HYPERSURFACES OF COMPLEX PROJECTIVE SPACE WITH CONSTANT SCALAR CURVATURE

SHOSHICHI KOBAYASHI

1. Introduction

In his dissertation, B. Smyth [3] classified the complex hypersurfaces of the simply connected complex space forms which are complete and Einsteinian.¹ In particular, he proved the following theorem:

Let M be a complete complex hypersurface of the complex projective space $P_{n+1}(C)$ of dimension n+1 for $n \ge 2$. If M is an Einstein space with respect to the metric induced from the Fubini-Study metric of $P_{n+1}(C)$, then M is either a complex hyperplane $P_n(C)$ or a complex quadric in $P_{n+1}(C)$.

The purpose of this note is to point out that the theorem of Smyth combined with the theorem of Riemann-Roch-Hirzebruch yields the following:

Let M be a complete complex hypersurface of $P_{n+1}(C)$. If M has constant scalar curvature with respect to the induced metric, then M is either a complex hyperplane $P_n(C)$ or a complex quadric in $P_{n+1}(C)$.

2. Kähler manifolds with constant scalar curvature

Let *M* be a Kähler manifold with metric $ds^2 = 2 \sum_{\alpha,\beta} g_{\alpha\beta} dz^{\alpha} d\bar{z}^{\beta}$ and the fundamental 2-form $\Phi = \frac{2}{i} \sum_{\alpha,\beta} g_{\alpha\beta} dz^{\alpha} d\bar{z}^{\beta}$. The first Chern class $c_1(M)$ of *M* is represented by the closed 2-form

$$\gamma_1 = \frac{1}{2\pi i} \sum_{\alpha,\beta} R_{\alpha\beta} dz^{\alpha} d\bar{z}^{\beta} ,$$

where $R_{\alpha\beta}$ denotes the Ricci tensor. We denote by $[\Phi]$ and $[\gamma_1]$ the cohomology classes represented by Φ and γ_1 , respectively, so that $c_1(M) = [\gamma_1]$.

If M is an Einstein space, then its scalar curvature $2\sum_{\alpha,\beta} g^{\alpha\beta} R_{\alpha\beta}$ is constant

and $[\gamma_1] = k[\Phi]$ for some constant k. Conversely, we have

Received September 18, 1967. Supported by NSF Grant GP-5798.

¹ In [1] Chern showed that even the corresponding local result is true. Takahashi [4] obtained a partial generalization of the result of Smyth by showing that if a hypersurface in a space of constant holomorphic sectional curvature has parallel Ricci tensor, then it is Einsteinian and symmetric.

SHOSHICHI KOBAYASHI

Lemma. If M is a compact Kähler manifold such that its scalar curvature is constant and $[\gamma_1] = k[\Phi]$, then M is an Einstein space.

In fact, from the harmonic integral theory we see easily (by local calculation) that γ_1 is harmonic if and only if the scalar curvature is constant. If γ_1 is harmonic and $[\gamma_1] = k[\Phi]$, then $\gamma_1 = k\Phi$. This proves the lemma.

3. The first Chern class of a hypersurface

Let *h* be the generator of $H^2(P_{n+1}(C); \mathbb{Z})$ corresponding to the divisor class of a hyperplane $P_n(C)$ so that the first Chern class $c_1(P_{n+1}(C))$ of $P_{n+1}(C)$ is given by

$$c_1(P_{n+1}(C)) = (n+2)h$$
.

Let M be a complete complex hypersurface in $P_{n+1}(C)$. By the well known theorem of Chow M is algebraic. Let d be the degree of M. Then (cf. Hirzebruch [2, p. 159]) the first Chern class $c_1(M)$ of M is given by

$$c_1(M) = (n-d+2)\bar{h} ,$$

where \bar{h} is the image of h under the natural homomorphism $H^*(P_{n+1}(C); Z) \to H^*(M; Z)$ induced by the imbedding $M \to P_{n+1}(C)$.

Let Ψ be the fundamental 2-form of $P_{n+1}(C)$. Since dim $H^*(P_{n+1}(C); R) = 1$, it follows that $[\Psi] = ah$, where *a* is a constant. Since the fundamental 2-form Φ of *M* is the restriction of Ψ to *M*, we have $[\Phi] = a\overline{h}$. This, together with $[\gamma_1] = c_1(M) = (n - d + 2)h$, implies that $[\gamma_1] = k[\Phi]$ for some constant *k*. Our assertion in §1 now follows from the lemma.

Remark. The same reasoning as above, together with the result on p. 159 of Hirzebruch [2], gives the following: Let M_n be a complete intersection of r non-singular hypersurfaces in $P_{n+1}(C)$. If M has constant scalar curvature, then M is an Einstein space.

Bibliography

- S. S. Chern, Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, J. Differential Geometry 1 (1967) 21-31.
- F. Hirzebruch, Topological methods in algebraic geometry, English edition, Springer, Berlin, 1966.
- B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967) 246-266.
- [4] T. Takahashi, Hypersurface with parallel Ricci tensor in a space of constant holomorphic sectional curvature, J. Math. Soc. Japan 19 (1967) 199-204.

UNIVERSITY OF CALIFORNIA, BERKELEY

370