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Hyperspectral Unmixing Based on Mixtures of
Dirichlet Components

José M. P. Nascimento, Member, IEEE, and José M. Bioucas-Dias, Member, IEEE

Abstract—This paper introduces a new unsupervised hyper-
spectral unmixing method conceived to linear but highly mixed
hyperspectral data sets, in which the simplex of minimum volume,
usually estimated by the purely geometrically based algorithms,
is far way from the true simplex associated with the endmembers.
The proposed method, an extension of our previous studies, resorts
to the statistical framework. The abundance fraction prior is a
mixture of Dirichlet densities, thus automatically enforcing the
constraints on the abundance fractions imposed by the acquisition
process, namely, nonnegativity and sum-to-one. A cyclic minimiza-
tion algorithm is developed where the following are observed:
1) The number of Dirichlet modes is inferred based on the min-
imum description length principle; 2) a generalized expectation
maximization algorithm is derived to infer the model parameters;
and 3) a sequence of augmented Lagrangian-based optimizations
is used to compute the signatures of the endmembers. Experiments
on simulated and real data are presented to show the effectiveness
of the proposed algorithm in unmixing problems beyond the reach
of the geometrically based state-of-the-art competitors.

Index Terms—Augmented Lagrangian method of multipliers,
blind hyperspectral unmixing, dependent components, gener-
alized expectation maximization (GEM), minimum description
length (MDL), mixtures of Dirichlet densities.

I. INTRODUCTION

HYPERSPECTRAL imaging is a remote sensing technol-

ogy that collects 2-D spatial images from the Earth’s

surface in hundreds of narrow and contiguous bands of high

spectral resolution covering the visible, near-infrared, and

shortwave infrared bands. This technique has been used for

planetary exploitation [3], [4] and also for a wide range of appli-

cations in the fields of environmental monitoring, agriculture,

forestry, geology [5], [6], food safety [7], [8], counterfeit drug

detection [9], urban geography [10], detection, classification,

and surveillance of military target activities [11], [12].

The spatial resolution corresponding to a single pixel of

a hyperspectral image depends on the flying height of the
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aircraft and on the instantaneous field of view of the sen-

sor. Very often, the resolution cells, in an image, contain

several substances. Thus, the radiances collected in spectral

vectors are mixtures of spectra from the constituent substances

(also called endmembers) present in the respective resolution

cells [5].

The linear mixing assumption has been widely used to de-

scribe the observed hyperspectral vectors. According to this

assumption, a mixed pixel is a linear combination of end-

member signatures weighted by the corresponding abundance

fractions [13]. Due to physical considerations, the abundance

fractions are subject to the so-called nonnegativity and a full-

additivity (sum-to-one) constraints [14]. Thus, the observed

spectral vectors in a given scene are in a simplex whose vertices

correspond to the endmembers.

Hyperspectral unmixing is a challenging task, underlying

many hyperspectral imagery applications, that decomposes a

mixed pixel into a collection of reflectance spectra, called end-

member signatures, and the corresponding abundance fractions.

This can be handled as a two-procedure task: the endmember

extraction, which identifies endmembers present in the scene,

and the inversion step, which estimates the proportion of each

endmember for each pixel of the image [15]–[17].

Most popular endmember extraction algorithms, such as the

vertex component analysis (VCA) [18], the automated morpho-

logical endmember extraction [19], the pixel purity index [20],

the N-FINDR [21] (see [22] for recently introduced reinter-

pretations and improvements of N-FINDR), and the iterative

error analysis [23], exploit the geometric perspective referred

to above and assume that the data set contains at least one

pure pixel of each endmember, e.g., a pixel containing just

a single endmember. These methods are followed by a fully

constrained least square estimation [24] or by a maximum like-

lihood estimation [25] of the abundance fractions to complete

the unmixing procedure.

When the data set does not contain pure pixels for some (or

for none) endmembers, a popular line of attack introduced by

Craig and named minimum-volume transform (MVT) [26] is

widely applied. MVT finds the smallest simplex that contains

all observed spectral vectors. Other methods that follow the

same strategy and do the unmixing procedure in one step are

the iterated constrained endmembers (ICEs) [27], the sparsity

promoting ICE (SPICE) [28], the minimum-volume enclosing

simplex (MVES) algorithm [29], the robust MVES [30], the

minimum-volume simplex (MVSA) [31], the simplex identifi-

cation by variable splitting and augmented Lagrangian tools

(SISAL) [32], and the alternating projected subgradients [33].
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A necessary condition for the correct identification of the

mixing matrix is the existence of at least p− 1 (p stands for

the number of endmembers) spectral vectors on each facet

of the data simplex. However, in highly mixed data sets, this

assumption is not realistic, which has fostered research in the

statistical front [1], [34]–[37].

Hyperspectral unmixing is a blind source separation prob-

lem, where abundance fractions can be interpreted as sources.

Independent component analysis (ICA) [38] comes naturally

to mind and have, in fact, been used in hyperspectral appli-

cations (see, e.g., references in [39]). However, as shown in

[39], the applicability of canonical ICA to hyperspectral data

is compromised by the statistical dependence existing among

abundances. In addition to this limitation, ICA does not ensure

the nonnegativity constraint.

The nonnegative matrix factorization (NMF) [40]–[42] was

designed to unmix nonnegative sources. Elaborations of these

ideas have been applied to hyperspectral unmixing. For ex-

ample, the works [43]–[46] use regularization terms to unmix

hyperspectral data with additivity constraint. However, NMF

minimizes a nonconvex function with respect to factor matrices

leading to local minima solutions. The Bayesian framework,

where constraints can be incorporated directly in the problem

formulation and any parameter involved modeled as a random

variable, opens the door to highly flexible approaches to unmix-

ing [35], [36], [47], [48].

Dirichlet processes have been used in the piecewise convex

endmember detection (PCE) [48] algorithm to determine the

number of convex regions needed to describe an input hyper-

spectral image. PCE estimates a set of endmember distributions

for each context, rather than a single spectrum. The work

[49], closely related with PCE, uses a Bayesian framework

to unmix hyperspectral images taking into account possible

spatial correlations between pixels. This work assumes that the

image can be partitioned into regions to which hidden variables

are associated. In these regions, the statistical properties of

the abundance fractions are homogeneous, which leads, under

given conditions, to a mixture of densities similar to the ones

herein considered.

A. Contribution

This paper elaborates on the dependent component analysis

(DECA) methodology introduced in [1] and [2] to unmix highly

mixed hyperspectral data sets, which are beyond the reach of

the purely geometrically based methods. DECA uses a mixture

of Dirichlet densities as prior for the abundance fractions.

Mixtures of densities allow one to model complex distributions

in which the mass probability is scattered by a number of

clusters inside the simplex. Furthermore, the Dirichlet density

automatically enforces the nonnegativity and sum-to-one con-

straints on the abundance fractions.

The two main improvements to DECA herein introduced are

the following: 1) The number of Dirichlet modes is adaptively

inferred based on the minimum description length (MDL)

principle as proposed in [50]; 2) the generalized expectation

maximization (GEM) algorithm we adopt to infer the model

parameters is improved by using alternating minimization and

augmented Lagrangian methods to compute the mixing matrix,

similarly to those used in [32].

This paper is organized as follows. Section II formulates the

unmixing problem. Section III describes the fundamentals of

the proposed method. Sections IV and V illustrate aspects of the

performance of the proposed approach with experimental data

based on USGS laboratory spectra and with real hyperspectral

data collected by the AVIRIS sensor, respectively. Section VI

concludes with some remarks.

II. PROBLEM STATEMENT

Assuming the linear observation model, each pixel y ∈ R
L

of a hyperspectral image (L is the number of bands) is given by

y = Ms+ n (1)

where M ≡ [m1,m2, . . . ,mp] is an L× p mixing matrix (mj

denotes the jth endmember signature), p is the number of

endmembers present in the covered area, s = [s1, s2, . . . , sp]
T

is the abundance vector containing the fractions of each end-

member, and n is the additive noise vector (notation (·)T stands

for vector transposed).

To be physically meaningful [14], abundance fractions are

subject to nonnegativity and sum-to-one constraints, i.e., abun-

dance fractions are in the p− 1 probability simplex {s ∈ R
p :

sj ≥ 0,
∑p

j=1 sj = 1}. Note that only p− 1 components of s

are free, i.e., sp = 1−
∑p−1

j=1 sj . Therefore, the spectral vectors

are in a (p− 1)-dimensional simplex in R
L.

Usually, the number of endmembers is much lower than

the number of bands (p ≪ L), and thus, it is advantageous,

in terms of signal-to-noise ratio (SNR), memory usage, and

computational complexity, to represent the spectral vectors in a

signal subspace basis [51]. In most hyperspectral applications,

the SNR is sufficiently large, meaning that noise can be safely

neglected after the observed data projection onto the signal sub-

space. Nevertheless, we evaluate the robustness of the proposed

method to noise in Section IV.

Let Ep ≡ [e1, . . . , ep] be a matrix L× p, with p orthonor-

mal directions spanning the signal subspace. This matrix is

determined by a recent method, termed as hyperspectral signal

identification by minimum error (HySime) [51], a fully auto-

matic and unsupervised algorithm. HySime starts by estimating

the noise covariance matrix, and then, it infers the number of

endmembers and selects the subset of eigenvectors that best

represent the signal subspace in the least squared error sense.

Let (EpE
T
p )y denote the orthogonal projection of y ∈ R

L

onto the subspace spanned by the columns of Ep, and let x ≡
ET

p y ∈ R
p denote the respective coordinates with respect to the

columns of Ep, i.e., with respect to the orthonormal basis de-

fined by the columns of Ep. Owing to spectral variability from

pixel to pixel, topographic modulation, and modeling errors,

and even assuming negligible noise, the observed vectors y, and

therefore x, are not in a simplex set [39]. Since our approach, as

many other, assumes that the observed spectral vectors belong

to a simplex set, we identify the affine set containing this

simplex set and project vectors x ∈ R
p onto it. Fig. 1 shows this
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Fig. 1. Illustration of the affine projection. S represents the affine set. Gray

cloud represents the set {x(i), i = 1, . . . , N}. x̃(i) is the affine projection of

x(i).

procedure. The vector x ∈ R
p is projected onto the identified

simplex set S, yielding the projected vector x̃ ∈ R
p. Given a

point on S, for example, x, we may write x̃ = x+∆x. Since

∆x ∈ R
p−1, it can always be written as Up−1α, where α ∈

R
p−1 and Up−1 is a p× (p− 1) orthonormal matrix spanning

the subspace {z− x : z ∈ S}.

With this scheme, we have two projections: The first projects

the observed spectral vectors onto the identified subspace sig-

nal, and the second projects the already projected vectors onto

the identified affine set. We stress that the effect of the two

projections could not be obtained just with the second one,

at least in the case of nonwhite noise. This is so because

the optimal signal subspace estimate depends on the noise

correlation matrix, as shown in [51].

We now focus on the identification of the affine set S and

on the projection of x onto it. Let {y(i), i = 1, . . . , N} and

{x(i) = ET
p y

(i), i = 1, . . . , N} be the observed and projected

(on the signal subspace) data sets, respectively. A solution for

the projection of vectors {x(i), i = 1, . . . , N} on the hyper-

plane (an affine set) that best represents this set in the least

squares sense is given by [29]

x̃(i) = x+Up−1

(
x(i) − x

)
∈ R

p, i = 1, . . . , N (2)

where x and Up−1 denote, respectively, the sample average

and the set of p− 1 eigenvectors of the sample covariance of

{x(i), i = 1, . . . , N}. Fig. 1 shows the affine projection intro-

duced earlier. The affine set is represented by the hyperplane S,

the set {x(i), i = 1, . . . , N} by the gray cloud, and the affine

projection of x(i) by x̃(i). From now on, and to lighten the

notation, we drop the tilde symbol on the top of x to denote

the projection on the affine set. We have then

x = As (3)

where s belongs to the p− 1 probability simplex and A ∈ R
p×p

is the mixing matrix. The representation of the endmembers in

the original space R
L is given by M = EpA.

In the next section, we address the blind estimation of the

mixing matrix A by modeling the fractional abundances s as a

mixture of Dirichlet densities.

III. PROPOSED APPROACH

Let us assume that W ≡ A−1 exists. Then, we have s =
Wx. As already referred to, we adopt a k-component Dirichlet

finite mixture as a prior for the abundance fractions. The

rationale underlying this choice is the following.

1) The Dirichlet density automatically enforces the nonneg-

ativity and sum-to-one constraints, and thus, it accounts

for statistical dependence usually found in hyperspectral

data.

2) As noted in [52], the Dirichlet density is suited to model

fractions.

3) Mixtures of densities allow one to model complex distri-

butions in which the mass probability is scattered over a

number of clusters inside the simplex.

The abundance fraction density is then written as

pS(s|θ) ≡

k∑

q=1

ǫqD(s|θq),

=

k∑

q=1

ǫq
Γ
(∑p

j=1 θqj

)

∏p
j=1 Γ(θqj)

p∏

j=1

s
θqj−1
j (4)

where, for q = 1, . . . , k, ǫq and D(s|θq) denote, respectively,

the probability of mode q and its Dirichlet density with pa-

rameter θq ≡ {θq1, . . . , θqp}. We denote the complete set of

parameters as θ ≡ {ǫ1, . . . , ǫk,θ1, . . . ,θk}. Since the spectral

vectors x play now the role of observed data, we must base

our inferences on the their density, denoted by pX , which, in

terms of pS and given the linear and invertible relation s = Wx

between s and x, is given by

pX(x|W,θ) = pS(s = Wx|θ) |det(W)| . (5)

Consider that each vector x represents one particular out-

come of a p-dimensional random variable X = [X1, . . . , Xp]
T.

Given a set of N independent and identically distributed (i.i.d.)

samples X ≡ [x(1), . . . ,x(N)], then the log-likelihood of the

set of parameters θ and unmixing matrix W is

L(W,θ)≡ log pX(X|W,θ)

=

N∑

i=1

[
log pX

(
x(i)|W,θ

)]

=

N∑

i=1

[
log pS

(
s(i)|θ

)]
+N log | detW|

=
N∑

i=1

[
log

k∑

q=1

ǫqD
(
s(i)|θq

)]
+N log | detW| (6)

where s(i) ≡ Wx(i).

The maximum likelihood estimate

(Ŵ, θ̂)ML ≡ argmax
W,θ

L(W,θ) (7)

cannot be found analytically [50], [53]. The usual choice for

obtaining the ML estimates of the parameters is the expectation
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maximization (EM) framework [54], which relies on the so-

called incomplete data and missing data. In our setup, X is the

incomplete data. The missing data, denoted by Z ≡ {z(1), . . . ,
z(N)}, are a set of N k-dimensional vectors representing which

component has produced each sample. Each vector z(i) =

[z
(i)
1 , . . . , z

(i)
k ] is a binary k-vector, where only one component

z
(i)
q is set to one indicating which mode produced the i-sample.

The complete log-likelihood is then

LC(θ,W) = log [pX,Z(X ,Z|θ)] +N log |det(W)|

=

N∑

i=1

[
k∑

q=1

z(i)q log
(
ǫqD
(
s(i)|θq

))]

+N log |det(W)| . (8)

The EM algorithm iterates between the E-step and the M-step

[54], [55].

1) E-step: It computes the conditional expectation of the

complete log-likelihood, given the samples and the cur-

rent estimate θ̂
(t)

. The result is the so-called Q-function

Q
(
θ,W; θ̂

(t)
,Ŵ(t)

)
= N log |det(W)|

+

N∑

i=1

[
k∑

q=1

β(i,t)
q log

[
ǫqD
(
s(i,t)|θq

)]]
(9)

where

β(i,t)
q ≡E

[
z(i)q |θ̂

(t)

q

]

=
ǫ̂
(t)
q D
(
s(i,t)|θ̂

(t)

q

)

∑k
l=1 ǫ̂

(t)
l D
(
s(i,t)|θ̂

(t)

l

) (10)

with s(i,t) ≡ Ŵ
(t)
x(i) and E(·) denoting the mean value

operator.

2) M-step: It updates the parameter estimates according to

(
θ̂
(t+1)

,Ŵ(t+1)
)
= argmax

θ,W

{
Q
(
θ,W; θ̂

(t)
,Ŵ(t)

)}
.

(11)

Optimization (11) is still a hard problem. Instead of solving

it exactly, we implement alternate minimization with respect to

θ and to W. In the same vein, instead of computing θ
(t+1)
q , we

maximize the Q-function with respect to θqj , for j = 1, . . . , p,

resulting in the following learning rules for the mixing proba-

bilities and for the mixture of Dirichlet source parameters [56]

ǫ(t+1)
q =

1

N

N∑

i=1

β(i,t)
q , (12)

θ̂
(t+1)
qj =Ψ−1

⎛
⎝Ψ
(

p∑

l=1

θ̂
(t)
ql

)
+

∑N
i=1

[
β
(i,t)
q log ŝ

(i,t)
j

]

∑N
i=1

(
β
(i,t)
q

)

⎞
⎠ (13)

for q = 1, . . . , k and j = 1, . . . , p, where Ψ(x) ≡
d(log Γ(x))/d x is the psi(·) function and Ψ−1(·) denotes

its inverse.

The resulting algorithm is of the GEM class [54]: The

learning rule (12) maximizes Q-function with respect to ǫ
(t)
q ,

whereas (13) assures that the Q-function does not decrease. We

note that steps (12) and (13) define a new GEM algorithm to

learn the mixture of Dirichlet densities.1

Denoting S ≡ WX = [s(1), . . . , s(N)], the optimization

with respect to W amounts to compute

Ŵ(t+1) = argmax
W

φ(WX ) + log |det(W)|

s.t. : WX � 0 1T
pWX = 1T

N (14)

where the constraints WX � 0 and 1T
pWX = 1T

N enforce,

respectively, nonnegativity and sum-to-one on each abundance

fraction vector (1p stands for p-dimensional column vector of

ones) and

φ(S) ≡

N∑

i=1

p∑

l=1

γ
(i)
l log

(
s
(i)
l

)

with

γ
(i)
l ≡

1

N

k∑

q=1

β(i,t)
q (θ̂ql − 1). (15)

The optimization problem (14) is very hard to solve owing to

the nonconvex term log | det(W)|. Herein, we use a modified

version, the SISAL algorithm introduced in [32], termed as

Dirichlet mixture unmixing via split augmented Lagrangian

(DUSAL), to solve a problem similar to (14). As in SISAL, we

exploit variable splitting and augmented Lagrangian methods.

The resulting algorithm is presented in Appendix A. The main

difference with respect to that in [32, Algorithm 3] is the

replacement of function ‖z‖h by −φ(z) and of the respective

decoupled optimization, which yields now, for each component

of z, the larger root of a second-order polynomial. See line 8 of

Algorithm 2 in Appendix A.

Having computed Ŵ, the signatures of the endmembers are

given by

M̂ = EpŴ
−1. (16)

A. Number of Dirichlet Modes

The estimation of the number of modes k is a model order

selection problem. It is well known that the ML criterion alone

cannot be used to do such an inference because of the nested

nature of model parameters for increasing model orders.

1As in the EM case, a GEM algorithm generates a sequence of increasing

log-likelihood L(θ̂
(t)

,Ŵ(t)), for t = 1, 2, . . .. However, in the GEM case,

instead of maximizing Q(θ,W; θ̂
(t)

,Ŵ(t)) with respect to (θ,W), only a
log-likelihood increase is ensured, which is usually simpler to compute [54].
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To estimate the number of mixture components, we adopt the

model selection criterion

k̂ = argmin
k

{−L (θ(k)) + P(k)} (17)

where L(θ(k)) is given by (6), for k modes, and P(k) is a

penalizing term that increases with k [50]. Herein, we adopt

the MDL [57], [58] which amounts to compute

θ̂ = argmin
θ

{
− log pS(S|θ)− log p(θ)

+
1

2
log (|I(θ)|) +

c

2
(1− log(12))

}
(18)

where I(θ) ≡ E[∂2(log p(S|θ))/∂θ2] is the Fisher informa-

tion matrix and c ≡ k(p+ 1) is the dimension of θ.

For mixtures, the Fisher information matrix cannot be ob-

tained analytically. Herein, we follow the study in [50], where

I(θ) is replaced by the complete-data information matrix

IC(θ). Assuming a priori independence of the parameters and

adopting the noninformative Jeffreys’ prior p(θj) ∝
√

|I(θj)|
for each θj , the negative log-likelihood in (18) is given by (see

[50] and [59] for details)

L (θ(k), k) = − log pS(S|θ) +
k(p+ 1)

2
+

k

2
log

(
N

12

)

+
p

2

k∑

q=1

log
Nǫq
12

. (19)

The model order and the respective parameters are given by

θ̂ = argmin
θ

{L (θ(k), k) , k = kmin, . . . , kmax} . (20)

Since we do not know the fractions S , we implement

the GEM algorithm described in the previous section where

the negative log-likelihood is as in (6) plus the MDL terms,

and the optimization with respect to θ is replaced with the

optimization with respect to θ(k) and k.

B. Complete Algorithm

The pseudocode for the DECA algorithm is presented in

Algorithmic 1. DECA implements two nested loops: The outer

loop, between lines 11 and 34, iterates over k, the number of

Dirichlet modes, from kmin to kmax. The inner loop, between

lines 12 and 24, implements the GEM algorithm (9)–(13) to

compute the ML estimate of θ(k) and of the mixing matrix

W (line 22), for each value of k. The relative variation of the

negative log-likelihood L((θ(k), k) given by (19) is used as

stopping criterion for the inner loop.

To decrease the number of modes, a component annihilation

is performed based on the smallest mixing probability ǫi (see

lines 32 and 33). Finally, for each k, the parameter values are

stored if the negative log-likelihood values are smaller than the

minimum found so far (lines 25–31).

Algorithm 1: DECA

1: INPUT: Y := [y1,y2, . . . ,yN ], kmax, kmin

2; OUTPUT: M̂best, ŝbest, k̂best, θ̂best

3: Ep := HySime(Y) {HySime determines the number of

endmembers p and estimates the signal subspace}

4: X := ET
pY {Observed samples projected onto signal

subspace: x ∈ R
p}

5: X := Affine(X) {Identify the affine set that best fits X

and projects X on it: x ∈ R
p}

6: Â := DUSAL(X, p); Ŵ = Â−1 {Initial estimates:

Â ∈ R
p×p}

7: θ̂ := {Initial estimate using criterion defined in

Section IV-A}

8: Lmin := +∞
9: t := 0
10: k := kmax

11: while k ≥ kmin do

12: repeat

13: t := t+ 1
14: ŝ := ŴX

15: β
(i)
q := ǫ̂qD(ŝ(i)|θ̂q)/

∑k
l=1 ǫ̂lD(ŝ(i)|θ̂l).

{for i = 1, . . . , N}

16: ǫ̂q := (1/N)
∑N

i=1 β
(i)
q

17: θ̂qj := Ψ−1(Ψ(
∑p

l=1 θ̂ql)

+ (
∑N

i=1[β
(i)
q log s

(i)
j ]/
∑N

i=1(β
(i)
q ))),

18: if ANY ǫ̂q = 0 then

19: Annihilate mode

20: k := k − 1
21: end if

22: Â := DUSAL(X, p,Ŵ); Ŵ = Â−1

23: L(t) := −
∑N

i=1[log
∑k

q=1 ǫ̂qD(ŝ(i)|θ̂q)]−

N log | detŴ|+ (k(p+ 1)/2) + (k/2) log(N/12)

+ (p/2)
∑k

q=1 log(Nǫ̂q/12)

24: until L(t−1) − L(t) < 10−5|L(t−1)|
25: if L(t) < Lmin then

26: Lmin := L(t)

27: k̂best := k
28: θ̂best := θ̂

29: M̂best := EpÂ

30: ŝbest := ŝ

31: end if

32: Annihilate mode with smallest ǫ̂
33: k := k − 1
34: end while

C. Identifiability of the Endmembers

The identifiability of the mixing matrix is a pertinent ques-

tion: Is it possible that different sets of endmembers explain

the same observed data? If no further constraint is enforced,

in addition to the positivity and sum-to-one, the answer is yes.

The proof is very simple. Suppose that we are given a set of

linearly independent vectors, for example, B = [b1, . . . ,bp],
containing in its convex hull a set of endmembers, for example,
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A = [a1, . . . ,ap]. Therefore, if the data set belongs to the

convex hull of A, it also belongs to the convex hull of B. As

a consequence, given x ∈ R
p, a spectral vector in the data set,

we have x = Asa and x = Bsb, where both sa and sb satisfy

the positivity and the sum-to-one constraints.

The minimum-volume constraint makes the spectral unmix-

ing problem identifiable by choosing the minimum-volume

mixing matrix. However, as already explained, this con-

straint leads to incorrect estimates in highly mixed data sets.

The method we are introducing was conceived, precisely to

overcome that limitation of the minimum-volume-based ap-

proaches. Of course, to be effective, the statistical model un-

derlying DECA must be identifiable. We now give formal and

experimental evidence of this identifiability.

Let A0, W0 ≡ A−1
0 , and θ0 denote, respectively, the true

mixing matrix, the true unmixing matrix, and the true param-

eters of the Dirichlet mixture. From the definition of the log-

likelihood function L(W,θ) introduced in (7) and noting that

x(i) = WA0s
(i)
0 (the subscript 0 in s

(i)
0 refers to a sample from

pS(·|θ0)), we have

1

N
LN (W,θ)

=
1

N

N∑

i=1

log
{
pS

(
Wx(i)|θ

)
| detW|

}
(21)

=
1

N

N∑

i=1

log
{
pS

(
WA0s

(i)
0 |θ
)
|det(WA0)|

}
(22)

≃

∫

Sp−1

pS(s|θ0) log {pS(WA0s|θ) |det(WA0)|} ds (23)

= −

∫

Sp−1

pS(s|θ0) log
pS(s|θ0)

pS(WA0s|θ) |det(WA0)|
ds+ cte

(24)

where, assuming a large N , we have invoked the strong law of

large numbers [60] to obtain (23) and cte in (24) is a term not

depending on (W,θ). The right-hand side of (24) is, apart from

cte, the Kullback Libler divergence (KLD) [61] between the

densities pS(·|θ0) and pS(WA0(·)|θ)| det(WA0)|. Therefore,

computing the ML estimate of (W,θ) amounts to minimize the

KLD between those densities.

The KLD between two densities is nonnegative and takes

the value zero if and only if the densities are equal al-

most everywhere [61]. As expected, in our case, the param-

eters (W,θ) = (W0,θ0) are an ML estimate as they yield

zero KLD. The relevant question now is whether there is

any parameters (W′,θ′) �= (W0,θ0) such that pS(s|θ0) =
pS(WA0s|θ)| det(WA0)| almost everywhere in Sp−1. The

answer is negative. The proof of this results beyond the scope

of this paper. We give, however, an informal justification

hereinafter.

Assume that W �= W0. In this case, the parametric family

pS(WA0(·)|θ)| det(WA0)| does not belong to the mixture of

Dirichlet class, and then, it does not follow that pS(s|θ0) =
pS(WA0s|θ)| det(WA0)| almost everywhere in Sp−1. As-

TABLE I
PARAMETERS OF THE DIRICHLET DENSITIES AND THEIR STATISTICS

Fig. 2. Illustration of the DECA evolution for three different initial matrices

Â. (Black large dots) True endmembers. (Red and pink dots) Spectral vectors.
Initial estimates: (Purple triangles) Test 1, (blue squares) test 2, and (green
diamonds) test 3. Final estimates: (Filled purple triangles) Test 1, (filled blue
squares) test 2, and (filled green diamonds) test 3.

sume now that W = W0 and θ �= θ0. Again, it is not possible

to have pS(s|θ) = pS(s|θ0) almost everywhere in Sp−1. We

conclude then that the KLD is zero if and only if (W,θ) =
(W0,θ0).

The next experiment, based on 50 Monte Carlo runs, gives

further evidence of the claimed identifiability of the statistical

model. For each run, the data sets are generated according to

(3), where three endmember signatures (p = 3) are selected

from the USGS digital spectral library [62]. These reflectances

are observed in L = 224 spectral bands ranging from 0.3 to 2.5

μm. The scene is composed by N = 104 pixels partitioned into

two different regions. The size of regions A and B represents

66% and 33%, respectively. The abundance fractions for each

region follow a Dirichlet distribution with parameters θA =
[6, 25, 9] and θB = [7, 8, 23] for regions A and B, respectively.

Table I summarizes, for each region, the scene parameters and

the mean and variance of the abundance fraction statistics.

Fig. 2 shows a scatterplot of the evolution of DECA for three

initializations, which differ from an endmember rotation. Black

large dots represent the true endmembers, and red and pink dots

represent the observed spectral vectors for each region. Pur-

ple triangles, blue squares, and green diamonds represent the

initial estimated matrix Â and the successive DECA estimates

along the iterations, and filled triangles, squares, and diamonds

represent the final estimates. Notice that, in spite of the large

differences among the three initializations, the final estimates

of the endmembers are practically equal. This is clearly in line

with our claim that DECA statistical model is identifiable.
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Fig. 3. Illustration of the geometrically based approach problem. Example of
mixture: (a) With pure pixels (solid red line—estimated simplex); (b) without
pure pixels and with pixels in the facets (solid red line—estimated simplex
based on minimum volume; dashed blue line—estimated simplex by VCA); and
(c) highly mixed pixels (solid red line—estimated simplex based on minimum
volume).

IV. EVALUATION WITH SIMULATED DATA

In this section, the proposed method is tested and quanti-

tatively compared with VCA [18], MVSA, [31], MVES [29],

MVC-NMF [44], SPICE [28], and SISAL [32]. The parameters

of the algorithms were hand tuned for optimal performance.

Fig. 3 shows three data sets raising different degrees of

difficulties in which unmixing is concerned: The data set shown

in Fig. 3(a) contains pure pixels, i.e., the spectra corresponding

to the simplex vertices are in the data set. This is the easiest

scenario with which all the unmixing algorithms cope without

problems; the data set shown in Fig. 3(b) does not contain

pure pixels, at least for some endmembers. This is a much

more challenging task, usually attacked with the minimum-

volume-based methods such as MVSA, MVES, MVC-NMF,

ICE, SPICE, and SISAL. A necessary condition for this class

of algorithms to yield good results is the presence of at least

p− 1 spectral vectors per simplex facet, which is not the case

shown in Fig. 3(c), where a highly mixed data set is shown.

Unmixing of these data sets is beyond the reach of any of above

referred to algorithm and is where our approach exhibits a clear

advantage.

The experiments presented in this section are based on 50

Monte Carlo runs. For each run, the data set, generated accord-

ing to (3), is generated with different endmember signatures,

selected from the USGS digital spectral library [62], with

different abundance fractions, and with different additive noise

levels.

Four experiments with simulated data are presented: In the

first experiment, the algorithms are tested in scenarios with

different Dirichlet parameters for the noiseless case. This ex-

periment allows us to show the functioning of the algorithm

for highly mixed data and thus with the absence of pure pixels.

In the second experiment, the performance is measured as a

function of the number of endmembers present in the scene. In

the third experiment, the number of pixels of the scene is varied.

Finally, in the fourth experiment, the algorithms are evaluated

with respect to the SNR, defined by

SNR ≡ 10 log10
E
[
(As)TAs

]

E [nTn]
(25)

where n is additive zero-mean Gaussian noise which is assumed

to be i.i.d.

To evaluate the performance of the different algorithms, the

abundance fractions and the signature estimates are compared

with the true ones. Based on the mean square error (MSE), we

define the spectral mean error (SME) and the abundance mean

error (AME)

SME ≡
1

pL
‖M− M̂‖2F (26)

AME ≡
1

pN
‖S− Ŝ‖2F (27)

where the columns of M̂ = EpŴ
−1 are endmember signature

estimates, S ≡ [s(1), s(2), . . . , s(N)] is a p×N matrix with

the endmember abundance fractions of each pixel, and Ŝ ≡
[̂s(1), ŝ(2), . . . , ŝ(N)] holds the abundance fraction estimates

(notation ‖ · ‖F stands for Frobenius norm).

A common performance metric is the spectral angle distance,

which measures the angle between a signature mi and its

estimate m̂i [13]. Based on this metric, we define a spectral

mean angle error (SMAE), given by

SMAE ≡

√√√√1

p

p∑

i=1

[
arccos

(
mT

i m̂i

‖mi‖‖m̂i‖

)]2
. (28)

It is clear that the performance of the algorithms increases

as SME, AME, and SMAE indices approach zero. Notice,

however, that the estimates of M and S are up to a permuta-

tion matrix; thus, a simple algorithm based on the Hungarian

method [63], [64] has been designed to infer the permutation

matrix leading to the best index of performance.

A. Experiment I

In this section, data sets are generated as in Section III-C,

i.e., three endmember signatures (p = 3) were selected from

the USGS digital spectral library. The scene is composed by
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Fig. 4. Scatterplot of the three-endmember mixture. (Large dots) True
endmembers. (Squares) MVSA estimate. (Triangles up) VCA estimate.
(Hexagrams) MVES estimate. (Pentagrams) MVC-NMF. (Diamonds) SPICE
estimate. (Triangles left) SISAL estimate. (Circles) Proposed method.

TABLE II
PARAMETERS OF THE DIRICHLET DENSITIES AND ITS ESTIMATES FOR

EACH REGION OF THE SCENE

N = 104 pixels partitioned into two different regions (the size

of regions A and B represents 66% and 33%, respectively).

The abundance fractions for each region follow a Dirichlet

distribution with θA = [6, 25, 9] and θB = [7, 8, 23]. Table I

summarizes the scene parameters and the abundance fraction

statistics for each region. Notice that, for this setting, the

spectral vectors are highly mixed. Fig. 4 shows a scatterplot for

a simulated scene, where dots represent the observed spectral

vectors and large dots represent the true endmembers. The two

clouds correspond to the two regions in the scene.

In this experiment, the number of modes varies from kmax =
5 to kmin = 1, the Dirichlet parameters are randomly initial-

ized, and the mixing probabilities are set to ǫq = 1/k, for q =
1, . . . , k. This setting reflects a situation in which no knowledge

of the size and the number of regions in the scene exists.

The parameters of the remaining methods were hand tuned

for optimal performance, namely, the MVC-MNF regulariza-

tion parameter is τ = 10−4; the convergence tolerance for

MVES method is 10−6; SISAL regularization parameters are

set to λ = 10, τ = 1, and μ = 10−4; SPICE regularization

parameter is set to μ = 10−3; the sparsity parameter is Γ = 0.5;

and the stopping criterion is 10−6.

For this data set, the minimum of the negative log-likelihood

[see (19)] is reached when the estimated number of modes

is k̂ = 2 which is the number of regions on the scene. The

estimated parameters at this iteration are presented on the last

line of Table II. Note that the estimated values are close to the

true parameter values. The Dirichlet mixing probability (ǫq)

Fig. 5. Negative log-likelihood evolution as a function of the number of
iterations. Vertical lines represent the iteration where a component annihilation
is performed.

values are 0.664 and 0.336, which correspond to the areas in the

scene occupied by regions A and B, respectively. Fig. 5 shows

the evolution of the negative log-likelihood as a function of the

number of iterations. The minimum of the function occurs at

iteration number 637 when k̂ = 2. Notice that the negative log-

likelihood is not monotonic because DECA finds the optimal

model order by computing a sequence of ML estimates θ̂ML(k),
for k = kmin, . . . , kmax (see Algorithm 1, lines 12–24). The

k̂best corresponds to the minimum value of −L(θ̂ML(k)), for

k = kmin, . . . , kmax. To make clear the dependence of the

negative log-likelihood −L(θ(k), k) on the model order k, we

show in Fig. 5 vertical lines where a component annihilation is

performed.

Fig. 4 shows the true endmembers (large dots), the estimated

endmembers by the proposed method (circles), by MVSA

(squares), by VCA (triangles up), by MVES (hexagrams),

by MVC-NMF (pentagrams), by SPICE (diamonds), and by

SISAL (triangles left). Since the endmembers are highly mixed,

i.e., there is no spectral vector near the vertices nor near facets,

the proposed method gives better estimates than the other

methods. Note that the endmember estimates generated by the

proposed method are closer to the true endmembers than the

estimates provided by the compared algorithms. Table III shows

the mean and the variance (in brackets) of the performance

results for the different algorithms based on 50 Monte Carlo

runs. These results illustrate the advantage of the proposed

scheme when compared with the remaining methods.

In order to test the effectiveness of DECA as a function

of the initialization parameters, these Dirichlet parameters are

initialized in three different ways: Randomly, all parameters set

to one and all parameters set to five. The first initialization does

not assume any kind of prior information, the second assumes

that all samples are uniformly distributed over the simplex, and

the last assumes that the data set is highly mixed. Table IV

presents the mean and the variance (in brackets) of the per-

formance measures. This test shows that DECA yields similar

performance independently of the initialization parameters.
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TABLE III
MEAN AND VARIANCE (IN BRACKETS) OF THE EVALUATION

RESULTS FOR THE DIFFERENT ALGORITHMS, BASED ON

50 MONTE CARLO RUNS (N = 104, p = 3, L = 224,
θA = [6, 25, 9], θB = [7, 8, 23], AND SNR = ∞)

TABLE IV
MEAN AND VARIANCE (IN BRACKETS) OF THE EVALUATION RESULTS

FOR DECA WITH DIFFERENT INITIALIZATION PARAMETERS,
BASED ON 50 MONTE CARLO RUNS (N = 104, p = 3, L = 224,

θA = [6, 25, 9], θB = [7, 8, 23], AND SNR = ∞)

TABLE V
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (θ = (1, 1, 1),
N = 104, p = 3, L = 224, AND SNR = ∞)

Three different experiments are now presented with a scene

composed by one single region, with N = 104 pixels and three

endmembers (p = 3) and where abundance fractions follow a

Dirichlet distribution with θ = [1, 1, 1], θ = [5, 5, 5], and θ =
[10, 10, 10]. The difficulty of the unmixing problem increases

with the value of the Dirichlet parameters: For θ = [1, 1, 1],
the abundances are uniformly distributed over the simplex, and

thus, it is very likely to have pixels over, or very close, to the

facets of the simplex; for θ = [10, 10, 10], this is no longer true,

since pixels are highly mixed and thus the geometrically based

approaches fail. Tables V–VII present the evaluation metrics for

the three different setups. As expected, the performance of all

algorithms is worse for the highly mixed scene. Note, however,

that the proposed method shows much better results in highly

mixed scenes, when compared with the other methods.

B. Experiment II

In this section, the different algorithms are evaluated as a

function of the number of endmembers present in the scene. The

TABLE VI
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (θ = (5, 5, 5),
N = 104, p = 3, L = 224, AND SNR = ∞)

TABLE VII
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (θ = (10, 10, 10),
N = 104, p = 3, L = 224, AND SNR = ∞)

TABLE VIII
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (p = 3, N = 104,
L = 224, θ = [5, . . . , 5], AND SNR = ∞)

setup for this experiment is composed by an image (with N =
104) where abundance fractions follow a Dirichlet distribution

with θi = 5, for i = 1, . . . , p. The number of endmembers takes

values in the set {3, 5, 10}.

Tables VIII–X show the performance results as a function of

the number of endmembers. Once more, the proposed algorithm

outperforms, by large, the remaining methods, although its

performance is better when the number of endmembers is small.

C. Experiment III

In this section, the algorithms are evaluated as a function of

the number of pixels of the scene. The simulated parameters

are as in Experiment II, except for the number of pixels N
which takes values in the set {500, 1000, 5000} and the number

of endmembers is now set to p = 3. Tables XI–XIII show the

evaluation measures as a function of the number of pixels in

the scene. We conclude that the behavior of VCA, MVC-NMF,
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TABLE IX
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (p = 5, N = 104,
L = 224, θ = [5, . . . , 5], AND SNR = ∞)

TABLE X
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (p = 10, N = 104,
L = 224, θ = [5, . . . , 5], AND SNR = ∞)

TABLE XI
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (N = 500, p = 3,
L = 224, θ = [5, 5, 5], AND SNR = ∞)

TABLE XII
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (N = 1000, p = 3,
L = 224, θ = [5, 5, 5], AND SNR = ∞)

MVES, and SPICE algorithms is quasi-independent of the

number of pixels. The remaining algorithms have slightly better

results for large scenes. This is so because it is more likely to

have spectral vectors close to the facets as N increases.

TABLE XIII
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (N = 5000, p = 3,
L = 224, θ = [5, 5, 5], AND SNR = ∞)

TABLE XIV
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (SNR = 40 dB,
N = 104, p = 3, L = 224, AND θ = [5, 5, 5])

TABLE XV
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (SNR = 20 dB,
N = 104, p = 3, L = 224, AND θ = [5, 5, 5])

D. Experiment IV

In this section, the robustness to noise is evaluated. The sim-

ulated noiseless scenario is generated as in the first experiment

with one single region and according to (1), i.e., N = 104, p =
3, L = 224, and θ = [5, . . . , 5]. The noisy scenario is obtained

by adding i.i.d. zero-mean Gaussian noise to the noiseless data.

The different algorithms are tested for different values of SNR

(40, 20, and 10 dB). As expected, when comparing the noiseless

and noisy data evaluation results (see Tables VI, XIV–XVI),

DECA and VCA performance is more accurate when SNR

is high. Interestingly, the MVSA, MVES, and SISAL perfor-

mance slightly worse as the SNR is smaller. This phenomenon

occurs because the data are highly mixed, i.e., all data points are

concentrated inside the simplex. The addition of noise spreads

the data inside the simplex, which brings data points closer to

the facets of the simplex, enforcing the MVSA that contains all

data closer to the true one.
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TABLE XVI
EVALUATION RESULTS FOR THE DIFFERENT ALGORITHMS,

BASED ON 50 MONTE CARLO RUNS (SNR = 10 dB,
N = 104, p = 3, L = 224, AND θ = [5, 5, 5])

TABLE XVII
COMPUTATION TIME (IN SECONDS) OF EACH UNMIXING METHOD FOR

N = 103, p = 3, L = 224, AND θ = [5, . . . , 5]

The computation time (in seconds) required by each unmix-

ing method for N = 103, p = 3, L = 224, and θ = [5, . . . , 5]
is shown in Table XVII for an nonoptimized MATLAB 2008a

32-bit implementation on a PC equipped with an Intel core duo

2.1-GHz processor with 4 GB of RAM. From this table, one can

observe that the computation time spent by VCA (pure-pixel-

based unmixing method) is less than that of the other algorithms

that do not require pure pixels. Among these algorithms, SISAL

is the fastest. Table XVII also indicates that SPICE is the

slowest followed by DECA. The complexity of DECA is ap-

proximately O(N(4p2 + 6kp)), where k = (kmin + kmax)/2.

V. EVALUATION WITH REAL DATA

In this section, the proposed method is applied to real hyper-

spectral data collected by the AVIRIS sensor. A subset of the

Cuprite data set2 is considered. This site has been extensively

used for remote sensing experiments over the past years, and its

geology was previously mapped in detail [65].

The data set is composed of 187 spectral bands with 10-nm

bandwidth acquired in the 0.4–2.5-μm region (noisy and water

absorption bands 1–3, 104–113, 148–167, and 221–224 were

removed). The subset contains 50 × 90 pixels with a ground

resolution of 17 m. Fig. 6 shows band 30 (wavelength λ =
647.7 nm) of the subimage of AVIRIS Cuprite Nevada data set.

For this experiment, the MVC-MNF regularization param-

eter is set to τ = 10−5; the convergence tolerance for MVES

method is 10−6; SISAL regularization parameters are set to

λ = 10, τ = 1, and μ = 10−5; SPICE regularization parameter

2Available online at http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

Fig. 6. Band 30 (wavelength λ = 647.7 nm) of the subimage of AVIRIS
Cuprite Nevada data set (rectangle denotes the image fraction used in the
experiment).

Fig. 7. (Dots) Scatterplot of Cuprite data set. (Circles) Estimated end-
members. (Large dots) USGS signatures. (Squares) MVSA estimate.
(Triangles up) VCA estimate. (Hexagrams) MVES estimate. (Pentagrams)
MVC-NMF. (Diamonds) SPICE estimate. (Triangles left) SISAL estimate.
(Circles) Proposed method.

is set to μ = 10−4; the sparsity parameter is Γ = 0.4; and the

stopping criterion is 10−6.

Fig. 7 shows a scatterplot of the Cuprite data subset, where

dots represent the pixels and circles represent the endmembers

estimated by the proposed method. The results provided by

VCA, MVSA, MVES, MVC-MNF, SISAL, and SPICE are also

shown. Furthermore, we have also plotted the projections of

Montmorillonite, Desert Varnish, and Alunite, which are known

to dominate the considered subset image [65]. DECA has iden-

tified k = 5 modes, with parameters θ1 = [1.5, 4.1, 2.9], θ2 =
[23.4, 51.3, 15.5], θ3 = [27.2, 26.6, 4.3], θ4 = [17.5, 3.6, 2.5],
and θ5 = [10.3, 8.0, 7.3], and mixing probabilities ǫ1 = 0.04,

ǫ2 = 0.69, ǫ3 = 0.07, ǫ4 = 0.10, and ǫ5 = 0.10. These param-

eters determine a highly nonuniform distribution over the sim-

plex as could be inferred from the scatterplot shown in Fig. 7.
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TABLE XVIII
EVALUATION RESULTS FOR THE CUPRITE DATA SET

Fig. 8. (Solid line) Endmember signatures and (dashed line) their estimates.
(a) Alunite. (b) Montmorillonite. (c) Desert Varnish.

Table XVIII shows the evaluation metrics SME and SMAE,

where the signatures estimated by the different algorithms

are compared with the nearest laboratory spectra, i.e., Alunite

GDS84 Na03, Desert Varnish GDS78A Rhy, and Montmoril-

lonite + Illite CM37. The proposed method yields the best

SMAE and an SME not far from those of SISAL and MVES

methods. Fig. 8 shows the endmember signatures and their

estimates. The signatures provided by DECA are scaled by a

factor in order to minimize the MSE between them and the

respective library spectra. The similarity between the plotted

curves is evident. Figs. 9–11 show the estimated abundance

maps for DECA, VCA, and SISAL methods, respectively.

DECA and SISAL abundance fraction estimates are very sim-

ilar, whereas VCA has a slightly different result, namely, the

upper left corner of the scene is mostly Montmorillonite instead

of Alunite.

In our setup, the missing data indicate which mode produces

each sample. After running the GEM algorithm, we obtain

the posterior probability of the modes given the observations,

which is, in fact, a soft classification map. Fig. 12(b) shows the

image map where each color represents the mode with higher

probability computed from (10). Fig. 12(a) shows a scatterplot

of the data, where dots represent pixels of the image and their

color indicates which mode has produced it. There is a clear

relation between the information shown in Fig. 12(a) and (b)

and the abundance fractions shown in (11): Modes 3 and 4 are

Fig. 9. Abundance map estimates for DECA. (a) Montmorillonite. (b) Desert
Varnish. (c) Alunite.

linked with Montmorillonite area, mode 2 is linked with Desert

Varnish, and modes 1 and 5 are linked with Alunite.

VI. CONCLUSION

This paper has introduced DECA, a new algorithm to blindly

unmix highly mixed hyperspectral data, thus beyond the reach

of the geometrically based unmixing algorithms. DECA, de-

veloped under the statistical framework, models the abundance

fractions as mixtures of Dirichlet densities, thus automatically

enforcing the nonnegativity and the sum-to-one constraints. A

cyclic minimization algorithm was developed where the follow-

ing are observed: 1) The number of Dirichlet modes is inferred

based on the MDL principle; 2) a GEM algorithm is derived

to infer the model parameters; and 3) a sequence of augmented

Lagrangian optimizations is used to compute the endmember

signatures. The experimental results shown illustrate the poten-

tial of the proposed method to unmix hyperspectral data when

the observed spectra are highly mixed.

As future research direction, in the vein of works [48] and

[49], we intend to extend DECA by introducing a spatial

regularization term based on the hidden variables that repre-

sent the probability of activating the Dirichlet modes. This
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Fig. 10. Abundance map estimates for VCA. (a) Montmorillonite. (b) Desert
Varnish. (c) Alunite.

regularization term enforces neighboring pixels to belong to the

same Dirichlet mode.

APPENDIX

This Appendix presents a modification of the SISAL algo-

rithm introduced in [32], termed as DUSAL, to solve the op-

timization problem that appears in the minimum-volume-type

formulations of hyperspectral linear unmixing. SISAL solves a

hard nonconvex (due to the presence of | det(W)|) optimiza-

tion problem by a sequence of nonsmooth convex subproblems

using variable splitting and then applying the augmented La-

grangian methods (see [66], [67], and references therein for

recent applications of these tools in image processing).

Herein, we apply the same concepts: variable splitting and

augmented Lagrangian methods. The optimization with respect

to W in (14) is equivalent to

Ŵ = argmin
W

−φ(WX )− log |det(W)|

s.t. : WX � 0 1T
pW = aT (29)

where aT = 1NXT(XXT)−1 (see [32] for the simplification

of the equality constraint).

Fig. 11. Abundance map estimates for SISAL. (a) Montmorillonite. (b) Desert
Varnish. (c) Alunite.

Let q ≡ vec(W) denote the operator that stacks the columns

of W in the column vector q. Given that vec(WX ) = (X ⊗
I)vec(W), where ⊗ denotes the Kronecker operator, and defin-

ing f(q) = − log | det(W)|, then (29) can be written as

q̂ = argmin
q

f(q)− φ(Aq)

s.t. : Bq = a (30)

where A = X ⊗ I and B = I⊗ 1T
p . We have dropped the

inequality Aq � 0, as we define −φ(z) = +∞ if some com-

ponent of z is negative.

Using the variable splitting concept, the optimization prob-

lem (30) is equivalent to

q̂ = argmin
q,z

f(q)− φ(z)

s.t. : Bq = a Aq = z (31)

where variableqwas split into the pair (q, z) and linked through

the constraint Aq=z. The so-called augmented Lagrangian for

this problem with respect to the constraint Aq=z is

L(q, z,d) ≡ f(q)− φ(z) +α
T(Aq− z) + τ‖Aq− z‖2

= f(q)− φ(z) + τ‖Aq− z− d‖2 + c (32)
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Fig. 12. (a) Scatterplot of Cuprite data set. (b) Image map: Each color is
assigned to one Dirichlet mode.

where α holds the Lagrange multipliers, d = α/(2τ), and c
is an irrelevant constant. The solution of the optimization with

respect to (q, z) is decoupled into a block minimization with

respect to q and with respect to z, thus very easy to solve, where

a quadratic approximation f(q) = gTq+ μ‖q− qk‖
2 is used.

For each component of z, it amounts to find the larger root of a

second-order polynomial.

The pseudocode for the modified SISAL algorithm is pre-

sented in Algorithm 2, where lines 5–8 show the block mini-

mization with respect to q and to z and line 9 updates d.

Algorithm 2: DUSAL

1: INPUT Y ≡ [y1,y2, . . . ,yN ], p, W

2: OUTPUT q̂,

3: t := 0
4: repeat

5: t := t+ 1
6: q(t+1) := argminq(g

Tq+ (μ/2)‖q−
qk‖

2+τ‖Aq− z(t) − d(t)‖2)
7: s.t.: Bq = a,

8: z(t+1) := argminz((1/2)‖Aq(t+1) − z(t) −
d(t)‖2+1/τφ(z(t)))

9: d(t+1) := d(t) −Aq(t+1) − z(t+1)

10: until stopping criterion is satisfied
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