Accepted Manuscript

Hyperspherical $\delta-\delta^{\prime}$ potentials

ANNALS

J.M. Muñoz-Castañeda, L.M. Nieto, C. Romaniega

PII: \quad S0003-4916(18)30302-6
DOI: https://doi.org/10.1016/j.aop.2018.11.017
Reference: YAPHY 67800
To appear in: Annals of Physics

Received date: 6 June 2018
Accepted date: 18 November 2018

Please cite this article as: J.M. Muñoz-Castañeda, L.M. Nieto and C. Romaniega, Hyperspherical $\delta-\delta^{\prime}$ potentials, Annals of Physics (2018), https://doi.org/10.1016/j.aop.2018.11.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

*Manuscript

Hyperspherical $\delta-\delta^{\prime}$ potentials

J. M. Muñoz-Castañeda ${ }^{\text {a }}$, L.M. Nieto ${ }^{\text {a,b }}$, C. Ror nier $\lrcorner^{\text {a }}$
${ }^{a}$ Departamento de Física Teórica, Atómica y Óptica, Universidad de Vall ıoıı, 4701 ィ Valladolid, Spain ${ }^{b}$ IMUVA- Instituto de Matematicas, Universidad de Valladolid, 7011 Valı Iolid, Spain

Abstract

The spherically symmetric potential $\left.a \delta\left(r-r_{0}\right)\right\urcorner$ ᄀ $\delta^{\prime}\left(r-{ }_{0}\right)$ is generalised for the d dimensional space as a characterisation of a u_{n} rue s.adjoint extension of the free Hamiltonian. For this extension of the Dirac delta. the spectrum of negative, zero and positive energy states is studied in $d=2$, providing numerical results for the expectation value of the radius as a function of $\therefore \supset$ free parameters of the potential. Remarkably, only if $d=2$ the $\delta-\delta^{\prime}$ potel. 'a। , „ ...bitrary $a>0$ admits a bound state with zero angular momentum.

Keywords:

Contact interactions; selfadjoint e ...inn. singular potentials; spherical potentials

1. Introduction

The presence of bour darit har played a central role in many areas of physics for many years. In this resr ect, oncerning the quantum world, one of the most significant phenomenon is due to ${ }^{\text {ne }}$. nter ction of quantum vacuum fluctuations of the electromagnetic field with .wo con ' \cdot sting ideal plane parallel plates: the Casimir effect [1], meassured by Spr na. : in 1959 [2]. Frontiers are also essential in the theory of quantum black holes. where c.e of the most remarkable results is the brick wall model developed by '.. 't fooft [3, 4], in which boundary conditions are used to implement the interactio. of fuantum massless particles with the black hole horizon observed from far ar ay. In . Jdition, the propagation of plasmons over the graphene sheet and the surpr 'ing satt• ${ }^{\circ}$ ing properties through abrupt defects [5] can be understood by using boun : y cr aditions to represent the defects. In all these situations, the physical prope ats of the frontiers and their interaction with quantum objects of the bulk are mim cked by different boundary conditions. Many of these effects concerning condense matte quantum field theory can be reproduced in the laboratory.

Moreover, point potentials or potentials supported on a point have attracted much ittention over the years (see [6] for a review). These kind of potentials, also called c. 'tact ateractions, enables us to build integrable toy-model approximations for very

Email addresses: jose.munoz.castaneda@uva.es (J. M. Muñoz-Castañeda), li.ismiguel.nieto.calzada@uva.es (L.M. Nieto), cesar.romaniega@alumnos.uva.es (C. Romaniega)
localised interactions. The most known example of such kind of 1 . ${ }^{\circ}$ racun is the Dirac- δ potential, that has been extensively studied in the literatr - 'see, ᄂ ร. [7-9]). Since this potential admits only one bound state when it has neg' dive ' $\mathrm{u}_{r}{ }^{\prime}:$ ng [8, 9], it can represent Hydrogen-like nuclei in interaction with a classicaı - kground. Dirac- δ potentials can also be used to represent extended plates in efff , ure scatw quantum field theories to compute the quantum vacuum interaction for sel ii-transp rent plates in flat spacetime or curved backgrounds [10-13].

From what has been mentioned above, it is intiutiv ry clear that quantum boundaries and contact interactions are almost the same. Th r rir rou mathematical framework to study them is the use of selfadjoint extens: $\cap \mathrm{ns}$ to rer esent extended objects and point supported potentials (see [14-16] for a more, hysical point of view), such as plates in the Casimir effect setup [17, 18], or c ntact int ractions more general than the Dirac- δ in quantum mechanics and effectiv quan. \cdots. field theories [19-25]. The theory of selfadjoint extensions for symmetric opera $\cdot{ }^{\boldsymbol{r}}$ s has been well known to mathematicians for many years. However, it only vecame a valuable tool for modern quantum physics after the seminal works of Asorey er. ${ }^{\prime}$ [15, 17, 18], in which the problem was re-formulated in terms of physically mea _ ful quantities for relevant operators in quantum mechanics and quantum field th. •ry [26-31].

One of the most immediate exten. ' \checkmark or the Dirac- δ potential is the δ '-potential $V_{\delta^{\prime}}=b \delta^{\prime}(x)$. Over the last years, there $\mathrm{h}, ~ \mathrm{~s}$ bun some controversy about the definition of this potential in one dimension, ${ }^{\circ} \mathrm{c} \cdot$.... scussion in $[32,33]$), and yet it is not clear how $V_{\delta^{\prime}}$ should be characterised. The a. ${ }^{\eta}$ of this paper is not to discuss this definition but to use the one introduced in [22], including a Dirac- δ to regularise the potential, and study its generalisation as a ıypers ' 'erical potential in dimension $d>1$. We will fully solve the non-relativistic qu. 'tum n schanical problem associated with the spherically symmetric potential

$$
\begin{equation*}
\widehat{V}_{\delta-\delta^{\prime}}(r) \cdot \quad \delta\left(r-r_{0}\right)+b \delta^{\prime}\left(r-r_{0}\right), \quad a, b \in \mathbb{R}, r_{0}>0 . \tag{1}
\end{equation*}
$$

Due to the radial , yn. netry of the problem, we will end up having a family of onedimensional Hamiltonians (the radial Hamiltonian), for which a generalisation of the definition give , in 9,32] is needed.

This pape. :s rganised as follows. Section 2 defines the spherically symmetric $\delta-\delta^{\prime}$ potent ${ }^{\prime}$ al in al ${ }^{\circ}{ }^{\text {trary }}$ dimension based on the work for one dimensional systems performe . in $\ulcorner .9]$. Yaving determined the properties which characterise the potential, we carry ou. the sugh study of the bound states structure in Section 3 and of the zeromode aud scaturing states in Section 4. In the latter, we also compute some numerical resul s conces ing the mean value of the position (radius) operator. Through these two sectio. we ceecially focus on the peculiarities of the two dimensional case. Finally, in rection 5 we present our concluding remarks.

2. 1 не δ - δ^{\prime} interaction in the \boldsymbol{d}-dimensional Schrödinger equation

We consider a non-relativistic quantum particle of mass m moving in $\mathbb{R}^{d}(d=$ ' $\angle, 3, \ldots$) under the influence of the spherically symmetric potential $\widehat{V}_{\delta-\delta^{\prime}}(r)$ given in
(1). The quantum Hamiltonian operator that governs the dynamics or \because° assum is

$$
\begin{equation*}
\mathbf{H}=\frac{-\hbar^{2}}{2 m} \widehat{\Delta}_{d}+\widehat{V}_{\delta-\delta^{\prime}}(r) \tag{2}
\end{equation*}
$$

where $\widehat{\Delta}_{d}$ is the d-dimensional Laplace operator. To start r th, le ${ }^{+}$us analyse the dimensions of the free parameters a and b that appear in our $\mathrm{s} \jmath$ stem. $\mathrm{U}: \mathrm{ng}$ the properties of the Dirac- δ under dilatations and knowing that the δ^{\prime} has n hav the same units as the formal expression $d \delta(x) / d x$ it is straightforward tr see ${ }^{+}$' the dimensions of the parameters a and b are

$$
\begin{equation*}
[a]=L^{3} T^{-2} M, \quad[b]=L^{4} T \tag{3}
\end{equation*}
$$

Hence, we can introduce the following dimensionles. yua cities:

$$
\begin{equation*}
\mathbf{h} \equiv \frac{2}{m c^{2}} \mathbf{H}, \quad w_{0} \equiv \frac{2 a}{\hbar c}, \quad \cdots 1-\frac{b_{1}}{\hbar^{2}}, \quad x \equiv \frac{m c}{\hbar} r . \tag{4}
\end{equation*}
$$

With the previous definitions, the dimen - inc quantum Hamiltonian reads

$$
\begin{equation*}
\mathbf{h}=-\Delta_{d}+w_{0}^{\prime}\left(x-x_{\prime^{\prime}}^{\prime}+2 w_{1} \delta^{\prime}\left(x-x_{0}\right) .\right. \tag{5}
\end{equation*}
$$

Introducing hyperspherical coordinates, $\boldsymbol{x}_{1} \mathbf{s}-d \equiv\left\{\theta_{1}, \ldots, \theta_{d-2}, \phi\right\}$), the d-dimensional Laplace operator Δ_{d} is written as

$$
\begin{equation*}
\Delta, \quad \frac{1}{x^{-1}} \frac{\partial}{\partial x}\left(x^{d-1} \frac{\partial}{\partial x}\right)+\frac{\Delta_{S^{d-1}}}{x^{2}} \tag{6}
\end{equation*}
$$

where $\Delta_{S^{d-1}}=-\mathbf{L}_{d}^{2}$ is the L. ${ }^{\wedge}$ ac -Beltrami operator in the hypersphere S^{d-1}, and minus the square of the gen ralistd dimensionless angular momentum operator [34]. In hyperspherical coc. Hin es, te eigenvalue equation for \mathbf{h} in (5) is separable, and therefore we can wr ee the ${ }^{1}$. rons as

$$
\begin{equation*}
\psi_{\lambda \ell}\left(x, \Omega_{d}\right)=R_{\lambda \ell}(x) Y_{\ell}\left(\Omega_{d}\right), \tag{7}
\end{equation*}
$$

where $R_{\lambda \ell}(x)$; the adial wave function and $Y_{\ell}\left(\Omega_{d}\right)$ are the hyperspherical harmonics which are the $i^{\text {re }}$ ifunctions of $\Delta_{S^{d-1}}$ with eigenvalue (see [35] and references therein)

$$
\begin{equation*}
\chi(d, \ell) \equiv-\ell(\ell+d-2) \tag{8}
\end{equation*}
$$

The deornera. ${ }^{\prime}$, $\chi(\ell, d)$ is given by [36]

$$
\therefore \operatorname{g}(d, \ell)=\left\{\begin{array}{cl}
\frac{(d+\ell-3)!}{(d-2)!\ell!}(d+2(\ell-1)) & \text { if } d \neq 2 \text { and } \ell \neq 0 \tag{9}\\
1 & \text { if } d=2 \text { and } \ell=0
\end{array}\right.
$$

1. three dimensions we come up with $\chi(3, \ell)=-\ell(\ell+1)$ and $\operatorname{deg}(3, \ell)=2 \ell+1$ as nected. Taking into account the eigenvalue equation for (5) and equations $(7,8)$ the ${ }^{1}$ dial wave function fulfils

$$
\begin{equation*}
\left[-\frac{d^{2}}{d x^{2}}-\frac{d-1}{x} \frac{d}{d x}+\frac{\ell(\ell+d-2)}{x^{2}}+V_{\delta-\delta^{\prime}}(x)\right] R_{\lambda \ell}(x)=\lambda R_{\lambda \ell} \tag{10}
\end{equation*}
$$

being

$$
\begin{equation*}
V_{\delta-\delta^{\prime}}(x)=w_{0} \delta\left(x-x_{0}\right)+2 w_{1} \delta^{\prime}\left(x-x_{0}\right) \tag{11}
\end{equation*}
$$

To solve the eigenvalue equation (10), we first need to defir the otencial $V_{\delta-\delta^{\prime}}$. In order to characterise the potential $V_{\delta-\delta^{\prime}}(x)$ as a selfadjoint extension. ${ }^{-1}$ lowing [19, 32], we introduce the reduced radial function

$$
\begin{equation*}
u_{\lambda \ell}(x) \equiv x^{\frac{d-1}{2}} R_{\lambda \ell}(x) \tag{12}
\end{equation*}
$$

to remove the first derivative from the one dimensional radi or rators in (10). Taking into account (10) and (12), we obtain the eigenvalue nrourem th .t this function satisfies

$$
\begin{equation*}
\left(\mathcal{H}_{0}+V_{\delta-\delta^{\prime}}(x)\right) u_{\lambda \ell}(x)=\lambda_{\ell} u_{\lambda \ell}(\lambda, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\mathcal { H }}_{0} \equiv-\frac{d^{2}}{d x^{2}}+\frac{(d+2 \ell-3)(u \cdot 2 \ell-1)}{4 x^{2}} . \tag{14}
\end{equation*}
$$

Thus, as in [19], we define the potential $V_{\delta-\delta^{\prime}}$ the ugh a set of matching conditions on the eigenfunction of \boldsymbol{H}_{0} at $x=x_{0}^{ \pm}$. he , suussion for the one dimensional case imposes that the wave function ψ mus $^{+}$belon, to the Sobolev space $W_{2}^{2}(\mathbb{R} \backslash\{0\})$ in order
 energy is finite. To generalise this condit on to higher dimensional Hamiltonians with spherical symmetry, we need to $i \iota_{\iota_{1}}$ ne μ_{u} the domain of wave functions where the operator $\boldsymbol{\mathcal { H }}_{0}$ is selfadjoint when it is de 11 . ed on $\mathbb{R}_{>0}$ is

$$
\begin{equation*}
\left.W\left(\boldsymbol{\mathcal { H }}_{0},{ }^{\top}>0\right) \equiv,^{f}(x) \in L^{2}\left(\mathbb{R}_{>0}\right) \mid\left\langle\mathcal{H}_{0}\right\rangle_{f(x)}<\infty\right\} \tag{15}
\end{equation*}
$$

where the expectation va'ue or $\boldsymbol{U}_{n} . \mathrm{s}$ defined as usual

$$
\left.\boldsymbol{\mathcal { t }}_{0}\right\rangle_{, x)} \equiv \int_{0}^{\infty} f^{*}(x)\left(\boldsymbol{\mathcal { H }}_{0} f(x)\right) d x
$$

When we remove ne ${ }_{\mathrm{N}}{ }^{n t} \boldsymbol{x}=x_{0}$ the operator \mathcal{H}_{0} is no longer selfadjoint on the space of functions W ($\left.\boldsymbol{\sim}_{\sim}, \mathbb{R}_{x_{0}}\right) \equiv\left\{f(x) \in L^{2}\left(\mathbb{R}_{x_{0}}\right) \mid\left\langle\mathcal{H}_{0}\right\rangle_{f(x)}<\infty\right\}$ since

$$
\int_{0}^{\circ} d x_{\psi}\left(\mathcal{H}_{0} \varphi\right)-\int_{0}^{\infty} d x \varphi\left(\mathcal{H}_{0} \phi\right)^{*} \neq 0, \quad \varphi, \phi \in W\left(\mathcal{H}_{0}, \mathbb{R}_{x_{0}}\right),
$$

due to th. he inda y terms appearing when integrating by parts twice. Nevertheless, \mathcal{H}_{0} is $\cdots m m u$. ${ }^{\text {r }}$ on the subspace given by the closure of the $L^{2}\left(\mathbb{R}_{x_{0}}\right)$ functions with com act sup, ort in $\mathbb{R}_{x_{0}}$. This situation generalises the initial conditions given in [19], and 1 atches ne geometric view in $[14,15]$. Hence, the domain of the selfadjoint e^{w} asion $\int_{0}+V_{\delta-\delta^{\prime}}$ of the operator \boldsymbol{H}_{0} defined on $\mathbb{R}_{x_{0}}$ is given by

$$
\mathcal{O}\left(\mathcal{H}_{\jmath}+V_{\delta-\delta^{\prime}}\right)=\left\{f \in W\left(\mathcal{H}_{0}, \mathbb{R}_{x_{0}}\right) \left\lvert\,\binom{ f\left(x_{0}^{+}\right)}{f^{\prime}\left(x_{0}^{+}\right)}=\left(\begin{array}{cc}
\alpha & 0 \tag{16}\\
\beta & \alpha^{-1}
\end{array}\right)\binom{f\left(x_{0}^{-}\right)}{f^{\prime}\left(x_{0}^{-}\right)}\right.\right\}
$$

- here we have introduced the values

$$
\begin{equation*}
\alpha \equiv \frac{1+w_{1}}{1-w_{1}}, \quad \beta \equiv \frac{w_{0}}{1-w_{1}^{2}} . \tag{17}
\end{equation*}
$$

Now, using (12) in (16) we obtain the following matching conditio. for ue radial wave function $R_{\lambda \ell}$:

$$
\binom{R_{\lambda \ell}\left(x_{0}^{+}\right)}{R_{\lambda \ell}^{\prime}\left(x_{0}^{+}\right)}=\left(\begin{array}{cc}
\alpha & 0 \tag{18}\\
\tilde{\beta} & \alpha^{-1}
\end{array}\right)\binom{R_{\lambda \ell}\left(x_{0}^{-}\right)}{R_{\lambda \ell}^{\prime}\left(x_{0}^{-}\right)},
$$

where the effective couplings $\tilde{\beta}$ and \tilde{w}_{0} are

$$
\begin{equation*}
\tilde{\beta} \equiv \beta-\frac{\left(\alpha^{2}-1\right)(d-1)}{2 \alpha x_{0}}=\frac{\tilde{w}_{0}}{1-w_{1}^{2}} \quad \Rightarrow \quad \tilde{w}_{0}=\frac{-1}{-a)} \frac{w_{1}}{x_{0}}+w_{0} . \tag{19}
\end{equation*}
$$

Observe that when we turn off the δ^{\prime} contribution, $w_{1} 0 G_{1} \alpha=1$, the finite discontinuity in the derivative that characterises the δ-potential arlı ss

$$
R_{\lambda \ell}\left(x_{0}^{+}\right)=R_{\lambda \ell}\left(x_{0}^{-}\right) \quad \text { and } \quad R_{\lambda \ell}^{\prime}\left(x_{0}^{+},-R_{\lambda \ell}{ }_{v}^{-}\right)=w_{0} R_{\lambda \ell}\left(x_{0}\right) \text {. }
$$

On the other hand, when $w_{1}= \pm 1$ the match:................... matrix is ill defined because it does not relate the boundary data on x_{0}^{-}with $\left\llcorner\right.$. $ง$ se on x_{0}^{+}. This case is treated in detail in [10], where it is demonstrated that $w_{1} \quad\llcorner 1$ leaas to Robin and Dirichlet boundary conditions in each side of the singularity $x=0$. Specifically,

$$
\begin{align*}
& R_{\lambda \ell}\left(x_{0}^{+}\right)-\frac{4}{\tilde{w}_{0}^{+}} R_{\lambda \ell}^{\prime}\left(x_{0}^{+}\right)=\iota \quad k_{\lambda \ell}\left(x_{0}^{-}\right)=0 \quad \text { if } \quad w_{1}=1, \\
& R_{\lambda \ell}\left(x_{0}^{-}\right)+\frac{4}{\tilde{w}_{0}^{-}} R_{\lambda \ell}^{\prime}\left(x_{0}^{-}\right)=\iota, \quad R_{\lambda \ell}\left(x_{0}^{+}\right)=0 \quad \text { if } \quad w_{1}=-1, \tag{20}
\end{align*}
$$

where $\tilde{w}_{0}^{ \pm}=w_{0} \pm 2(1-d) x_{0}$. Rc ently the potential (11) was studied for two and three dimensions in [37] w_{1}-e the ratching conditions used for $R_{\lambda \ell}$ are those in (16) instead of (18) which is alid unu the approximation $\tilde{w}_{0} \simeq w_{0}$, only satisfied if

$$
\begin{equation*}
x_{0}\left|w_{0}\right| \gg\left|w_{1}\right| \tag{21}
\end{equation*}
$$

Throughout the tey we will point out the equations that are valid even when the previous inequality c.oes nc hold.

A remark on s lfad int extensions and point supported potentials

The operatu. ${ }^{\prime} \boldsymbol{f}_{0}$ defined as a one dimensional Hamiltonian over the physical space $\mathbb{R}_{x_{0}}$ is not self ${ }^{\circ}$ djoln. as we have seen. In order to define a true Hamiltonian as a selfadjoi ' op rato' one has to select a selfadjoint extension of \mathcal{H}_{0} in the way explained above for the na acular case of the potential $V_{\delta-\delta^{\prime}}(x)$. More generally, the set of all selfa joint e tensions is in one-to-one correspondence with the set of unitary matrices $U(2)$ As wa demonstrated in [15], for a given unitary matrix $G \in U(2)$ there is a uninue ${ }^{1 f}{ }^{\boldsymbol{f}-}$, $\mathbf{j i n t}$ extension \boldsymbol{H}_{0}^{G} of \mathcal{H}_{0}. In this sense, the selfadjoint extension \mathcal{H}_{0}^{G} can e thou ${ }_{\mathrm{L}}$ ht in a more physically meaningful way as a potential $V_{G}\left(x-x_{0}\right)$ supported n a poi $\mathrm{t} x_{0}$ for the quantum Hamiltonian $\boldsymbol{\mathcal { H }}_{0}$ and write $\boldsymbol{\mathcal { H }}_{0}+V_{G}\left(x-x_{0}\right) \equiv \boldsymbol{\mathcal { H }}_{0}^{G}$. Phy...ully one would just think on $V_{G}\left(x-x_{0}\right)$ as a potential term in the same way as u. =irac- δ potential [8]. In this view, once the operator \boldsymbol{H}_{0} is fixed, the selfadjoint xtensions can be seen as potentials supported on a point, and the other way around b. cause of the one-to-one correspondence demonstrated in [15] (and recently reviewed in [14]).

3. Bound states with the free Hamiltonian and the singular intera 'ion

In this section we will analyse in detail the discrete spectrv a of \cdots ative energy

 value equation for the bound states is (10) with $\lambda<0$, we efine $\lambda \equiv-\kappa^{2}$ with $\kappa>0$, and replace the subindex λ by κ in the wave functions all ov - this se tion. The general form of the solutions of equation (10) is

$$
R_{\kappa \ell}(x)=\left\{\begin{array}{lll}
A_{1} I_{\ell}(\kappa x)+B_{1} \mathcal{K}_{\ell}(\kappa x) & \text { if } & \left.x \cup^{\prime} J, x_{0}\right) \tag{22}\\
A_{2} I_{\ell}(\kappa x)+B_{2} \mathcal{K}_{\ell}(\kappa x) & \text { if } & \left.x \cup^{\prime} x_{0}, \infty\right),
\end{array}\right.
$$

being $I_{\ell}(z)$ and $\mathcal{K}_{\ell}(z)$, up to a constant factor, the $\mathrm{m} \iota$ 'ifier hyperspherical Bessel functions of the first and second kind respectively

$$
\begin{equation*}
\mathcal{I}_{\ell}(z) \equiv \frac{1}{z^{v}} I_{\ell+v}(x), \quad \mathcal{K}_{\ell}(z) \equiv \frac{1}{7^{\nu}} \Lambda_{t,} \quad(z) \quad \text { with } \quad v \equiv \frac{d-2}{2}, \tag{23}
\end{equation*}
$$

Similarly from Eq.(12) the general form oi h, reduced radial function is

$$
u_{\kappa \ell}(x)=\sqrt{x}\left\{\begin{array}{llll}
\left.A_{1} I_{\ell+v}(\kappa x)\right\urcorner & \boldsymbol{b}_{1} ソ_{\bullet+v}(\kappa x) & \text { if } & x \in\left(0, x_{0}\right) \tag{24}\\
A_{2} I_{\ell+v}, \imath, & \square \cdot K_{\ell+v}(\kappa x) & \text { if } & x \in\left(x_{0}, \infty\right)
\end{array}\right.
$$

The integrability condition on the reduced radial function

$$
\int_{\Gamma}\left|u_{\kappa \ell}(x)\right|^{2} d x<\infty
$$

imposes $A_{2}=0$. Mr eov κ, the solution multiplied by B_{1} is not square integrable except for zero angu ${ }^{1}$ ar . 'me' cum in two and three dmensions [38]. The regularity condition of the w, re functio. at the origin $u_{\kappa \ell}(x=0)=0$, sets $B_{1}=0$ for $d=3$. It would seem that ne th. solutions in the inner region are admissible when $d=2$, but $B_{1} \neq 0$ would $\mathrm{J}^{r}{ }^{\text {' }}$ to a normalizable bound state with arbitrary negative energy [39]. In addition, fr ans wave function ψ, the following identity involving the mean value of the kinetic e_{1}. sy operator:

$$
\begin{equation*}
\frac{1}{2 m}\langle\psi| P^{2}|\psi\rangle=\frac{1}{2 m}(\langle\psi| \boldsymbol{P}) \cdot(\boldsymbol{P}|\psi\rangle), \tag{25}
\end{equation*}
$$

holds if we mpose certain conditions on the wave function at the boundary $x=0$, whic are not satisfied by \mathcal{K}_{0}. Hence, we conclude that B_{1} should be zero for all the caces. . ${ }^{\text {th }}$. ne previous analysis and (18) we obtain the matching condition

$$
B_{2}\binom{\mathcal{K}_{\ell}\left(\kappa x_{0}\right)}{\kappa \mathcal{K}_{\ell}^{\prime}\left(\kappa x_{0}\right)}=A_{1}\left(\begin{array}{cc}
\alpha & 0 \tag{26}\\
\tilde{\beta} & \alpha^{-1}
\end{array}\right)\binom{\mathcal{I}_{\ell}\left(\kappa x_{0}\right)}{\kappa I_{\ell}^{\prime}\left(\kappa x_{0}\right)},
$$

f om which the secular equation is obtained

$$
\begin{equation*}
\left.\alpha \frac{d}{d x} \log \mathcal{K}_{\ell}(\kappa x)\right|_{x=x_{0}}=\tilde{\beta}+\left.\alpha^{-1} \frac{d}{d x} \log I_{\ell}(\kappa x)\right|_{x=x_{0}} \tag{27}
\end{equation*}
$$

The solutions for $\kappa>0$ of the previous equation give the energies ol \therefore bou. d states accounting for $\lambda=-\kappa^{2}$. The equation (27) can be written as

$$
\begin{equation*}
F\left(y_{0}\right) \equiv-y_{0}\left(\frac{I_{v+\ell-1}\left(y_{0}\right)}{\alpha I_{v+\ell}\left(y_{0}\right)}+\frac{\alpha K_{v+\ell-1}\left(y_{0}\right)}{K_{v+\ell}\left(y_{0}\right)}\right)-\left(\alpha-\alpha^{-1}\right) \ell=2 v\left(\alpha \cdot v^{-1}\right)+\tilde{\beta} x_{0} \tag{28}
\end{equation*}
$$

where $y_{0} \equiv \kappa x_{0}$ and the right hand side is independent of he energ and the angular momentum. For $d=2,3$ the results of [37] are obtained as a : $m:$ ng case $\left(x_{0}\left|w_{0}\right| \gg\right.$ $\left.\left|w_{1}\right|\right)$. In particular, the secular equation for the δ-poter $\operatorname{tal}\left(r \quad 1\right.$ and $\left.\tilde{\beta}=w_{0}\right)$ is

$$
-y_{0}\left(\frac{I_{v+\ell-1}\left(y_{0}\right)}{I_{v+\ell}\left(y_{0}\right)}+\frac{K_{v+\ell-1}\left(y_{0}\right)^{\prime}}{K_{v+\ell}\left(y_{0}\right)}\right) \quad w_{0} \leadsto 0 .
$$

3.1. On the number of bound states

Although equation (28) can not be solved analvı. ally in κ, it can be used to characterise some fundamental aspects of the ste if positive solutions of (28). The main feature is the number of bound states that exist for ${ }^{\prime}$ and ℓ

$$
N_{\ell}^{d}=n_{\ell}^{a} \therefore,(d, \ell),
$$

where n_{ℓ}^{d} is the number of negative ene, ${ }^{\top}$. renvalues and $\operatorname{deg}(d, \ell)$ is the degeneracy associated with ℓ in d dimensions ${ }^{\prime}$ In \imath^{\prime} is way, we first delimit the possible values of n_{ℓ}^{d}.

Proposition 1. In the d-dim - 'nal quantum system described by the Hamiltonian (5) the number n_{ℓ}^{d} is at mos one, i.t $n_{\ell}^{d} \in\{0,1\}$.

Proof. From (28) and appı, ing th properties of the Bessel functions, the derivative of $F\left(\kappa x_{0}\right)$ with respect $\mathrm{t}^{\prime} \kappa$ is

$$
x_{0} F^{\prime}\left(y_{0}\right)=-y_{0}\left[\left(\frac{\Lambda_{,}-1\left(y^{\prime}\right) K_{v+\ell+1}\left(y_{0}\right)}{\mathbf{\Lambda}_{v+\ell}\left(y_{0}\right)^{2}}-1\right)+\alpha^{-1}\left(1-\frac{I_{v+\ell-1}\left(y_{0}\right) I_{v+\ell+1}\left(y_{0}\right)}{I_{v+\ell}\left(y_{0}\right)^{2}}\right)\right],
$$

and, as it is proven in [40_{μ} and the references cited therein,

$$
\begin{aligned}
&\left.K_{n-}, y_{0}\right) K_{n+1}\left(y_{0}\right)>K_{n}\left(y_{0}\right)^{2}, \\
&\left.I_{n-1}, 0\right) I_{n+1}\left(y_{0}\right)<I_{n}\left(y_{0}\right)^{2}, \\
& \text { if } y_{0}>0, n \geq-1 / 2 \\
&
\end{aligned}
$$

In the pres, "casf $n=v+\ell \geq 0$, therefore we can conclude that

$$
\begin{equation*}
\operatorname{sgn}\left(F^{\prime}\left(y_{0}\right)\right)=-\operatorname{sgn}(\alpha) . \tag{29}
\end{equation*}
$$

Hence, \cdots, \ldots for $\alpha=0$ (ill defined matching conditions) $F\left(y_{0}\right)$ is a strictly monotone unctio: and the proposition is proved.

This result is in agreement with the Bargmann's inequalities for a general potential in t^{\prime} 'ree dimensional systems

$$
n_{\ell}^{d=3}<\frac{1}{2 \ell+1} \int_{0}^{\infty} x|V(x)| d x
$$

which guarantees a finite number of bound states when the integ ${ }_{1}{ }^{\prime}$ is cu vergent [41]. Moreover, this inequality was generalised for arbitrary dimer $\quad \therefore$ nal $s y$ tems with spherical symmetry [36]
$n_{\ell}^{d}<\frac{1}{2 \ell+d-2} \int_{0}^{\infty} x|V(x)| d x \quad$ if $\quad \int_{0}^{\infty} x|V(x)| d x<\infty \quad$ and $\quad d+\angle \ell-2 \geq 1$.
In the case $d=2$ and $\ell=0$, a stronger condition is imnose. \cdots... ne potential being the upper bound of the inequality different [36]. In far, , wh \ldots he potential is a linear combination of Dirac- δ potentials sufficiently distant i. . e eac other n_{ℓ}^{d} tends to the r.h.s. of the inequality (30) (see Ref. [42]). The follov. ng ruvult also matches with the properties of such potentials [8].

Proposition 2. The d-dimensional quantum sy $\cdot \mathrm{m}$ qu..ıbed by the Hamiltonian (5) admits bound states with angular momentum ℓ if, an.. nnly if,

$$
\begin{equation*}
\ell_{\max } \neq L_{\max }, \quad \text { and } \quad \ell \in\left\{0,1, \ldots,{ }^{\circ} \operatorname{rax}\right\} \quad\left(\ell_{\max }>-1\right), \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\ell_{\max } \equiv\left\lfloor L_{\max }\right\rfloor, \quad L_{, \varkappa}=-\frac{-x_{0} w_{0} / 2}{w_{1}^{2}+1}+\frac{2-d}{2}, \tag{32}
\end{equation*}
$$

being $\lfloor\cdot\rfloor$ the integer part. In additu . ${ }^{11} \mu_{\ell}=-\kappa_{\ell}^{2}$ is the energy of the bound state with angular momentum ℓ the following ineq. ality holds

$$
\lambda_{\ell}<\lambda_{\ell+1}<\quad \ell \in\left\{0,1, \ldots, \ell_{\max }-1\right\} .
$$

Proof. We analyse the sehavic of $F\left(y_{0}\right)$ for $y_{0} \sim 0$. The solutions of (22) satisfy

$$
\lim _{\kappa \rightarrow 0^{+}} \frac{d}{d \kappa} \log \tau_{\ell}\left(\kappa_{n},=\frac{-}{x_{0}}, \quad \lim _{\kappa \rightarrow 0^{+}} \frac{d}{d \kappa} \log \mathcal{K}_{\ell}\left(\kappa x_{0}\right)=-\frac{d+\ell-2}{x_{0}},\right.
$$

therefore the secuiar equan : on (27) for $\kappa \rightarrow 0^{+}$becomes

$$
\begin{equation*}
F_{0}\left(f \equiv \lim _{\rightarrow 0^{+}} F\left(y_{0}\right)=\alpha^{-1}(d+\ell-2)+\alpha \ell=\left(\alpha-\alpha^{-1}\right)(d-2)+\tilde{\beta} x_{0} .\right. \tag{33}
\end{equation*}
$$

The funct on $J_{0}(\ell)$ is a strictly monotone function of ℓ, increasing if $\alpha>0$ and decreasing $\wedge \sim=0.7$ addition, from (29) we can conclude that there are no bound states for ℓ ? max . \quad ng the definitions of (17), the solution of (33) is $L_{\max }$ given by (32). Fina y, with 'e previous analysis it is clear that $\kappa_{\ell}>\kappa_{\ell+1}$.
From ' 32), it an be seen that as the dimension of the system increases, the maximum ? sular mumentum reached by the system decreases. This happens because the cenrifugal, otential in (14) becomes more repulsive as d grows. In Fig. 1 we plot two \checkmark nfigur tions in two dimensions which illustrate the results of Propositions 1 and 2.

I ne results obtained in [37] for $d=2$ and $d=3$ are recovered when $\left|w_{0}\right| x_{0} \gg\left|w_{1}\right|$ ${ }^{\prime}$ 'or $a=3$ there is minus sign and the integer part missing). To end this section, let us riefly study the behaviour of the number of negative energy eigenvalues as a function

Figure 1: Each curve represents $F\left(\kappa x_{0}\right)$ in (28) for different values of c ə angular momentum. The green horizontal line is the r.h.s. of (28). LEFT: $d=2, \alpha=0.8, j \quad-3$ and $\quad=7$. RIGHT: $d=2, \alpha=-0.8$, $\tilde{\beta}=3$ and $x_{0}=7$.
of the dimension d and the angular momentum i As was shown above, the number of bound states depends on $\operatorname{deg}(d, \ell)(9)$. T. $\quad \cdots \quad$ ments with respect to d and ℓ are

$$
\begin{aligned}
& \operatorname{deg}(d+1, \ell)-\operatorname{deg}\left(d, \cdots=\frac{(d+\ell-3)!(d+2 \ell-3)}{(\ell-1)!(d-1)!}\right. \\
& \operatorname{deg}(d, \ell+1)-\operatorname{deg}\left(\omega,{ }^{\rho}\right)=\frac{(d+\ell-3)!(d+2 \ell-1)}{(\ell+1)!(d-3)!}
\end{aligned}
$$

therefore, both quantities ar pos. ve if $d \geq 3$ and $\ell \geq 1$. This ensures the growth of the number of bound stater with the limension and the angular momentum, except for $\ell=0$ where the degenera y is a vav, 1 (ground state) and for $d=2$ where $\operatorname{deg}(2, \ell)=2$ for $\ell \geq 1$.

3.2. Special feature of two «"* ensions

It is known tr it u. existence of bound states with $V_{\delta}=w_{0} \delta\left(x-x_{0}\right)$ necessarily imposes $w_{0}<0$ frr any aımension d. This fact can be easily proved with the results obtained abov. Th maximum angular momentum for this potential is

$$
\begin{equation*}
\ell_{\max } \equiv\left|\frac{-\kappa_{0} w_{0}}{2}+-\frac{-d}{2}\right| \leq L_{\max }=\frac{-x_{0} w_{0}}{2}+\frac{2-d}{2}<\frac{2-d}{2} \leq 0 \quad \text { if } \quad w_{0}>0, \tag{34}
\end{equation*}
$$

which ...ans $\left\llcorner\right.$. there are no bound states if $w_{0}>0$. The next proposition shows that is conc tion on the coupling w_{0} does not remain valid for all the cases when we add $\mathrm{t}_{\mathrm{t}} \cdot \delta^{\prime}$-po intial, allowing the existence of a bound state with arbitrary positive w_{0} $\mathrm{f} . l=\angle$ with $\ell=0$. This result is quite surprising taking into account the usual nterpret tion of the Dirac- δ potential as a infinitely thin potential barrier if $w_{0}>0$. , 'e kev point to understand it is that only for $d=2$ and $\ell=0$ the centrifugal potential in (14) is attractive (centripetal), since $d+2 \ell-3=-1<0$.
'roposition 3. The quantum Hamiltonian (5) admits a bound state for any $w_{0}>0$ only i1 $d=2$ and $\ell=0$.

Proof. From Proposition 2 we conclude that

$$
L_{\max }=\frac{1}{2}\left(2-d-\frac{x_{0} w_{0}}{w_{1}^{2}+1}+\frac{2 w_{1}}{w_{1}^{2}+1}\right) \leq 1 / 2 \quad \text { if } \quad w_{r}=
$$

since $2 w_{1} /\left(1+w_{1}^{2}\right) \in[-1,1] w_{1} \in \mathbb{R}$. Therefore, bound cates with $\ell \geq 1$ are not physically admissible. For higher dimensions this state can rot be ac lieved since

$$
L_{\max } \leq 0 \quad \text { if } \quad d \geq 3
$$

The equality is reached only if $w_{0}=0, w_{1}=1$ and $l=s \mathrm{~b} \in \mathrm{ng} \ell_{\max }=L_{\max }=0$. In this case the selfadjoint extension of \mathcal{H}_{0} which defines th potential $V_{\delta-\delta^{\prime}}$ can not be characterised in terms of the matching conditions (${ }^{7}$). In conclusion, with $V_{\delta-\delta^{\prime}}$ described by (18) this bound state appears only i. ${ }^{J}=2$ an $\ell=0$.

It is of note that the condition $2 w_{1}>x_{0} w_{0}$ ensures L_{1}. existence of this bound state for arbitrary $w_{0}>0$. In addition, we must mentı , that the appearance of such bound state is significant because of two reasons. In one dimeı. : \circ n, and with the definition of the δ^{\prime} given by (16), this potential can not intro ice d states by itself [32]. Furthermore, when $w_{0}>0$ the Dirac- δ potential $w_{\curvearrowleft} \delta(x-$,$) can be interpreted as an infinitely thin$ barrier, which contributes to the disap x "anc of bound states from the system. The result from Proposition 3 is illustrated in, Fig.2. At the end of the next section we will compute some numerical results t. ${ }^{*}$ vui. ${ }^{\prime}$ ut more differences with respect to the one dimensional $V_{\delta-\delta^{\prime}}$ potential.

Figur 2: Plots os $L_{\max }$ (32), with $x_{0}=1$, as a function of w_{0} and w_{1}. LEFT: $d=2$ showing $L_{\max }=0$ (green line) a. ' $L_{\max }=1$ (black curve). RIGHT: $d=3$ showing $L_{\max }=0$ (green curve). There is a bound state $w^{\circ} . .2=0_{1 \ldots}$ wo dimensions for $w_{0}>0$, but this is not the case in three or higher dimensions.

4 Scattering states, zero-modes, and some numerical reusits

1. Scattering States

To complete the general spectral study of the potential (11) it is necessary to characterise its positive energy states, i.e., the scattering states. These states are always
present in the system weather there exist negative energy states or $\llcorner+$ In . ddition, when the parameters w_{0} and w_{1} are such that the potential $V_{\delta-\delta^{\prime}} \mathrm{d}_{\text {, }}$ not ai nit bound states, the Schrödinger Hamiltonian (5) can be re-interpreted as ne c af ticle states operator of an effective quantum field theory (see e.g. [10, 12] aı» " ferences therein), where the scattering states are the one particle states of the ovalar quintum vacuum fluctuations produced by the field. With this interpretation the exp cit knowledge of the scattering states, specially the phase shifts, enables to ot in on loop calculations of the quantum vacuum energy acting on the internal at external wall of the singularity at $x=x_{0}$ [43]. In this case, defining ${ }^{1} k=\sqrt{\lambda}=0$. .ee g neral solution of (10) is

$$
R_{k \ell}(x)=\left\{\begin{array}{lll}
A_{1} \mathcal{J}_{\ell}(k x)+B_{1} \mathcal{Y}_{\ell}(k x) & \text { if } & x \in\left(\begin{array}{l}
\left.x_{0}\right), \\
A_{2} \mathcal{J}_{\ell}(k x)+B_{2} \mathcal{Y}_{\ell}(k x) \\
\text { if } \\
\imath
\end{array} x_{0}, \infty\right), \tag{35}
\end{array}\right.
$$

being $\mathcal{J}_{\ell}(z)$ and $\mathcal{Y}_{\ell}(z)$, up to a constant fac ${ }_{n}$ " - tne nyperspherical Bessel functions of the first and second kind respectively

$$
\mathcal{J}_{\ell}(z) \equiv \frac{1}{z^{v}} J_{\ell+}(z), \quad \nearrow_{\ell}(z) \equiv \frac{1}{z^{v}} Y_{\ell+v}(z) .
$$

Proposition 4. The phase shift $\delta_{0}(k)$ fo. the ℓ-wave in a d-dimensional system described by a central potential with 1 . ite support V is given by

$$
\begin{equation*}
\cdots n \delta_{\ell}(k, V)=-B_{\text {ext }} / A_{\text {ext }}, \tag{36}
\end{equation*}
$$

where $A_{\text {ext }}$ and $B_{\text {ext }}$ are deflı ${ }^{\prime}$ from he asymptotic behaviour of the radial function as

$$
\begin{equation*}
R_{k \ell}(x) \underset{x \rightarrow \infty}{\sim} x^{1} \cdot\left(A_{x t} \operatorname{co} \mu_{\ell}+B_{e x t} \sin \mu_{\ell}\right), \quad \mu_{\ell} \equiv k x-\frac{\pi}{2}\left(\ell+v+\frac{1}{2}\right) . \tag{37}
\end{equation*}
$$

Proof. Far away $\quad \mathrm{m}$ the orıgin the central potential is identically zero, consequently the scattering solution $w .1$ be a linear combination of $\mathcal{J}_{\ell}(k x)$ and $\boldsymbol{Y}_{\ell}(k x)$ which satisfy

$$
\mathcal{J}_{\ell}\left(k x, \underset{x-}{\sim} \sqrt{\frac{2}{\pi}}(k x)^{\frac{1}{2}-\frac{d}{2}} \cos \mu_{\ell}, \quad y_{\ell}(k x) \underset{x \rightarrow \infty}{\sim} \sqrt{\frac{2}{\pi}}(k x)^{\frac{1}{2}-\frac{d}{2}} \sin \mu_{\ell}\right.
$$

On the c aer ' and from partial wave analysis, the asymptotic behaviour of $R_{k t}(x)$ is proportiona. $\mathrm{ccr}^{\prime},\left(\mu_{\ell}+\delta_{\ell}\right)$ [44], where δ_{ℓ} is the phase shift for the ℓ-wave. Gathering both quations,

$$
A_{e x t} \cos \mu_{\ell}+B_{e x t} \sin \mu_{\ell}=C_{e x t} \cos \left(\mu_{\ell}+\delta_{\ell}\right)
$$

rom wh sh the result (36) is obtained.
$\because `$ pre sous result can be easily generalised to central potentials satisfying $x^{2} V(x) \rightarrow$ n as $x \rightarrow \infty$ (see [44]). For the potential $V_{\delta-\delta^{\prime}}$, the square integrability condition on the

[^0]radial wave function in any finite region sets $B_{1}=0$, except for $d=\angle, ~ \neg d \ell=9$ where the argument developed in Section 3, imposes $B_{1}=0$ [39]. In this .. v, usı. (18) and (35) the exterior coefficients $\left\{A_{2}, B_{2}\right\}$ can be expressed as
\[

$$
\begin{aligned}
& \binom{A_{2}}{B_{2}}=A_{1}\left(\begin{array}{cc}
\mathcal{J}_{\ell}\left(k x_{0}\right) & \mathcal{Y}_{\ell}\left(k x_{0}\right) \\
k \mathcal{J}_{\ell}^{\prime}\left(k x_{0}\right) & k \mathcal{Y}_{\ell}^{\prime}\left(k x_{0}\right)
\end{array}\right)^{-1}\left(\begin{array}{cc:|c}
\alpha & 0 \\
\tilde{\beta} & \alpha
\end{array}\right)\binom{\mathcal{J}_{\ell}(k \sim 0)}{k \mathcal{J}\left(k x_{0}\right)} \\
& =\frac{1}{2 k} \pi\left(k x_{0}\right)^{d-1} A_{1}\left(\begin{array}{cccc}
k \mathcal{Y}_{\ell}^{\prime}\left(k x_{0}\right) & -\mathcal{Y}_{\ell}\left(k x_{0}\right) & & \cup \\
-k \mathcal{J}_{\ell}^{\prime}\left(k x_{0}\right) & \mathcal{J}_{\ell}\left(k x_{0}\right) & \tilde{\rho} & \alpha^{1}
\end{array}\right)\binom{\mathcal{J}_{\ell}\left(k x_{0}\right)}{k \mathcal{J}_{\ell}^{\prime}\left(k x_{0}\right)} .
\end{aligned}
$$
\]

From this result and (36) we get

$$
\begin{equation*}
\tan \delta_{\ell}\left(k, V_{\delta-\delta^{\prime}}\right)=-\frac{\mathcal{J}_{\ell}\left(k x_{0}\right)\left(\left(1-\alpha^{2}\right){ }^{k} \mathcal{T}_{\ell}^{\prime}(\cdots \cdots): \alpha \tilde{\beta} \mathcal{J}_{\ell}\left(k x_{0}\right)\right)}{\left.-k \mathcal{T}_{\ell}^{\prime}\left(k x_{0}\right) \mathcal{Y}_{\ell}\left(k x_{0}\right)+\mathcal{T}_{\ell}\left(k x_{n}\right) \ldots,{ }^{\prime}, \mathcal{Y}_{\ell}^{\prime}\left(k x_{0}\right)-\alpha \tilde{\beta} \mathcal{Y}_{\ell}\left(k x_{0}\right)\right)} \tag{38}
\end{equation*}
$$

In the spherical wave basis, the scattering matrix it diagonal and its eigenvalues can be written as

$$
\begin{equation*}
\exp \left(2 i \delta_{\ell}\left(k, V_{\delta-\delta^{\prime}}\right)\right)=\left(1 \quad \because \tan { }_{\ell}-\tan ^{2} \delta_{\ell}\right) /\left(1+\tan ^{2} \delta_{\ell}\right) \tag{39}
\end{equation*}
$$

Note that for the potential $V_{\delta-\delta^{\prime}}$, $\sim \cdot r$ equation (28) can be re-obtained as the positive imaginary poles of (39) using '28) (for details see [44]).

To complete this section, let us show explicit formulas of the phase shift for some particular cases of the poter al $V_{\delta-\iota}$ previously studied in the literature:

- The δ-potential ($\left.w_{1}=\cap, \beta-\prime_{n}\right)$, hase shift is

$$
\tan \therefore \quad \varepsilon, V_{i}=\frac{\pi w_{0} x_{0} J_{\ell+v}\left(k x_{0}\right)^{2}}{\pi w_{0} x_{0} J_{\ell+v}\left(k x_{0}\right) Y_{\ell+v}\left(k x_{0}\right)-2}
$$

which matches ior a 2,3 with the results obtained in [45] and [43] respectively.

- The hard hy eers e ere defined as

$$
V_{h h}(x)= \begin{cases}\infty, & x \leq x_{0} \\ 0, & x>x_{0}\end{cases}
$$

im uses Diric.alet boundary conditions for the wave function on the exterior region, $R\left(\stackrel{c}{+}_{0}^{+}\right)=0$. The same result can be obtained from the $\delta-\delta^{\prime}$ potential setting $w_{1} \rightarrow-1$ (20) Thur, the phase shift is

$$
\tan \delta_{\ell}\left(k, V_{h h}\right)=\lim _{w_{1} \rightarrow-1} \tan \delta_{\ell}\left(k, V_{\delta-\delta^{\prime}}\right)=\frac{J_{\ell+v}\left(k x_{0}\right)}{Y_{\ell+v}\left(k x_{0}\right)}
$$

rus two and three dimensional systems it coincides with [45] (hard circle) and [46] (hard sphere) respectively.

- When we turn off the Dirac- δ term $\left(w_{0}=0 \Rightarrow \beta=0\right)$ we have hat thice is an effective δ potential coupling characterised by

$$
\tilde{\beta}=-\frac{\left(\alpha-\alpha^{-1}\right)(d-1)}{2 x_{0}}
$$

therefore from (38) we obtain that the phase shift for the , ure δ^{\prime} is
$\tan \delta_{\ell}\left(k, V_{\delta^{\prime}}\right)=-\frac{\left(1-\alpha^{2}\right) \mathcal{J}_{\ell}\left(z_{0}\right)((d-1}{\left(\alpha^{2}-1\right)(d-1) \mathcal{J}_{\ell}\left(z_{0}\right) \mathcal{Y}_{\ell}\left(z_{0}\right)+2 \sim\left(\mathcal{J}_{\ell}\left(z^{2},\right.\right.}, \frac{\left.2 z_{0} \mathcal{J}_{\ell}^{\prime}\left(-, z_{0}\right)\right)}{\left.\mathcal{J}_{\ell}\left(z_{0}\right)-\mathcal{J}_{\ell}^{\prime}\left(z_{0}\right) \boldsymbol{y}_{\ell}\left(z_{0}\right)\right)}$,
where $z_{0} \equiv k x_{0}$. As can be seen, $\delta_{\ell}\left(k, V_{\delta^{\prime}}\right)$ def $\vee n d s$ on ti e energy through z_{0} unlike it happens with the scattering amplitudes for the pu $\sim s$ potential in one dimension, where there is no dependence on the energy [\therefore \ 32, 33]. Nevertheless, what is maintained is the conformal invariance of cosysem, i.e., the phase shift is invariant under

$$
\begin{equation*}
x_{0} \rightarrow \Lambda x_{0}, \quad, \quad \underbrace{k}_{\Lambda}, \quad w_{1} \rightarrow w_{1} . \tag{40}
\end{equation*}
$$

4.2. On the existence of zero-modes

In this section we will deduc tha con titions which ensure the existence of states with zero energy for the $\delta-\delta^{\prime}$ potenı. ${ }^{1}$ The presence of an energy gap between the discrete spectrum of negative energy levels and the continuum spectrum of positive energy levels is of great im' orta. 'e in some areas of fundamental physics (see, e.g. [47]), specially when we $:$ omote r n-relativistic quantum Hamiltonians to effective quantum field theories v 2der $\mathrm{n} \sim \mathrm{i}$ duence of a given classical background. To start with, we solve (13) for $c=r$

$$
\begin{equation*}
\left[\frac{d^{2}}{d x^{2}} \cdot \frac{(2-\not, \prime, 4-\eta)}{4 x^{2}}\right] u_{0 \ell}(x)=0 \quad \text { with } \quad \eta \equiv 5-(d+2 \ell) . \tag{41}
\end{equation*}
$$

The general so ${ }^{1}$. .t. 7 of the zero-mode differential equation is given by

$$
\left.v_{\eta \backslash}\right) \equiv u_{0 \ell}(x)=\left\{\begin{array}{lll}
c_{1} x^{\frac{\eta-2}{2}}+c_{2} x^{\frac{4-\eta}{2}} & \text { if } & \eta \neq 3, \tag{42}\\
c_{1} \sqrt{x}+c_{2} \sqrt{x} \log x & \text { if } & \eta=3
\end{array}\right.
$$

It mus+ emp. sized that $\eta=3$ corresponds to $d=2$ and $\ell=0$. In order to determine the i tegratio constants of the general solution (42) we must impose two requirements. The 1. st conr tion is square integrability

$$
\begin{equation*}
\int_{0}^{\infty}\left|v_{\eta}(x)\right|^{2} d x=\int_{0}^{x_{0}}\left|v_{\eta}(x)\right|^{2} d x+\int_{x_{0}}^{\infty}\left|v_{\eta}(x)\right|^{2} d x<\infty \tag{43}
\end{equation*}
$$

w .. both integrals should be finite. The second one is the matching condition that .efines the δ - δ^{\prime} singular potential (16). Depending on η, i.e., the angular momentum ℓ a. d the dimension of the physical space d, we can distinguish two cases.

Case 1: $\boldsymbol{\eta} \in\{\mathbf{1 , 2 , 3}\}$. After imposing (43) we end up with the reau ${ }^{\circ} d \mathrm{rac} \cdot \mathrm{al}$ wave functions
$v_{\eta}(x)=\left\{\begin{array}{cl}\sqrt{x}\left(c_{1}+c_{2} \log x\right) & \text { if } \eta=3, \\ c_{1}+c_{2} x & \text { if } \eta=2, \\ c_{1} x^{3 / 2} & \text { if } \eta=1,\end{array} \quad\right.$ for $x<x_{0} \quad$ ar $v_{\eta}(x)=0$ for $x>x_{0}$.
In this case the matching conditions of (16) are satisfi dif. \quad only if, $c_{1}=c_{2}=0$. Therefore there are no zero energy states.
Case 2: $\boldsymbol{\eta} \leq \mathbf{0}$. In this situation, the square integrable. lutic and matching conditions result in

$$
v_{\eta}(x)=\left\{\begin{array}{ll}
c_{2} x^{\frac{4-\eta}{2}} & x<x_{0}, \tag{44}\\
c_{1} x^{\frac{\eta-2}{2}} & x>x_{0},
\end{array} ; c_{1}\left(\left.\begin{array}{c}
x_{0}^{\frac{\eta-2}{2}} \\
\frac{\eta-2}{2} x_{0}^{\frac{\eta-2}{2}-1}
\end{array} \right\rvert\,=\iota_{-}, \begin{array}{cc}
\alpha & 0 \\
\beta & \alpha^{-1}
\end{array}\right)\binom{x_{0}^{\frac{4-\eta}{2}}}{\frac{4-\eta}{2} x_{0}^{-\frac{\eta-2}{2}}} .\right.
$$

A non trivial solution exists if, and only ${ }^{\circ} \cdot$ the svstem satisfies

$$
\begin{equation*}
\beta=\frac{-2 \alpha^{2}+\alpha^{2} \eta+\cdots-4}{2 \alpha x_{0}}-\quad \Rightarrow \quad c_{2}=x_{0}^{\eta-3} \alpha^{-1} c_{1} \tag{45}
\end{equation*}
$$

In addition, the regularity conditic. ${ }^{7} \sim$ is also satisfied: $v_{\eta}(x=0)=0$. Hence, for a given dimension d and an angular mu. entum ℓ such that $5 \leq d+2 \ell$, there is a zero mode given by (44) with $c_{2}=v^{\eta-3} \alpha^{-1} c_{1}$ if and only if the couplings α and β satisfy the relation (45). Indeed, if the reviou. equation is inserted in (32) we obtain

$$
-_{\max }=\ell_{\max }=\ell
$$

which is in agreement , it our previous analysis of the energy levels, i.e., if $L_{\max }=$ $\ell_{\text {max }}$ the left hand si e of the cular equation (28), $F\left(\kappa_{\ell} x_{0}\right)$, reaches the right hand side at $\kappa_{\ell}=0$. The rev rst \quad also true.

4.3. The mear valu : of the position operator

In this secu we will show some numerical results concerning the expectation value of x or the buand states that satisfy $\eta<0$ (as a function of the parameters w_{0} and w_{1}). Incf the r^{\prime} mension d, the radius x_{0} and the angular momentum ℓ are fixed, the plane $w_{n}-w_{1}, ~ d j$ rded into two zones: one in which the bounds states do not exist and anotl ir one η which they do. The limit between these two zones corresponds to the zero node st: es ${ }^{2}$. The existence of zero-modes is of critical importance to compute numerı ${ }^{11}$, ne expectation value of the dimensionless radius x when the parameters ν_{0} and ' 1 are close to the common boundary of the regions mentioned.

For a given bound state of energy $\lambda_{\ell}=-\kappa_{\ell}^{2}$, the general expression for the expectatı_. . due $\langle x\rangle_{\kappa \ell} \equiv\left\langle\Psi_{\kappa \ell}\right| x\left|\Psi_{\kappa \ell}\right\rangle$ is given in terms of the reduced radial wave function

[^1]as
\[

$$
\begin{equation*}
\langle x\rangle_{\kappa \ell}=\frac{1}{\kappa_{\ell}} \frac{\left.\int_{0}^{\kappa_{\ell} x_{0}} z^{2} I_{\ell+v}^{2}(z) d z+\left(\frac{\alpha I_{\ell+v}\left(\kappa_{\ell} x_{0}\right)}{K_{\ell+v}\left(\kappa_{\ell} x_{0}\right)}\right)^{2} \int_{\kappa_{\ell} x_{0}}^{\infty} z^{2} \cdot \cdot_{\ell+v}\right) \backslash d z}{\int_{0}^{\kappa_{\ell} x_{0}} z I_{\ell+v}^{2}(z) d z+\left(\frac{\alpha I_{\ell+v}\left(\kappa_{\ell} x_{0}\right)}{K_{\ell+v}\left(\kappa_{\ell} x_{0}\right)}\right)^{2} \int_{\kappa}^{\infty} x_{0}} . \tag{46}
\end{equation*}
$$

\]

The last expression does not depend explicitly on β (17), bu. it doer through κ_{ℓ}. If we take the limit $\kappa_{\ell} \rightarrow 0^{+}$we obtain

$$
\frac{\langle x\rangle_{0 \ell}}{x_{0}} \equiv \lim _{\kappa_{\ell} \rightarrow 0^{+}} \frac{\langle x\rangle_{\kappa \ell}}{x_{0}}=\left\{\begin{array}{cl}
\frac{\eta-1}{\eta}\left(1-\left|\frac{2(\eta-3)}{(\eta-6)\left(\alpha^{2}(\eta-5) \cdot n-1\right)}\right|\right) & \eta \leq-1 \\
\infty & \eta \in\{0,1,2,3\}
\end{array}\right.
$$

As expected, this result coincides with the calculatio. of the mean value for the zeromodes, carried out with the wave functions in. '44). As can be seen, when there exist zero-modes with $\eta<0$, the expectation value $\langle x\rangle_{0 t}$ s finite, but when the system does not admit them, or $\eta=0$ the limit $\langle x\rangle_{0 \ell}$, div izunt. Somehow, the zero-modes with $\eta=0$ are semi-bound states in the sense th. the expectation value is divergent. This behaviour gives rise to three different s ${ }^{\circ}$. . ' $^{\text {ion }}$:

- When there are zero-modes wit. , n, e mean value $\langle x\rangle_{\kappa \ell}$ for the bound states has a finite upper bound

$$
\begin{equation*}
\operatorname{imm}_{w_{1}} \frac{\langle x\rangle_{0 \ell}}{x_{0}}=(\eta-1) / \eta . \tag{47}
\end{equation*}
$$

- If there is a semi-bound zeıc mo e, i.e., $\eta=0$, the upper bound imposed by $\langle x\rangle_{0 \ell}$ is infinite: $\langle x\rangle_{\kappa \ell}$ diverg f, as $\ell \rightarrow \mathrm{U}^{-}$in the $w_{0}-w_{1}$ plane.
- When there are n zeI mo es, $\langle x\rangle_{\kappa \ell}$ does not have an upper bound and therefore, as λ_{ℓ} goes to zer the expectation value goes to infinity. This fact can be interpreted as the state disuppea. σ from the system: when $\lambda_{\ell} \rightarrow 0^{-}$the corresponding wave function bec identically zero.

In Fig. 3 we $h_{a} \cdot \rho$ plotted the mean value of two configurations as a function of the couplings $/ 0$ and w_{1} for values of d and ℓ such that $\eta<0$ (there is a zero-mode). We have dist agu' ned he region in which the expectation value of x lies outside the $\delta-\delta^{\prime}$ horizon anu ve c te with $\langle x\rangle<x_{0}$. The former, bearing in mind the original ideas by G. 't 1ooft [3, 4], would correspond to the states of quantum particles falling into a blacl hole the would be observed by a distant observer. Indeed, the amount of bound states . -+w and three dimensions is proportional to x_{0} and x_{0}^{2} respectively and as it ,s ment ${ }^{\circ}$ ned 3 in [37] these bound states would give an area law for the corresponding ntropy 1 i quantum field theory when they are interpreted as micro-states of the black hu. h.izon.

[^2]

Figure 3: Mean value of the dimensionless radius operator $\langle x\rangle / x_{0}$ even in (46). LEFT: $x_{0}=1, \ell=2$ and $d=$ 2 being $\eta=-1$. RIGHT: $x_{0}=1, \ell=2$ and $d=3$ be .., \quad.. ıne limit $\kappa \rightarrow 0^{+}$in (46) fits with (4.3). The black curve satisfies $L_{\max }=\ell$ in each case.

On the energy shifts produced by the , \boldsymbol{r}^{\prime}

It is worth mentioning two central 'un ances between the present analysis in arbitrary dimension with the hyperspherical o f^{\prime} potential $(d \geq 2)$ and the one dimensional point analog [32]. In the latter, tur f' oy itself ($w_{0}=0$) only gives rise to a pure continuum spectrum of positive energy . .vels (scattering states). In addition, for the one dimensional case when , 0 the appearance of the δ^{\prime}-term in the potential increases the energies of the ${ }^{1}$ ound st. es because it breaks parity symmetry, which does not happen for $d \geq 2$. These vo r operties are not maintained in general for $d \geq 2$. For example, in two di sens'ons were is a bound state with energy $\lambda_{\ell=0}=-1.205$ if $w_{1}=0.9\left(x_{0}=0.15: \cdot d, r\right.$ co ise, $\left.w_{0}=0\right)$. Secondly, the previous case and all the study of Section 3.2 prove the the are bound states with lower energy when the δ^{\prime} is added to the $\delta \mathrm{r}$, ntial. In view of the above, it could be thought that it only takes place when $w_{0} \geq 0$ (sin the δ potential presents no bound states). However, if we consider a thre at ensional system with $x_{0}=1$ and $w_{0}=-1.85$, a single bound state with energy $\overbrace{0}=-0.514$ appears when $w_{1}=0.437$ and with $\lambda_{\ell=0}=-0.482$ if we turn off the δ^{\prime}. W. . + we can conclude from the numerical results is that the $\delta-\delta^{\prime}$ poten-
 for $d \geq 2$.

5. C includiı ; remarks

Uur study provides novel results with $\delta-\delta^{\prime}$ hyperspherical potentials. Firstly, on he basis of this paper in arbitrary dimension, a careful study of the applications that h hav already reported (and others) can be performed. The special attention paid - n hound states is justified: as was shown in [37] the bound states can be thought of, i , a quantum field theoretical view, as photon states falling into a black hole for an - 'sserver far away from the event horizon. In this sense, the δ - δ^{\prime} potential generalises the brick wall model by G. 't Hooft [3, 4]. In addition, the knowledge of the bound
state spectrum of the system plays an essential role in the study of flu ation around classical solutions and in the Casimir effect when the Schödinger ${ }_{\mathrm{r}}$ rator $\Delta_{d}+V_{\delta-\delta^{\prime}}$ is reinterpreted as the one particle Hamiltonian of an effective g^{\prime} antu $\ldots \mathrm{I}^{\prime} \mathrm{d}$ theory.

Our first achievement is the generalisation of the results give. a [19] for the one dimensional δ^{\prime}-potential. We have introduced a rigorous ar . consisu .t definition of the potential $V_{\delta-\delta^{\prime}}=w_{0} \delta\left(x-x_{0}\right)+2 w_{1} \delta^{\prime}\left(x-x_{0}\right)$ in arbitrary dimensı n , characterizing a selfadjoint extension of the Hamiltonian \mathcal{H}_{0} (14) definea $\neg \mathfrak{R}$. In doing so, we have corrected the matching conditons in [37] for the $t, 0$ and three dimensional $V_{\delta-\delta^{\prime}}$ potential. We have shown that the Dirac- δ coupling re uir , ar r -definition which also depends on the radius x_{0} and the δ^{\prime} coupling w_{1}.

We have also characterised the spectrum of bouna ' 'tes in arbitrary dimension, computing analytically the amount of bound sta . c for an values of the free parameters w_{0}, w_{1} and x_{0} that appear in the Hamiltc ian. ? of the most interesting and counterintuitive results we have found is the existe. 'e of a negative energy level for $d=2$ and $\ell=0$ when the Dirac $-\delta$ coupliı, w_{0} is positive. In such a situation, the Dirac- δ potential $w_{0} \delta\left(x-x_{0}\right)$, with $w_{0}>0$, is an . finitely thin potential barrier, therefore bound states in the regime $w_{0}>6$ ve ... xpected (as it happens for the one dimensional analog [10]).

As a limiting case of the spectru. . f bc nd states for the Hamiltonian (5), we have obtained the spectrum of zero-mu 'es of the system in terms of the parameter $\eta=5-(d+2 \ell)$. We have shown thlu' 'uc litions on w_{0}, w_{1} and x_{0} for the existence of zero-modes are $\ell_{\max }=L_{\max }$ and $\eta=\cap$ In addition, we have computed numerically the expectation value $\langle x\rangle_{\kappa \ell} / x_{\mathrm{n}}$ frr the bound states with energy $\lambda=-\kappa^{2}$ and angular momentum ℓ as a function r, w_{0} an ' w_{1}. This calculation has enabled us to realise that the zero-modes with $\eta<u$ 'vehave is bound states in the sense that $\langle x\rangle_{0 \ell}<\infty$, and the zero-modes correspr iding tu $=0$ behave as semi-bound states due to $\langle x\rangle_{0 \ell}=\infty$. These results determir ; the oopc'ogical properties of the space of states of the system since the existence $o^{c} z_{1}$, mor ${ }^{\prime}$ s characterises the space of couplings.

To complete or study or the Hamiltonian (5) we have obtained an analytical expression for all tl \sum pha. - shifts which describe all the scattering states of the system. This calculatior - of central importance when we promote (5) to an effective quantum field theory (s e $[1]$) under the influence of a classical background. In this scenario, the knowledge , " he phase shifts allows us to compute the zero point energy [43]. In addition, f, it is shown in [43] the phase shifts contain in their asymptotic behaviour all the he $\cdot \mathrm{kf}$ nel \cdot sefficients of the asymptotic expansion of the heat trace.

Further $w \cdot{ }^{\mathrm{k}}$.or the future could usefully be to add a non-singular hyperspherical b .ckgrou ${ }^{\text {nd }}$ potential $V_{0}(x)$ to the $V_{\delta-\delta^{\prime}}(x)$. For example, the spectrum of $|x|$ plus the δf^{\prime} poten al at the origin is studied for one dimensional systems in [30]. For these caces, h. .- all, we would have to define the selfadjoint extension which characterizes $/ \delta-\delta^{\prime}$ cc. sidering $\boldsymbol{H}_{V_{0}} \equiv \boldsymbol{\mathcal { H }}_{0}+V_{0}(x)$ instead of $\boldsymbol{\mathcal { H }}_{0}$. If $V_{0}(x)$ satisfies the hypothesis f the K : o-Rellich theorem, the selfdadjointness of $\boldsymbol{\mathcal { H }}_{V_{0}}$ is guaranteed by the selfdadjolu.....ss of \boldsymbol{H}_{0} [48]. In this way, for this kind of potentials it seems reasonable that u alysis carried out in Section 3 can be generalised by just exchanging the modified yperspherical Bessel functions $\left(V_{0}=0\right)$ by the corresponding general solutions of the b. ckground potential $V_{0}(x)$. Of course, most potentials can not be solved analytically [49], but it is worth exploring the (solvable) Coulomb potential $V_{0}(x)=-\gamma / x$ with
$\gamma \in \mathbb{R}_{>0}$ in arbitrary dimension. In addition to its known applications . a mu. itude of disciplines, this potential has recently been shown to play a centr . ole 11ı ondensed matter physics to mimic impurities in real graphene sheets and her we dimensional systems [50-52]. For the Coulomb potential, the general solut - " can be written in terms of Whittaker functions which are closely related to \dagger^{\prime}. \sim modim d Bessel functions studied in the free case $[38,53]$. Some important diff rences ith respect to the latter are expected, e.g., an infinite number of negative energ. level $\left(\ell_{\max } \rightarrow \infty\right)$ with, possibly, an accumulation point not necessarily at zero nergv

Acknowledgements

Partial financial support is acknowledged to L . Spanj h Junta de Castilla y Leon and FEDER (Projects VA057U16 and VA137G \wedge^{\wedge} ana ...INECO (Project MTM2014-57129-C2-1-P). We are very grateful to K. Kirsten . Santamaría-Sanz, M. Gadella, and J. Mateos Guilarte for fruitful discussio.. JMMC acknowledges the hospitality and support received from the ETSIAE-ITPM at N_{ι}. drid.

References

References

[1] H. B. G. Casimir, Proc. K. Ned. An d. Wet. 51 (1948) 793.
[2] M. Sparnaay, Physica 4 (6) (958) 751-764. doi:10.1016/S0031-8914(58) 80090-7.
[3] G. 't Hooft, Nucl. ‘hys B 250 (1985) 727-745. doi:10.1016/0550-3213(85) 90418-3.
[4] G. ’t Hooft, • J. Mod. Phys. A 11 (26) (1996) 4623-4688. doi:10.1142/ S0217751X」600 土 $^{\wedge}$ 5.
[5] J. L. Ga sia-J ımar, A. Y. Nikitin, L. Martin-Moreno, ACS Nano 7 (6) (2013) 4988-49\% 1oi:10.1021/nn400342v.
[6] M. ${ }^{\top}$, ellc .i, R Robinett, Phys. Rept. 540 (2) (2014) 25-122. doi:10.1016/j. phys-0.2r 14.02 .005
[7] R. de L Kronig, W. G. Penney, Proc. R. Soc. London, Ser. A 130 (814) (1931) ${ }^{1} 99-51$. doi:10.1098/rspa.1931.0019.
[8] A. Falindo, P. Pascual, Quantum Mechanics I, Texts and Monographs in Physics, Spr nger-Verlag, 1990. doi:10.1007/978-3-642-83854-5.
ro1 R. Jackiw, Delta-function potentials in two-and three-dimensional quantum mechanics, Diverse Topics in Theoretical and Mathematical Physics I. 3 (1995) 3554. doi:10.1142/9789814261494_0001.
［10］J．M．Muñoz－Castañeda，J．M．Guilarte，Phys．Rev．D 91 （2）（20ı＿，025u＿3．doi： 10．1103／PhysRevD．91．025028．
［11］J．M．Guilarte，J．M．Munoz－Castaneda，Int．J．Theor．Phys．～${ }^{\text {（ }}$（ 011 ）2227－2241． doi：10．1007／s10773－011－0723－0．
［12］J．M．Munoz－Castaneda，J．M．Guilarte，A．M．Mosque a，Phys．Rev．D 87 （2013） 105020．doi：10．1103／PhysRevD．87． 105020.
［13］M．Bordag，D．Hennig，D．Robaschik，J．Phys．A：ıath Gen． 25 （16）（1992） 4483.
［14］M．Asorey，A．Ibort，G．Marmo，Int．J．Genm．Meth Mod．Phys． 12 （6）（2015） 1561007．doi：10．1142／S02198878156100，
［15］M．Asorey，A．Ibort，G．Marmo，Int．J．Mod Ph．A20（2005）1001－1026．doi： 10．1142／S0217751X05019798．
［16］J．Alvarez，M．Gadella，L．Lara，F．1．arue ．＇${ }^{\text {－Villamizar，Phys．Lett．A } 377 \text {（38）}}$ （2013）2510－2519．doi：10．1016／j．．sysleta．2013．07．045．
［17］M．Asorey，D．Garcia－Alvarez，J．Yu．z－Castaneda，J．Phys．A：Math．Gen． 39 （2006）6127－6136．doi：10：へея／し $205-4470 / 39 / 21 /$ S03．
［18］M．Asorey，J．Munoz－Castaneda，ııcl．Phys．B 874 （2013）852－876．doi：10． 1016／j．nuclphysb． 2 ＿ － 26.014.
［19］P．Kurasov，J．Math．A．ㄱ．Apr ． 201 （1）（1996）297－323．doi：10．1006／jmaa． 1996.0256.
［20］J．Dittrich，P．Exı．r P．S oa，J．Math．Phys． 33 （6）（1992）2207－2214．doi： 10．1063／1．5 9641.
［21］D．Gitman，1．Tyuı．B．Voronov，Self－adjoint Extensions in Quantum Mechan－ ics：Gene al heory and Applications to Schrödinger and Dirac Equations with Singula Pote itials，Progress in Mathematical Physics，Birkhäuser Boston， 2012. doi：${ }^{1}$ ク．1し， $7 / 978-0-8176-4662-2$ ．
［22］S．Ibe erio．P．Kurasov，Singular Perturbations of Differential Operators，Vol． 271 ot $_$n r on Mathematical Society：Lecture Notes Series，Cambridge Univer－ ，sty Pr＇s，2000．doi：10．1017／CB09780511758904．
［23］Ibor＇，F．Lledó，J．M．Pérez－Pardo，Ann．Henri Poincaré 16 （10）（2015）2367－ 2397．doi：10．1007／s00023－014－0379－4．
＇${ }^{\prime} 4$ G．ucci，K．Kirsten，P．Morales，Springer Proc．Phys． 137 （2011）313－322．doi： 10．1007／978－3－642－19760－4＿29．

25］G．Fucci，K．Kirsten，J．Phys．A：Math．Theor 44 （2011）295403．doi：10．1088／ 1751－8113／44／29／295403．
[26] T. R. Govindarajan, R. Tibrewala, Phys. Rev. D 92 (2015) 04_? 40 . - oi: 10 . 1103/PhysRevD. 92.045040.
[27] T. R. Govindarajan, V. P. Nair, Phys. Rev. D 89 (2014) 0~' 2 2r . doi:10.1103/ PhysRevD. 89. 025020.
[28] G. Fucci, Int. J. Mod. Phys. A 32 (31) (2017) 1'50182. doi:10.1142/ S0217751X17501822.
[29] G. Fucci, Nucl. Phys. B 891 (2015) 676-699. loi 10. L016/j.nuclphysb. 2014.12.023.
[30] S. Fassari, M. Gadella, L. Glasser, L. Nieto Ann. Ph. 3. 389 (2018) 48-62. doi: 10.1016/j.aop. 2017.12.006.
[31] P. Facchi, G. Garnero, G. Marmo, J. Samıel Sinha, Ann. Phys. 394 (2018) 139-154. doi:10.1016/j.aop.2018.:1.030.
[32] M. Gadella, J. Negro, L. Nieto, Phy lu.. 373 (15) (2009) 1310-1313. doi: 10.1016/j.physleta. 2009.02.0̊̌
[33] M. Gadella, J. Mateos-Guilarte, J. '1. ^יnñoz-Castañeda, L. M. Nieto, J. Phys. A: Math. Theor. 49 (1) (2016)r snn4 iっi: 10. 1088/1751-8113/49/1/015204.
[34] J. S. Avery, J. Comput. Appl. Matı. 233 (6) (2010) 1366-1379. doi:10.1016/ j.cam. 2009.02.057.
[35] K. Kirsten, Spectraı finctic is in mathematics and physics, Chapman \& Hall/CRC, Boca R con. FL, ${ }^{\wedge} 01$.
[36] N. Setô, Publ. Rıı ‘S Kyoł, Univ. 9 (2) (1974) 429-461. doi: 10. 2977/prims/ 1195192566.
[37] T. Govindaıajan, • Munõz-Castañeda, Mod. Phys. Lett. A 31 (39) (2016) 1650210. ло_ : 10.1142/S0217732316502102.
[38] F. W. Olvc.). W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematir al Frnctioıs, 1st Edition, Cambridge University Press, New York, NY, USA, 201 ,
[39] 1. Berry, ... O. de Almeida, J. Phys. A: Math. Nuc. Gen. 6 (10) (1973) 1451.
[40] 1. Lafo gia, P. Natalini, J. Inequal. Appl. (1) (2010) 253035. doi:10.1155/ 20 เv/ 253035.

71] V. 1 argmann, Proc. Natl. Acad. Sci. U.S.A. 38 (11) (1952) 961-966.
-171 I. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 47 (1) (1961) 122-129.
73] M. Beauregard, M. Bordag, K. Kirsten, J. Phys. A: Math. Theor. 48 (9) (2015) 095401. doi:10.1088/1751-8113/48/9/095401.
[44] J. Taylor, Scattering Theory: The Quantum Theory of Nonrelatı, tic C. Ilisions, Dover Books on Engineering, Dover Publications, 2012.
[45] I. R. Lapidus, Am. J. Phys. 54 (5) (1986) 459-461.
[46] K. Huang, C. N. Yang, Phys. Rev. 105 (3) (1957) 767.
[47] P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kaz. Jan, J W. Morgan, D. R. Morrison, E. Witten (Eds.), Quantum fields and st angs: A course for mathematicians. Vol. 1, 2, 1999.
[48] C. de Oliveira, Intermediate Spectral Thec.: anu Quantum Dynamics, Progress in Mathematical Physics, Birkhäuser Bas 1, 2009. doi:10.1007/ 978-3-7643-8795-2.
[49] S. Albeverio, F. Gesztesy, R. Høegh-Krohn H • Iden, Solvable models in quantum mechanics, 2nd Edition, AMS Che ${ }_{\iota}$ a Publishing, Providence, RI, 2005.
[50] V. M. Pereira, J. Nilsson, A. H. Ca ro ı... Phys. Rev. Lett. 99 (2007) 166802. doi:10.1103/PhysRevLett.99.16 ${ }^{\prime}, 02$.
[51] N. N. Konobeeva, M. B. Beloner.' ${ }^{\prime}$ o, ' Ppt. Spectrosc. 120 (6) (2016) 940-943. doi:10.1134/S0030400X'~nen1く,
[52] J. Wang, H. A. Fertig, G. Murthy, L. Brey, Phys. Rev. B 83 (2011) 035404. doi: 10.1103/PhysRevB.8- .- ${ }^{-} 5404$.
[53] S. Richard, J. Derezitı ${ }^{-i}$ arXi :1712.04068 [math-ph].

[^0]: ${ }^{1}$ By using this definition we recover the usual relation between k (scattering states) and κ (bound sates): $k \rightarrow i \kappa$ as we go from $\lambda>0$ to $\lambda<0$.

[^1]: ${ }^{2}$ This is ensured by the condition $\eta \leq 0$. If $\eta>0$ the limit between the two zones does not correspond to a physically meaningful state as it was previously demonstrated.

[^2]: ${ }^{3}$ Although the formulas for $\ell_{\max }$ presented in [37] are only valid when (21) is satisfied, the behavior ot the total amount of bound states as a function of x_{0} does not change (as long as x_{0} is large enough). Consequently, the argument for the area law remains valid.

