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Abstract

The Variational Auto-Encoder (VAE) is one

of the most used unsupervised machine learn-

ing models. But although the default choice

of a Gaussian distribution for both the prior

and posterior represents a mathematically con-

venient distribution often leading to competi-

tive results, we show that this parameterization

fails to model data with a latent hyperspheri-

cal structure. To address this issue we propose

using a von Mises-Fisher (vMF) distribution in-

stead, leading to a hyperspherical latent space.

Through a series of experiments we show how

such a hyperspherical VAE, or S-VAE, is more

suitable for capturing data with a hyperspheri-

cal latent structure, while outperforming a nor-

mal, N -VAE, in low dimensions on other data

types.

1 INTRODUCTION

First introduced by Kingma and Welling (2013); Rezende

et al. (2014), the Variational Auto-Encoder (VAE) is an

unsupervised generative model that presents a principled

fashion for performing variational inference using an auto-

encoding architecture. Applying the non-centered pa-

rameterization of the variational posterior (Kingma and

Welling, 2014), further simplifies sampling and allows to

reduce bias in calculating gradients for training. Although

the default choice of a Gaussian prior is mathematically

convenient, we can show through a simple example that in

some cases it breaks the assumption of an uninformative

prior leading to unstable results. Imagine a dataset on

the circle Z ⊂ S1, that is subsequently embedded in R
N

using a transformation f to obtain f : Z → X ⊂ R
N .

Given two hidden units, an autoencoder quickly discovers

∗Equal contribution.

the latent circle, while a normal VAE becomes highly

unstable. This is to be expected as a Gaussian prior is con-

centrated around the origin, while the KL-divergence tries

to reconcile the differences between S1 and R
2. A more

detailed discussion of this ‘manifold mismatch’ problem

will follow in subsection 2.3.

The fact that some data types like directional data are

better explained through spherical representations is long

known and well-documented (Mardia, 1975; Fisher et al.,

1987), with examples spanning from protein structure, to

observed wind directions. Moreover, for many modern

problems such as text analysis or image classification,

data is often first normalized in a preprocessing step to

focus on the directional distribution. Yet, few machine

learning methods explicitly account for the intrinsically

spherical nature of some data in the modeling process. In

this paper, we propose to use the von Mises-Fisher (vMF)

distribution as an alternative to the Gaussian distribution.

This replacement leads to a hyperspherical latent space

as opposed to a hyperplanar one, where the Uniform dis-

tribution on the hypersphere is conveniently recovered as

a special case of the vMF. Hence this approach allows

for a truly uninformative prior, and has a clear advantage

in the case of data with a hyperspherical interpretation.

This was previously attempted by Hasnat et al. (2017), but

crucially they do not learn the concentration parameter

around the mean, κ.

In order to enable training of the concentration parame-

ter, we extend the reparameterization trick for rejection

sampling as recently outlined in Naesseth et al. (2017) to

allow for n additional transformations. We then combine

this with the rejection sampling procedure proposed by

Ulrich (1984) to efficiently reparameterize the VAE 1.

We demonstrate the utility of replacing the normal dis-

tribution with the von Mises-Fisher distribution for gen-

erating latent representations by conducting a range of

experiments in three distinct settings. First, we show that

1 https://github.com/nicola-decao/s-vae

https://github.com/nicola-decao/s-vae


our S-VAEs outperform VAEs with the Gaussian varia-

tional posterior (N -VAEs) in recovering a hyperspherical

latent structure. Second, we conduct a thorough com-

parison with N -VAEs on the MNIST dataset through an

unsupervised learning task and a semi-supervised learning

scenario. Finally, we show that S-VAEs can significantly

improve link prediction performance on citation network

datasets in combination with a Variational Graph Auto-

Encoder (VGAE) (Kipf and Welling, 2016).

2 VARIATIONAL AUTO-ENCODERS

2.1 FORMULATION

In the VAE setting, we have a latent variable model for

data, where z ∈ R
M denotes latent variables, x is a vector

of D observed variables, and pφ(x, z) is a parameterized

model of the joint distribution. Our objective is to op-

timize the log-likelihood of the data, log
∫

pφ(x, z)dz.

When pφ(x, z) is parameterized by a neural network,

marginalizing over the latent variables is generally in-

tractable. One way of solving this issue is to maximize

the Evidence Lower Bound (ELBO)

log

∫

pφ(x, z)dz ≥ Eq(z)[log pφ(x|z)]+

−KL(q(z)||p(z)), (1)

where q(z) is the approximate posterior distribution, be-

longing to a family Q. The bound is tight if q(z) =
p(z|x), meaning q(z) is optimized to approximate the

true posterior. While in theory q(z) should be optimized

for every data point x, to make inference more scalable

to larger datasets the VAE setting introduces an inference

network qψ(z|x; θ) parameterized by a neural network

that outputs a probability distribution for each data point

x. The final objective is therefore to maximize

L(φ, ψ) = Eqψ(z|x;θ)[log pφ(x|z)]+
−KL(qψ(z|x; θ)||p(z)), (2)

In the original VAE both the prior and the posterior are

defined as normal distributions. We can further efficiently

approximate the ELBO by Monte Carlo estimates, using

the reparameterization trick (Kingma and Welling, 2013;

Rezende et al., 2014). This is done by expressing a sam-

ple of z ∼ qψ(z|x; θ), as z = h(θ, ε,x), where h is a

reparameterization transformation and ε ∼ s(ε) is some

noise random variable independent from θ.

2.2 THE LIMITATIONS OF A GAUSSIAN

DISTRIBUTION PRIOR

Low dimensions: origin gravity In low dimensions,

the Gaussian density presents a concentrated probability

mass around the origin, encouraging points to cluster in

the center. This is particularly problematic when the data

is divided into multiple clusters. Although an ideal latent

space should separate clusters for each class, the normal

prior will encourage all the cluster centers towards the

origin. An ideal prior would only stimulate the variance

of the posterior without forcing its mean to be close to

the center. A prior satisfying these properties is a uniform

over the entire space. Such a uniform prior, however, is

not well defined on the hyperplane.

High dimensions: soap bubble effect It is a well-

known phenomenon that the standard Gaussian distri-

bution in high dimensions tends to resemble a uniform

distribution on the surface of a hypersphere, with the vast

majority of its mass concentrated on the hyperspherical

shell. Hence it would appear interesting to compare the

behavior of a Gaussian approximate posterior with an

approximate posterior already naturally defined on the

hypersphere. This is also motivated from a theoretical

point of view, since the Gaussian definition is based on

the L2 norm that suffers from the curse of dimensionality.

2.3 BEYOND THE HYPERPLANE

Once we let go of the hyperplanar assumption, the pos-

sibility of a uniform prior on the hypersphere opens up.

Mirroring our discussion in the previous subsection, such

a prior would exhibit no pull towards the origin allowing

clusters of data to evenly spread over the surface with no

directional bias. Additionally, in higher dimensions, the

cosine similarity is a more meaningful distance measure

than the Euclidean norm.

Manifold mapping In general, exploring VAE mod-

els that allow a mapping to distributions in a latent

space not homeomorphic to R
D is of fundamental in-

terest. Consider data lying in a small M -dimensional

manifoldM, embedded in a much higher dimensional

space X = R
N . For most real data, this manifold will

likely not be homeomorphic to R
M . An encoder can

be considered as a smooth map enc : X → Z = R
D

from the original space to Z . The restriction of the en-

coder to M, enc|M : M → Z will also be a smooth

mapping. However sinceM is not homeomorphic to Z
if D ≤ M , then enc|M cannot be a homeomorphism.

That is, there exists no invertible and globally continuous

mapping between the coordinates ofM and the ones of

Z . Conversely if D > M then M can be smoothly

embedded in Z for D sufficiently large 2 , such that

enc|M : M → enc|M(M) =: emb(M) ⊂ Z is a

homeomorphism and emb(M) denotes the embedding of

2By the Whitney embedding theorem any smooth real M -
dimensional manifold can be smoothly embedded in R

2M



(a) Original (b) Autoencoder (c) N -VAE (d) N -VAE, β = 0.1 (e) S-VAE

Figure 1: Plots of the original latent space (a) and learned latent space representations in different settings, where β is a

re-scaling factor for weighting the KL divergence. (Best viewed in color)

M. Yet, since D > M , when taking random points in

the latent space they will most likely not be in emb(M)
resulting in a poorly reconstructed sample.

The VAE tries to solve this problem by forcingM to be

mapped into an approximate posterior distribution that

has support in the entire Z . Clearly, this approach is

bound to fail since the two spaces have a fundamentally

different structure. This can likely produce two behaviors:

first, the VAE could just smooth the original embedding

emb(M) leaving most of the latent space empty, leading

to bad samples. Second, if we increase the KL term the

encoder will be pushed to occupy all the latent space,

but this will create instability and discontinuity, affecting

the convergence of the model. To validate our intuition

we performed a small proof of concept experiment using

M = S1, which is visualized in Figure 1. Note that as

expected the auto-encoder in Figure 1(b) mostly recovers

the original latent space of Figure 1(a) as there are no dis-

tributional restrictions. In Figure 1(c) we clearly observe

for the N -VAE that points collapse around the origin due

to the KL, which is much less pronounced in Figure 1(d)

when its contribution is scaled down. Lastly, the S-VAE

almost perfectly recovers the original circular latent space.

The observed behavior confirms our intuition.

To solve this problem the best option would be to directly

specify a Z homeomorphic toM and distributions onM.

However, for real data discovering the structure of M
will often be a difficult inference task. Nevertheless, we

believe this shows investigating VAE architectures that

map to posterior distributions defined on manifolds differ-

ent than the Euclidean space is a topic worth exploring.

3 REPLACING GAUSSIAN WITH VON

MISES-FISHER

3.1 VON MISES-FISHER DISTRIBUTION

The von Mises-Fisher (vMF) distribution is often seen

as the Normal Gaussian distribution on a hypersphere.

Analogous to a Gaussian, it is parameterized by µ ∈
R
m indicating the mean direction, and κ ∈ R≥0 the

concentration around µ. For the special case of κ = 0, the

vMF represents a Uniform distribution. The probability

density function of the vMF distribution for a random unit

vector z ∈ R
m (or z ∈ Sm−1) is then defined as

q(z|µ, κ) = Cm(κ) exp (κµT z), (3)

Cm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
, (4)

where ||µ||2 = 1, Cm(κ) is the normalizing constant, and

Iv denotes the modified Bessel function of the first kind

at order v.

3.2 KL DIVERGENCE

As previously emphasized, one of the main advan-

tages of using the vMF distribution as an approxi-

mate posterior is that we are able to place a uniform

prior on the latent space. The KL divergence term

KL(vMF(µ, κ)||U(Sm−1)) to be optimized is:

κ
Im/2(k)
Im/2−1(k)

+ log Cm(κ)− log

(

2(πm/2)

Γ(m/2)

)−1

, (5)

see Appendix B for complete derivation. Notice that

since the KL term does not depend on µ, this parameter

is only optimized in the reconstruction term. The above

expression cannot be handled by automatic differentia-

tion packages because of the modified Bessel function in

Cm(κ). Thus, to optimize this term we derive the gradient

with respect to the concentration parameter:

∇κKL(vMF(µ, κ)||U(Sm−1)) =
1

2
k

(Im/2+1(k)

Im/2−1(k)
+

−Im/2(k)
(

Im/2−2(k) + Im/2(k)
)

Im/2−1(k)2
+ 1

)

,

(6)



Algorithm 1 vMF sampling

Input: dimension m, mean µ, concentration κ
sample v ∼ U(Sm−2)

sample ω ∼ g(ω|κ,m) ∝ exp(ωκ)(1 − ω2)
1

2
(m−3)

{acceptance-rejection sampling}
z
′ ← (ω; (

√
1− ω2)v⊤)⊤

U ← Householder(e1, µ) {Householder transform}
Return: Uz

′

where the modified Bessel functions can be computed

without numerical instabilities using the exponentially

scaled modified Bessel function.

3.3 SAMPLING PROCEDURE

To sample from the vMF we follow the procedure of

Ulrich (1984), outlined in Algorithm 1. We first sam-

ple from a vMF q(z|e1, κ) with modal vector e1 =
(1, 0, · · · , 0). Since the vMF density is uniform in

all the m − 2 dimensional sub-hyperspheres {x ∈
Sm−1 | e⊤1 x = ω}, the sampling technique reduces

to sampling the value ω from the univariate density

g(ω|κ,m) ∝ exp(κω)(1 − ω2)(m−3)/2, ω ∈ [−1, 1],
using an acceptance-rejection scheme. After getting a

sample from q(z|e1, κ) an orthogonal transformation

U(µ) is applied such that the transformed sample is dis-

tributed according to q(z|µ, κ). This can be achieved

using a Householder reflection such that U(µ)e1 = µ. A

more in-depth explanation of the sampling technique can

be found in Appendix A.

It is worth noting that the sampling technique does not

suffer from the curse of dimensionality, as the acceptance-

rejection procedure is only applied to a univariate distri-

bution. Moreover in the case of S2, the density g(ω|κ, 3)
reduces to g(ω|κ, 3) ∝ exp(kω)1[−1,+1](ω) which can

be directly sampled without rejection.

3.4 N-TRANSFORMATION

REPARAMETERIZATION TRICK

While the reparameterization trick is easily imple-

mentable in the normal case, unfortunately it can only

be applied to a handful of distributions. However a recent

technique introduced by Naesseth et al. (2017) allows to

extend the reparameterization trick to the wide class of dis-

tributions that can be simulated using rejection sampling.

Dropping the dependence from x for simplicity, assume

the approximate posterior is of the form g(ω|θ) and that

it can be sampled by making proposals from r(ω|θ). If

the proposal distribution can be reparameterized we can

still perform the reparameterization trick. Let ε ∼ s(ε),
and ω = h(ε, θ), a reparameterization of the proposal dis-

tribution, r(ω|θ). Performing the reparameterization trick

for g(ω|θ) is made possible by the fundamental lemma

proven in (Naesseth et al., 2017):

Lemma 1. Let f be any measurable function and ε ∼
π(ε|θ) = s(ε)

g(h(ε, θ)|θ)
r(h(ε, θ)|θ) the distribution of the ac-

cepted sample. Then:

Eπ(ε|θ)[f(h(ε, θ))] =

∫

f(h(ε, θ))π(ε|θ)dε

=

∫

f(ω)g(ω|θ)dω = Eg(ω|θ)[f(ω)], (7)

Then the gradient can be taken using the log derivative

trick:

∇θEg(ω|θ)[f(ω)] = ∇θEπ(ε|θ)[f(h(ε, θ))] =
Eπ(ε|θ)[∇θf(h(ε, θ))]+

+ Eπ(ε|θ)

[

f(h(ε, θ))∇θ log
g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

]

, (8)

However, in the case of the vMF a different procedure

is required. After performing the transformation h(ε, θ)
and accepting/rejecting the sample, we sample another

random variable v ∼ π2(v), and then apply a transfor-

mation z = T (h(ε, θ),v; θ), such that z ∼ qψ(z|θ) is

distributed as the approximate posterior (in our case a

vMF). Effectively this entails applying another reparame-

terization trick after the acceptance/rejection step. To still

be able to perform the reparameterization we show that

Lemma 1 fundamentally still holds in this case as well.

Lemma 2. Let f be any measurable function and ε ∼
π1(ε|θ) = s(ε)

g(h(ε, θ)|θ)
r(h(ε, θ)|θ) the distribution of the ac-

cepted sample. Also let v ∼ π2(v), and T a trans-

formation that depends on the parameters such that if

z = T (ω, v; θ) with ω ∼ g(ω|θ), then ∼ q(z|θ):

E(ε,v)∼π1(ε|θ)π2(v) [f (T (h(ε, θ),v; θ))] =
∫

f(z)q(z|θ)dz = Eq(z|θ)[f(z)], (9)

Proof. See Appendix C.

With this result we are able to derive a gradient expression

similarly as done in equation 8. We refer to Appendix D

for a complete derivation.

3.5 BEHAVIOR IN HIGH DIMENSIONS

The surface area of a hypersphere is defined as

S(m− 1) = rm
2(πm/2)

Γ(m/2)
, (10)



(a) R
2 latent space of the N -VAE. (b) Hammer projection of S2 latent space of the S-VAE.

Figure 2: Latent space visualization of the 10 MNIST digits in 2 dimensions of both N -VAE (left) and S-VAE (right).

(Best viewed in color)

where m is the dimensionality and r the radius. Notice

that S(m − 1) → 0, as m → ∞. However, even for

m > 20 we observe a vanishing surface problem (see

Figure 6 in Appendix E). This could thus lead to unstable

behavior of hyperspherical models in high dimensions.

4 RELATED WORK

Extending the VAE The majority of VAE extensions

focus on increasing the flexibility of the approximate

posterior. This is usually achieved through normalizing

flows (Rezende and Mohamed, 2015), a class of invertible

transformations applied sequentially to an initial repa-

rameterizable density q0(z0), allowing for more complex

posteriors. Normalizing flows can be considered orthogo-

nal to our approach. While allowing for a more flexible

posterior, they do not modify the standard normal prior

assumption. In (Gemici et al., 2016) a first attempt is

made to extend normalizing flows to Riemannian mani-

folds. However, as the method relies on the existence of a

diffeomorphism between R
N and SN , it is unsuited for

hyperspheres.

One approach to obtain a more flexible prior is to use a

simple mixture of Gaussians (MoG) prior (Dilokthanakul

et al., 2016). The recently introduced VampPrior model

(Tomczak and Welling, 2018) outlines several advantages

over the MoG and instead tries to learn a more flexible

prior by expressing it as a mixture of approximate pos-

teriors. A non-parametric prior is proposed in Nalisnick

and Smyth (2017), utilizing a truncated stick-breaking

process. Opposite to these approaches, we aim at using a

non-informative prior to simplify the inference.

The closest approach to ours is a VAE with a vMF distri-

bution in the latent space used for a sentence generation

task by (Guu et al., 2018). While formally this approach

is cast as a variational approach, the proposed model does

not reparameterize and learn the concentration parameter

κ, treating it as a constant value that remains the same

for every approximate posterior instead. Critically, as

indicated in Equation 5, the KL divergence term only

depends on κ therefore leaving κ constant means never

explicitly optimizing the KL divergence term in the loss.

The method then only optimizes the reconstruction error

by adding vMF noise to the encoder output in the latent

space to still allow generation. Moreover, using a fixed

global κ for all the approximate posteriors severely limits

the flexibility and the expressiveness of the model.

Non-Euclidean Latent Space In Liu and Zhu (2018),

a general model to perform Bayesian inference in Rieman-

nian Manifolds is proposed. Following other Stein-related

approaches, the method does not explicitly define a poste-

rior density but approximates it with a number of particles.

Despite its generality and flexibility, it requires the choice

of a kernel on the manifold and multiple particles to have

a good approximation of the posterior distribution. The

former is not necessarily straightforward, while the latter

quickly becomes computationally unfeasible.

Another approach by Nickel and Kiela (2017), capital-

izes on the hierarchical structure present in some data

types. By learning the embeddings for a graph in a

non-euclidean negative curvature hyperbolical space, they

show this topology has clear advantages over embedding

these objects in a Euclidean space. Although they did not

use a VAE-based approach, that is, they did not build a

probabilistic generative model of the data interpreting the

embeddings as latent variables, this approach shows the

merit of explicitly adjusting the choice of latent topology

to the data used.



Table 1: Summary of results (mean and standard-deviation over 10 runs) of unsupervised model on MNIST. RE and KL

correspond respectively to the reconstruction and the KL part of the ELBO. Best results are highlighted only if they

passed a student t-test with p < 0.01.

Method
N -VAE S-VAE

LL L[q] RE KL LL L[q] RE KL

d = 2 -135.73±.83 -137.08±.83 -129.84±.91 7.24±.11 -132.50±.73 -133.72±.85 -126.43±.91 7.28±.14

d = 5 -110.21±.21 -112.98±.21 -100.16±.22 12.82±.11 -108.43±.09 -111.19±.08 -97.84±.13 13.35±.06

d = 10 -93.84±.30 -98.36±.30 -78.93±.30 19.44±.14 -93.16±.31 -97.70±.32 -77.03±.39 20.67±.08

d = 20 -88.90±.26 -94.79±.19 -71.29±.45 23.50±.31 -89.02±.31 -96.15±.32 -67.65±.43 28.50±.22

d = 40 -88.93±.30 -94.91±.18 -71.14±.56 23.77±.49 -90.87±.34 -101.26±.33 -67.75±.70 33.50±.45

A Hyperspherical Perspective As noted before, a dis-

tinction must be made between models dealing with the

challenges of intrinsically hyperspherical data like omni-

directional video, and those attempting to exploit some

latent hyperspherical manifold. A recent example of the

first can be found in Cohen et al. (2018), where spherical

CNNs are introduced. While flattening a spherical im-

age produces unavoidable distortions, the newly defined

convolutions take into account its geometrical properties.

The most general implementation of the second model

type was proposed by Gopal and Yang (2014), who intro-

duced a suite of models to improve cluster performance of

high-dimensional data based on mixture of vMF distribu-

tions. They showed that reducing an object representation

to its directional components increases clusterability over

standard methods like K-Means or Latent Dirichlet Allo-

cation (Blei et al., 2003).

Specific applications of the vMF can be further found

ranging from computer vision, where it is used to infer

structure from motion (Guan and Smith, 2017) in spheri-

cal video, or structure from texture (Wilson et al., 2014),

to natural language processing, where it is utilized in text

analysis (Banerjee et al., 2003, 2005) and topic modeling

(Banerjee and Basu, 2007; Reisinger et al., 2010).

Additionally, modeling data by restricting it to a hyper-

sphere provides some natural regularizing properties as

noted in (Liu et al., 2017). Finally Aytekin et al. (2018)

show on a variety of deep auto-encoder models that

adding L2 normalization to the latent space during train-

ing, i.e. forcing the latent space on a hypersphere, im-

proves clusterability.

5 EXPERIMENTS

In this section, we first perform a series of experiments

to investigate the theoretical properties of the proposed

S-VAE compared to theN -VAE. In a second experiment,

we show how S-VAEs can be used in semi-supervised

tasks to create a better separable latent representation to

enhance classification. In the last experiment, we show

that the S-VAE indeed presents a promising alternative to

N -VAEs for data with a non-Euclidean latent representa-

tion of low dimensionality, on a link prediction task for

three citation networks. All architecture and hyperparam-

eter details are given in Appendix F.

5.1 RECOVERING HYPERSPHERICAL

LATENT REPRESENTATIONS

In this first experiment we build on the motivation devel-

oped in Subsection 2.3, by confirming with a synthetic

data example the difference in behavior of the N -VAE

and S-VAE in recovering latent hyperspheres. We first

generate samples from a mixture of three vMFs on the

circle, S1, as shown in Figure 1(a), which subsequently

are mapped into the higher dimensional R100 by applying

a noisy, non-linear transformation. After this, we in turn

train an auto-encoder, a N -VAE, and a S-VAE. We fur-

ther investigate the behavior of the N -VAE, by training a

model using a scaled down KL divergence.

Results The resulting latent spaces, displayed in Figure

1, clearly confirm the intuition built in Subsection 2.3. As

expected, in Figure 1(b) the auto-encoder is perfectly ca-

pable to embed in low dimensions the original underlying

data structure. However, most parts of the latent space are

not occupied by points, critically affecting the ability to

generate meaningful samples.

In theN -VAE setting we observe two types of behaviours,

summarized by Figures 1(c) and 1(d). In the first we

observe that if the prior is too strong it will force the

posterior to match the prior shape, concentrating the sam-

ples in the center. However, this prevents the N -VAE to

correctly represent the true shape of the data and creates

instability problems for the decoder around the origin. On

the contrary, if we scale down the KL term, we observe

that the samples from the approximate posterior maintain



Table 2: Summary of results (mean accuracy and standard-deviation over 20 runs) of semi-supervised K-NN on MNIST.

Best results are highlighted only if they passed a student t-test with p < 0.01.

Method
100 600 1000

N -VAE S-VAE N -VAE S-VAE N -VAE S-VAE

d = 2 72.6±2.1 77.9±1.6 80.8±0.5 84.9±0.6 81.7±0.5 85.6±0.5

d = 5 81.8±2.0 87.5±1.0 90.9±0.4 92.8±0.3 92.0±0.2 93.4±0.2

d = 10 75.7±1.8 80.6±1.3 88.4±0.5 91.2±0.4 90.2±0.4 92.8±0.3

d = 20 71.3±1.9 72.8±1.6 88.3±0.5 89.1±0.6 90.1±0.4 91.1±0.3

d = 40 72.3±1.6 67.7±2.3 88.0±0.5 87.4±0.7 90.3±0.5 90.4±0.4

a shape that reflects the S1 structure smoothed with Gaus-

sian noise. However, as the approximate posterior differs

strongly from the prior, obtaining meaningful samples

from the latent space again becomes problematic.

The S-VAE on the other hand, almost perfectly recovers

the original dataset structure, while the samples from the

approximate posterior closely match the prior distribution.

This simple experiment confirms the intuition that having

a prior that matches the true latent structure of the data, is

crucial in constructing a correct latent representation that

preserves the ability to generate meaningful samples.

5.2 EVALUATION OF EXPRESSIVENESS

To compare the behavior of the N -VAE and S-VAE on a

data set that does not have a clear hyperspherical latent

structure, we evaluate both models on a reconstruction

task using dynamically binarized MNIST (Salakhutdinov

and Murray, 2008). We analyze the ELBO, KL, negative

reconstruction error, and marginal log-likelihood (LL) for

both models on the test set. The LL is estimated using

importance sampling with 500 sample points (Burda et al.,

2016).

Results Results are shown in Table 1. We first note that

in terms of negative reconstruction error the S-VAE out-

performs theN -VAE in all dimensions. Since the S-VAE

uses a uniform prior, the KL divergence increases more

strongly with dimensionality, which results in a higher

ELBO. However in terms of log-likelihood (LL) the S-

VAE clearly has an edge in low dimensions (d = 2, 5, 10)

and performs comparable to the N -VAE in d = 20. This

empirically confirms the hypothesis of Subsection 2.2,

showing the positive effect of having a uniform prior in

low dimensions. In the absence of any origin pull, the

data is able to cluster naturally, utilizing the entire latent

space which can be observed in Figure 2. Note that in Fig-

ure 2(a) all mass is concentrated around the center, since

the prior mean is zero. Conversely, in Figure 2(b) all

available space is evenly covered due to the uniform prior,

resulting in more separable clusters in S2 compared to

R
2. However, as dimensionality increases, the Gaussian

distribution starts to approximate a hypersphere, while

its posterior becomes more expressive than the vMF due

to the higher number of variance parameters. Simultane-

ously, as described in Subsection 3.5, the surface area of

the vMF starts to collapse limiting the available space.

In Figure 7 and 8 of Appendix G, we present randomly

generated samples from the N -VAE and the S-VAE, re-

spectively. Moreover, in Figure 9 of Appendix G, we

show 2-dimensional manifolds for the two models. Inter-

estingly, the manifold given by the S-VAE indeed results

in a latent space where digits occupy the entire space and

there is a sense of continuity from left to right.

5.3 SEMI-SUPERVISED LEARNING

Having observed the S-VAE’s ability to increase clus-

terability of data points in the latent space, we wish to

further investigate this property using a semi-supervised

classification task. For this purpose we re-implemented

the M1 and M1+M2 models as described in (Kingma

et al., 2014), and evaluate the classification accuracy of

the S-VAE and the N -VAE on dynamically binarized

MNIST. In the M1 model, a classifier utilizes the latent

features obtained using a VAE as in experiment 5.2. The

M1+M2 model is constructed by stacking the M2 model

on top of M1, where M2 is the result of augmenting the

VAE by introducing a partially observed variable y, and

combining the ELBO and classification objective. This

concatenated model is trained end-to-end 3.

This last model also allows for a combination of the two

topologies due to the presence of two distinct latent vari-

ables, z1 and z2. Since in the M2 latent space the class

assignment is expressed by the variable y, while z2 only

needs to capture the style, it naturally follows that the

3It is worth noting that in the original implementation by
Kingma et al. (2014) the stacked model did not converge well
using end-to-end training, and used the extracted features of the
M1 model as inputs for the M2 model instead.



(a) R
2 latent space of the N -VGAE. (b) Hammer projection of S2 latent space of the S-VGAE.

Figure 3: Latent space of unsupervisedN -VGAE and S-VGAE models trained on Cora citation network. Colors denote

documents classes which are not provided during training. (Best viewed in color)

N -VAE is more suited for this objective due to its higher

number of variance parameters. Hence, besides compar-

ing the S-VAE against the N -VAE, we additionally run

experiments for the M1+M2 model by modeling z1, z2
respectively with a vMF and normal distribution.

Results As can be see in Table 2, for M1 the S-VAE

outperforms the N -VAE in all dimensions up to d = 40.

This result is amplified for a low number of observed

labels. Note that for both models absolute performance

drops as the dimensionality increases, since K-NN used

as the classifier suffers from the curse of dimensionality.

Besides reconfirming superiority of the S-VAE in d <
20, its better performance than the N -VAE for d = 20
was unexpected. This indicates that although the log-

likelihood might be comparable(see Table 1) for higher

dimensions, the S-VAE latent space better captures the

cluster structure.

In the concatenated model M1+M2, we first observe in

Table 3 that either the pure S-VAE or the S+N -VAE

model yields the best results, where the S-VAE almost

always outperforms the N -VAE. Our hypothesis regard-

ing the merit of a S+N -VAE model is further confirmed,

as displayed by the stable, strong performance across

all different dimensions. Furthermore, the clear edge

in clusterability of the S-VAE in low dimensional z1 as

already observed in Table 2, is again evident. As the

dimensionality of z1, z2 increases, the accuracy of the

N -VAE improves, reducing the performance gap with the

S-VAE. As previously noticed the S-VAE performance

drops when dim z2
= 50, with the best result being ob-

tained for dim z1
= dim z2

= 10. In fact, it is worth

noting that for this setting the S-VAE obtains comparable

results to the original settings of (Kingma et al., 2014),

while needing a considerably smaller latent space. Finally,

the end-to-end trained S+N -VAE model is able to reach

a significantly higher classification accuracy than the orig-

inal results reported by Kingma et al. (2014), 96.7±.1.

The M1+M2 model allows for conditional generation.

Similarly to (Kingma et al., 2014), we set the latent vari-

able z2 to the value inferred from the test image by the

inference network, and then varied the class label y. In

Figure 10 of Appendix H we notice that the model is able

to disentangle the style from the class.

Table 3: Summary of results of semi-supervised model

M1+M2 on MNIST.

Method 100

dim z1
dim z2

N+N S+S S+N

5

5 90.0±.4 94.0±.1 93.8±.1

10 90.7±.3 94.1±.1 94.8±.2

50 90.7±.1 92.7±.2 93.0±.1

10

5 90.7±.3 91.7±.5 94.0±.4

10 92.2±.1 96.0±.2 95.9±.3

50 92.9±.4 95.1±.2 95.7±.1

50

5 92.0±.2 91.7±.4 95.8±.1

10 93.0±.1 95.8±.1 97.1±.1

50 93.2±.2 94.2±.1 97.4±.1

5.4 LINK PREDICTION ON GRAPHS

In this experiment, we aim at demonstrating the ability of

the S-VAE to learn meaningful embeddings of nodes in a

graph, showing the advantages of embedding objects in

a non-Euclidean space. We test hyperspherical reparam-

eterization on the recently introduced Variational Graph

Auto-Encoder (VGAE) (Kipf and Welling, 2016), a VAE

model for graph-structured data. We perform training on



a link prediction task on three popular citation network

datasets (Sen et al., 2008): Cora, Citeseer and Pubmed.

Dataset statistics and further experimental details are sum-

marized in Appendix F.3. The models are trained in an un-

supervised fashion on a masked version of these datasets

where some of the links have been removed. All node

features are provided and efficacy is measured in terms

of average precision (AP) and area under the ROC curve

(AUC) on a test set of previously removed links. We use

the same training, validation, and test splits as in Kipf and

Welling (2016), i.e. we assign 5% of links for validation

and 10% of links for testing.

Table 4: Results for link prediction in citation networks.

Method N -VGAE S-VGAE

Cora
AUC 92.7±.2 94.1±.1

AP 93.2±.4 94.1±.3

Citeseer
AUC 90.3±.5 94.7±.2

AP 91.5±.5 95.2±.2

Pubmed
AUC 97.1±.0 96.0±.1

AP 97.1±.0 96.0±.1

Results In Table 4, we show that our model outperforms

the N -VGAE baseline on two out of the three datasets

by a significant margin. The log-probability of a link is

computed as the dot product of two embeddings. In a hy-

persphere, this can be interpreted as the cosine similarity

between vectors. Indeed we find that the choice of a dot

product scoring function for link prediction is problematic

in combination with the normal distribution on the latent

space. If embeddings are close to the zero-center, noise

during training can have a large destabilizing effect on the

angle information between two embeddings. In practice,

the model finds a solution where embeddings are ”pushed”

away from the zero-center, as demonstrated in Figure 3(a).

This counteracts the pull towards the center arising from

the standard prior and can overall lead to poor modeling

performance. By constraining the embeddings to the sur-

face of a hypersphere, this effect is mitigated, and the

model can find a good separation of the latent clusters, as

shown in Figure 3(b).

On Pubmed, we observe that the S-VAE converges to a

lower score than the N -VAE. The Pubmed dataset is sig-

nificantly larger than Cora and Citeseer, and hence more

complex. TheN -VAE has a larger number of variance pa-

rameters for the posterior distribution, which might have

played an important role in better modeling the relation-

ships between nodes. We further hypothesize that not all

graphs are necessarily better embedded in a hyperspher-

ical space and that this depends on some fundamental

topological properties of the graph. For instance, the

already mentioned work from Nickel and Kiela (2017)

shows that hyperbolical space is better suited for graphs

with a hierarchical, tree-like structure. These considera-

tions prefigure an interesting research direction that will

be explored in future work.

6 CONCLUSION

With the S-VAE we set an important first step in the

exploration of hyperspherical latent representations for

variational auto-encoders. Through various experiments,

we have shown that S-VAEs have a clear advantage over

N -VAEs for data residing on a known hyperspherical

manifold, and are competitive or surpassN -VAEs for data

with a non-obvious hyperspherical latent representation in

lower dimensions. Specifically, we demonstrated S-VAEs

improve separability in semi-supervised classification and

that they are able to improve results on state-of-the-art link

prediction models on citation graphs, by merely changing

the prior and posterior distributions as a simple drop-in

replacement.

We believe that the presented research paves the way for

various promising areas of future work, such as exploring

more flexible approximate posterior distributions through

normalizing flows on the hypersphere, or hierarchical

mixture models combining hyperspherical and hyperpla-

nar space. Further research should be done in increasing

the performance of S-VAEs in higher dimensions; one

possible solution of which could be to dynamically learn

the radius of the latent hypersphere in a full Bayesian

setting.
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