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HYPERSURFACES IN STATISTICAL MANIFOLDS

HITOSHI FURUHATA

Abstract. The condition for the curvature of a statistical man-
ifold to admit a kind of standard hypersurface is given as a first
step of the statistical submanifold theory. A complex version of
the notion of statistical structures is also introduced.

1. Introduction

Geometry of statistical manifolds lies at the confluence of some re-
search areas such as information geometry, affine differential geometry,
and Hessian geometry. In this paper, we study hypersurfaces in sta-
tistical manifolds apart from each peculiar background. After giving
an abstract definition of statistical structures, we will go around such
areas briefly.

Throughout this paper, let M be an n-dimensional manifold, ∇ an
affine connection, and g a Riemannian metric on M . We denote by
Γ(E) the set of sections of a vector bundle E → M . For example,
Γ(TM (p,q)) means the set of tensor fields of type (p, q) on M . The
torsion tensor field of ∇ is denoted by T∇ ∈ Γ(TM (1,2)). All the
objects are assumed to be smooth.

Definition 1.1. A pair (∇, g) is called statistical structure on M if (1)
(∇Xg)(Y, Z) − (∇Y g)(X,Z) = −g(T∇(X, Y ), Z) holds for X, Y, Z ∈
Γ(TM), and (2) T∇ = 0.

Let ∇g be the Levi-Civita connection of g. By definition, a pair
(∇g, g) is a statistical structure, which is called a trivial statistical
structure.

The name of this structure comes from information geometry (See
[2]). Let p(·, θ) : (X, dx) → (0,∞) be a probability density parametrized
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2 FURUHATA

by θ = (θ1, . . . , θn) ∈ Θ ⊂ Rn. For any constant α ∈ R, we set

gθ :=
∑

{
∫

X

∂ log p

∂θi
(x, θ)

∂ log p

∂θj
(x, θ)p(x, θ)dx}dθidθj,

and

Γ
(α)
ijk(θ) :=

∫

X

{∂2 log p

∂θi∂θj
(x, θ) +

1 − α

2

∂ log p

∂θi
(x, θ)

∂ log p

∂θj
(x, θ)}

∂ log p

∂θk
(x, θ)p(x, θ)dx.

It is easy to see that gθ is a positive semi-definite quadratic form on
TθΘ. If g is a Riemannian metric on Θ, then (Θ,∇(α), g) is a statis-

tical manifold, where ∇(α) is an affine connection defined by Γ
(α)
ijk =

g(∇(α)
∂

∂θi

∂

∂θj
,

∂

∂θk
). In fact, g is known as the Fisher metric and ∇(α) the

Amari’s α-connection with respect to {p(·, θ) | θ ∈ Θ}. These objects
are useful for a geometric understanding of statistical inference.

On the other hand, geometry of affine hypersurfaces has been classi-
cally studied. Blaschke finished the first monograph on this subject in
1923. By the Codazzi equation, a pair of an induced connection and an
affine fundamental form, i.e. a second fundamental form in this setting,
gives rise to a statistical structure on a nondegenerate hypersurface. A
statistical structure is called a Codazzi structure as well (See [8], [5]).

We may say that Hessian geometry is developed by Koszul, Shima
and many mathematicians (See [9]). A flat affine manifold with a
Riemannian metric locally expressed as the Hessian matrix of a function
with respect to an affine coordinate system is called a Hessian manifold.
We can consider Hessian manifolds as an important class of statistical
manifolds. The study on regular convex cones is the origin of Hessian
geometry. It is remarked that the tangent bundle of a Hessian manifold
admits a Kähler metric in a natural way, and that Hessian geometry is
closely related to Kähler geometry.

One of interesting examples of Hessian manifolds is a special Kähler
manifold, which was introduced by the physicists de Wit and Van
Proeyen in 1984. A number of mathematical researches of special
Kähler manifolds followed (See [1], [3]). We consider special Kähler
manifolds as a class of statistical manifolds and define a larger one,
which will be called holomorphic statistical manifolds (Kurose [6], [7],
Definition 2.4).

An isometric immersion preserving attached connections is called a
statistical immersion (Definition 3.1). In this paper, we study such
immersions, in particular, elementary properties of hypersurfaces in
statistical manifolds of constant curvature as a first step. Fundamental
equations for statistical submanifolds were given by Vos [11] in 1989.
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As an application, he gave an interpretation of Bartlett’s correction in
terms of curvatures and other invariant quantities.

Isometric immersions of Kähler manifolds into real space forms have
been studied as the Riemannian submanifold theory (See [10], [4]). We
consider an analogue in the statistical submanifold theoretical setting.
In Section 4, we prove that if a hypersurface in a statistical manifold of
constant curvature carries a holomorphic statistical structure of con-
stant holomorphic curvature, then the hypersurface is a special Kähler
manifold and the ambient space is a Hessian manifold (Theorem 4.1).

In Section 5, when a hypersurface in a Hessian manifold of positive
constant Hessian curvature carries a trivial Hessian structure, we can
determine its shape operator (Theorem 5.1). In particular, a horo-
sphere f0 : Rn 3 t(y1, . . . , yn) 7→ t(y1, . . . , yn, y0) ∈ H can be character-
ized as such a hypersurface, where y0 is a positive constant, and H is
the (n + 1)-dimensional upper half Hessian space of constant Hessian
curvature 4 (Corollary 5.6).

The author wishes to express his gratitude to Professor Takashi
Kurose for his useful advice.

2. Preliminaries on Statistical Manifolds

For an affine connection ∇ and a Riemannian metric g on M , let ∇∗

be the connection defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ)

for any X, Y, Z ∈ Γ(TM), which is called the dual connection of ∇ with
respect to g. If (∇, g) is a statistical structure on M , so is (∇∗, g).

Definition 2.1. A statistical structure (∇, g) is said to be of constant
curvature k ∈ R if

R∇(X, Y )Z = k {g(Y, Z)X − g(X, Z)Y }

holds, where R∇ ∈ Γ(TM (1,3)) is the curvature tensor field of ∇. A
statistical structure (∇, g) of constant curvature 0 is called a Hessian
structure.

We can calculate that the curvature tensor filed R∇∗
of the dual

connection satisfies

g(R∇∗
(X,Y )Z, W ) = −g(Z, R∇(X,Y )W ).

Accordingly, if (∇, g) is a statistical structure of constant curvature k,
then so is (∇∗, g). In particular, if (∇, g) is Hessian, so is (∇∗, g).
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For a statistical structure (∇, g) we define the difference tensor field
K := K(∇,g) ∈ Γ(TM (1,2)) as

K(X,Y ) := ∇XY −∇g
XY,

and the first Koszul form α := α(∇,g) ∈ Γ(TM (0,1)) as

α(X) := − tr{Y 7→ K(X, Y )}.
The following formulas are obtained by direct calculation:

(2.1) K(X, Y ) = K(Y,X), g(K(X, Y ), Z) = g(Y, K(X, Z)),

(2.2)

R∇(X, Y )Z
= R∇g

(X, Y )Z + (∇gK)(Y, Z; X) − (∇gK)(Z, X; Y )
+K(X, K(Y, Z)) − K(Y,K(Z, X)),

R∇∗
(X,Y )Z

= R∇g
(X, Y )Z − (∇gK)(Y, Z; X) + (∇gK)(Z, X; Y )

+K(X, K(Y, Z)) − K(Y,K(Z, X)),
R∇g

(X,Y )Z
= R∇(X,Y )Z − (∇K)(Y, Z; X) + (∇K)(Z,X; Y )

+K(X, K(Y, Z)) − K(Y,K(Z, X)),

(2.3)

(∇K)(Y, Z; X) − (∇K)(Z,X; Y )
= 2{K(X, K(Y, Z)) − K(Y, K(Z, X))}

+
1

2
{R∇(X, Y )Z − R∇∗

(X, Y )Z}.

Combining (2.2)3 and (2.3), we have

R∇g

(X, Y )Z = −{K(X, K(Y, Z)) − K(Y,K(Z, X))}

= −1

2
{(∇K)(Y, Z; X) − (∇K)(Z, X; Y )},(2.4)

if (∇, g) is a Hessian structure.

Definition 2.2. A Hessian structure (∇, g) is said to be of constant
Hessian curvature c ∈ R if

(
∇XK(∇,g)

)
(Y, Z) = − c

2
{g(X,Y )Z + g(X,Z)Y }

for any X, Y, Z ∈ Γ(TM).

We can construct a Kähler metric gT on the tangent bundle of a
Hessian manifold M by the diagonal lifting (or the Sasaki lifting) and
remark that M is of constant Hessian curvature c if and only if (TM, gT )
is of constant holomorphic sectional curvature −c (See [9]). It is also
remarked that the tangent bundle of a statistical manifold admits an
almost Kähler metric in the same manner.

By (2.4), if a Hessian structure (∇, g) is of constant Hessian curvature
c, then the Riemannian metric g is of constant curvature −c/4, that is,

(2.5) R∇g

(X,Y )Z = − c

4
{g(Y, Z)X − g(X, Z)Y }.
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Example 2.3. Let (H, g̃) be the upper half space of constant curvature
−1:

H := {y = t(y1, . . . , yn+1) ∈ Rn+1 | yn+1 > 0} ,

g̃ := (yn+1)−2
∑n+1

A=1 dyAdyA.

We define an affine connection ∇̃ on H by the following relations:

∇̃ ∂
∂yn+1

∂

∂yn+1
= (yn+1)−1 ∂

∂yn+1
, ∇̃ ∂

∂yi

∂

∂yj
= 2δij(y

n+1)−1 ∂

∂yn+1
,

∇̃ ∂

∂yi

∂

∂yn+1
= ∇̃ ∂

∂yn+1

∂

∂yj
= 0,

where i, j = 1, . . . , n. Then (H, ∇̃, g̃) is a Hessian manifold of constant
Hessian curvature 4.

We conjecture that ∇̃ is the only connection of constant Hessian cur-

vature 4 globally defined on (H, g̃). Moreover, we remark that (H, ∇̃, g̃)
expresses the statistical model of normal distributions when dim H = 2.
In fact, the normal distribution with mean µ and variance σ2 is written
as

N(x, µ, σ2) :=
1√

2πσ2
exp

{
− 1

2σ2
(x − µ)2

}
, x ∈ R, µ ∈ R, σ > 0.

Set Θ := {(θ1, θ2) ∈ R2 | θ2 > 0}, X := R and p(x, θ) := N(x,
√

2θ1, (θ2)2).
Then the statistical manifold with respect to {p(·, θ) | θ ∈ Θ} has a
Riemannian metric g = 2(θ2)−2

∑
dθidθi of constant curvature −1/2

and a flat connection ∇(−1) with

∇(−1)
∂

∂θ1

∂

∂θ1
= 2(θ2)−1 ∂

∂θ2
, ∇(−1)

∂
∂θ2

∂

∂θ2
= (θ2)−1 ∂

∂θ2
,

∇(−1)
∂

∂θ1

∂

∂θ2
= ∇(−1)

∂
∂θ2

∂

∂θ1
= 0.

Kurose [6] gave the following definition as a complex version of the
notion of statistical structures (cf. [7]).

Definition 2.4. Let M be an almost complex manifold with almost
complex structure J ∈ Γ(TM (1,1)), and (∇, g) a statistical structure on
M . We denote by ω the fundamental form with respect to J and g, that
is, ω(X, Y ) = g(X, JY ). The triplet (∇, g, J) is called a holomorphic
statistical structure on M if ω is a ∇-parallel 2-form.

Let (M, J) be an almost complex manifold, g a Hermitian metric,
ω the fundamental 2-form, and ∇ an affine connection of torsion free.
For θ ∈ R, we define eθJ ∈ Γ(TM (1,1)), an affine connection ∇θ and
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d∇J ∈ Γ(
∧2 T ∗M ⊗ TM) by

eθJX := cos θX + sin θJX,
∇θ

XY := eθJ∇X

(
e−θJY

)
,

d∇J(X, Y ) := (∇XJ)Y − (∇Y J)X.

By direct calculation, we have the following formulas:

(∇θ
Xg)(Y, Z) − (∇θ

Y g)(X, Z)

= g(T (∇θ)∗(X,Y ) − T (∇θ)(X, Y ), Z),
(∇θ

Xω)(Y, J−1Z) = g(Y, (∇θ)∗XZ − (∇θ)J
XZ)

= g(Y, eθJ(∇∗
X −∇J

X)e−θJZ),

T∇θ
(X,Y ) − T∇(X,Y ) = − sin θeθJd∇J(X, Y ),

where ∇J := ∇π/2, that is, ∇J
XY := J∇X(J−1Y ). Combining the

above relations, we have

Proposition 2.5. Let (M,∇, g) be a statistical manifold, and J an
almost complex structure compatible with g. Then the following four
conditions are equivalent:

(1) (∇, g, J) is a holomorphic statistical structure.
(2) ∇∗ = ∇J .
(3) d∇J = 0.
(4) (∇θ, g, J) is a holomorphic statistical structure for each θ.

Moreover, these conditions imply that
(5) (g, J) is Kählerian.

In fact, the last assertion is obtained as follows. The fundamental
2-form ω is closed, because it is ∇-parallel and ∇ is of torsion free.
Since 2∇g = ∇ + ∇∗ = ∇ + ∇J , we have that J is ∇g-parallel, and
then J is integrable.

We remark that the statistical structure is trivial if ∇ = ∇θ. It is also
easy to show that the first Koszul form α of a holomorphic statistical
manifold (M,∇, g, J) vanishes. It follows from

(2.6)
K(∇∗,g)(X, Y ) = −K(∇,g)(X, Y ),
K(∇,g)(X, JY ) = −JK(∇,g)(X,Y ).

In the same idea to the real case, we put the following

Definition 2.6. Let (M,∇, g, J) be a holomorphic statistical manifold.
It is said to be of constant holomorphic curvature k ∈ R if the following
holds:

R∇(X,Y )Z =
k

4
{g(Y, Z)X − g(X,Z)Y

+g(JY, Z)JX − g(JX, Z)JY + 2g(X, JY )JZ}

for any X, Y, Z ∈ Γ(TM).
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A holomorphic statistical structure of holomorphic curvature 0 is
nothing but a special Kähler manifold. There are interesting examples
of such manifolds which are realized as improper affine hyperspheres
constructed from holomorphic functions ([3]). By the following remark,
you can also get holomorphic statistical structures, which are not spe-
cial Kählerian.

Remark 2.7. Let (M,∇, g, J) be a holomorphic statistical manifold
with difference tensor field K = K(∇,g), and ϕ a function on M . Then
(∇ϕ := ∇+ ϕK, g, J) is also a holomorphic statistical structure on M .
The relation of the curvature tensor fields are given by

R∇ϕ
(X, Y )Z

= R∇(X, Y )Z + ϕ2{K(X, K(Y, Z)) − K(Y,K(Z, X))}
−ϕ{(∇K)(Y, Z; X) − (∇K)(Z, X; Y )}

+dϕ(Y )K(X,Z) − dϕ(X)K(Y, Z).

Remark 2.8. Let (M, g, J) be a Kähler manifold, and K ∈ Γ(TM (1,2))
satisfying (2.1) and (2.6)2. Then (∇ := ∇g + K, g, J) is a holomorphic
statistical structure on M .

3. Statistical Hypersurfaces

Let (M̃, ∇̃, g̃) be a statistical manifold, and f : M → M̃ an immer-
sion. We define g and ∇ on M by

(3.1) g = f∗g̃, g(∇XY, Z) = g̃(∇̃Xf∗Y, f∗Z)

for any X,Y, Z ∈ Γ(TM), where the connection induced from ∇̃ by f

on the induced bundle f ∗TM̃ → M is denoted by the same symbol ∇̃.
Then the pair (∇, g) is a statistical structure on M , which is called the

one induced by f from (∇̃, g̃).

Definition 3.1. Let (M,∇, g) and (M̃, ∇̃, g̃) be two statistical man-

ifolds. An immersion f : M → M̃ is called a statistical immersion if
(∇, g) coincides with the induced statistical structure, namely, if (3.1)
holds.

Concerning the theory on statistical submanifolds, we refer the reader
to [11]. Fundamental equations for statistical immersions of general
codimensions are obtained by Vos. This notion seems useful in statis-
tical inference.
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Suppose f : (M,∇, g) → (M̃, ∇̃, g̃) be a statistical immersion of

codimension one, and ξ ∈ Γ(f ∗TM̃) a unit normal vector field of f .
We define h, h∗ ∈ Γ(TM (0,2)), A,A∗ ∈ Γ(TM (1,1)) and τ, τ ∗ ∈ Γ(TM∗)
by the following Gauss and Weingarten formulas:

∇̃Xf∗Y = f∗∇XY + h(X,Y )ξ,

∇̃Xξ = −f∗A
∗X + τ ∗(X)ξ,

∇̃∗
Xf∗Y = f∗∇∗

XY + h∗(X, Y )ξ,

∇̃∗
Xξ = −f∗AX + τ(X)ξ, X, Y ∈ Γ(TM),

where ∇̃∗ is the dual connection of ∇̃ with respect to g̃. It is easy to

show that the connection induced from ∇̃∗ is the dual connection of ∇
with respect to g. Besides the following hold for any X,Y ∈ Γ(TM):

(3.2)
h(X,Y ) = g(AX, Y ), h∗(X,Y ) = g(A∗X, Y ),
τ(X) + τ ∗(X) = 0.

In addition, we define II ∈ Γ(TM (0,2)) and S ∈ Γ(TM (1,1)) by using
the Riemannian Gauss and Weingarten formulas:

∇eg
Xf∗Y = f∗∇g

XY + II(X,Y )ξ,

∇eg
Xξ = −f∗SX.

In a standard way, we have the Gauss, Codazzi and Ricci equations
for a statistical hypersurface in the case that the ambient space is of

constant curvature k̃:

(3.3)

R∇(X, Y )Z = k̃{g(Y, Z)X − g(X,Z)Y }
+{h(Y, Z)A∗X − h(X,Z)A∗Y },

(∇Xh)(Y, Z) + τ ∗(X)h(Y, Z)
= (∇Y h)(X,Z) + τ ∗(Y )h(X,Z),

(∇XA∗)Y − τ ∗(X)A∗Y = (∇Y A∗)X − τ ∗(Y )A∗X,
h(X, A∗Y ) − h(Y, A∗X) = dτ ∗(X, Y ),

(3.4)

R∇∗
(X, Y )Z = k̃{g(Y, Z)X − g(X, Z)Y }

+{h∗(Y, Z)AX − h∗(X, Z)AY },
(∇∗

Xh∗)(Y, Z) + τ(X)h∗(Y, Z)
= (∇∗

Y h∗)(X,Z) + τ(Y )h∗(X,Z),
(∇∗

XA)Y − τ(X)AY = (∇∗
Y A)X − τ(Y )AX,

h∗(X, AY ) − h∗(Y, AX) = dτ(X,Y ),

(3.5)

R∇g
(X, Y )Z = R∇eg

(X,Y )Z
+II(Y, Z)SX − II(X,Z)SY,

(∇g
XII)(Y, Z) = (∇g

Y II)(X,Z),
(∇g

XS)Y = (∇g
Y S)X,

II(X,SY ) − II(Y, SX) = 0.
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Furthermore, we will fix the notation here as follows:

K := K(∇,g) ∈ Γ(TM (1,2)), K̃ := K(e∇,eg) ∈ Γ(TM̃ (1,2)),
b := h − II ∈ Γ(TM (0,2)),
B := A − S, B∗ := A∗ − S ∈ Γ(TM (1,1)),
τ ] ∈ Γ(TM) : g(τ ], X) = τ ∗(X) for any X ∈ Γ(TM),

ν := g̃(K̃(ξ, ξ), ξ) ∈ C∞(M).

By definition, we can get the following formulas: for any X,Y, Z ∈
Γ(TM),

K̃(f∗X, f∗Y ) = f∗K(X, Y ) + b(X, Y )ξ,

K̃(f∗X, ξ) = −f∗B
∗X + τ ∗(X)ξ,

K̃(ξ, ξ) = f∗τ
] + νξ,

and

(3.6)

(∇̃XK̃)(f∗Y, f∗Z)
= f∗{(∇XK)(Y, Z) − b(Y, Z)A∗X

+h(X, Y )B∗Z + h(X,Z)B∗Y }
+{h(X, K(Y, Z)) + (∇Xb)(Y, Z)

+τ ∗(X)b(Y, Z) − τ ∗(Z)h(X, Y ) − τ ∗(Y )h(X,Z)}ξ,
(∇̃XK̃)(f∗Y, ξ)
= f∗{K(Y, A∗X) − τ ∗(Y )A∗X − h(X,Y )τ ]

−(∇XB∗)Y + τ ∗(X)B∗Y }
+{−h(X, Y )ν − h(X,B∗Y ) + (∇Xτ ∗)(Y ) + b(Y,A∗X)}ξ,

(∇̃XK̃)(ξ, ξ)
= f∗{∇Xτ ] − νA∗X − 2B∗A∗X − 2τ ∗(X)τ ]}

+{h(X, τ ]) − ντ ∗(X) + 2τ ∗(A∗X) + Xν}ξ.

4. Holomorphic Statistical Manifolds as Hypersurfaces

In this section, we prove the following

Theorem 4.1. Let (M̃, ∇̃, g̃) be a (2m+1)-dimensional statistical man-

ifold of constant curvature k̃ with m ≥ 2, and (M,∇, g, J) a holomor-
phic statistical manifold of constant holomorphic curvature k. If there

exists a statistical immersion f : M → M̃ of codimension 1, then the

curvatures k̃ and k vanish. Moreover, the shape operators satisfy the
following relations for some function µ :

A∗ = µA,
µ{g(AY, Z)AX − g(AX, Z)AY } = 0,

for any X,Y, Z ∈ Γ(TM). In particular, if rank A = 2m, then A∗ = 0.
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Proof . By (3.2) and the Gauss equation (3.3)1, we have

k

4
{g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY

+2g(X, JY )JZ}
= k̃{g(Y, Z)X − g(X,Z)Y } + g(AY,Z)A∗X − g(AX,Z)A∗Y.

By taking the trace with respect to X, we get

(4.1) AA∗ − (tr A∗) A = {(2m − 1)k̃ − 1

2
(m + 1)k}I,

where I is the identity transformation. Hence,

(4.2) AA∗ = A∗A.

In fact, let {ej} be an orthogonal basis of (TxM, gx) such that Aej =
λjej for some λj ∈ R. Setting A∗ej =

∑
al

jel, we have

0 = AA∗ej − (tr A∗) Aej − {(2m − 1)k̃ − 1

2
(m + 1)k}ej

=

[
λja

j
j + (tr A∗) λj − {(2m − 1)k̃ − 1

2
(m + 1)k}

]
ej +

∑

l 6=j

λla
l
jel,

from which for l 6= j, we obtain λla
l
j = 0. Accordingly, (AA∗ −

A∗A)ej = 0 for all ej.
¿From (4.2) we can choose an orthogonal basis {ej} such that

Aej = λjej, A∗ej = λ∗
jej,

for some λj, λ
∗
j ∈ R. Using this frame at (4.1), we get

0 = λjλ
∗
j −

(∑
λ∗

l

)
λj − {(2m − 1)k̃ − 1

2
(m + 1)k},

and that

0 =
∑

λjλ
∗
j −

∑
λ∗

l

∑
λj − 2m{(2m − 1)k̃ − 1

2
(m + 1)k}

≤ −2m{(2m − 1)k̃ − 1

2
(m + 1)k}.

We then conclude that

(4.3) (2m − 1)k̃ − 1

2
(m + 1)k ≤ 0,

and that the equality holds if and only if there exists a function µ such
that A∗ = µA.
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In the following step, we shall prove that k vanishes when m ≥ 2.
Using the above frame, we write the Gauss equation as

0 =
k

4
{g(e2, Z)e1 − g(e1, Z)e2 + g(Je2, Z)Je1 − g(Je1, Z)Je2

+2g(e1, Je2)JZ} − k̃{g(e2, Z)e1 − g(e1, Z)e2}
−g(Ae2, Z)A∗e1 + g(Ae1, Z)A∗e2

= {k

4
− k̃ − λ2λ

∗
1}g(e2, Z)e1 − {k

4
− k̃ − λ1λ

∗
2}g(e1, Z)e2

+
k

4
{g(Je2, Z)Je1 − g(Je1, Z)Je2 + 2g(e1, Je2)JZ}.

If Z is orthogonal to {e1, e2}, then it follows that

kg(Je2, Z) = kg(Je1, Z) = kg(e1, Je2) = 0.

In the case that g(e1, Je2) 6= 0, we get k = 0. In the other case, setting
Z = Je1, we arrive at the same result.

In the last step, we shall prove that k̃ vanishes. Since k = 0, the
Gauss equation is written as

0 = k̃{g(Y, Z)X − g(X, Z)Y } + g(AY, Z)A∗X − g(AX,Z)A∗Y.

Setting X = Z = ei and Y = ej (j 6= i), we have

λiλ
∗
j = −k̃, j 6= i.

If k̃ 6= 0, then it implies that

λ∗
1 = · · · = λ∗

2m =: λ∗ 6= 0, λ1 = · · · = λ2m =: λ 6= 0,

from which A∗ = λ∗λ−1A, that is, the equality of (4.3) holds. Therefore,
it contradicts the assumption. ¤

5. Trivial Statistical Manifolds as Hypersurfaces

In this section, we prove the following

Theorem 5.1. Let (M̃, ∇̃, g̃) be a Hessian manifold of constant Hes-
sian curvature c̃, and (M,∇, g) a trivial Hessian manifold. If there is

a statistical immersion f : M → M̃ of codimension one, then c̃ is non-
negative. Moreover, when c̃ is positive, the Riemannian shape operator

S of f is given by S = ±1

2

√
c̃I.
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Lemma 5.2. Suppose (M̃, ∇̃, g̃) be a Hessian manifold of constant
Hessian curvature c̃ 6= 0, (M,∇, g) a trivial statistical manifold, and

f : M → M̃ a statistical immersion of codimension one. Then τ ∗

vanishes.

Proof . By (2.5) and the Gauss equation (3.5)1, we have

(5.1) 0 =
c̃

4
{g(Y, Z)X − g(X, Z)Y }

+g(BY, Z)B∗X − g(BX,Z)B∗Y.

In the same way, a direct calculation shows

0 = τ ∗(X)b(Y, Z) − τ ∗(Y )b(X,Z),(5.2)

0 = τ ∗(Y )B∗X − τ ∗(X)B∗Y,(5.3)

0 = −g([B,B∗]X,Y ).(5.4)

We remark that B and B∗ are simultaneously diagonalizable by (5.4).
In the case that B∗ is of the form λ∗I, we have 0 = λ∗{τ ∗(Y )X −

τ ∗(X)Y } by (5.3). Suppose λ∗ 6= 0, τ ∗ vanishes. Otherwise, c̃ vanishes
from (5.1).

In the case that B∗ is not of the form λ∗I, there are λ∗
1 6= λ∗

2 so
that B∗Xj = λ∗

jXj where g(Xi, Xj) = δij, i, j = 1, 2. Besides there are
λ1, λ2 so that BXj = λjXj. The equation (5.1) implies that

0 = (
c̃

4
+ λ∗

1λ2)g(X2, Z)X1 − (
c̃

4
+ λ∗

2λ1)g(X1, Z)X2,

and hence

λ∗
1λ2 = λ∗

2λ1 = − c̃

4
6= 0.

By (5.3) we have 0 = λ∗
2τ

∗(X1)X2 − λ∗
1τ

∗(X2)X1, which implies that
τ ∗ vanishes. ¤

The equations (3.6) combined with Definition 2.2 yield that

(5.5)
− c̃

2
{g(X, Y )Z + g(X, Z)Y }

= (∇XK)(Y, Z) − b(Y, Z)A∗X
+h(X,Y )B∗Z + h(X, Z)B∗Y,

(5.6)
0 = h(X,K(Y, Z)) + (∇Xb)(Y, Z)

+τ ∗(X)b(Y, Z) − τ ∗(Z)h(X,Y ) − τ ∗(Y )h(X, Z),

(5.7)
0 = K(Y,A∗X) − τ ∗(Y )A∗X − h(X, Y )τ ]

+(∇XB∗)Y + τ ∗(X)B∗Y,

(5.8) − c̃

2
g(X,Y ) = −h(X,Y )ν − h(X, B∗Y )

+(∇Xτ ∗)Y + b(Y, A∗X),

(5.9) 0 = ∇Xτ ] − νA∗X − 2B∗A∗X − 2τ ∗(X)τ ],
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(5.10) 0 = h(X, τ ]) − ντ ∗(X) + 2τ ∗(A∗X) + dν(X).

Taking the trace of (5.5) with respect to X, we have

(5.11) −c̃g(Y, Z) = − tr A∗b(Y, Z) + h(B∗Z, Y ) + h(B∗Y, Z).

On the other hand, taking the trace of (5.5) with respect to Y , we get

(5.12) − c̃

2
(n + 1)g(X,Z)

= −b(A∗X,Z) + h(X,B∗Z) + tr B∗h(X, Z).

This combined with (5.8) shows

(ν − tr B∗)h(X, Y ) =
c̃

2
(n + 2)g(X,Y ) + (∇Xτ ∗)(Y ).

By Lemma 5.2, if c̃ 6= 0, we have

(5.13) h =
c̃

2
(n + 2)(ν − tr B∗)−1g,

and that h is nondegenerate.

Lemma 5.3. Let (M̃, ∇̃, g̃) be a Hessian manifold of constant Hessian

curvature c̃ 6= 0, (M,∇, g) a trivial Hessian manifold, and f : M → M̃
a statistical immersion of codimension one. Then the following hold:

A∗ = 0, B∗ = −1

2
νI, h = c̃ν−1g,

A = c̃ν−1I, B =
1

2
ν−1(2c̃ − ν2)I.

Proof . Since ∇ and ∇̃ are flat, the equation (3.3)1 implies that 0 =
h(Y, Z)A∗X − h(X, Z)A∗Y , and so 0 = h((tr A∗I − A∗)Y, Z). Since h
is nondegenerate, A∗ vanishes.

¿From (5.11) and (5.13), we have

0 = c̃g(Y, Z) + h(Y,B∗Z) + h(B∗Y, Z)

= c̃g({(n + 2)(ν − tr B∗)−1B∗ + I}Y, Z),

and that

(5.14) B∗ = −(n + 2)−1(ν − tr B∗)I.

On the other hand, the equation (5.12) implies

0 =
c̃

2
(n + 1)g(X,Z) + h(X,B∗Z) + tr B∗h(X, Z)

=
c̃

2
g(X,

[
(n + 2)(ν − tr B∗)−1B∗+

{(n + 1) + (n + 2)(ν − tr B∗)−1 tr B∗}I
]
Z),

and hence

(5.15) B∗ = −(n + 2)−1{(n + 1)ν + tr B∗}I.
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Comparing (5.14) and (5.15), we have

(5.16) tr B∗ = −1

2
nν,

and conclude that B∗ = −1

2
νI.

Finally, from (5.13) and (5.16), we get h = c̃ν−1g. We obtain A =

c̃ν−1I from (3.2), and calculate that B = B∗ + (A − A∗) =
1

2
ν−1(2c̃ −

ν2)I. ¤

Proof of Theorem 5.1 . Assuming c̃ 6= 0, by (5.1) and Lemma 5.3, we
have

0 =
c̃

4
{g(Y, Z)X − g(X, Z)Y }

+g(BY, Z)B∗X − g(BX,Z)B∗Y

=
1

4
(ν2 − c̃){g(Y, Z)X − g(X,Z)Y },

and thus conclude that c̃ = ν2 is positive. As a result, we have that

S = A∗ − B∗ =
1

2
νI = ±1

2

√
c̃I.

¤

Example 5.4. Let (H, ∇̃, g̃) be the (n + 1)-dimensional upper half
Hessian space of constant Hessian curvature 4 as in Example 2.3. For
a constant y0 > 0, write the following immersion by f0:

Rn 3 t(y1, . . . , yn) 7→ t(y1, . . . , yn, y0) ∈ H.

Let (∇, g) be the statistical structure on Rn induced by f0 from (∇̃, g̃).
We then get that (∇, g) is a Hessian structure and K(∇,g) = 0. In
other words, f0 is a statistical immersion of the trivial Hessian manifold

(Rn,∇, g) into the upper half Hessian space (H, ∇̃, g̃). It is easy to
calculate that

ξ = y0
∂

∂yn+1
,

II = g, S = I,
h = 2g, h∗ = 0, A∗ = 0, A = 2I, τ ∗ = τ = 0.

Remark 5.5. We denote by f1 the other type expression of horospheres
in the upper half space, that is,

f1 : Rn 3 z 7→
[

4r2(|z − a|2 + 4r2)−1(z − a) + a
8r3(|z − a|2 + 4r2)−1

]
∈ H,
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where r > 0 and a ∈ Rn. We remark that the image f1(Rn) is the set

{y ∈ Rn+1 | |y −
[

a
r

]
| = r} \ {

[
a
0

]
}, which is congruent to f0(Rn)

in the sense of Riemannian geometry. We can take ξ = 8r3(|z − a|2 +

4r2)−2

{
4r

∑
(zi − ai)

∂

∂yi
+ (4r2 − |z − a|2) ∂

∂yn+1

}
as a unit normal

vector field, and calculate that II = g, S = I and ∇g is flat, of course,
but that τ ∗ = −r−2(|z−a|2+4r2)−3 (|z − a|6 + 6|z − a|4r2 − 32r6)

∑
(zi−

ai)dzi 6= 0.

Combining Example 5.4, Remark 5.5 and Theorem 5.1, we conclude
the following

Corollary 5.6. Let (M,∇, g) be a connected trivial Hessian manifold

of dimension n. If f : (M,∇, g) → (H, ∇̃, g̃) is a statistical immersion,
then f(M) is an open subset of f0(Rn).
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