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HYPERSURFACES WITH ALMOST COMPLEX STRUCTURES

IN THE REAL AFFINE SPACE

BY

MAYUKO KON (Hokkaido)

Abstract. We study affine hypersurface immersions f : M → R
2n+1, where M is

an almost complex n-dimensional manifold. The main purpose is to give a condition for
(M, J) to be a special Kähler manifold with respect to the Levi-Civita connection of an
affine fundamental form.

1. Introduction. Affine immersions of a manifold M into the complex
affine space C

n+1 have been studied by many authors. In the case that
M is a complex n-dimensional manifold, K. Abe, Dillen, Verstraelen and
Vrancken considered an analogue of the real case by choosing a holomorphic
transversal vector field (see [1], [4]–[8]). They extended the Blaschke the-
ory to the complex case. Nomizu, Pinkall and Podestà [11] have established
the foundations for the geometry of affine Kähler immersions by choosing
an anti-holomorphic transversal vector field. An affine Kähler immersion
induces on M an affine Kähler connection, that is, a connection ∇ compat-
ible with the complex structure J on M whose curvature tensor satisfies
R(JX, JY ) = R(X, Y ) for all tangent vectors X, Y . Moreover, those au-
thors proved an analogue of the classical theorem of Pick and Berwald.
Opozda [13, 14] developed a general theory that includes the above choices
of transversal vector fields. Recently, Kurosu [10] studied complex equiaffine
immersions of general codimension.

On the other hand, Baues and Cortés [3] proved that any simply con-
nected special Kähler manifold has a canonical realization as a parabolic
affine hypersphere. This is an important example of an affine hypersurface
with complex structure immersed in the real affine space.

In this paper, we study affine hypersurface immersions f : M → R
2n+1,

where M is an almost complex n-dimensional manifold. In particular, we
study the case that the affine fundamental form is invariant with respect
to the almost complex structure J of M . The main purpose of this paper
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is to give a condition for (M, J) to be a special Kähler manifold. We prove
that if the symplectic 2-form ω of the immersion is ∇-parallel, then (M, J)
is a special Kähler manifold under some additional conditions. Moreover,
we prove that a hypersurface immersion with ∇-parallel almost complex
structure J is a hyperquadric in R

2n+1.

In Section 2, we recall some basic facts and definitions of affine differential
geometry, in particular concerning hypersurface immersions. We prove our
main theorems in Section 3. In Section 4, we give some conditions for an
affine connection ∇ induced by the immersion to be flat.

The author would like to express her deep gratitude to Professors
H. Furuhata and T. Kurose for their support and many useful suggestions.
She also thanks the referee for useful comments.

2. Affine hypersurfaces. For the general theory of affine geometry,
we refer to Nomizu and Sasaki [12].

Let R
n+1 denote the real affine space with the standard flat affine con-

nection D and the standard volume form det. We consider an n-dimensional
manifold M together with an immersion f : M → R

n+1. We then call M

a hypersurface and f a hypersurface immersion. Let ξ ∈ Γ (f−1TR
n+1) be

a transversal vector field on M . Then we have a torsion-free connection ∇
satisfying

DXf∗(Y ) = f∗(∇XY ) + g(X, Y )ξ,

where g is a symmetric bilinear function on the tangent space TmM , called
the affine fundamental form relative to the transversal vector field ξ. We call
it the Gauss formula. Also, for any vector field X, we have the Weingarten

formula

DXξ = −f∗(SX) + τ(X)ξ,

where S is a tensor field of type (1, 1), and τ is a 1-form. We call S the shape

operator, and τ the transversal connection form of f with respect to ξ.

The curvature tensor field R of ∇ is defined by

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

for any vector fields X, Y and Z tangent to M . Since D is a flat connection,
we have

(DXDY − DY DX − D[X,Y ])Z = 0,

(DXDY − DY DX − D[X,Y ])ξ = 0

for all vector fields X, Y and Z. By the Gauss and Weingarten formulas,
R, ∇, g, S and τ satisfy the following formulas for an arbitrary transversal
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vector field ξ:

R(X, Y )Z = g(Y, Z)SX − g(X, Z)SY,(1)

(∇Xg)(Y, Z) + τ(X)g(Y, Z) = (∇Y g)(X, Z) + τ(Y )g(X, Z),(2)

(∇XS)(Y ) − τ(X)SY = (∇Y S)(X) − τ(Y )SX,(3)

g(X, SY ) − g(SX, Y ) = dτ(X, Y ).(4)

Equations (1), (2), (3), and (4) are called the Gauss equation, Codazzi equa-
tion for g, Codazzi equation for S and Ricci equation, respectively.

A transversal vector field ξ of f is called an equiaffine transversal vector

field if τ = 0. If the affine fundamental form g is nondegenerate for some
transversal vector field, the hypersurface f is called nondegenerate. When f

is nondegenerate, there exists a canonical transversal field ξ, called the affine

normal. The affine normal is uniquely determined up to sign by the follow-
ing conditions: the metric volume form ν of g is ∇-parallel and coincides
with the induced volume form θ, where ν is defined by ν(X1, . . . , Xn) =
|det[g(Xi, Xj)]|

1/2 and θ is defined by θ(X1, . . . , Xn) = det(f∗(X1), . . . ,
f∗(Xn), ξ) for tangent vectors Xi (i = 1, . . . , n). Since ∇Xθ = τ(X)θ for
all X ∈ Tx(M), these conditions lead to τ = 0.

An immersion f : M → R
n+1 with the affine normal ξ is called a Blaschke

immersion, and the affine fundamental form g associated to the affine normal
ξ is called the Blaschke metric of f . A Blaschke immersion is called an affine

hypersphere if the shape operator S satisfies S = λ Id for some λ ∈ R. An
affine hypersphere is said to be proper if λ 6= 0, and improper or parabolic if
λ = 0.

For later use, we define the g-conjugate connection ∇ on M by the
equation

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).

We denote by ∇̂ the Levi-Civita connection of g. When ξ is an equiaffine
transversal vector field, the equation ∇̂ = 1

2(∇ + ∇) holds.

3. Affine hypersurfaces with almost complex structure. Let M

be a simply connected almost complex manifold with almost complex struc-
ture J . Let f : M → R

2n+1 be a nondegenerate hypersurface immersion,
ξ a transversal vector field, and g the affine fundamental form. If g satis-
fies the condition g(JX, JY ) = g(X, Y ) for any X and Y , then g is said
to be invariant with respect to J . The 2-form ω is defined by the equation
ω(X, Y ) = g(X, JY ).

Theorem 3.1. Let (M, J) be an almost complex manifold of complex

dimension n ≥ 2 (real dimension 2n), and f : M → R
2n+1 a nondegenerate

hypersurface immersion with a transversal vector field ξ. Suppose that the
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affine fundamental form g is invariant with respect to J . Then R(X, Y )ω = 0
for any X, Y ∈ TmM and each m ∈ M if and only if ∇ is flat.

Proof. From (1), we have

(R(X, Y )ω)(Z, W ) = −ω(R(X, Y )Z, W ) − ω(Z, R(X, Y )W )

= −g(R(X, Y )Z, JW ) − g(Z, JR(X, Y )W )

= −g(Y, Z)g(SX, JW ) + g(X, Z)g(SY, JW )

+ g(Y, W )g(SX, JZ) − g(X, W )g(SY, JZ)

for any tangent vectors X, Y , Z and W . Taking the contraction with respect
to Y and Z, we have

(−2n + 2)g(SX, JW ) + (trJS)g(X, W ) = 0.(5)

Again, taking the contraction, we obtain

(4n − 2) trJS = 0.

The conditon n ≥ 2 implies that trJS = 0. By (5), we have g(SX, JW ) = 0
for any X, W ∈ TmM. This completes the proof.

We now define d∇J by

d∇J(X, Y ) = (∇XJ)Y − (∇Y J)X

for any vectors X and Y tangent to M , and we define the cubic form C by

C(X, Y, Z) = (∇Xg)(Y, Z) + τ(X)g(Y, Z)

for any vectors X, Y and Z. According to the Pick–Berwald theorem (see
[12]), f(M) is a hyperquadric in R

2n+1 if the cubic form C vanishes identi-
cally.

Lemma 3.2. Let (M, J) be an almost complex manifold , and f : M →
R

2n+1 a nondegenerate hypersurface immersion with a transversal vector

field ξ. Suppose that the affine fundamental form g is invariant with respect

to J . Then

(6) (∇Zω)(Y, JX) − (∇Xω)(Y, JZ)

= ω(Y, d∇J(X, Z)) + τ(Z)g(Y, X) − τ(X)g(Y, Z)

for any vector fields X, Y and Z.

Proof. By the definition of ω, we have

(∇Xω)(Y, Z) = (∇Xg)(Y, JZ) + g(Y, (∇XJ)Z),(7)

from which

(∇Xg)(Y, Z) = −(∇Xω)(Y, JZ) − ω(Y, (∇XJ)Z).
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Thus, using (2), the Codazzi equation for g, we obtain

− (∇Xω)(Y, JZ) − ω(Y, (∇XJ)Z) + τ(X)g(Y, Z)

= −(∇Zω)(Y, JX) − ω(Y, (∇ZJ)X) + τ(Z)g(Y, X).

Since d∇J(X, Z) = (∇XJ)Z − (∇ZJ)X, we have equation (6).

Proposition 3.3. Let (M, J) be an almost complex manifold , and f :
M → R

2n+1 a nondegenerate hypersurface immersion with a transversal

vector field ξ. Suppose that the affine fundamental form g is invariant with

respect to J and that ∇ω = 0. Then d∇J = 0 if and only if τ = 0, that is,
ξ is an equiaffine transversal vector field.

For any transversal vector field ξ, there exists a vector field Z and a
nonvanishing function φ on M that satisfy ξ = φξ + f∗(Z). Let g be an
affine fundamental form relative to ξ. Then we have the following equation
(see Nomizu and Sasaki [12, Proposition 2.5 in Chapter 2]):

g =
1

φ
g.

Thus we see that if the affine fundamental form g is invariant with respect
to J , then so is g. Hence we can choose ξ to be an equiaffine transversal
vector field.

Proposition 3.4. Let (M, J) be an almost complex manifold , and f :
M → R

2n+1 a nondegenerate hypersurface immersion with an equiaffine

transversal vector field ξ. Suppose that the affine fundamental form g is

invariant with respect to J . If ∇ω = 0, then ∇̂J = 0. Consequently , (M, J, g)
is a Kähler manifold.

Proof. By the definition of the conjugate connection ∇, we get

Zg(X, Y ) = Zg(JX, JY )

= g((∇ZJ)X, JY ) + g(∇ZX, Y )

+ g(JX, (∇ZJ)Y ) + g(X,∇ZY ).

So we have

g((∇ZJ)X, JY ) = −g(JX, (∇ZJ)Y ) = −g(X, (∇ZJ)JY ),

from which

g(X, (∇ZJ)Y ) + g((∇ZJ)X, Y ) = 0.(8)

Since ξ is an equiaffine transversal vector field, the Levi-Civita connection
∇̂ of g is given by ∇̂ = 1

2(∇ + ∇). Then (8) implies

g((∇̂XJ)Y, Z) = 1
2g((∇XJ)Y, Z) − 1

2g(Y, (∇XJ)Z).(9)
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Suppose that ∇ω = 0. Then (7) implies

0 = (∇Xg)(Y, JZ) − (∇Xg)(JZ, Y )(10)

= −g(Y, (∇XJ)Z) + g(Z, (∇XJ)Y ).

From this and (9), we have ∇̂J = 0.

Now we introduce the notion of special Kähler manifold (cf. [2]).

Definition 3.5. Let (M, J, g) be a Kähler manifold with, possibly indef-
inite, Kähler metric g and Kähler form ω := g(·, J ·). Let ∇ be a torsion-free,
flat connection on M . If ∇ω = 0 and d∇J = 0, then (M, J, g,∇) is called a
special Kähler manifold.

Proposition 3.6. Let (M, J) be an almost complex manifold. The al-

most complex structure J is integrable if and only if d∇J is invariant with

respect to J , that is,

d∇J(JX, JY ) = d∇J(X, Y ).

Proof. We denote by N the Nijenhuis tensor with respect to J . Since
the induced connection ∇ is torsion-free, we have

N(X, Y ) = 2{[JX, JY ] − [X, Y ] − J [X, JY ] − J [JX, Y ]}

= 2{(∇JXJ)Y − (∇JY J)X − J(∇XJ)Y + J(∇Y J)X}

= 2{(∇JXJ)Y − (∇Y J)JX + (∇XJ)JY − (∇JY J)X}

= 2{d∇J(JX, Y ) + d∇J(X, JY )}.

Hence J is integrable if and only if d∇J(JX, JY ) = d∇J(X, Y ).

From Theorem 3.1 and Propositions 3.3, 3.4 and 3.6, we have the next
theorem.

Theorem 3.7. Let (M, J) be an almost complex manifold of complex

dimension n ≥ 2, and f : M → R
2n+1 a nondegenerate hypersurface immer-

sion with an equiaffine transversal vector field ξ. Suppose that the affine fun-

damental form g is invariant with respect to J . If ∇ω = 0, then (M, J, g,∇)
is a special Kähler manifold.

Theorem 3.8. Let (M, J) be an almost complex manifold , and f : M →
R

2n+1 a nondegenerate hypersurface immersion with an equiaffine transver-

sal vector field ξ. Suppose that the affine fundamental form g is invariant

with respect to J . If ∇J = 0, then ∇̂J = 0 and the hypersurface f(M) is a

hyperquadric in R
2n+1.

Proof. By (8), if ∇J = 0, then ∇J = 0. Since ξ is an equiaffine transver-

sal vector field, we have ∇̂ = 1
2(∇ + ∇). Hence ∇̂J = 0.

From the condition ∇J = 0, we have

(∇Zg)(X, JY ) + (∇Zg)(JX, Y ) = 0.
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Using the Codazzi equation for g, we get

(∇Zg)(X, JY ) = −(∇Zg)(JX, Y ) = −(∇Y g)(JX, Z)

= (∇Y g)(X, JZ) = (∇Xg)(Y, JZ)

= −(∇Xg)(JY, Z) = −(∇Zg)(X, JY ).

Hence, f(M) is a hyperquadric in R
2n+1 because the cubic form C vanishes

identically.

4. Conditions for an affine hypersurface to be flat. In this section,
we give some conditions for the induced connection ∇ to be flat.

Proposition 4.1. Let (M, J) be an almost complex manifold of complex

dimension n ≥ 2, and f : M → R
2n+1 a nondegenerate hypersurface immer-

sion with a transversal vector field ξ. Suppose that the affine fundamental

form g is invariant with respect to J . The curvature tensor R of the induced

connection ∇ satisfies

R(JX, Y ) = JR(X, Y )

for any X and Y if and only if ∇ is flat. Also, R satisfies

R(JX, JY ) = R(X, Y )

for any X and Y if and only if ∇ is flat.

Proof. We only prove the sufficiency of both curvature assumptions. Un-
der the first assumption, from the Gauss equation, we have

R(JX, Y )Z − JR(X, Y )Z = g(Y, Z)S(JX) − g(JX, Z)SY(11)

−g(Y, Z)JSX + g(X, Z)JSY = 0.

We can choose an orthogonal basis of the tangent space to M of the form
{X1, . . . , Xn, JX1, . . . , JXn}. Setting X = Y = Z = Xi in (11), we have
S(JXi) = 0 for i = 1, . . . , n. Similarly, setting X = Y = Xi and Z = JXi

in (11), we obtain SXi = 0 for i = 1, . . . , n. Hence S = 0, which implies
that ∇ is flat.

On the other hand, under the second assumption, we have

R(JX, JY )Z − R(X, Y )Z = g(JY, Z)S(JX) − g(JX, Z)SJY(12)

− g(Y, Z)SX + g(X, Z)SY = 0.

Setting X = Z = Xi and Y = Xj in (12), we have SXj = 0 for j = 1, . . . , n.
Similarly, setting X = Z = Xi and Y = JXj , we obtain SJXj = 0 for
j = 1, . . . , n. Therefore S vanishes identically, and the connection ∇ is flat.

We define a connection ∇J by ∇JX = J∇(J−1X) = ∇X − J(∇J)X
(see [2]). The curvature tensor, the Ricci tensor and the Weyl projective
curvature tensor with respect to ∇J will be denoted by RJ , RicJ and W J ,
respectively.
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Theorem 4.2. Let (M, J) be an almost complex manifold of complex

dimension n ≥ 2, and f : M → R
2n+1 a nondegenerate hypersurface immer-

sion with a transversal vector field ξ. Suppose that the affine fundamental

form g is invariant with respect to J . If ∇J is projectively flat , then ∇ is

flat.

Proof. By the definition of RJ and the Gauss equation, we obtain

RJ (X, Y )Z = −g(Y, JZ)JSX + g(X, JZ)JSY.

So we have

RicJ(Y, Z) = −tr(JS)g(Y, JZ) + g(JSY, JZ)

= −tr(JS)g(Y, JZ) + g(SY, Z),

trRJ (X, Y ) = tr{Z 7→ RJ(X, Y )Z} = g(Y, SX) − g(X, SY ).

As RicJ may not be symmetric, the Weyl projective curvature tensor of ∇J

is defined by (see [12])

W J(X, Y )Z = RJ(X, Y )Z −
1

2n − 1
{RicJ(Y, Z)X − RicJ(X, Z)Y }

−
1

2n + 1
trRJ(X, Y )Z

−
1

4n2 − 1
{tr RJ(Y, Z)X − trRJ (X, Z)Y }.

Since ∇J is projectively flat, the Weyl projective curvature tensor W J van-
ishes identically. So we have

W J(X, Y )Z = −g(Y, JZ)JSX + g(X, JZ)JSY(13)

−
1

2n + 1
{g(Y, SX)Z − g(X, SY )Z}

−
1

2n − 1
{−tr(JS)g(Y, JZ)X + g(SY, Z)X}

+
1

2n − 1
{−tr(JS)g(X, JZ)Y + g(SX, Z)Y }

−
1

4n2 − 1
{g(Z, SY )X − g(Y, SZ)X

− g(Z, SX)Y + g(X, SZ)Y } = 0.

If X, Y , Z and JZ are orthogonal with respect to g, then

0 = −
1

2n − 1
g(SY, Z)X +

1

2n − 1
g(SX, Z)Y

−
1

2n + 1
{g(Y, SX)Z − g(X, SY )Z}

−
1

4n2 − 1
{g(Z, SY )X − g(Y, SZ)X − g(Z, SX)Y + g(X, SZ)Y }.
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Since X, Y and Z are linearly independent, we have

g(SX, Y ) = g(SY, X),(14)

−
2n + 2

4n2 − 1
g(SY, Z) +

1

4n2 − 1
g(Y, SZ) = 0,(15)

2n + 2

4n2 − 1
g(SX, Z) −

1

4n2 − 1
g(X, SZ) = 0.(16)

By (13), we obtain

g(SY, Z) = g(SZ, Y ).(17)

Equations (15) and (17) lead to g(SY, Z) = 0. If X, Y and JY are orthogonal
with respect to g, we have

W J(X, Y )Y = −
1

2n − 1
g(SY, Y )X = 0.

So g(SY, Y ) = 0.
Choose an orthogonal basis {X1, . . . , Xn, JX1, . . . , JXn} with respect

to g. We next prove g(SXi, JXi) = 0 and g(SJXi, Xi) = 0 for i = 1, . . . , n.
By the above considerations, there are scalar functions ai and bi (i =
1, . . . , n) such that SXi = aiJXi and S(JXi) = biXi. Then

W J(Xj, Xi)JXi = −ajg(Xi, Xi)Xj −
1

2n − 1
tr(JS)g(Xi, Xi)Xj(18)

−
1

2n − 1
aig(Xi, Xi)Xj −

1

4n2 − 1
aig(Xi, Xi)Xj

+
1

4n2 − 1
big(Xi, Xi)Xj = 0,

W J(Xj, JXi)Xi = ajg(Xi, Xi)Xj +
1

2n − 1
tr(JS)g(Xi, Xi)Xj(19)

−
1

2n − 1
big(Xi, Xi)Xj −

1

4n2 − 1
big(Xi, Xi)Xj

+
1

4n2 − 1
aig(Xi, Xi)Xj = 0.

So we have ai + bi = 0. By the definition of trace, we get

tr(JS) =

n∑

k=1

g(JSXk, Xk)g(Xk, Xk)(20)

+

n∑

s=1

g(JS(JXk), JXk)g(JXk, JXk)

= −

n∑

k=1

ak +

n∑

s=1

bs = −2

n∑

k=1

ak.

Substituting (20) into (18), for any j such that j 6= i, we have
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aj +
2n + 3

4n2 − 1
ai +

2

2n − 1

n∑

k=1

ak = 0.(21)

If i 6= l and j 6= l, we have

al +
2n + 3

4n2 − 1
ai +

2

2n − 1

n∑

k=1

ak = 0.(22)

Hence a1 = · · · = an. By (21), we conclude that ai = 0 (i = 1, . . . , n).
Consequently, S = 0, and ∇ is flat. So we have proved the theorem.
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