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HYPERSURFACES WITH CONSTANT MEAN
CURVATURE IN SPHERES
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(Communicated by Peter Li)

Abstract. Let M" be a compact hypersurface of a sphere with constant mean

curvature H. We introduce a tensor <j>, related to H and to the second

fundamental form, and show that if |</>|2 < B# , where Bfj ^ 0 is a number

depending only on H and n, then either \tf>\2 = 0 or \4>\2 = Bn . We also

characterize all M" with \<j>\2 = £# .

1. Introduction

(1.1) Let M" be an «-dimensional orientable manifold and let /: Mn -»

S"+1(l) c R"+2 be an immersion of M into the unit (n + l)-sphere Sn+X(l)

of the euclidean space R"+2. Choose a unit normal field n along /, and denote
by A: TPM —> TPM the linear map of the tangent space TPM, at the point

p e M, associated to the second fundamental form of / along n , i.e.,

(AX,Y) = (VxY,n),

where X and Y are tangent vector fields on M and V is the connection of
Sn+i (1). A is a symmetric linear map and can be diagonalized in an orthonor-

mal basis {ex, ... ,e„} of TPM, i.e., Ae, = ktei, i - 1, ... , n .  We will

denote by H = £ £/ h the mean curvature of / and by |^4|2 = £,■ k? .

When / is minimal (H = 0) the following gap theorem is well known.

(1.2) Theorem. Let Mn be compact and f: Mn —> S"+X(l) be a minimal

hypersurface. Assume that \A\2 < n, for all p e M. Then:

(i) Either \A\2 = 0 (and M" is totally geodesic) or \A^ = n.
(ii)   \A\2 = n if and only if M" is a Clifford torus in Sn+X(l), i.e., Mn is a

product of spheres S"1 (rx) x S"2(r2), nx + «2 = n, of appropriate radii.

(1.3) Remark. The sharp bound (i) is due to Simons [S]. The characterization

given in (ii) was obtained independently by Chern, do Carmo, and Kobayashi
[CdCK] and Lawson [L]. The result in (ii) is local.

Attempts have been made to extend the above result to hypersurfaces with

constant mean curvature H (see, e.g., Okumura [O]), but as far as we know no
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sharp bound has yet been found. The purpose of this paper is to describe such
a sharp bound and characterize the hypersurfaces that appear when the bound

is reached.
For that, it is convenient to define a linear map </>: TPM —> TPM by

(<f>X,Y) = H(X,Y)-(AX,Y).

It is easily checked that trace 0 = 0 and that

M2 = ^5>'-*/)2'        i,j=\,...,n,
ij

so that \cj)\2 = 0 if and only if M is totally umbilic.
It turns out that <p is the natural object to use when extending the above

theorem to constant mean curvature. In fact, Theorem 1.5 below can be proved.

We need some notation. An H(r)-torus in .S''l+1(l) is obtained by consid-

ering the standard immersions Sn~x(r) c R" , Sl(\/l-r2) cR2, 0 < r < 1,

where the value within the parentheses denotes the radius of the corresponding

sphere, and taking the product immersion S"~x(r) x Sx(Vl -r1) <-* R" x R2.

By the choices made, the H(r)-torus turns out to be contained in 5"+,(l) and

has principal curvatures given, in some orientation, by

iv a\ i i Vl - r2 , r
(1-4) kx = --- = kn-x =-,        kn = — ,

r v 1 - r2

or the symmetric of these values for the opposite orientation.

Let M" be compact and orientable, and let /: M" —> S"+X(l) have constant

mean curvature H; choose an orientation for M such that H > 0. For each

H, set

PH(x) = x2+   H{n-2)Hx - n(H2 + 1),
V"(n - 1)

and let BH be the square of the positive root of Ph(x) = 0. Notice that for

H = 0, B0 = n.

(1.5) Theorem. Assume that \<t>\2 < BH for all p e M. Then:

(i) Either \(f>\2 = 0 (and M is totally umbilic) or \<j>\2 = BH.

(ii)   \4>\2 = Bh if and only if:
(a) H = 0 and M" is a Clifford torus in Sn+X(\).
(b) H ^ 0, n > 3, and Mn is an H(r)-torus with r2 < ^ .

(c) H ^ 0, n = 2, and Mn is an H(r)-torus with r2 ^ ^± .

(1.6) Remark. As it will be seen in the proof, part (ii) of Theorem (1.5) is

again a local result.

(1.7) Remark. It is an interesting fact that not all H(r)-tori appear in the

equality case for n > 3, but only those for which r2 < (n - \)/n (it can be

checked that if we orient those H(r)-tori for which r2 > (n - \)/n in such a

way that H > 0, then \4>\2 > BH). This has to do with the fact that the term

which contains H in the equation Ph(x) = 0 vanishes when n - 2. Thus, if

H 7^ 0, the equation defining Bh is invariant by a change of orientation if and

only if n = 2 .
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(1.8) Remark. In the minimal case, Theorem (1.2) can be extended to higher

codimensions (see [CdCK]). In her doctoral dissertation of IMPA, Walcy Santos

has also been able to extend Theorem (1.5) to higher codimensions (for the

precise statement in this case, see [Sa]).

2. Proof of Theorem (1.5)

(2.1) We first compute the Laplacian Acp of 0. We first observe that given

a Riemannian manifold M and a symmetric linear map on the tangent spaces

of M that satisfy formally the Codazzi equation, Cheng and Yau [CY] have

already computed such a Laplacian. This turns out to be the case for <f>, and

the result of [CY] in our context can be described as follows.

Let {ex, ... , en} be an orthonormal frame which diagonalizes <p at each

point of M, i.e., </>e, = ptei, and let V be the induced connection on M.

Then[CY, p. 198]

(2.2) l-A\cj>\2 = |V0|2 + £ pi(tr4>)u + \ £ Rijij(Pi - p})2,
i ij

where Uyy is the sectional curvature of the plane {e,, e,-} .

We first compute the last term on the right-hand side of (2.2). By the defini-

tion of <f>, Pi = H - ki and, by Gauss's formula,

Rijij = 1 + kikj = 1 + PiPj - H(pi + pj) + H2.

We now use a result of Nomizu and Smyth [NS, p. 372] which implies, since

tr(p = 0, that

i,j i \   i I

Therefore, since ]T\ .(pt - jij)2 = 2n\4>\2, we obtain

(2.3)

2 lZ RUu(Pi - Pj)2 =n zZ rt - f zZ ̂ )

ij   _ zt2

- y zZ^1 + ̂ (Pt ~ Pj)2 + ~y zZ^i ~ Pj)2
i J i, j

= n\cf>\2 - |0|4 + nH2\<p\2 - | 5>(- + pj)(pi - pj)2.

On the other hand, since ^,- Pi = 0, it is easily checked that

(2-4) ^zZ^ + ̂ '-^^nzZri-
i,j i

It follows from (2.3) and (2.4) that (2.2) can be written as

(2.5) iA|0|2 = |V0|2 - |0|4 + n\<t>\2 + nH2\4>\2 - nH^p]-
i

We want to estimate VJ, p] ■ For that, we use the following lemma, the

inequality case of which is stated in Okumura [O].
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(2.6) Lemma. Let pit i=\, ... , n, be real numbers such that £, pi = 0 and

Y,i p2 = P2, where p = const > 0. Then

--^l=pi<Tpl<^=p\

and equality holds in the right-hand (left-hand) side if and only if (n- 1) of the
Pi's are nonpositive and equal ((n - 1) of the Pi's are nonnegative and equal).

Proof of the lemma. We can assume that /? > 0, and use the method of La-

grange's multipliers to find the critical points of g = YliP] subject to the

conditions: YV Pi = 0, YJ(- P2 - P2 ■ It follows that the critical points are given

by the values of pt that satisfy the quadratic equation

pj - Xpi - a = 0, i = I, ... , n.

Therefore, after reenumeration if necessary, the critical points are given by:

pl=p2=- = PP=a>0,       pp+x = Pp+2 = •■■ = pn = -b<0.

Since, at the critical points,

p2=zZp2=pa2 + (n-P)b2,
i

° = ^Zpi=pa-(n-p)b,
i

8 = zZrf = pa3 - (n - p)b3,
i

we conclude that

*2 = ^/?2,        b^=P-B\        ,-(»=£«-E*W.
pn (n - p)n \   n n  )

It follows that g decreases when p increases. Hence g reaches a maximum

when p = 1, and the maximum of g is given by

a3 - (n - \)b3 = ((n - \)bf - (n - \)b3 = (n - 2)n(n - \)b2b

=     "-2    P3.
Vn(n-l)

Since g is symmetric, this proves the lemma.

(2.7) Remark. For later use, it is convenient to observe from the proof that

the equality holds in the right-hand side if and only if (n - 1) /z,'s are of the

form -b — -(\/n(n - \))XI2P and the remaining one is a = ((n - \)/n)xl2p .

(2.8) We return to the proof of Theorem (1.5). By using Lemma (2.6) in (2.5),

we obtain

\A\cp\2 > |V0|2 - |0|4 + n(H2 + 1)|0|2 -   n{n~2) H\<p\3
2 y/n(n-\)

= |V0|2 + \cp\2 f-|0|2 -   n{n~2)H\d>\ + n(H2 + l)).
\ ^n(n-l) J
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Integrating both sides of the above inequality, using Stokes' theorem and the
hypothesis, we conclude that

o> / m2 + f w2 (~\<p\2- 1}Hr\m+«(#2+1)) >o.
Jm Jm       \ v(«(" - 1) /

Thus |V0|2 = 0 and either \<j>\2 e0 or \<j>\2 = BH. This proves part (i) of
Theorem (1.5).

We now consider part (ii). Notice first that if |</>|2 = Bh , the right-hand side

of inequality (2.8) vanishes identically irrespective of the compactness of M.
Since this is all that we will use, the remaining part of the argument is local.

If Ii - 0, the theorem reduces to Theorem (1.2) which gives (ii)(a).

If H ^ 0, we conclude that V</> = 0 and that equality holds in the right-
hand side of Lemma (2.6). It follows that kt = const and (n - 1) of the fc,'s
are equal (see, e.g., [CdCK, p. 67]). After reenumeration if necessary, we can

assume that

kx= k2 = ■•■ = /c„_i,        kx ̂  kn, kj = const.

In this situation, if n > 3, a theorem of do Carmo and Dajczer [dCD, p. 701]

implies that M" is (contained in) a rotation hypersurfaces of SB+1(1) obtained

by rotating a curve of constant curvature. It follows that M" is an Fr"(r)-torus.

To identify which H(r)-tori do appear, we first observe that the equality case

of Lemma (2.6) gives (with the enumeration above):

Thus

*"*'=(«-^Ii*i)('/+/S1*1)'
hence, since |</>|2 = Bh ,

nknkx = nH2 - |0|2 -   n}n-2\H\<t>\ = -n,
\Jn(n - 1)

that is, k„kx = -1 . On the other hand, from

kn + (n-l)kx
K„ = n ~ Pn =-Pn ,

we conclude that

(n- \)kn -(«- \)k\ = -npn,

and, since pn > 0, we obtain that k„ < kx . Because knkx = -1, this implies

that kn < 0. It follows that the oriented H(r)-torus selected by the equality

case of Lemma (2.6) is given by (1.4). Since its mean curvature

H^ (n- \)-nr2

nr\/\ - r2

is positive, we must have r2 < (n - \)/n . This completes the proof of case (b)

in (ii).
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To prove finally the case (ii)(c), we observe that M2 c S3(l) is an isopara-

metric surface in S3(l) which is known to be either totally umbilic or an H(r)-

torus. Since |0|2 ^ 0, M2 is an H(r)-torus. By the above argument, we see

that k2kx = -1 . Now, however, because the equality case of Lemma (2.6)

gives no additional information, we can have both cases: /c2 > 0, kx < 0 and

k2 < 0, kx > 0. Thus, the (positive) mean curvature can be either

_ (n-l)-nr2 _ nr2 - (n - I) _
H --r-2      or   H- -    ,        n-2,

nrVi — rz nr\\ — rl

and all r2 / —■ will occur. This concludes the proof of (ii)(c) and of the

theorem.

3. Further remarks

(3.1) Theorem (1.5) raises the following question: Consider the set of hyper-

surfaces of S"+1(l) with H = const and \4>\ = const. Is the set of values of

|0| discrete? For minimal hypersurfaces, this question was raised in [CdCK],

and even in this simple case it was shown to be a hard question. For n = 3

and H = 0, a significant contribution was given by Peng and Terng [PT] who

showed that if 3 < \4>\2 < 6, \<f>\ = const, then |0|2 = 6 and M3 is a minimal
isoparametric hypersurface of SA(\) with three distinct principal curvatures.

The result of Peng and Terng was extended to hypersurfaces of S"*(l) with

constant mean curvature H by Almeida and Brito [AB]. They proved that if

\4>\2 = const and \<j>\2 < 6 + 6H2, then M3 is an isoparametric hypersurface

of S4(l) with constant mean curvature H; furthermore, if 4 + 6H2 < \<p\2 <

6 -I- 6H2, then \<j>\2 = 6 + 6FT2 and M3 has three distinct principal curvatures.

The result of Almeida and Brito solves the above question for n = 3 and

|0|2 < 6 + 6H2 and also throws some light on what happens to the H(r)-tori

when H ^ 0 and r2 > § : they are all in the interval BH < |0|2 < 4 + 6H2 (cf.

Remark 1.7).
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