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Abstract

A new two-parameter probability distribution called hypertabastic is introduced to model the

survival or time-to-event data. A simulation study was carried out to evaluate the performance of

the hypertabastic distribution in comparison with popular distributions. We then demonstrate the

application of the hypertabastic survival model by applying it to data from two motivating studies.

The first one demonstrates the proportional hazards version of the model by applying it to a data

set from multiple myeloma study. The second one demonstrates an accelerated failure time version

of the model by applying it to data from a randomized study of glioma patients who underwent

radiotherapy treatment with and without radiosensitizer misonidazole. Based on the results from

the simulation study and two applications, the proposed model shows to be a flexible and promising

alternative to practitioners in this field.

1. Introduction
Time to event models, commonly known as survival or
reliability models, have been studied and applied in a
variety of scientific disciplines such as medicine, engineer-
ing and business. The Hosmer and Lemeshow [1], Lee and
Wang [2], Kleinbaum and Klein [3], and Collet [4] books
give a detailed overview of survival data modeling tech-
niques. Non-parametric and semi-parametric survival
models such as the Cox regression analysis have been the
most widely used models in the analysis of time to event
survival data [5]. On the other hand, if the assumption for
parametric probability distribution is met for the data set
under consideration, it will result in more efficient and
easier to interpret estimates than non-parametric or semi
parametric models. A comprehensive review was given by
Efron [6] and Lee and Go [7].

Parametric hazard functions can enable clinicians and
researchers to model various disease scenarios, assess dis-
ease prognosis and progression, give valuable insights on
the pattern of failure, and understand the pathogenesis of
a chronic disease and how they are affected by different
treatment effects [8-10]. Estimation of hazard function is
also useful in the analysis of change-point hazard rate
models. It helps policy makers with cost effective health
care policy decisions [11]. Lundin et al. [12] estimated the
survival probabilities in breast cancer patients and con-
cluded that parametric survival estimates may be more
precise than Kaplan-Meier estimates when there are few
patients in a particular stratum. Royston and Parmar [13]
modeled the baseline distribution function by restricted
cubic regression spline. Kay et al. [14] discussed the use of
hazard functions in breast cancer studies. They believe
that the hazard function is an important tool in investigat-
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ing disease curability and can help the clinician to express
his ideas regarding disease progression and the biology of
treatment effect. Foulkes et al. [15] used parametric mod-
eling to assess the prognostic factors in the recurrence of
ischemic strokes. Sama et al. [16] used five parametric
models to analyze the survival time data of infections and
they found that the best fit could be obtained using para-
metric models. They also indicated that parametric mod-
els can be used to model the duration of malaria
infections. Kannan et al. [17] used log-logistic probability
distribution to model altitude decompression sickness
(DCS) risk and symptom onset time. They concluded that
the log-logistic model could provide good estimates of the
probability of DCS over time. Nardi and Schemper
[18,19] emphasized the role of residuals for the selection
of survival models. They argued that when empirical data
is sufficient, parametric models provide some insight into
the shape of the baseline hazard function.

In the Cox model, the baseline hazard function is
regarded as a nuisance parameter, while in parametric
models, the hazard function reflects the time course of the
process under study. In this paper, we introduce a new
two-parameter continuous probability distribution called
hypertabastic probability distribution. The hypertabastic
hazard function can assume a different variety of shapes.
It can be used to analyze biomedical data such as cancer
recurrence time. Based on the hypertabastic distribution,
we introduce the hypertabastic survival model which
includes the hypertabastic proportional hazards model
with parametric baseline hazard function, the hypertabas-
tic accelerated failure model and the hypertabastic pro-
portional odds model. The hypertabastic distribution can
be used to analyze the accelerated hazards regression
model of Chen [20]. It can also be used to monitor the
disease progression and regression and provide the clini-
cians with the time interval(s) on which the disease
progresses or regresses and the time interval(s) on which
the disease progression or regression speeds up or slows
down. This vital information will make it easier for the
physicians to take appropriate action regarding their
patients.

2. Hypertabastic distribution
In this section we introduce a new probability distribution
which can be used in many scientific disciplines. Such dis-
ciplines may include, but are not limited to, biomedical,
engineering, and business fields.

Definition 2.1 (Hypertabastic Distribution) We say a con-
tinuous random variable T has a hypertabastic distribu-
tion if its cumulative distribution function is

The parameters α and β are both positive and Sech [•] and
Coth [•] are hyperbolic secant and hyperbolic cotangent
respectively. We often read as "T is hypertabastically dis-
tributed with parameters α and β "and write it as H (α, β).
The probability density function of T is given by

where W(t) = α(1 - tβ Coth(tβ))/β.

3. Hypertabastic survival and hazard Functions
Definition 3.1 (The Hypertabastic Survival Function) Let
T be a continuous random variable representing the wait-
ing time until the occurrence of an event. Then the hyper-
tabastic survival function is defined as

S(t) = P(T > t) = Sech [α(1 - tβ Coth(tβ))/β] (3)

where P (T > t) is the probability that waiting time exceeds
t.

Definition 3.2 (The Hypertabastic Hazard Function) The
hypertabastic hazard function h(t) which represents the
instantaneous failure rate at time t given survival up to
time t is defined as

h(t) = α(t2β-1Csch(tβ)2 - tβ-1Coth(tβ))Tanh [W(t)]
(4)

The cumulative hazard function H(t) is defined as

H(t) = - ln(Sech [W(t)]). (5)

The hazard function is a conditional failure rate which
gives the instantaneous potential for failing at time t per
unit time for an individual surviving to time t.

The most commonly used baseline hazard functions are
Weibull, log-normal and log-logistic. The Weibull base-
line hazard function has monotone increasing, monotone
decreasing and constant forms. The log-normal baseline
hazard function is non-monotonic. It follows a behavior
that increases to a maximum, and then decreases (unimo-
dal shaped). The log-logistic baseline hazard function can
be monotone decreasing or have unimodal shape. These
different hazard shapes may reveal different biological
mechanisms of disease progression and regression and
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can provide helpful medical information. The hypertabas-
tic baseline hazard function shapes are given as follows
along with illustrative examples from published literature
that could fit a pattern of that particular behavior where
applicable:

1. The hypertabastic baseline hazard function is mono-
tone decreasing if 0 <β ≤ 0.25 (Figure 1a). Clark et al. [21]
analyzed data for 825 patients diagnosed with primary
epithelial ovarian carcinoma and observed that the hazard
rate was initially high after the diagnosis and gradually
decreased afterwards.

2. The hypertabastic baseline hazard function first
increases with time until it reaches its maximum and then
decreases (unimodal-shaped) if 0.25 <β < 1 (Figure 1b).
Demicheli at al. [22] concluded that the hazard rate for
node-positive post-menopausal women was unimodal-
shaped. Schulman et al. [23] studied the influence of
donor and recipient HLA locus mismatching on the devel-
opment of obliterative bronchiolitis (OB) after lung trans-
plantation and estimated the risk of OB after the
transplant. Their estimated hazard function of developing
OB indicated a unimodal-shaped curve as well.

3. The hypertabastic baseline hazard initially increases
with time, then it reaches its horizontal asymptote α pro-
vided that β = 1 (Figure 1c). Weitz and Fraser [24] con-
cluded that hazard rate plateaus are explained as a generic
consequence of considering death in terms of first passage
time for processes undergoing a random walk with drift.
They analyzed the hazard rate plateau in populations of
fruit flies, yeast and other organisms.

4. The hypertabastic baseline hazard function is increasing
with upward concavity until it reaches its inflection point
and then it continues to increase with downward concav-
ity thereafter if 1 <β < 2 (Figure 1d). Such a hazard can be
used in many applied sciences when failure rate increases
with respect to increase in time. For instance, it can be
used to model leukemia survival times for patients not
responding to treatment [3].

5. The hypertabastic baseline hazard function is increasing
with upward concavity for a while and then it becomes a
linear function with slope α if β = 2. (Figure 1e).

6. The hypertabastic baseline hazard function is increasing
with upward concavity if β > 2. (Figure 1f).

Definition 3.3 (Disease progression and regression) Let
the hazard function be defined on interval I and h'(t) be
its derivative.

1. Disease progresses on the time interval I if h'(t) > 0 for
all t in I.

2. Disease regresses on the time interval I if h'(t) < 0 for all
t in I.

3. Disease neither progresses nor regresses on the interval
I if h'(t) = 0 for all t in I.

Definition 3.4 (Speed of progression and regression) Let
h(t) be a hazard function defined on time interval I and let
h'(t) and h"(t) be first and second derivative of h(t) respec-
tively.

1. If h'(t) > 0 and h"(t) > 0 for all t in I, then the disease
progression speeds up on the time interval I.

2. If h'(t) > 0 and h"(t) < 0 for all t in I, then the disease
progression slows down on the time interval I.

3. If h'(t) < 0 and h"(t) > 0 for all t in I, then the disease
regression slows down on the time interval I.

4. If h'(t) < 0 and h"(t) < 0 for all t in I, then the disease
regression speeds up on the time interval I.

Definitions 3.3 and 3.4 can assist clinicians, researches
and pharmacologists to monitor disease status over time.
If for instance the goal of the drug treatment study is to
slow down the disease progression and to understand the
time course and management of disease, the above men-
tioned definitions may be very useful. See for example, the
paper by Chan and Holford [25] who studied the rate of
deterioration of degenerative diseases over time.

4. Hypertabastic proportional hazards model
When the effect of risk factors is to change the baseline
hazard function by a proportionate amount at all times t,
we call the model a proportional hazards model. Suppose
vector X is a p-dimensional vector of covariates and
assume g(X|θ) is a non negative function of X satisfying
the condition that g(0|θ) = 1. Let h0(t) which has been
defined in section 3 as h(t), be called baseline hazard
function. This is the hazard function when there are no
covariates in the model. The hypertabastic proportional
hazard model assumes a hazard function h(t|X, θ) of the
form

h(t|X, θ) = h0(t)g(X|θ)

where θ is a vector of unknown parameters. The hyperta-
bastic survival function S(t|X, θ) for the proportional haz-
ards model is defined as

S(t|X, θ) = [S0(t)]g(X|θ)
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a) Hypertabastic hazard curve for 0 <β ≤ 0.25; b) Hypertabastic hazard curve for 0.25 <β < 1; c) Hypertabastic hazard curve for β = 1; d) Hypertabastic hazard curve for 1 ≤ β < 2; e) Hypertabastic hazard curve for β = 2; f) Hypertabastic hazard curve for β > 2Figure 1
a) Hypertabastic hazard curve for 0 <β ≤ 0.25; b) Hypertabastic hazard curve for 0.25 <β < 1; c) Hypertabastic hazard curve 
for β = 1; d) Hypertabastic hazard curve for 1 ≤ β < 2; e) Hypertabastic hazard curve for β = 2; f) Hypertabastic hazard curve 
for β > 2.
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where the baseline survival function S0(t) is defined as
S(t) in section 3. The hypertabastic probability density
function for the proportional hazard model is denoted by
f(t|X, θ) and is equal to

f(t|X, θ) = f0(t) [S0(t)]g(X|θ)-1g(X|θ)

where the baseline probability density function f0(t) is
defined as f(t) in section 2. Depending on the type of cen-
soring, the maximum likelihood function technique
along with an appropriate log-likelihood function may be
used to estimate the unknown parameters in this model.
Most data used in survival analysis have only right censor-
ing, therefore we will focus on right censoring. Consider a
sample of right censored survival time's data of n individ-
uals t1, t2, ..., tn with associated p-dimensional covariate
vectors X1, X2, ..., Xn and an unknown parameter vector θ
= (θ1, θ2, ..., θp).

Then, the hypertabastic proportional hazards log-likeli-
hood function can be written as

where

Some statistical software packages use logarithm of sur-
vival time as their survival time variable in their model fit-
tings. If this is the case, then the following alternative
formula can be used as the proportional hazards log-like-
lihood function:

The maximum likelihood estimate of (p+2) dimensional

parameter vector λ = (α, β, θ1, θ2, ..., θp) is the vector

. Asymptotically,  is normally

distributed with mean vector λ and variance-covariance

matrix V. An estimate of V can be obtained by calculating

the inverse of the observed information matrix.

To assess the statistical significance of model parameters,
one can use the well known statistical tests such as likeli-
hood ratio test, Wald test, or the score test.

The hazard ratio HR(Xi, Xj) for individuals i and j with
covariate vectors Xi and Xj is given by

HR(Xi, Xj) = g(Xi|θ)/g(Xj|θ).

The most common form of g(X|θ) is exp [-θT X] [1]. If we

use , then the

hazard ratio HR(Xi|Xj) = exp [-θT (Xi - Xj)] where HR(Xi, Xj)

is independent of time t. If Xi = X and Xj = 0, then the haz-

ard ratio becomes HR(Xi, 0) = g(X|θ) and if we use

, then

, where -θjxj is the elasticity of

hazard rate with respect to covariate xj. Symbolically,

[∂h(t|X, θ)/∂xj]·[xj/h(t|X, θ)] = -θ jxj.

The elasticity of hazard function with respect to covariate
xj is a measure of the responsiveness of the hazard func-
tion to change in covariate xj. Intuitively, elasticity of the
hazard function with respect to change in covariate xj is
percent change in failure rate divided by percent change in
covariate xj.

5. Hypertabastic accelerated failure time model
When the covariates act multiplicatively on the time-scale,
the model is called accelerated failure time model [3,4].
The hypertabastic accelerated failure time model assumes
a hazard function h(t|X, θ) of the form

h(t|X, θ) = h0(tg|X, θ))g(X, θ)

where h0(•) is the baseline hypertabastic hazard function
and the hypertabastic survival function for the accelerated
failure time model is

S(t|X, θ) = S0(tg(X|θ))

where S0(•) is the baseline hypertabastic survival func-
tion. Finally, the hypertabastic probability density func-
tion for the accelerated failure time model is

f(t|X, θ) = f0(tg(X|θ))g(X|θ)

where f0(•) is the baseline hypertabastic probability den-
sity function. The maximum likelihood technique can be
used to estimate the parameters of this model and statisti-
cal tests similar to section 4 can be used to assess the sig-
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nificance of model covariates. For the right censored data,
the hypertabastic accelerated failure time model would
have a log-likelihood function of the form

where Z(ti) = tig(Xi|θ).

Again, if someone prefers to use the logarithm of time as
the model survival time variable, then the alternative
accelerated failure time log-likelihood function is

The maximum likelihood estimate of (p+2) dimensional
parameter vector (α, β, θ1, θ2, ..., θp) and testing of hypoth-
esis regarding model parameters are similar to methods of
section 4.

6. Hypertabastic proportional odds model
If the effect of risk factor is to change the odds of survival
beyond time t by a proportionate amount, then the model
is called proportional odds model. The odds of surviving
beyond time t are expressed as

S(t|X, θ)/(1 - S(t|X, θ)) = g(X|θ)S0(t)/(1 - S0(t))

where S0(t) is the baseline hypertabastic survival function.
The hypertabastic survival function for the proportional
odds model is given by

S(t|X, θ) = 1/[1+((1 - S0(t))/S0(t))g(X|θ)]

and the hypertabastic baseline odds function of survival
beyond time t is given by

S0(t)/(1 - S0(t)) = Sech [W(t)]/(1 - Sech [W(t)]).

(10)

The ratio of the odds of survival of individual i relative to
individual j is equal to exp [-θT(Xi - Xj)]. The hypertabastic
proportional odds model can be fitted by maximizing an
appropriate likelihood function.

7. Simulation study
To evaluate the performance of the hypertabastic model
we conduct a simulation study in which we compare the
overall fit of the proposed model with Weibull, log-logis-
tic and log-normal models. Since all distributions under

our consideration have exactly two parameters, we will
use the negative of the log-likelihood as a measure of
goodness-of-fit. This measure would result in the same
conclusion as the Akaike's Information Criterion (AIC)
[26]. Thus the smallest value suggests a better fit. We con-
duct 1000 simulations with sample size of 200 and ran-
dom censoring of approximately 40%. We sample time-
to-event from 11 different parameter combinations of two
parameter Weibull, log-normal and gamma distributions
for a total of 33 combinations or 33000 simulations. We
fit four mentioned models and average the -log likelihood
over 1000 runs to determine which model fits the simu-
lated data with the overall most precision on the average.
Simulation results are presented in Table 1.

In simulations where we sample from a two-parameter
Weibull distribution, obviously, the Weibull model fits
the data with highest precision in all instances. Hyperta-
bastic model is a close second, outperforming log-normal
and log-logistic models for all combinations of parame-
ters, with log-normal being the worst. Similarly when
sampling is from a two-parameter log-normal distribu-
tion, the log-normal model outperforms all other models.
The hypertabastic model and the log-logistic show similar
results, with the log-logistic being slightly better in eight
combinations of parameters and the Weibull model per-
forming the worst. Finally, when sampling from a two
parameter gamma distribution, the Weibull model fits
with the most precision in seven out of eleven combina-
tions. That is because the Weibull distribution and the
gamma distribution have hazard functions which are sim-
ilar in shapes. In another four instances, the hypertabastic
model slightly outperforms the Weibull model. The log-
logistic model comes in third, however it is close to the
hypertabastic and the Weibull for several combinations,
while the log-normal does the worst in all instances.

8. Application
All models presented in the next two examples were fitted
using Mathematica 6.0 (Wolfram Research, Inc.) and
SASv9 (SAS Institute Inc., Cary, NC). They were fitted
using both time and log(time). However, only log(time)
results are presented for the multiple myeloma propor-
tional hazards and brain cancer accelerated failure time
models since log(time) is commonly used as a default
approach in many packages and procedures. Besides the
hypertabastic survival model we fit Weibull, log-normal,
log-logistic and Cox models. We present all parameter
estimates along with their standard errors and compare -
2log-likelihood estimates, as well as AIC, to assess the
goodness-of-fit of the models. SAS programs used to fit
the hypertabastic proportional hazards models with time
and log(time) for multiple myeloma data are provided [see
Additional file 1].
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8.1 Analysis of multiple myeloma data

Multiple myeloma is a cancer formed by abnormal white
blood cells, called malignant plasma cells. A malignant
monoclonal plasma cell is called plasmacytoma. If the
disease spreads throughout multiple bone marrow sites in
the body, it is called multiple myeloma. This disease
weakens a patient's immune system and is usually diffi-
cult to cure. To investigate the performance of the hyper-
tabastic proportional hazards model and to compare it
with Cox, Weibull, log-logistic and log-normal models,
we analyze a cancer data set obtained from a study con-
ducted by Krall et al. [27]. The data contains information
on 65 patients with multiple myeloma in which the
patients were treated with alkylating agents. This drug is
designed to interfere with the cell's DNA and inhibits can-
cer cell growth. Of these 65 patients, only 17 survived the
duration of the study. The data is right-censored and the
survival time from the date of diagnosis is measured in
months. The covariates have been measured at diagnosis
and the covariate list consists of a logarithm of white

blood cell count, serum calcium, presence or absence of
Bence Jones protein, proteinuria, gender, age, percent
myeloid cells in peripheral blood, percent lymphocytes in
peripheral blood, logarithm of percent plasma cells in
bone marrow, total serum protein, presence or absence of
infection, serum globin, logarithm of blood urea nitro-
gen, fractures, platelets, and hemoglobin. Our first task is
to select risk factors that are statistically significant. To
accomplish this task we use the hypertabastic log-likeli-
hood function for proportional hazards model and follow
the general variable selection strategy outlined by Collet
[4]. We also examine the possibility of interactions. The
two most significant risk factors that we found are the log-
arithm of blood urea nitrogen and hemoglobin. Using the
stepwise regression, we fit the Cox proportional hazards
model. The Kaplan-Meier survival curve for multiple mye-
loma data is shown in figure 2. The Cox regression did
identify the same variables as the most significant prog-
nostic factors. Table 2 gives results for the hypertabastic
and the four comparison models. It shows that the -2log-

Table 1: Average -log likelihoods and their standard errors for Weibull (W), hypertabastic (HT), log-logistic (LL) and log-normal (LN) 

models based on 1000 simulations from eleven parameter combinations of two parameter Weibull, log-normal and gamma 

distributions

W(1,1) W(1,2) W(2,1) W(1,3) W(3,1) W(1,4) W(4,1) W(.5,.5) W(.5,1) W(1,.5) W(2,3)

W 180.2 263.4 132 312.2 94.5 347.1 66.2 110.3 192.8 97.5 263.6

(8.8) (12.1) (6.8) (14.1) (8.6) (16.2) (9.2) (21.4) (21) (8.6) (10.7)

HT 181.9 265.4 133.7 314.5 96.1 349.6 67.8 112.2 194.6 98.9 267

(9.1) (12.4) (7.1) (14.5) (8.9) (16.6) (9.3) (21.3) (21.1) (8.6) (11.2)

LL 183.8 267.1 135.7 316 98.1 350.9 69.8 114 196.1 101.1 267.4

(9.3) (12.7) (7.3) (14.8) (9) (16.9) (9.3) (21.5) (21.3) (8.8) (11.4)

LN 188.3 271.6 140 320.4 102.5 355.3 74 118.4 200.8 105.3 272

(10.4) (13.4) (8.6) (15.7) (8.1) (17.3) (10.3) (21.5) (21.7) (9.7) (11.4)

LN(1,1) LN(1,2) LN(2,1) LN(1,3) LN(3,1) LN(1,4) LN(4,1) LN(.5,.5) LN(.5,1) LN(1,.5) LN(2,3)

W 359.7 443.7 478.6 494.2 600.2 530.1 719.5 216.8 300 277 610.3

(18.6) (27) (23.6) (37) (30.4) (90.8) (34.7) (11.2) (15.5) (12.4) (41)

HT 352.2 436.7 470.4 486.6 591.7 517.4 712 209.3 292.9 268.7 603.2

(17.6) (26.5) (23.1) (35) (29.7) (46.4) (34.1) (10.3) (14.9) (11.7) (40.6)

LL 351.9 436.1 470.8 486.7 592.4 516.5 711.8 209 292.3 269.1 602.6

(17.6) (26.6) (23.1) (36.9) (29.7) (46.6) (34.2) (10.2) (15) (11.7) (40.7)

LN 350.4 434.3 469.4 485.2 590.9 515 710.4 207.6 290.9 267.7 601.5

(17.6) (26.6) (23.1) (36.9) (29.6) (46.6) (34.2) (10.1) (14.9) (11.6) (40.5)

G(1,1) G(1,2) G(2,1) G(1,3) G(3,1) G(4,1) G(4,1) G(.5,.5) G(.5,1) G(1,.5) G(2,3)

W 180.3 97.4 250.8 48.7 283.7 305.5 305.6 155 71.9 263.2 118.3

(8.8) (8.5) (10) (9.2) (12.1) (13.3) (13.3) (15.7) (15.4) (12.1) (7.6)

HT 181.9 98.9 250.5 50.2 282.6 303.5 303.6 159.2 75.8 265.1 117.8

(9.1) (8.7) (10.1) (9.3) (12.2) (13.2) (13.2) (15.8) (15.5) (12.5) (7.7)

LL 183.9 101.1 251.5 52.4 283.1 303.9 303.9 162.1 78.9 266.8 119.1

(9.3) (8.9) (10.3) (9.3) (12.3) (13.2) (13.3) (15.9) (15.5) (12.8) (7.8)

LN 188.3 105.6 253.6 57.1 284.2 304.5 304.6 169.6 86.4 271.1 121.3

(10.3) (9.8) (10.8) (10.2) (12.7) (13.4) (13.4) (16.4) (16.2) (13.7) (8.6)
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Kaplan-Meier survival curve for multiple myelomaFigure 2
Kaplan-Meier survival curve for multiple myeloma.

Table 2: Statistical results for hypertabastic proportional hazards and four comparison models for multiple myeloma data

-2Log likelihood AIC Estimate SE Chi-square p-value

Hypertabastic 162.33 170.33

α 0.0853 0.0438 3.79 0.0559

β 0.4349 0.0712 37.34 <0.0001

Log(BUN) 1.8986 0.5697 11.11 0.0014

Hemogolobin -0.0974 0.0539 3.27 0.0752

Weibull 162.66 170.66

α 0.0056 0.0067 0.70 0.4041

β 1.1403 0.1229 86.08 <0.0001

Log(BUN) 1.7451 0.5999 8.46 0.0049

Hemogolobin -0.1112 0.0561 3.93 0.0517

Log-normal 162.61 170.61

α 0.0078 0.0095 0.67 0.4145

β 1.6153 0.3089 27.35 <0.0001

Log(BUN) 1.8935 0.5703 11.02 0.0015

Hemogolobin -0.0929 0.0536 3.01 0.0876

Log-logistic 163.10 171.10

α -5.6519 0.9369 36.39 <0.0001

β 1.2401 0.1452 72.96 <0.0001

Log(BUN) 1.8651 0.5464 11.65 0.0011

Hemogolobin -0.0997 0.0526 3.58 0.0628

Cox 296.08 302.08

Log(BUN) 1.6744 0.6121 7.48 0.0062

Hemogolobin -0.1189 0.0575 4.28 0.0385
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likelihood and AIC statistics are lowest for the hypertabas-
tic model when fitted to the multiple myeloma data. This
indicates that the hypertabastic proportional hazards
model fits the multiple myeloma data best. The most sig-
nificant single variable identified by the hypertabastic
model is the logarithm of blood urea nitrogen with an
estimated chi-square value of 11.11 (p = 0.0014). The sec-
ond significant variable is hemoglobin. All other models
have identified these two variables as the most significant
ones. The mean levels of patients' hemoglobin and the
logarithm of blood urea nitrogen are 10.20 and 1.39
respectively. At this level, the median survival time for the
hypertabastic, log-normal, log-logistic, Weibull and Cox
are 20.04, 19.29, 21.01, 21.92 and 19 months respec-
tively. Figures 3a and 3b show the graph of hypertabastic
hazard and survival functions for multiple myeloma data.
Figure 3a clearly shows that the hypertabastic hazard func-
tion is an increasing function of time. By examining figure
3b, we realize that for patients with a Log (BUN) reading
of 1.39 and a hemoglobin level of 10.20 there is about
a10% chance of survival beyond 65 months. At the above
mentioned mean levels for the hemoglobin and loga-
rithm of blood urea nitrogen, the hypertabastic hazard
function shows that the failure rate (hazard) reaches its
maximum velocity in about 5.15 months. At this point
the disease progression has its highest speed (Figure 3c).
Figures 4a and 4b show the 3-dimensional graphs for sur-
vival of multiple myeloma patients as functions of time
and Log(BUN), as well as time and HGB. Other models
under consideration had monotone increasing hazard
functions (graphs not shown).

8.2 Analysis of glioma brain cancer data

Glioma is a cancer of the brain which begins in glial cells.
These cells support the neurons. These cells have a very
high rate of growth which can quickly destroy the normal
cells. The primary types of glioma cancers are astrocyto-
mas, ependymomas and oligodendrogliomas. Shin et al.
[28] studied ways to improve the effectiveness of radia-
tion in the treatment of cerebral malignant astrocytoma.
Their study focused on the assessment of the effect of mul-
tiple daily fractionated radiation therapy with and with-
out misonidazole. They concluded that the addition of
misonidazole did not significantly improve the patients'
survival. In this section we apply the hypertabastic accel-
erated failure time technique to model the survival time of
a sample of 30 patients from the randomized trials of radi-
otherapy with and without the radiosensitizer misinida-
zole. The data was obtained from the Medical Research
Council Working Party (MRC) on misonidazole in glio-
mas. This data is right censored and has been previously
analyzed for the selection of variables by MRC [29]. Sur-
vival time was measured in days and the longest survival
time was 1098 days. We compared radiotherapy treat-
ment of brain cancer patients with radiosensitizer misoni-

dazole to radiotherapy without misonidazole. Figure 5
shows a Kaplan-Meier plot of the estimated survival
curves for both groups. The log-rank, Wilcoxon, and like-
lihood ratio tests are all non-significant, suggesting no sig-
nificant difference between survival curves for the two
groups. The Kaplan-Meier estimates of median survival
time for radiotherapy with misonidazole group is 258.5
days and for the radiotherapy without misonidazole
group is 488 days. The overall median survival time for
both groups combined is 361 days. Using the Kaplan-

a) Hypertabastic hazard curve for multiple myeloma; b) Hypertabastic survival curve for multiple myeloma; c) Hyper-tabastic velocity of hazard curve for multiple myelomaFigure 3
a) Hypertabastic hazard curve for multiple myeloma; b) 
Hypertabastic survival curve for multiple myeloma; c) Hyper-
tabastic velocity of hazard curve for multiple myeloma.
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Meier estimates of survival function, a plot of log-cumula-
tive hazard function against the logarithm of the survival
time for individuals in two groups indicates that the data
is coming from a Weibul distribution. Knowing this infor-
mation led us to evaluate the performance of the hyperta-
bastic model. First, we fit a hypertabastic accelerated
failure time model to analyze the brain cancer data. Then
the hypertabastic accelerated failure time model is com-
pared with Weibul, log-logistic, log-normal accelerated
failure time models and the Cox proportional hazards
model. This model incorporates a binary covariate coded
as treatment = 1 for the type of radiotherapy with misoni-
dazole, and as treatment = 0 for radiotherapy without mis-
onidazole. The second covariate is the age of the patient.
Thus, this model contains two covariates- treatment and
age. We use the method of maximum likelihood to maxi-
mize hypertabastic accelerated failure time log-likelihood
function for right censored data discussed in section 5.

Table 3 gives a statistical summary for the glioma data. For
instance, the hypertabastic estimated value for the coeffi-
cient of the variable radiosensitizer is 0.4387 with a stand-
ard error of 0.3437. The Wald and the likelihood ratio
statistics associated with this variable are 1.6294 (p =
0.2018) and 1.6254 (p = 0.2023) respectively. Both tests
indicate that the effect of individual variable radiosensi-
tizer is non-significant. The estimated accelerator factor is
1.5507 (exponentiated value of parameter 0.4387). This
means that after controlling for the age of the patient, the
probability of a patient treated with "therapy with radio-
sensitizer misonidazole" surviving t days equals to the
probability of a patient treated with "therapy without
radiosensitizer misonidazole" surviving 1.5507 t days. For
instance, the hypertabastic accelerated failure time model
suggests that for 49 year old patients (median age for all
patients under study), the probability of a patient treated
with " therapy with radiosensitizer misonidazole " surviv-
ing 293 days equals to the probability of a patient treated
with" therapy without radiosensitizer misonidazole " sur-
viving 454 days. The Wald statistic for the age covariate is
22.18 (p < 0.0001).

Using AIC, we came to the conclusion that both Weibull
and hypertabastic models fit the data very well. However,
the Weibull AIC value was 75.54 which indicates the best
fit. For the hypertabastic model, the AIC value was 76.72
which was slightly less than Weibull. The remaining AIC
values for log-normal, log-logistic and Cox are 79.15,
78.45, and 107.43 respectively. At the median age of 49,
the median survival time for those patients who under-
went radiotherapy with radiosensitizer misonidazole
using the hypertabastic, Weibul, log-normal, log-logistic,
and the Cox models are 289, 316, 270, 277, and 244 days
respectively. The corresponding median survival times for
the group without the radiosensitizer misonidazole are
449, 453, 423, 456, and 488 days respectively. By examin-
ing the Kaplan-Meier survival functions for the two groups
we observe the crossing pattern which is a clear indication
of violation of proportional hazards assumption. Figures
6a and 6b show the graphs of hypertabastic hazard and
survival functions for both treatment groups at the age
level of 49. The hazards for both groups are increasing
function of time. For those patients who received radio-
therapy treatment with radiosensitizer misonidazole, haz-
ard function reached its maximum velocity in about 200
days. For those who did receive radiotherapy without mis-
onidazole, hazard function reached its maximum velocity
in about 311 days. These are the points in time where the
speeds of failure rates (hazards) are highest (Figure 6c).
Figures 7a and 7b represent 3-dimensional graphs of sur-
vival by time and age for each treatment group separately.

a) Hypertabastic 3D survival curve with variables time and Log (BUN) for multiple myeloma data; b) Hypertabastic 3D survival curve with variables time and HGB for multiple mye-loma dataFigure 4
a) Hypertabastic 3D survival curve with variables time and 
Log (BUN) for multiple myeloma data; b) Hypertabastic 3D 
survival curve with variables time and HGB for multiple mye-
loma data.
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Kaplan-Meier survival curves for glioma brain cancerFigure 5
Kaplan-Meier survival curves for glioma brain cancer.
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Table 3: Statistical results for the hypertabastic accelerated failure time model and four comparison models for glioma brain cancer 

data

-2Log likelihood AIC Estimate SE Chi-square p-value

Hypertabastic 68.72 76.72

α 0.0001312 0.0001956 0.45 0.4978

β 0.8343 0.1434 33.71 <0.0001

Radiosensitiser 0.4387 0.3437 1.63 0.2018

Age 0.0963 0.0205 22.18 <0.0001

Weibull 67.54 75.54

α 0.0000003 0.0000007 0.12 0.2741

β 1.4203 0.2456 33.44 <0.0001

Radiosensitiser 0.3614 0.3040 1.41 0.2345

Age 0.0977 0.0197 24.61 <0.0001

Log-normal 71.15 79.15

α 0.0000173 0.0000188 0.85 0.3563

β 0.9853 0.1501 43.10 <0.0001

Radiosensitiser 0.4498 0.3889 1.37 0.2427

Age 0.1003 0.0207 23.58 <0.0001

Log-logistic 70.45 78.45

α -19.6913 3.6445 29.19 <0.0001

β 1.8338 0.3251 31.82 <0.0001

Radiosensitiser 0.5000 0.3718 1.81 0.1787

Age 0.0942 0.0208 20.52 <0.0001

Cox 99.43 107.43

Radiosensitiser 0.553 0.448 1.53 0.2169

Age 0.150 0.036 16.87 <0.0001



Theoretical Biology and Medical Modelling 2007, 4:40 http://www.tbiomed.com/content/4/1/40

Page 12 of 13

(page number not for citation purposes)

9. Discussion and conclusion
In this paper we have introduced a new survival model
called hypertabastic survival model. The overall results of
our simulation indicate that the hypertabastic model per-
forms best when the data is generated from the Weibull
distribution. When the data comes from the gamma dis-
tribution, both the Weibull and hypertabastic distribu-
tions perform well. In the case when we generate survival
data from the log-normal distribution, the log-logistic and

hypertabastic distributions perform well but the gamma
and Weibull perform poorly. In the last case, the Weibull
distribution performance is the worst. We believe that the
hypertabastic survival model is to some extent robust with
respect to variations in the distribution. We believe that
the hypertabastic hazard function can play a role in mod-
eling failure rates in medical, biological and engineering
fields. The hypertabastic model can also assist physicians
and clinicians with their treatment planning through its
ability to predict patients' outcome as well as the risk of
disease recurrence. Gilbert et al. [30] argued that the pat-
tern of instantaneous risk over time is more interesting
than the cumulative risk. For instance, in a cancer study
where recurrence time of malignant tumor is of interest, a
bimodal hazard curve may represent the elevated inci-

a) Hypertabastic 3D survival curve with variables time and age for group using radiotherapy with radiosentisizer misoni-dazole for glioma brain cancer; b) Hypertabastic 3D survival curve with variables time and age for group using radiother-apy without radiosentisizer misonidazole for glioma brain cancerFigure 7
a) Hypertabastic 3D survival curve with variables time and 
age for group using radiotherapy with radiosentisizer misoni-
dazole for glioma brain cancer; b) Hypertabastic 3D survival 
curve with variables time and age for group using radiother-
apy without radiosentisizer misonidazole for glioma brain 
cancer.

a) Hypertabastic hazard curves for glioma brain cancer; b) Hypertabastic survival curves for glioma brain cancer; c) Hypertabastic velocity of hazard curves for glioma brain can-cerFigure 6
a) Hypertabastic hazard curves for glioma brain cancer; b) 
Hypertabastic survival curves for glioma brain cancer; c) 
Hypertabastic velocity of hazard curves for glioma brain can-
cer.
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dences of early and late recurrences and the magnitude of
the hazard rates at the peaks may reveal the intensity of
the failure rates. Therefore we recommend that clinicians,
practitioners and analysts consider using this model along
with other models, and compare it to the models they
ordinarily use before making any decision as to which
model would provide the best fit and prediction.
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