z=Y (AxB;))®c;, Ze3P3=) (AXB;)")es Psc;,

r=1 r=1

if IgJy > LR, IJ > L?R and

min (Lij,R) + min <LiJ,R> + min(Ky, R) > 2R + 2.

Moreover, the abundance maps and spectral signatures represented by the LL1 factors
~ %
{S: = AX B:}E | C*, P3C are recovered uniquely up to permutation and scaling ambigui-
ties.

Let us first recall the following lemma:

Lemma 3.2. [27, Lemma 1] Let us denote A = PA € RI'*L where P € R is full

row rank and A € R™L s drawn from any absolutely continuous joint distribution. Then A
follows an absolutely continuous joint distribution.

We can now derive the proof for Theorem 3.1.

§See also [45, S.1] that proposes exact recovery conditions based on the LL1-BTD, from a tensor completion
perspective.
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Proof. Let {Ar,Br}ﬁ:pC,é denote the groundtruth factors of the SRI tensors and

let {Ai,Bi}le,C*,é* denote a solution to problem the unmixing-and-HSR problem un-

der constraints (2.12). Moreover, let {S,}2; denote the groundtruth abundance maps and
{S: R ={AX(B;)"}E |. Then for Ey,Ey = 0, it holds that

R R
(3.1) Yu=) (PIA/(P:B,))®ec, =) (P1AN(P:B;))T)@¢f,
r=1 r=1
R R
(3.2) Yu=> 85 ®Psé =) S;e Psc.
r=1 r=1

Since by assumption, {A,, B, }%,, C, C are drawn from absolutely continuous joint distribu-

tions and Py, Po and P3 are full row rank, it follows from Lemma 3.2 that {P1A,, P2 B, }E

~ r=1»
P3C follow certain absolutely continuous joint distributions.

Therefore, by Theorem 1.5, the LL1-BTD of Y, is essentially unique almost surely if
IJ > L?R and

min <L£J,R> + min (Li],R) + min(Kap, B) > 2R + 2.

This means that
(3.3) S* = STIA, P;C* = P3CIIA !,

where II is a permutation matrix and A is a non-singular diagonal scaling matrix. B
Next, let us define § = (PyXP;)S. We can see that §* = SIIA, where S* =

(PyX P1)S*. From [11, Lemma 3.3] and the proof of [13, Theorem 1I], § has full column

rank almost surely if IyJg > LR.

Let us continue by considering Yg). From (3.1), we have

YW =8cT = §*(Cc*)T = SOA(C)".
Since S has full column rank, we thus have
(3.4) C*=CIIA ™.

Following (3.3) and (3.4), the LL1 factors S, C, Pgé are recovered uniquely up to permutation
and scaling ambiguities by S§*, C* and P3C*, respectively. _
Finally, we can express the third unfolding of the SRI Z and degraded Z o35 P3 as

Z(S) _ S*(C*)T, (Zz o P3)(3) _ S*(Pgé*)-r,
which are the third unfoldings of the tensors in (3.1)—(3.2). [ ]

Remark 3.3. In the proof for Theorem 3.1, we can see that the low-rank factors C, Pgé
and S can be uniquely identified up to permutation and scaling ambiguities. This means that

they can be interpreted as mixing factors underlying Z and Z e3 P3. Hence Theorem 3.1
proposes unique recovery conditions for both the fusion and unmixing parts of the problem.
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Theorem 3.1 indicates that we can only recover Pgé uniquely, up to permutation and
scaling ambiguities. Following (2.9), the variability matrix 1 can only be recovered from the
MSI up to the spectral degradation P3 as

Pyip = P3(C - O).

Thus the proposed model only allows to recover uniquely a spectrally-degraded version of the
variability tensor, that is, W e3 P3.

Remark 3.4. In practice, there exist cases where spatial degradation is unknown; previous
tensor-based HSR methods [27, 38, 13] proposed unique noiseless recovery conditions for the
SRI in this scenario, also referred to as “spatially-blind”. However, such methods cannot be
envisioned with the proposed approach. Conversely, since knowledge of P3 is not required to
establish the above theorem, it is possible to seek for “spectrally-blind” algorithms, that do
not require the spectral degradation matrix Ps.

4. Algorithms. In this section, we propose two algorithms based on the LL1-BTD. The
first one is unconstrained and solves the HSR problem only. The second one enforced non-
negativity constraints on the factors of the mixing model and proposes a solution to the joint
unmixing-and-HSR problem.

4.1. Unconstrained optimization. In the remaining of this paper, for simplicity, we de-
note Cy = [€Mm,--.,¢mr] = P3C and ), = P3y. Regarding super-resolution, we only
aim at recovering the SRI Z and variability tensor ¥. In this framework, the latent LL1
factors do not need to be interpretable. Thus, we can consider unconstrained optimization.
As in [27], one possible approach for solving the HSR problem is to consider the following
optimization problem:

(4.1)

minimize J (A, B,C, Cir) + ul|Car — (P3C +vy)||%,

A,B,C,Cy

s. to |lepll2 =1, [[em,r|l2 =1, where
R R

T(AB.C,Cy) = [V - S (PrA(P2B)) @ crlb + A[Yar — 3 (ABD) @ 2,
r=1 r=1

and A is a balance parameter that controls the weights on the HSI and MSIY. The regular-
ization parameter p controls the weight on the structural constraint Cy; = P3C + 1;,. The
unit norm constraints on the columns of C and C; are enforced to avoid convergence issues,
and are addressed during optimization with a projected gradient approach. Since (4.1) is a
non-convex cost function, we adopt a block coordinate descent scheme: the latent factors are
updated sequentially by solving unconstrained convex quadratic programs.

Below, we provide the framework of the unconstrained algorithm, named BTD-Var. The
updates for A, B and C can be seen as generalized Sylvester equations and solved by effi-
cient solvers, for instance, Hessenberg-Schur or Bartels-Stewart algorithms; see [43] for a full
overview. The update for C} is solved using normal equations. Please refer to Appendix A
for a full derivation.

YAs in previous works [27]-[13], we consider that A = 1 in our experiments.

This manuscript is for review purposes only.



382
383
384
385
386
387
388
389

HSR WITH VARIABILITY: LL1 FUSION AND UNMIXING 11

Algorithm 4.1 BTD-Var
Input: Yy, Yu, B, C, Cyy, P1, Po, P3; R, L, iter, A\, u
Output: Z € RIX/XK I o5 P3 € RIX/*Kn
Initialization: ,, = Cy; — P3C
for me {1,..., iter} do
for r € {1,...,R} do
¢ =c¢/|ed],
EM,T = EM,T/”EM,T
end for (1) TpT (1) C T
A argmin Y} — (C o, P,B) ATPT |} + A Y] - (CM ©p B) AT|2,

I

B argmin |Y{) - (C o, P1A)BP]|} + YY) - (éM ®p A) BT|2,
S« [... ,vec{A, B}, .. ],

C « argmin 1Y) — (PR P)SCT|% + 1| Car — (P3C + )%,

Cu « argmin MY = SCT 113+ mlCor = (PsC + ¥,) 13

WYy — Cu — P3C.

end for
return Z®) = SCT, (W ey P5)®) = Sy],.

The computational cost per iteration of BTD-Var can be decomposed as follows:
o O(I? + J3 + K3 + L3R?) for solving the Sylvester equations;
e O(IJKyR + IgJgKR) for computing the right-hand side in the least squares sub-
problem.

4.2. Constrained optimization. Although BTD-Var allows for reconstruction of Z and
W, it is not guaranteed that its result can be interpretable in a mixing model. Indeed, non-
negativity constraints must be imposed on factors C and Cj; to provide them with physical
meaning. Differently from [53], we also impose non-negativity on {S,}% |, rather than on
the individual factors A, and B,. This way, ¢, and ¢pr, (resp. S,) can be seen as spectral
signatures (resp. abundance maps) of the underlying SRI Z and MSI Y,,.

The resulting constrained optimization problem is:

(4.2) minimize 7 + pl|Car — (P3C + )| % +7]|Sr — A, BT ||%
AB,{S:}F .CCn
(4.3) s. to {S, = A,B}E | >0,C>0,Cp >0, |lella=1, |[Earlla =1,

where v is a regularization parameter that controls the weight on the low-rank constraint.

Differently from (4.1), in (4.2)—(4.3) the S, factors are no longer latent variables, and are
subject to non-negativity constraints. Such constraints can be handled by using alternating
direction method of multipliers [9, 23]. As in [23], a non-negativity constraint is relaxed by
considering the surrogate ¢4 (-) (see Appendix B). Algorithm 4.2 presents the optimization
framework for (4.2)—(4.3).

The computational cost per-iteration of CNN-BTD-Var is:

e O(I3 + J3+ K3 + L?R3) for solving A, B and C;
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Algorithm 4.2 CNN-BTD-Var
IHPUt: yH7 yMa A7 B7 C: éM, Ela P27 P3; Rv Lv iter, )\a s 7y
Output: § € RI*E C e REXE Cyy e RFEvxH Z e RIXIXE @ o3 Py € RIX/ KM
Initialization: ), = Cys — P3C, {S, = A, BT},
for m e {1,..., iter} do
for r € {1,...,R} do
Er = CréHQ‘H; _
CMr = CM,T/HCM,T
end for . . _
A argmin YY)~ (C o, PyB)ATPT|2 + Y] — (Cur o, B) AT|3
+7([Sr — ATB:H%:
B« agmin Y —(C o, P1A) BPI|} + A|Y () - (Car 0, A) BT}

S, argrgin Y| A-B] — 8,12 + t4(S,), for r € {1,..., R},

I

Cargmin Y — (PaRP)SCT|} + | Cos = (PsC + ) [} +14(C),
Cy +argmin MY = SCT|% + pl|Cos — (PsC + )13 + 14 (Caa),

~ Cu
Py < Cy — P3C.
end for
return Z®) = SCT, (U o3 Pg)(B) = Sy,

e O(IJKyR+ IgJgKR) for computing the right-hand sides in the least squares sub-
problems.

4.3. Initialization. Many options are available to initialize the LL1 factors. Here, as
suggested in [12, Theorem 4.1], we initialize the A and B factors by generalized eigenvalue
decomposition of the matrix pencil ((yM)I:,l, (yM)I:Q) (see [8, 16]), using the 111_gevd

function of TensorLab [46]. The C and C}; factors are recovered by solving least-squares
problems. We combine these steps in an algebraic algorithm called BTDRec! (Algorithm 4.3):

Algorithm 4.3 BTDRec

IHPUt: yH7 va P17P2; RaL

Output: A € RIXEL, B ¢ R/XRL € e REXR (C); € REm*R

AuBLélyMy

S, =A,B! forrec{l,...,R},
CT = (P,RP)S) Y,

=~ 3

cT, =sy{.

llechoing the initialization algorithm in [27] (called TenRec)
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5. Experiments for image recovery. All simulations were run on a MacBook Pro with
2.3 GHz Intel Core i5 and 16GB RAM. For basic tensor operations we used TensorLab 3.0
[46]. The code was implemented in MATLAB and is available online at https://github.com/
cprevost4/LL1_HSR_HU.

5.1. Degradation model. The real SRI and MSI were acquired with the same spatial
resolutions by the AVIRIS and Sentinel-2A instruments at different time instants, resulting
in variability between the images. The spectral bands of Z and Yj; were normalized such
that the 0.999 intensity quantile corresponded to a value of 1. This ensured that the unit
norm constraint for the columns of C' and C'; did not cause any convergence problems. The
HSI was obtained by spatial degradation of Z by Py and Py, i.e., the SRI Z and the MSI
Y s represented images of the same scene acquired on board of different missions, and Z was
unknown. Afterwards, the SRI Z was denoised (as described in [40]) to yield the high-SNR,
reference image [50]. We also conducted experiments in a “no-variability” scenario, i.e. we
considered that the HSI and MSI were obtained by spatial (resp. spectral) degradation of the
same SRI Z.

For spatial degradation, we followed the commonly used Wald’s protocol [47]. The matrices
Py, P, were computed with a separable Gaussian blurring kernel of size ¢ = 9. Downsampling
was performed along each spatial dimension with a ratio d = 4 between the SRI and HSI, as
in previous works [27]-[13]. Refer to Appendix C for more details on the construction of P,
P5. White Gaussian noise with 30dB SNR was added to the HSI and MSI.

For the spectral degradation matrix P3, we used the spectral response functions of two
multispectral instruments™*. For images with spectral variability, the Sentinel-2 sensors span
the electromagnetic spectrum from 412nm to 2022nm and produced a 10-band MSI corre-
sponding to the wavelengths 433-453nm (atmospheric correction), 458-522nm (soil, vegeta-
tion), 543-577nm (green peak), 650-680nm (maximum chlorophyll absorption), 698-712nm
(red edge), 733-747nm (red edge), 773-793nm (leaf area index, edge of NIR), 785-900nm (leaf
area index), 855-875nm (NIR plateau), 935-955nm (water vapour absorption). The LAND-
SAT sensor spanned the spectrum from 400nm to 2500nm for the HSI and produced a 6-band
MSI corresponding to wavelengths 450-520nm (black), 520-600nm (green), 630-690nm (red),
760-900nm (near-IR), 1550-1750nm (shortwave-IR) and 2050-2350nm (shortwave-IR2). This
spectral response was used for real images without spectral variability. The spectral degrada-
tion matrix P3 was a selection-weighting matrix that selected the common spectral bands of

the SRI Z and the MSI.

5.2. Metrics. We compared the groundtruth SRI Z with the recovered SRI Z obtained
by the algorithms. The main performance metric used in comparisons was the reconstruction
Signal-to-Noise ratio (R-SNR):

121
(51) R-SNR = 1010g10 — | -
12 - 2%
**available for download at https://earth.esa.int/web/sentinel /user-guides/sentinel-2-msi/

document-library /- /assetpublisher/ Wk0TKajilSaR /content /sentinel-2a-spectral-responses and https:
//landsat.gsfc.nasa.gov/landsat-8/.
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In addition to R-SNR, we considered different metrics described below:

1 (& _
(52) CC = U7 (;P (Z:,:,kaz:,:,k)) )

where p(-, ) is the Pearson correlation coefficient between the estimated and original spectral
slices;

P
. 100 1 HZ:,:,k) - Z:,:,k”%’
(5.3) ERGAS ==\ 77k ; i

)

where ,ui is the mean value of Z ... k- ERGAS represents the relative dimensionless global error
between the SRI and the estimate, which is the root mean-square error averaged by the size
of the SRI. We also used Spectral Angle Distance (SAD):

1 & c'c
(5.4) SAD = — ) arccos (M) ,
R 2. lerll2ller ]2

r=1

which computes the spectral angle distance between original and estimated spectra, and can
be used to assess unmixing performance as well. Performance for recovery of the abundance

~

maps was assessed using the root mean-squared error between reference S and estimate S:

1 R 1 1J R 9
(5.5) RMSE =R; U;((s»d—(&)d)) .

Finally, we considered the computational time for each algorithm, given by the tic and toc
functions of MATLAB.

5.3. Recovery of the SRI and variability tensor. In this subsection, we assessed the per-
formances of Algorithm 4.1 (BTD-Var) and Algorithm 4.2 (CNN-BTD-Var) for reconstruction
of the SRI Z and degraded variability tensor ¥ e35 P3. We ran our algorithms with 20 outer
iterations at most and 5 inner iterations for CNN-BTD-Var. For initialization, out of 20 trials
of BTDRec we picked the one that provided the best reconstruction of the HSI and MSI. For
CNN-BTD-Var, we used y =~y = 1. We chose the hyperparameters R and L jointly. While
L was as large as possible inside the identifiability region provided by Theorem 3.1, R was
selected according to the real number of endmembers, when possible. Other rank-selecting
algorithms are available for hyperspectral images, see e.g., [2, 19]. Due to page limitations,
please refer to the Supplementary materials for a thorough discussion on the choice of R and
L.

For the SRI Z, we compared our results to matrix-based approaches, including HySure
[42], CNMF [51] and GLP-HS [1]. We also considered tensor methods, namely STEREO
[27] for CP decomposition, SCOTT [38] for Tucker and CNN-BTD [53], which is a coupled
LL1-based algorithm that does not account for spectral variability. Finally, we considered
matrix and tensor methods accounting for variability, namely FuVar [4] (a matrix-based algo-
rithm based on the generalized linear mixing model), CT-STAR and CB-STAR [6], which are
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HSR WITH VARIABILITY: LL1 FUSION AND UNMIXING 15

tensor approaches based on multilinear decomposition accounting for spectrally and spatially
localized changes. Except for CNMF, the baseline algorithms are unable to perform the un-
mixing task. For Hysure, CNMF, GLP-HS and FuVar, we chose the ranks and regularization
parameters according to the original works [42, 51, 4].

For reconstruction of W e3 P3, we compared the results of our algorithms with those of
CT-STAR and CB-STAR.

5.3.1. Lake Tahoe. The first dataset was Lake Tahoe with Z € R100x80x173 = The SRI
Z and MSI Y, were respectively acquired on 2014-10-04 and 2017-10-24 by the Sentinel-
2A sensor, resulting in high variability in the crops and lake areas). We ran STEREO with
F = 30 and 10 iterations, and SCOTT with R = (40,40, 7) as in [6]. We ran CT-STAR with
ranks (18,15,10),(3,3,1), and CB-STAR with ranks (20, 20,9),(20, 20,4). For our algorithms,
as well as for CNN-BTD, we chose R = 3, L = 20 and A = 1. Tables 1 and 2 display the
reconstruction metrics and computation time for Z and W e3 P3 and all considered algorithms.
The two best results of each column are shown in bold.

Table 1
Reconstruction metrics for Z, Lake Tahoe dataset
Algorithm R-SNR CcC SAD ERGAS Time
BTD-Var 15.0746 0.9384 9.7688 5.2081 2.6390
CNN-BTD-Var | 16.1371 0.9514 7.2173 4.5902 1.2251
STEREO 5.8368 0.75957 | 30.7346 15.2801 1.2148
SCOTT 1.918 0.50379 | 47.1781 23.3815 0.14701
CNN-BTD 6.0332 0.80003 | 27.7993 14.9491 1.2826
CNMF 12.1314 0.87494 9.2422 7.2804 1.7442
GLP-HS 11.7862 0.87408 11.6106 7.6011 4.507
HySure 9.2687 0.81256 12.8228 10.1511 7.2761
FuVar 14.54 0.92498 6.7013 5.528 761.3932
CT-STAR 11.7676 0.87843 13.3433 7.6236 0.20849
CB-STAR 19.2413 | 0.97539 | 6.4649 3.2231 8.3597
Table 2
Reconstruction metrics for W e3 Ps, Lake Tahoe dataset
Algorithm R-SNR CC SAD ERGAS
BTD-Var 13.8652 0.8584 14.7252 11.9947
CNN-BTD-Var | 14.7347 | 0.8654 9.7916 11.8278
CT-STAR 11.4131 0.84542 17.7857 12.8223
CB-STAR 16.6599 | 0.94161 | 10.4442 7.8569

We can see that algorithms accounting for variability provided the best reconstruction
metrics: in particular, the high performance of CB-STAR resulted from the fact that the
algorithm accounts for spectrally and spatially localized changes. BTD-Var and CNN-BTD-
Var provided slightly higher metrics than FuVar, but with lower computation time. Among
the matrix-based approaches, CNMF showed the best reconstruction performance. Finally,
other tensor-based approaches, although fast, yielded worse reconstruction metrics, due to the
fact that they did not consider the variability. CB-STAR also provided the best metrics for
reconstruction of W e3 P3. However, its computation time was large. The proposed algorithms
showed competitive metrics and even slightly outperformed baseline methods in terms of CC,
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489  but with slightly higher computation time.
490 In addition, we plot in Figure 2 the 40th spectral band of the reference and estimated
SRI. The proposed approaches recovered the SRI spectral band accurately.

Reference BTD-Var CNN-BTD-Var CNN-BTD CT-STAR CB-STAR
1 1

Figure 2. Single spectral band of the SRI, Lake Tahoe dataset

191

492 5.3.2. lvanpah Playa. We also considered Ivanpah Playa with Z € R30*128x173 and large
493 acquisition time difference: the SRI and MSI were acquired on 2015-10-26 and 2017-12-17
194 respectively, by the Sentinel-2 sensor. We ran STEREO with F' = 10 and 10 iterations and
195 SCOTT with R = (30,30,10). We ran CT-STAR with ranks (10, 15,8),(3,3,2), and CB-
496 STAR with ranks (40,40, 4),(40, 40, 5). For our algorithms and CNN-BTD, we chose R = 4
497 and L = 18.

Tables 3 and 4 show the reconstruction metrics and computation time.

Table 3
Reconstruction metrics for Z, Ivanpah Playa dataset

Algorithm R-SNR CcC SAD ERGAS Time
BTD-Var 19.5964 0.8684 2.4533 2.6223 3.2545
CNN-BTD-Var | 24.7991 | 0.9533 1.5943 1.4725 2.2159
STEREO 6.0987 0.76283 | 29.0278 12.6747 0.93975
SCOTT 2.4445 0.34257 | 47.9598 19.372 0.2645
CNN-BTD 5.7515 0.33492 | 28.7006 13.1899 11.8775
CNMF 21.6059 0.90114 | 1.3019 2.1138 2.6656
GLP-HS 19.433 0.86261 3.3413 2.697 5.9218
HySure 18.4551 0.85218 3.3249 3.0653 10.4606
FuVar 22.0332 0.90354 1.5062 2.0189 526.1659
CT-STAR 21.1186 0.88849 1.9424 2.2386 0.15373
CB-STAR 25.7174 | 0.96003 | 1.3269 1.3228 8.2923

Table 4
Reconstruction metrics for U o3 Ps, Ivanpah Playa dataset
Algorithm R-SNR CC SAD | ERGAS
BTD-Var 19.3624 0.7057 2.7901 39.5265
CNN-BTD-Var | 23.6558 | 0.9207 | 1.3826 | 15.0054
CT-STAR 19.3597 0.73396 2.1977 33.853
CB-STAR 23.4888 | 0.90832 | 1.1567 | 16.9815

498

499 The best metrics were provided by CB-STAR, then CNN-BTD-Var. BTD-Var had a
500 performance comparable to that of GLP-HS for reconstruction of Z. Its performance was
501 comparable to that of CT-STAR for ¥ e3 P3. For this dataset as well, the proposed algorithms
502 were faster than some other algorithms, including CNMF, CB-STAR, and FuVar. Other
503 matrix-based approaches also provided satisfying reconstruction. However, STEREO, SCOTT
504 and CNN-BTD provided the worst reconstruction metrics.

This manuscript is for review purposes only.



ot

508
509
510
511
512
513

515

516
517
518

519

HSR WITH VARIABILITY: LL1 FUSION AND UNMIXING

17

In Figure 3 we plot the 40th spectral band of the reference SRI and the estimated SRI for
our algorithms, CNN-BTD, CNMF and CB-STAR for comparison. For this dataset, we can

Reference

BTD-Var

CNN-BTD-Var

CNN-BTD

CT-STAR

CB-STAR

Figure 3. Single spectral band of the SRI, Ivanpah Playa dataset

see that CNN-BTD-Var yielded a better SRI spectral band reconstruction than BTD-Var.

5.3.3. Lockwood. The third dataset we considered was Lockwood with Z € R80x100x173
The SRI Z and MSI were acquired on 2018-08-20 and on 2018-10-19. This was an example
where only acquisition variations happened (which affected the image mostly uniformly), thus
it illustrated the adequacy of the proposed variability model compared to more general ones
proposed in the literature. We ran STEREO with F' = 100 and 10 iterations and SCOTT
with R = (60,60,5). We ran CT-STAR with ranks (30,30, 8),(3,3,2), and CB-STAR with
514 ranks (70,70, 5),(40, 40, 3). For our algorithms, as well as for CNN-BTD, we chose R = 9 and

L = 16. The reconstruction metrics are displayed in Tables 5 and 6.

Table 5
Reconstruction metrics for Z, Lockwood dataset

Algorithm R-SNR CC SAM | ERGAS | Time (sec)
BTD-Var 20.1273 | 0.918432 | 2.92921 | 6.35566 5.46272
CNN-BTD-Var | 19.4882 | 0.906525 3.0299 6.29101 4.11573
STEREO 6.552 0.80196 27.3623 25.1749 1.8835
SCOTT 2.2276 0.79276 28.5771 45.9608 0.2228
CNN-BTD 6.4909 0.81475 27.4245 25.436 2.3082
CNMF 18.7829 0.89063 2.9768 6.7014 4.353
GLP-HS 18.6734 0.88849 3.2079 6.9979 6.8463
HySure 14.125 0.8633 4.4044 11.6 6.9823
CT-STAR 18.4987 0.88287 4.571 8.2657 3.3013
CB-STAR 19.0751 0.89445 3.3707 7.2926 68.0282
Table 6
Reconstruction metrics for ¥ e3 Ps, Lockwood dataset.
Algorithm R-SNR CC SAM ERGAS
BTD-Var 18.8768 | 0.810171 | 2.59862 | 11.9253
CNN-BTD-Var | 18.3523 | 0.818424 | 2.76538 | 11.2095
CT-STAR 17.2744 0.73293 4.1677 15.8113
CB-STAR 17.5513 0.7402 3.2858 13.3116

For both Z and W e3 P53, the best reconstruction metrics were generally provided by BTD-
Var and CNN-BTD-Var. They were followed by CT-STAR and CB-STAR. The slightly better
results obtained by our algorithms illustrate the fact that the variability model considered in
[6] can represent spatially localized changes, but is not very appropriate or interpretable for
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520 acquisition or illumination variations. In Figure 4 we plot the 40th spectral band of the
reference and estimated SRI.
Reference BTD-Var CNN-BTD-Var CNMF CT-STAR CB-STAR
1.2 . . 1.2 1.2
"IN 1 1
0.8 . . 0.8 0.8
0.6 . X 0.6 0.6
0.4 X X 0.4 0.4
0.2 . . 0.2 0.2
Figure 4. Spectral band no.40 of the SRI, Lockwood.
521

22 5.4. Recovery without variability. In this subsection, we assessed recovery performance
23 for the SRI Z. We considered that the HSI and MSI are both degraded versions of the same
SRI Z. In other words, we suppose that Z = Z, hence there is no spectral variability.
The dataset we considered was Indian Pines, where Z € RM4x144x200 wag degraded by a
LANDSAT sensor for the MSI and a downsampling ratio d = 4 for the HSI. We ran STEREO
with F' =50, SCOTT with R = (40,40, 6) and LL1-based algorithms with R = 6 and L = 13.
We tuned the other algorithms according to original works. The reconstruction metrics for
the SRI are presented in Table 7.

[\]

[N]
> ¢

ot Ot ot Ot ot Ot Ot
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ot
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Table 7
Reconstruction metrics for Z, Indian Pines dataset
Algorithm R-SNR CC SAD | ERGAS Time
BTD-Var 26.4299 0.8398 2.2384 1.1750 5.8435
CNN-BTD-Var | 25.1166 | 0.8326 | 2.4127 | 1.2675 | 4.2968
STEREO 27.69 0.86669 | 1.9461 | 0.99959 1.8564
SCOTT 26.2451 | 0.86196 | 2.2694 1.1208 0.21087
CNN-BTD 25.2263 | 0.80949 | 2.5035 | 1.3497 | 24.5326
CNMF 27.2552 | 0.83978 | 1.9502 1.2056 8.2147
GLP-HS 26.2837 | 0.83813 | 2.2794 | 1.2918 | 14.2957
HySure 20.4281 0.66661 4.4916 2.5723 25.2202
CT-STAR 24.0398 | 0.84385 | 2.4839 | 1.3151 | 0.16528
CB-STAR 26.5216 | 0.86749 | 2.1265 1.0556 3.6761
529
530 The best reconstruction metrics were generally provided by STEREQO. The proposed al-
531 gorithms had performance comparable to that of SCOTT, and computation time comparable
532 to that of CB-STAR. The slightly lower performance of constrained algorithms accounting
533 for variability can be explained by the use of more flexible models. In this specific scenario,
534 other methods based on a more restrictive model fitted the data more tightly. Nonetheless,
535 algorithms accounting for variability offered competitive performance in the “no-variability”
536 case. However, their computation time was usually higher than that of state-of-the-art tensor
537 approaches. In Figure 5 we plot the 40th spectral band of the reference and estimated SRI.
538 6. Performance for unmixing of an unknown SRI.
539 6.1. Experiments setup. In this section, we assessed the performance of CNN-BTD-Var
540 for unmixing of an unknown SRI on synthetic datasets, and real examples from Section 5.
541 We compared our results with those of CNMF [51] initialized by VCA [35]. We also
542 considered traditional unmixing algorithms: accelerated multiplicative algorithm (MU-Acc)
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Figure 5. Single spectral band of the SRI, Indian Pines dataset

[21] and BMDR-ADMM [36] (enforcing minimum dispersion constraint on the spectra, and
sum-to-one on the abundance maps). We ran these algorithms on the recovered SRI z
obtained from CB-STAR, which gave the best reconstruction metrics in the previous section.
For these algorithms, we chose the parameters according to the original works. We set the
number of materials to R. Since other fusion algorithms were not designed for unmixing, they
were not directly included in this comparison.

For each dataset, we compared the abundance maps and spectral signatures obtained by
the algorithms to references obtained by VCA or groundtruth materials. We also assessed the
unmixing performance numerically by comparing the SAD, RMSE and computation time for
the considered algorithms. The best results of each row are shown in bold in the tables.

6.2. Unmixing with exact LL1 model. We first assessed the unmixing performance with
synthetic datasets. We tested our approach in the case where the SRI and variability tensor
admit an exact LL1-BTD. Although these datasets did resemble real spectral images, they
allowed us to assess unmixing performance in a case where the uniqueness conditions for the
non-negative matrix factorization model (see [14, 32]) were not fulfilled.

6.2.1. Generating synthetic datasets. We considered R = 3 spectral signatures ¢, (r €
{1,..., R}) obtained from the Jasper Ridge reference datalf, corresponding to vegetation, soil
and road materials. The SRI Z € RI*/*E ([ = J =90, K = 173) was split into LR equal
blocks in the spatial dimensions, with L = 3.

Each abundance map S, (r € {1,...,R}) was a block matrix with £ x Z blocks. We
generated a multiplicative variability matrix t,,,;; with random real entries drawn from the
standard uniform distribution in the open interval [0.9,1.1]. We then computed the altered
spectra C' = ,,,; J C. The variability matrix 1 that we aimed at recovering was obtained

as ¥ = C — C so that it had zero mean.
Formally, we computed the high-resolution tensors as

R R
Z=> 88c¢, ¥=> 504, Z=Z+7V.

r=1 r=1

The HSI and MSI were obtained by degradation of the SRIs according to model (2.3). For
Py = Py, we had ¢ = 9 and d = 3 so that Iy = Jg = 30. For Pj3, we chose the spectral
response of the Sentinel-2 MS sensor, which led to Ky = 10.

6.2.2. Separable example. In the first example, we generated a dataset for which the
pure pixel assumption was valid. Thus in each % X % block, at most one material was active,
as indicated by the numerals in the parcel map shown in Table 8. Each block in the parcel map
was a patch composed of entries equal to one. The abundance maps resembled agricultural

t Available for download at http: //lesun.weebly.com/hyperspectral-data-set.html.
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Table 8
Parcel map for the first synthetic dataset
1123
3 (1|2
2131

9 not unique.

ot Ot Ot Ot Ut

81 spectral signatures ¢, and abundance maps S, are

77 fields. This was a case for which non-negative matrix factorization under minimal volume
78 constraint was unique [20, 18, 24]. Only unconstrained non-negative matrix factorization was
7

80 We ran CNN-BTD-Var with R = 3 and L = 3; for other algorithms, we used R = 3. The

shown in Figures 6 and 7, respectively.

The unmixing metrics and computation time are displayed in Table 9.
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Figure 6. Reference and estimated spectra, synthetic dataset 1
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Figure 7. Reference and estimated abundance maps, synthetic dataset 1
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Table 9
Unmizing, synthetic example 1

Algorithm | CNN-BTD-Var | CNMF | MU-Acc | BMDR-ADMM
SAD 0.012349 0.300049 | 0.132655 0.351785
RMSE 0.102441 0.274509 | 0.267861 0.201845
Time (sec) 0.958311 1.43277 1.73498 1.23186

We can see that all spectra and abundance maps were recovered accurately by CNN-
BTD-Var, with visual quality comparable to that of CNMF and BMDR-ADMM. The proposed
algorithm gave the best unmixing metrics and computation time. We also see some artifacts in
the abundance maps recovered by CNMF. Moreover, MU-Acc did not estimate all abundance
maps correctly for this example.
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ot Ot gt Ot Ot
co oo
O C

oo
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588 6.2.3. Synthetic example with non-identifiable matrix factorization model. In this sec-
580 ond example, we designed an example where the separability (or pure pixel) condition [14, 32]
590 was not fulfilled. This resulted in the traditional non-negative matrix factorization model
591 being non-identifiable. This was in fact a highly mixed situation for which we expected that
592 traditional unmixing algorithms fail at performing unmixing on this dataset. However, the
593 conditions in Theorem 3.1 were satisfied, which made the LL1 factors unique up to permuta-
594 tion and scaling ambiguities. The abundance maps S, were designed as follows:

76 L7503 oo 3
595 S =— 1|7 3 5|®H, S,=— |0 6 0|RH, S;=— |5 3 7|XH,
1243 ¢ 0 1243 5 7 1206 7 5

597 with H a Gaussian of size 30 x 30 with standard deviation o = 5.

598 We ran CNN-BTD-Var with R = 3 and L = 3; for other algorithms, we used R = 3. The

599 spectral signatures ¢, and abundance maps S, are shown in Figures 8 and 9, respectively.
The unmixing metrics are shown in Table 10.
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Figure 8. Reference and estimated spectra, synthetic dataset 2

600
601 The spectral signatures were best reconstructed by CNN-BTD-Var, although CNMF only

602 reconstructed the first spectrum correcly. Moreover, only CNN-BTD-Var provided reasonable
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Ref. CNN-BTD-Var CNMF MU-Acc BMDR-ADMM

Figure 9. Reference and estimated abundance maps, synthetic dataset 2

Table 10
Unmizing, synthetic example 2

Algorithm | CNN-BTD-Var | CNMF | MU-Acc | BMDR-ADMM
SAD 0.160109 0.386413 | 0.355248 0.464474
RMSE 0.210952 0.333595 | 0.253813 0.339372
Time (sec) 0.972156 1.77138 1.57192 1.20186

estimates of the abundance maps, while other algorithms failed. Numerically, the proposed
algorithm yielded the best unmixing metrics and computation time.

6.3. Unmixing for real datasets. In this subsection, we assessed unmixing performance
of CNN-BTD-Var for real datasets Lake Tahoe and Ivanpah Playa. For the two considered
datasets, we followed the same degradation model as in Section 5. For these experiments,
the endmembers and abundance maps underlying Z were unknown: as a result, we chose
as reference the spectra and abundance maps selected manually from the SRI Z*. The
obtained abundance maps had very close correspondence with visual features in the image.
The columns of the abundance maps were rescaled with unit norm for comparison.

6.3.1. Lake Tahoe. We first considered the Lake Tahoe dataset. This dataset was mainly
composed of R = 3 materials: water (lake), soil and vegetation. As a result, we chose R = 3
and L = 18 as in the previous subsection. We compared our algorithm with CNMF, MU-Acc
and BMDR-ADMM with R = 3.

On Figures 10 and 11, we plot the estimated spectra and abundance maps.

The proposed approach estimated the spectra accurately. The abundance maps allowed for
identification of the areas corresponding to different materials, although with lower resolution
than other methods. Additionally, the abundance maps recovered by CNN-BTD-Var seemed
to be low-rank. The algorithms CNMF and MU-Acc did not recover the water abundance
map correctly, and CNMF did not recover the water spectrum. In Table 11, we show the

#In real applications, the SRI Z is unknown. In this paper, we use it as a reference to evaluate the
performance of our approach.
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Figure 10. Reference and estimated spectra, Lake Tahoe dataset
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Figure 11. Reference and estimated abundance maps, Lake Tahoe dataset

unmixing and computation time for the considered algorithms. CNN-BTD-Var provided the

Table 11
Unmixing, Lake Tahoe dataset

Algorithm | CNN-BTD-Var | CNMF | MU-Acc | BMDR-ADMM
SAD 0.0794406 0.302813 | 0.1098101 0.255009
RMSE 0.466916 0.472743 | 0.637745 0.356724
Time (sec) 1.229906 1.98253 | 2.0130503 1.71438

best SAD and computation time, and the second best RMSE after BMDR-ADMM.

Additionally, on Figure 12, we plot the reference and estimated Cj; and P3ip = Cpy —
P3C obtained from CNN-BTD-Var.

In Figure 12, the water spectrum had high variability for the first MSI spectral band, which
corresponds to the blue region. For the vegetation and soil spectra, the largest variability was
found at spectral bands corresponding to the green and orange-red wavelengths. Moreover,
CNN-BTD-Var recovered the reference Cy; and P31 with a small discrepancy.

6.3.2. lvanpah Playa. Next, we considered the Ivanpah Playa dataset. This dataset was
composed of R = 4 materials: solar panels, dark sand, yellow sand and road. We ran CNN-
BTD-Var with R = 4, L = 18, and compared the results to other baseline algorithms with
R =4.

In Figures 13 and 14, we plot the reference and estimated spectra and abundance maps.
In Table 12, we show the unmixing metrics and computation time.
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Figure 13. Reference and estimated spectra, Ivanpah Playa dataset

One difficulty for unmixing was the important similarity between the reference spectra
(in particular, dark and yellow sand, road materials). This led to almost colinear columns
in C, which resulted in CNN-BTD-Var giving the worse SAD. This issue was particularly
visible in Figure 15 with estimated Cj; and P3t. High variability was found for the red and
near-infrared spectral bands for all materials.

Despite this difficulty, CNN-BTD-Var yielded the best SAD and RMSE and recovered
the solar panels and road abundance maps best, while the yellow sand map was slightly
better for BMDR-ADMM. For this example, the low-rank assumption for abundance maps
was reasonable: see that corresponding to solar panels. This assumption allowed for better
visual reconstruction of this abundance map. Contrary to other algorithms, all spectra were
correctly recovered.

7. Conclusion. In this paper, we proposed new algorithms for solving the HSR, problem
with variable images, using an LL1-BTD model. First, we showed that in the presence of
variability, previous tensor models fail at recovering the SRI, since they do not account for
spectral or spatial variability. Our approach allows to recover the SRI accurately for the
considered datasets, as well as the degraded variability tensor.

An appropriate choice of ranks also allows our algorithms to estimate underlying spectra
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Figure 14. Reference and estimated abundance maps, Ivanpah Playa dataset

Table 12
Unmizing, Ivanpah Playa dataset

Algorithm | CNN-BTD-Var | CNMF | MU-Acc | BMDR-ADMM
SAD 0.094346 0.193547 | 0.134738 0.113456
RMSE 0.006693 0.007067 | 0.008188 0.007434
Time (sec) 1.30258 1.73402 1.56564 1.679304

and abundance maps of the unknown SRI, with performance comparable to those of tra-
ditional unmixing algorithms applied on the SRI directly. Non-negativity priors allow the
low-rank factors of our model to be interpretable, without having a high negative impact on
the computation time.

Appendix A. Unconstrained factor updates in Algorithm 4.1.
In Algorithm 4.1, the least squares program for A can be seen as a generalized Sylvester
equation of the form X1 AX, + X3AX, = X5, with

X,=P{P;, X;=(C0o,PyB)"(C6,PyB), Xj3=\,
Xy=(Cu©,B) (Cy©yB), Xs5=Pl(Y)(Co,P:B)+\Y{))(Cu o, B),

and can be solved with efficient solvers. The updates for B and C can be solved similarly.
The pseudo-solution for Cjy is expressed as vec{Cp} = (X T X)X Tz, with

X = (VASTS + /ulp) Rk,
z = vec{\/X(YS\?/’[))TS +VI(P3C + )}
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Figure 15. Reference and estimated Cuy and P3ap, Ivanpah Playa dataset

669 Appendix B. Updates in Algorithm 4.2.

670 Similarly to Algorithm 4.1, the least squares programs for A and B in Algorithm 4.2 can
671 be viewed as generalized Sylvester equations of the form X1AXs + X34AX, = X5. For
672 instance, for A, we have

673 X,=P]P;, X,=(Co,Py:B)'(Co,PyB), X3=1Ij,
674 X4 =X\Cy 6, B)T(Cy &, B) +~Diag{B]By,..., BLBg},
675 X; =PI (Y)T(C o, P.B) + AY )T (Cy ©, B) +7[S1B,...,SrBx|,

677 and likewise for B.
678 At each iteration of the alternating directions method of multipliers scheme, we aim at
679 solving the following equations:

60 (B.1) (y+p)S, =vA,.B] + p(Z + U),

681 uPlPsC + C(ST(PIP,RP{P)S + pIR)

652 (B.2) = (Y)(P2RP)S + P () — Cr) + p(Z + U),

fs1 (B3) Cu(STS + (u+ p)Ir) = (Y8 + u(PsC + ) + p(Z + U).

685 For each equation, Z is the projection of the considered variable onto the space of non-negative
686 matrices, and U denotes the dual variable for each subproblem [9]. The scalar p controls the
687 convergence speed of the algorithm and is chosen according to [23].

688 Below, we present the framework for solving (B.2): the updates for S and C can be
689 handled in a similar fashion.

690 Here, the operator [-]; zeroes out the negative values of the operand.

691 Appendix C. Spatial degradation matrices.

692 Here, we explain in details how the degradation matrices are constructed. For this ap-

693 pendix, we consider that P; = P5. As in previous works, P is constructed as P; = S1T1,
694 where T'; is a blurring matrix and S; is a downsampling matrix.
695 The blurring matrix is constructed from a Gaussian blurring kernel ¢ € R7! (in our case,
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Algorithm B.1 Inner update for (B.2)
Input: Yy, Yu, S, P1, P2, P3; p, i, R, iter
Output: Z € RfXR
Initialization: Z = U = O« ;.
for m € {1,... iter} do
C + Solve (B.2) using fast solvers,

Z «+ [C —Uls,
U+~U+Z-2C.
end for

return Z.

696 g =9) with a standard deviation o = qivﬂogQ. Form € {1,...,q} and m' = m— [{], we have

697 P(m) =

698 Thus, T; € R™*! can be expressed as

[o([4]) « d@) 0 .. 0 ]
699 T, = | O L0
o ¢(q)

[0 0 e )]

700 The downsampling matrix S; € RI#*! with downsampling ratio d, is made of Iy inde-
701 pendant rows such that for i € {1,...,Ig}, (S1)i24+(@—1)a = 1 and the other coefficients are
702 zeros.
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