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Abstract

We present a novel reasoning calculus for the description logic SHOIQ+—a knowledge
representation formalism with applications in areas such as the Semantic Web. Unnecessary
nondeterminism and the construction of large models are two primary sources of inefficiency
in the tableau-based reasoning calculi used in state-of-the-art reasoners. In order to reduce
nondeterminism, we base our calculus on hypertableau and hyperresolution calculi, which
we extend with a blocking condition to ensure termination. In order to reduce the size of the
constructed models, we introduce anywhere pairwise blocking. We also present an improved
nominal introduction rule that ensures termination in the presence of nominals, inverse
roles, and number restrictions—a combination of DL constructs that has proven notoriously
difficult to handle. Our implementation shows significant performance improvements over
state-of-the-art reasoners on several well-known ontologies.

1. Introduction

Description Logics (DLs) (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2007)
are a family of knowledge representation formalisms with well-understood formal properties.
DLs have been applied to numerous problems in computer science such as information
integration and metadata management. Recent interest in DLs has been spurred by their
application in the Semantic Web: the DL SHOIQ provides the logical underpinning for
the Web Ontology Language (OWL) (Patel-Schneider, Hayes, & Horrocks, 2004), and the
DL SROIQ (Kutz, Horrocks, & Sattler, 2006) is used in OWL 2—an extension of OWL
currently being standardized by the World Wide Web Consortium.

A central component of most DL applications is an efficient and scalable reasoner. Mod-
ern reasoners, such as Pellet (Parsia & Sirin, 2004), FaCT++ (Tsarkov & Horrocks, 2006),
and RACER (Haarslev & Möller, 2001), are typically based on tableau calculi (Baader &
Nutt, 2007), which demonstrate the (un)satisfiability of a knowledge base K via a construc-
tive search for an abstraction of a model of K. Numerous optimizations have been developed
in an effort to reduce the size of the search space (Horrocks, 2007). Despite major advances
in tableau reasoning algorithms, however, ontologies are still encountered in practice that
cannot be handled by existing DL reasoners. Two main sources of complexity in tableau
calculi have been identified in the literature (Donini, 2007).

This first source of complexity is known as or-branching : given a disjunctive assertion
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(C 	D)(s), a tableau algorithm nondeterministically guesses that either C(s) or D(s) holds.
To show the unsatisfiability of K, every possible guess must lead to a contradiction: if
assuming that C(s) holds leads to a contradiction, the algorithm must backtrack and assume
that D(s) holds, which can give rise to exponential behavior. General concept inclusions
(GCIs)—implications of the form C 
 D—are the main source of disjunctions: to ensure
that C 
 D holds, a tableau algorithm adds a disjunction (¬C 	D)(s) to each individual s
in the model. Various absorption optimizations (Horrocks, 1998; Tsarkov & Horrocks, 2004;
Hudek & Weddell, 2006; Horrocks, 2007) have been developed to reduce the nondeterminism
in tableau calculi.

The second source of complexity in tableau calculi is known as and-branching : the
expansion of a model due to existential quantifiers can generate very large models. Apart
from memory consumption problems, and-branching can increase or-branching by increasing
the number of individuals to which GCIs are applied.

In this paper, we present a reasoning calculus that addresses both sources of complex-
ity. We focus on the DL SHOIQ+, which is obtained by extending SHOIQ with local
reflexivity and disjoint, reflexive, irreflexive, symmetric, and asymmetric roles. SROIQ
further extends SHOIQ+ with generalized role inclusions of the form R1 ◦ . . . ◦Rn 
 R.
Generalized role inclusions can be encoded using standard GCIs as proposed by Demri and
de Nivelle (2005); thus, by adding a suitable preprocessing phase, the results from this
paper should allow us to handle SROIQ (and hence OWL 2) as well.

Our algorithm can be viewed as a hybrid of resolution and tableau, and is related to the
hypertableau (Baumgartner, Furbach, & Niemelä, 1996) and hyperresolution (Robinson,
1965) calculi. It first preprocesses a SHOIQ+ knowledge base into a set of DL-clauses—
universally quantified implications containing DL concepts and roles as predicates. The
main derivation rule for DL-clauses is hyperresolution: an atom from the consequent of a
DL-clause is derived only if all atoms from the DL-clause antecedent can be matched to
already derived consequences. Hyperresolution is very effective at restricting or-branching.
Consider, for example, the following example:

R(x, y1) ∧ S(x, y2) → A(x) ∨B(y1) ∨ C(y2)(1)

This DL-clause derives a disjunction only if it is applied to assertions of the form R(a, b)
and S(c, d) where a = c. The presence of variables in (1) allows us to simultaneously work
with individuals a, b, c and d, and to check whether a = c. In contrast, derivation rules
in tableau algorithms consider at most pairs of individuals; consequently, no absorption
technique we are aware of can localize nondeterminism only to the individuals that satisfy
the mentioned constraints. As we discuss in detail in Section 3.3.1, our calculus generalizes
all known absorption variants. Furthermore, in contrast to absorption techniques, our
algorithm is guaranteed to exhibit no nondeterminism on Horn knowledge bases (Hustadt,
Motik, & Sattler, 2005) such as GALEN, NCI, and SNOMED CT (see Section 7). Finally,
our calculus provides a uniform proof-theoretic framework that can handle several useful
extensions of commonly used DLs (see Section 4.1.3).

Hyperresolution decides many fragments of first-order logic (e.g., Fermüller, Leitsch,
Hustadt, & Tammet, 2001; Fermüller, Tammet, Zamov, & Leitsch, 1993), as well as de-
scription and modal logics (e.g., Georgieva, Hustadt, & Schmidt, 2003; Hustadt & Schmidt,
1999). Unlike most of these fragments, SHOIQ+ allows for cyclic GCIs of the form
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C 
 ∃R.C, on which hyperresolution can generate infinite paths of successors. To ensure
termination, we use the pairwise blocking technique (Horrocks, Sattler, & Tobies, 2000b)
to detect cyclic computations. Due to hyper-inferences, the soundness and correctness
proofs by Horrocks et al. (2000b) do not carry over immediately to our calculus; in fact,
certain simpler blocking conditions applicable to weaker DLs cannot be straightforwardly
transferred to our setting. To limit and-branching, we extend the blocking condition by
Horrocks et al. to anywhere pairwise blocking : an individual can be blocked by another
individual that is not necessarily its ancestor, which can reduce the sizes of the constructed
models. Anywhere blocking has already been used with single blocking (Buchheit, Donini,
& Schaerf, 1993; Baader, Buchheit, & Hollunder, 1996; Donini & Massacci, 2000; Donini,
Lenzerini, Nardi, & Schaerf, 1998); however, to the best of our knowledge, it has been
neither used with the more sophisticated pairwise blocking nor tested in practice.

Ensuring termination of a tableau decision procedure for DLs with nominals, inverse
roles, and number restrictions has proven notoriously difficult. This problem was finally
solved by Horrocks and Sattler (2007) by extending the tableau calculus with a nominal
introduction rule. In certain situations, this rule guesses and introduces new nominals, and
is thus a potential source of inefficiency in practice. In this paper, we present a variant of
this rule that is simpler and more efficient.

We have implemented our calculus in a new reasoner called HermiT.1 Even with a rather
näıve implementation, the deterministic treatment of GCIs significantly reduces classifica-
tion times for several real-world ontologies. Furthermore, pairwise anywhere blocking seems
to be very effective in limiting model sizes and it allows HermiT to classify several ontologies
that, to the best of our knowledge, no other reasoner can handle.

2. Preliminaries

We now define the syntax and the semantics of the description logic SHOIQ+. A signature
is a triple Σ = (NR, NC , NI) consisting of mutually disjoint sets of atomic roles NR, atomic
concepts NC , and individuals NI . The set of roles is then NR ∪ {R− | R ∈ NR}. The func-
tion inv(·) is defined on the set of roles as follows, where R is an atomic role: inv(R) = R−

and inv(R−) = R. An RBox R is a finite set of axioms of the form R1 
 R2 (role inclusion),
Dis(S1, S2) (role disjointness), Ref(R) (reflexivity), Irr(S) (irreflexivity), Sym(R) (symme-
try), Asy(S) (asymmetry), and Tra(R) (transitivity), where R, R1, and R2 are roles, and
S, S1, and S2 are simple roles, as defined next. Let 
∗

R be the reflexive-transitive closure
of the following relation: {(R1, R2) | R1 
 R2 ∈ R or inv(R1) 
 inv(R2) ∈ R}. A role R is
transitive in R if a role R′ exists such that R′ 
∗

R R, R 
∗
R R′, and either Tra(R′) ∈ R or

Tra(inv(R′)) ∈ R. A role S is simple if no transitive role R exists such that R 
∗
R S. The

set of concepts is the smallest set containing � (the top concept), ⊥ (the bottom concept),
A (atomic concept), {a} (nominal), ¬C (negation), C �D (conjunction), C 	D (disjunc-
tion), ∃R.C (existential restriction), ∀R.C (universal restriction), ∃S.Self (local reflexivity),
≥ n S.C (at-least restriction), and ≤ n S.C (at-most restriction), for A an atomic concept,
a an individual, C and D concepts, R a role, S a simple role, and n a nonnegative integer.
A TBox T is a finite set of general concept inclusions (GCIs) C 
 D for C and D con-
cepts. An ABox A is a finite set of assertions of the form C(a) (concept assertion), R(a, b)

1. http://www.hermit-reasoner.com/
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Table 1: Model-Theoretic Semantics of SHOIQ+

Interpretation of Concepts and Roles
�I = �I ⊥I = ∅
{s}I = {sI} (¬C)I = �I \ CI

(C �D)I = CI ∩DI (C 	D)I = CI ∪DI

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI} (∃S.Self)I = {x | 〈x, x〉 ∈ SI}
(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}

(≥ n S.C)I = {x | �{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}
(≤ n S.C)I = {x | �{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}

Satisfaction of Axioms in an Interpretation
I |= C 
 D iff CI ⊆ DI I |= R1 
 R2 iff RI

1 ⊆ RI
2

I |= Ref(R) iff ∀x ∈ �I : 〈x, x〉 ∈ RI I |= Irr(S) iff ∀x ∈ �I : 〈x, x〉 �∈ SI

I |= Sym(R) iff RI ⊆ (inv(R))I I |= Asy(S) iff SI ∩ (inv(S))I = ∅
I |= Tra(R) iff (RI)+ ⊆ RI I |= Dis(S1, S2) iff SI

1 ∩ SI
2 = ∅

I |= C(a) iff aI ∈ CI I |= R(a, b) iff 〈aI , bI〉 ∈ RI

I |= a ≈ b iff aI = bI I |= a �≈ b iff aI �= bI

Note: �N is the number of elements in N , and R+ is the transitive closure of R.

(role assertion), a ≈ b (equality assertion), and a �≈ b (inequality assertion), where C is a
concept, R is a role, and a and b are individuals. A SHOIQ+ knowledge base K is a triple
(R, T ,A). With |K| we denote the size of K—that is, the number of symbols required to
encode K on the input tape of a Turing machine (numbers can be coded in binary).

An interpretation for K is a tuple I = (�I , ·I), where �I is a nonempty set, and ·I
assigns an element aI ∈ �I to each individual a, a set AI ⊆ �I to each atomic concept A,
and a relation RI ⊆ �I×�I to each atomic role R. The function ·I is extended to concepts
and roles as shown in the upper part of Table 1. I is a model of K, written I |= K, if it
satisfies all axioms of K as shown in the lower part of Table 1. The basic inference problem
for SHOIQ+ is checking whether K is satisfiable—that is, checking whether a model of K
exists. A concept C subsumes a concept D, written K |= C 
 D, if CI ⊆ DI for each model
I of K. It is easy to see that K |= C 
 D if and only if K ∪ {(C � ¬D)(a)} is unsatisfiable,
where a is an individual that does not occur in K (Baader & Nutt, 2007).

The negation-normal form nnf(C) of a concept C is the concept obtained from C by
using de Morgan’s laws, the dualities between existential and universal restrictions, and
the dualities between at-least and at-most restrictions to push negations inwards so that
they occur only in front of atomic concepts, nominals, and local reflexivity concepts. The
concept nnf(C) is logically equivalent to C, and it can be computed from C in time linear
in the size of C (Baader & Nutt, 2007). We use ¬̇C to denote nnf(¬C).

As mentioned in Section 1, extending SHOIQ+ with general role inclusions would yield
SROIQ (Kutz et al., 2006)—the DL that underpins OWL 2. ALCHOIQ+ is obtained
from SHOIQ+ by disallowing transitivity axioms. SHIQ+ is obtained from SHOIQ+

by disallowing nominals. SHOQ+ is obtained from SHOIQ+ by disallowing inverse roles.
SHOIQ and SHIQ are obtained from SHOIQ+ and SHIQ+, respectively, by disallow-
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ing local reflexivity, role disjointness, reflexivity, irreflexivity, symmetry, and asymmetry
axioms. Finally, SHOI is obtained from SHOIQ by disallowing at-least and at-most
restrictions.

3. Motivation and Algorithm Overview

In this section, we present an overview of the main aspects of our algorithm. We explain in
Section 3.1 the root causes of the scalability problems encountered in tableau algorithms,
and in Section 3.2 we outline how we address them. Finally, in Section 3.3 we discuss the
relationship between our algorithm and some related approaches.

3.1 Causes of Scalability Problems in Tableau Algorithms

To show that a knowledge base K = (R, T ,A) is satisfiable, a tableau algorithm constructs
a derivation—a sequence of ABoxes A0,A1, . . . ,An where A0 = A and each Ai is obtained
from Ai−1 by an application of one derivation rule.2 The derivation rules make the infor-
mation implicit in the axioms of R and T explicit, and thus evolve the ABox A towards
a (representation of a) model of K. The algorithm terminates either if no derivation rule
is applicable to some An, in which case An represents a model of K, or if An contains
an obvious contradiction, in which case the model construction has failed. The following
derivation rules are commonly used in DL tableau calculi.

• 	-rule: Given (C1 	 C2)(s), derive either C1(s) or C2(s).

• �-rule: Given (C1 � C2)(s), derive C1(s) and C2(s).

• ∃-rule: Given (∃R.C)(s), derive R(s, t) and C(t) for t a fresh individual.

• ∀-rule: Given (∀R.C)(s) and R(s, t), derive C(t).

• 
-rule: Given a GCI C 
 D and an individual s, derive (¬C 	D)(s).

The 	-rule is nondeterministic: if (C1	C2)(s) is true, then C1(s) or C2(s) or both are true.
Therefore, tableau calculi make a nondeterministic guess and choose either C1 or C2; if
one choice leads to a contradiction, the algorithm must backtrack and try the other choice.
Thus, K is unsatisfiable only if all choices lead to a contradiction. We next discuss two
sources of complexity inherent in the tableau derivation rules.

3.1.1 Or-Branching

Handing disjunctions through reasoning by case is often called or-branching. The 
-rule
adds a disjunction for each GCI to each individual in an ABox and is thus a major source of
or-branching and inefficiency (Horrocks, 2007). Consider, for example, the knowledge base
K1 = (∅, T1,A1), with T1 and A1 specified as follows:

T1 = {∃R.A 
 A}
A1 = {¬A(a0), R(a0, b1), R(b1, a1), . . . , R(an−1, bn), R(bn, an), A(an)}(2)

2. Some formalizations of tableau algorithms work on completion graphs (Horrocks & Sattler, 2007), which
have a natural correspondence to ABoxes.
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a0 b1 a1 an−1 bn an
R R R R

¬A
∀R.¬A � A
∀R.¬A

∀R.¬A � A
¬A

∀R.¬A

∀R.¬A � A
∀R.¬A
¬A

∀R.¬A � A
∀R.¬A
¬A

∀R.¬A � A
¬A

∀R.¬A

A
∀R.¬A � A
∀R.¬A
¬A

(i)
(ii)
(iii)
(iv)

Figure 1: Or-Branching Example

The ABox A1 is graphically shown in Figure 1. The individuals occurring in the ABox are
represented as black dots, an assertion of the form A(a0) is represented by placing A next
to the individual a0, and an assertion of the form R(a0, b1) is represented as an R-labeled
arrow from a0 to b1. Initially, A1 contains only the concept assertions shown in line (i).

To satisfy the GCI in T1, a tableau algorithm applies the 
-rule, thus adding the asser-
tions shown in line (ii) of Figure 1. Tableau algorithms are usually free to choose the order
in which they process the assertions in an ABox; in fact, finding an order that exhibits good
performance in practice requires advanced heuristics (Tsarkov & Horrocks, 2005b). Let us
assume that the algorithm chooses to process the assertions on ai before those on bj . Hence,
by applying the derivation rules to all ai, a tableau algorithm derives the assertions shown
in line (iii) of Figure 1; after that, by applying the derivation rules to all bi, the algorithm
derives the assertions shown in line (iv) of Figure 1. The ABox now contains both A(an)
and ¬A(an), which is a contradiction. Thus, the algorithm needs to backtrack its most
recent choice, so it flips its guess on bn−1 to A(bn−1). This generates a contradiction on
bn−1, so the algorithm backtracks from all guesses for bi, changes the guess on an to A(an),
and repeats the work for all bi. This also leads to a contradiction, so the algorithm must
revise its guess for an−1; but then, two guesses are again possible for an. In general, after
revising a guess for ai, all possibilities for aj , i < j ≤ n, must be reexamined, which results
in exponential behavior. None of the standard backtracking optimizations (Horrocks, 2007)
are helpful: the problem arises because the order in which the individuals are processed
makes the guesses on ai independent from the guesses on aj for i �= j.

The GCI ∃R.A 
 A, however, is not inherently nondeterministic: it is equivalent to
the Horn clause ∀x, y : [R(x, y) ∧A(y) → A(x)], which can be applied bottom-up to de-
rive the assertions A(bn), A(an−1), . . . , A(a0) and eventually reveal a contradiction on a0.
These inferences are deterministic,3 so we can conclude that K1 is unsatisfiable without
any backtracking. This example suggests that the processing of GCIs in tableau algorithms
can be “unnecessarily” nondeterministic. Hustadt et al. (2005) have identified a class of
knowledge bases without “unnecessary” nondeterminism: knowledge bases expressed in the
description logic Horn-SHIQ can always be translated into Horn clauses, suggesting that
reasoning without any nondeterminism is possible in principle. Ideally, a practical DL
reasoning procedure should exhibit no nondeterminism on Horn knowledge bases.

3. More precisely, each inference is deterministic, but the order in which the inferences are performed is
don’t-care nondeterministic.
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a

S S
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S S

S

(a) Ancestor Blocking

a

(b) Anywhere Blocking

Figure 2: And-Branching Example

In the context of tableau calculi, various absorption optimizations (Horrocks, 2007)
have been developed to control the nondeterminism arising in the application of GCIs. We
discuss these optimizations in depth in Section 3.3.1.

3.1.2 And-Branching

The introduction of new individuals in the ∃-rule is often called and-branching, and it is
another major source of inefficiency in tableau algorithms (Donini, 2007). Consider, for
example, the (satisfiable) knowledge base K2 = (∅, T2,A2), with T2 and A2 specified as
follows (where n and m are integers):

T2 = { A1 
 ≥ 2 S.A2, . . . , An−1 
 ≥ 2 S.An, An 
 A1,
Ai 
 (B1 	 C1) � . . . � (Bm 	 Cm) for 1 ≤ i ≤ n }

A2 = { A1(a) }
(3)

At-least restrictions are dealt with in tableau algorithms by the ≥-rule, which is quite
similar to the ∃-rule: from (≥ n R.C)(s), the ≥-rule derives R(s, ti) and C(ti) for 1 ≤ i ≤ n,
and ti �≈ tj for 1 ≤ i < j ≤ n. Thus, the assertion A1(a) implies the existence of at least two
individuals in A2, which imply the existence of at least two individuals in A3, and so on.
Given K2, a tableau algorithm thus constructs a binary tree, shown in Figure 2a, in which
each individual is labeled with some Ai and an element of Π = {B1, C1} × . . .× {Bm, Cm}.
All individuals in the tree at depth n are instances of An; because of the GCI An 
 A1,
these individuals must be instances of A1 as well, so we can repeat the whole construction
and generate an even deeper tree. Clearly, a näıve application of the tableau rules does not
terminate if the TBox contains existential quantifiers in cycles.

To ensure termination is such cases, tableau algorithms employ blocking (Baader & Nutt,
2007), which is based on an important observation about the shape of ABoxes that can be
derived from some input ABox A. The individuals in A are called named (shown as black
circles), and they can be connected by role assertions in an arbitrary way. The individuals
introduced by the ∃- and ≥-rules are called blockable (shown as white circles). For example,
if ∃R.C(a) is expanded into R(a, s) and C(s), then s is called a blockable individual and it
is an R-successor of a. It is not difficult to see that, if the knowledge base does not contain
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t′

t

s′

s

u′

u

blocks

Figure 3: Forest-Like Shape of ABoxes

nominals, no tableau derivation rule can connect s with an arbitrary named individual: the
individual s can participate only in inferences that derive an assertion of the form D(s) with
D a concept, create a new successor of s, connect s to an existing predecessor or successor,
or, in the presence of (local) reflexivity, connect s to itself. Hence, each ABox A′ obtained
from A can be seen as a “forest” of the form shown in Figure 3: each named individual can
be arbitrarily connected to other named individuals and to a tree of blockable successors.
The concept label LA(s) is defined as the set of all concepts C such that C(s) ∈ A, and the
edge label LA(s, s′) as the set of all atomic roles such that R(s, s′) ∈ A.

The forest-like structure of ABoxes enables blocking. Description logics such as SHIQ+

and SHOIQ+ allow for inverse roles and number restrictions, which has been handled
in the literature by ancestor pairwise blocking (Horrocks et al., 2000b): for individuals
s, s′, t, and t′ occurring in an ABox A as shown in Figure 3, t blocks s (shown by a
double border on s) if and only if LA(s) = LA(t), LA(s′) = LA(t′), LA(s, s′) = LA(t, t′),
and LA(s′, s) = LA(t′, t).4 In tableau algorithms, the ∃- and ≥-rules are applicable only
to nonblocked individuals, which ensures termination: the number of different concept and
edge labels is exponential in |K|, so an exponentially long branch in a forest-like ABox must
contain a blocked individual, thus limiting the length of each branch in an ABox. Let A
be an ABox as in Figure 3 to which no tableau derivation rule is applicable, and in which
s is blocked by t. We can construct a model from A by unraveling—that is, by replicating
the fragment between s and t infinitely often. Intuitively, blocking ensures that the part
of the ABox between s and s′ “behaves” just like the part between t and t′, so unraveling
indeed generates a model. If our logic were able to connect blockable individuals in a non-
tree-like way, then unraveling would not generate a model; in fact, the notion of ancestors,
descendants, and blocking would itself be ill-defined.

Consider now an “unlucky” run of a tableau algorithm with ancestor pairwise blocking
on K2. The number of elements in Π is exponential in |K2|, so it can happen that blocking
comes into effect only after the algorithm constructs an exponentially deep tree; since the
tree is binary, it is doubly exponential in total. In a “lucky” run, the algorithm can always
pick Bj instead of Cj ; then, the algorithm constructs a polynomially deep binary tree, so

4. Our blocking definition must include both edge labels in both directions because, unlike in some other
tableau formalizations, our edge labels include only atomic roles.

172



Hypertableau Reasoning for Description Logics

the tree is exponential in total. Thus, the and-branching caused by the ∃- and ≥-rules can
lead to unnecessary generation of an ABox that is doubly exponential in the size of the
input, which limits the scalability of tableau algorithms in practice.

3.2 The Hypertableau Algorithm at a Glance

In this section we present an informal overview of our hypertableau algorithm that addresses
the problems due to or- and and-branching outlined in Section 3.1. We then formalize the
algorithm in Section 4.

3.2.1 Derivation Rules

The hyperresolution calculus (Robinson, 1965) has often been used for first-order theo-
rem proving. It works on clauses—implications of the form

∧n
i=1 Ui →

∨m
j=1 Vj where Ui

and Vj are first-order atoms. The conjunction
∧n

i=1 Ui is called the antecedent, and the
disjunction

∨m
j=1 Vj is called the consequent ; we sometimes omit → if the antecedent is

empty. For Di a possibly empty disjunction of literals and σ the most general unifier of
(A1, B1), . . . , (Am, Bm), the hyperresolution derivation rule is defined as follows (assuming
that the unifier σ exists):5

A1 ∨D1 . . . Am ∨Dm B1 ∧ . . . ∧Bm → C1 ∨ . . . ∨ Ck

D1σ ∨ . . . ∨Dmσ ∨ C1σ ∨ . . . ∨ Ckσ

To make the calculus refutationally complete for first-order logic, one additionally needs a
factoring derivation rule, which we do not discuss any further.

The hypertableau calculus (Baumgartner et al., 1996) is based on the observation that,
if the literals in C1σ ∨ . . . ∨ Cnσ do not share variables, we can replace the clause with a
nondeterministically chosen atom Ciσ that we assume to be true. If we assume that all
clauses are safe (i.e., that each variable occurring in a clause also occurs in the clause’s
antecedent), then Ai ∨Di and C1σ ∨ . . . ∨ Cnσ are always ground, so they can always be
nondeterministically split into atoms. Such a hypertableau inference is written as

A1 . . . Am B1 ∧ . . . ∧Bm → C1 ∨ . . . ∨ Ck

C1σ | . . . | Ckσ

where σ is the most general unifier of (A1, B1), . . . , (Am, Bm) and | represents or-branching.
On Horn clauses, each inference is deterministic,6 and the calculus exhibits a “minimal”
amount of don’t-known nondeterminism on general clauses.

The hypertableau calculus by Baumgartner et al. (1996) can be easily applied to DLs:
GCIs can be translated into first-order formulae (Borgida, 1996), which can then be con-
verted into clauses, as shown in the following example.

A 
 ∃R.B � ∀x : [A(x) → ∃y : R(x, y) ∧B(y)] � A(x) → B(f(x))
A(x) → R(x, f(x))

5. It is usual in resolution theorem proving to assume that the notation Ai ∨ Di does not imply that Ai is
the left-most disjunct in the disjunction, and we follow this convention.

6. As mentioned before, the order in which inferences are applied is nevertheless don’t-care nondeterministic.
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Let A be an ABox containing the assertions A(a), R(a, b), and B(b). The GCI A 
 ∃R.B
is clearly satisfied in A, so there is no need to perform any inference. The clauses obtained
by skolemization, however, are not satisfied in A, so the hypertableau calculus derives
R(a, f(a)) and B(f(a)). Hence, skolemization may make the calculus perform unnecessary
inferences, which may be inefficient.

Therefore, instead of working with skolemized clauses, our calculus first preprocesses a
SHOIQ+ knowledge base K into a pair Ξ(K) = (ΞT R(K),ΞA(K)), where ΞA(K) is an ABox
and ΞT R(K) is a set of DL-clauses—implications of the form

∧n
i=1 Ui →

∨m
j=1 Vj , where Ui

are of the form R(x, y) or A(x), and Vj are of the form R(x, y), A(x), ∃R.C(x), ≥ n R.C(x),
or x ≈ y. The preprocessing step is introduced formally in Section 4.1. The DL-clauses in
ΞT R(K) are used in the Hyp-rule, which is inspired by the hypertableau derivation rule. For
example, a GCI ∃R.¬A 
 B is translated into a DL-clause R(x, y) → B(x) ∨A(y); then, if
an ABox contains R(a, b), the Hyp-rule derives either B(a) or A(b).

At-most restrictions are translated in our approach into DL-clauses containing equalities;
for example, the axiom A 
 ≤ 2 R.B is translated into the DL-clause

A(x)∧R(x, y1)∧B(y1)∧R(x, y2)∧B(y2)∧R(x, y3)∧B(y3) → y1 ≈ y2 ∨ y1 ≈ y3 ∨ y2 ≈ y3.

While a concept of the form ≤ n R.B can be encoded using O(log n) bits, the corresponding
DL-clause contains O(n2) literals; thus, our translation incurs an exponential blowup. We
do not believe, however, this issue to be particular to our approach: tableau algorithms
deal with at-most restrictions using a specialized ≤-rule whose application requires O(n)
space; thus, our translation merely makes the exponential space requirement explicit. Con-
sequently, the (hyper)tableau algorithms are unlikely to be able to handle large numbers
in number restrictions, and specialized algorithms, such as the one proposed by Faddoul,
Farsinia, Haarslev, and Möller (2008), may be required.

Because of the translation described in the previous paragraph, the Hyp-rule can derive
equalities of the form s ≈ t. These are then dealt with using the ≈-rule: whenever s ≈ t ∈ A
and s �= t, the ≈-rule replaces s with t or vice versa in all assertions in A; this is usually
called merging.

Apart from the Hyp- and the ≈-rule, our calculus contains the ≥-rule from the tableau
calculus that deals with existential quantifiers, the ⊥-rule that detects obvious contradic-
tions (which can be of the form s �≈ s, or A(s) and ¬A(s)), and the NI -rule that ensures
termination in the presence of nominals, number restrictions, and inverse roles. We discuss
the NI -rule in more detail in Section 3.2.4.

The rules of the algorithm are formalized in Definition 7 on page 193 and Table 5 on page
196, and the reader may find it useful to briefly examine these definitions before continuing.

3.2.2 Anywhere Pairwise Blocking

We employ pairwise blocking from Section 3.1.2 to ensure termination of the calculus; to
curb and-branching, however, we extend it to anywhere pairwise blocking. The key idea
is to extend the set of potential blockers for s beyond the ancestors of s. In doing so, we
must avoid cyclic blocks: if s is allowed to block t and t can block s, then neither s nor t is
guaranteed to have all its successors constructed, which would render the calculus incom-
plete. Therefore, we parameterize our algorithm with a strict ordering ≺ on individuals that
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Figure 4: A Yo-Yo Example

contains the ancestor relation. We allow t to block s only if, in addition to the conditions
mentioned in Section 3.1.2, we have t ≺ s. This version of blocking is formalized in Defi-
nition 7 on page 193. Note that, if ≺ coincides with the ancestor relation, then anywhere
blocking becomes equivalent to ancestor blocking.

Anywhere blocking can reduce and-branching in practice. Consider again the knowledge
base K2 from Section 3.1.2. After we exhaust the exponentially many members of Π, all
subsequently created individuals will be blocked. In the best case, we can always choose Bj

instead of Cj , so we create a polynomial path in the tree and then use the individuals from
that path to block their siblings, as shown in Figure 2b. Hence, there is a derivation for K2

with anywhere blocking that can be constructed in polynomial time.

3.2.3 Problems Due to Merging

Merging can easily lead to termination problems even for very simple DLs, as shown in the
following example. For simplicity, we present the TBox as a set of DL-clauses C3.

A3 = { A(a), ∃R.�(a), R(a, b), R(a, a) }
C3 = { R(x, y1) ∧R(x, y2) → y1 ≈ y2, A(x) ∧R(x, y) → ∃R.�(y) }(4)

Consider now the derivation in our calculus on A3 and C3 illustrated in Figure 4: by the
second DL-clause, the Hyp-rule derives ∃R.�(b), which the ∃-rule expands to R(b, c); then,
by the first DL-clause, the Hyp-rule derives b ≈ a, so the ≈-rule merges b into a. Clearly,
the resulting ABox is isomorphic to the original one (that c is a blockable and b a named
individual is not relevant here), so we can repeat the same sequence of inferences, which
leads to nontermination. To the best of our knowledge, this problem was first identified by
Baader and Sattler (2001), and it is commonly known as a “yo-yo.”

This problem arises because, due to merging, a can have an unbounded number of
blockable R-successors: the blockable individual c is created as an R-successor of b, but
merging b into a makes c a blockable R-successor of a. This, in turn, allows us to apply the
DL-clauses from C3 to a an arbitrary number of times, which leads to nontermination.

This problem can be solved by always merging a descendant s into its ancestor t, and
pruning s before merging—that is, by removing all assertions containing a blockable descen-
dant of s and thus ensuring that t does not “inherit” new successors.7 Pruning is formally
defined in Definition 7 on page 193.

7. Horrocks et al. (2000b) do not physically remove successors, but mark them as “not present” by setting
the relevant edge labels to ∅. This has exactly the same effect as pruning.
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Figure 5: Non-Tree-Like Structures Due to Merging

Thus, before merging b into a in our example, we prune b—that is, we remove the
assertion R(b, c). Merging then produces an ABox that represents a model of A3 and C3,
so the algorithm terminates. Note that pruning is well-defined only because our ABoxes
are forest-shaped, cf. Figure 3: if connections between individuals were arbitrary and, in
particular, cyclic, it would not be clear which part of the ABox should be pruned.

3.2.4 Nominals

With nominals, it is possible to derive ABoxes that are not forest-like, as the following
simple example demonstrates. For presentation purposes, we use the concept ∃R.{c} in the
DL-clauses even though such concepts would be further decomposed in our algorithm.

A4 = { A(a), A(b) }
C4 = { A(x) → (∃R.B)(x), B(x) → (∃R.C)(x), C(x) → (∃S.{c})(x) }(5)

Successive applications of the Hyp- and ∃-rules to A4 and C4 can produce the ABox
A1

4 shown on the left-hand side of Figure 5. This ABox is clearly not forest-shaped: the
two paths of role atoms in A1

4 start at the named individuals a and b and end in a named
individual c. Nevertheless, if role relations between blockable individuals remain forest-
like, termination of the derivation can be ensured using blocking. Some DLs that include
nominals produce only such extended forest-like ABoxes (Horrocks & Sattler, 2001).

If a DL includes inverse roles, number restrictions, and nominals, the shape of an ABox
becomes much more involved. To this end, assume now that we extend C4 with the DL-clause
S(y1, x) ∧ S(y2, x) → y1 ≈ y2 (which axiomatizes S to be inverse-functional and effectively
introduces number restrictions). On A1

4, the Hyp-rule then derives s2 ≈ s4. Note that both
s2 and s4 are blockable individuals; furthermore, neither individual is an ancestor of the
other, so we can merge, say, s4 into s2. This produces the ABox A2

4 shown on the right-
hand side of Figure 5, in which the assertion R(s3, s2) makes A2

4 not forest-shaped. By
extending the example, it is possible to use nominals, inverse roles, and number restrictions
to arrange blockable individuals in cycles. The derived ABoxes are thus not forest-shaped,
which makes defining suitable notions of pruning and unraveling difficult and prevents us
from using blocking to ensure termination of the calculus.
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Figure 6: The Introduction of Root Individuals

To solve this problem, we need to extend the arbitrarily interconnected part of A2
4 by

changing the status of s2 from a blockable into a root individual—that is, an individual sim-
ilar to the named ones in that it can be arbitrarily interconnected. Our extended forest-like
ABoxes thus consist of a set of arbitrarily interconnected root individuals each of which can
be the root of a “tree” (ignoring reflexive connections and connections back to root individ-
uals) that otherwise consists entirely of blockable individuals (see Figure 3 on page 172).
Named individuals are just the subset of the root individuals that occur in the input ABox.
When we talk about individuals, we mean either root or blockable ones (see Definition 7 on
page 193 for a formal definition).

Returning to our example, after changing the status of s2 from a blockable into a root
individual, only s1 and s3 are blockable in A2

4, so the ABox has the extended forest-like
shape and we can apply blocking and pruning as usual. This is schematically shown in
Figure 6. More generally, we apply the following preliminary version of the NI -rule, which
we denote with (*) for easier reference:

We change s into a root individual whenever A contains assertions R(s, a) and
A(s) where a is a root or a named individual, s is a blockable individual that is
not a successor of a, and a must satisfy an at-most restriction ≤ n R−.A.

Note that, if s is a successor of a, then the part of the ABox involving s and a is forest-
shaped, so the NI -rule need not be applicable.

This solution, however, introduces another problem: the number of root individuals can
now grow arbitrarily, as shown in the following example.

A5 = { A(b) }

C5 =
{

A(x) → (∃R.A)(x), A(x) → (∃S.{a})(x),
S(y1, x) ∧ S(y2, x) ∧ S(y3, x) → y1 ≈ y2 ∨ y2 ≈ y3 ∨ y1 ≈ y3

}
(6)

On A5 and C5, our calculus can produce the ABox A1
5 shown on the left-hand side of Figure

7. ABox A1
5 does not explicitly contain at-most restriction concepts, so the precondition

of (*) cannot be checked directly; we shall discuss this issue shortly. For the moment,
however, please note that the last DL-clause in C5 corresponds to the axiom � 
 ≤ 2 S−.�,
so individuals c and d can be seen as satisfying the precondition of (*); therefore, we change
them into root individuals. Furthermore, the third DL-clause from C5 is not satisfied, so the
Hyp-rule derives c ≈ b, and the ≈-rule can merge c into b. Since d is now not a blockable
individual, we cannot prune it, so we obtain the ABox A2

5 shown in the middle of Figure 7.8

8. To reduce clutter, we do not repeat the labels of individuals.
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Since ∃R.A(d) is not satisfied, we can extend A2
5 with R(d, e), A(e), ∃R.A(e), ∃S.{a}(e),

and S(e, a) to produce the ABox A3
5 shown on the right-hand side of Figure 7. Individual

e can be seen as satisfying the precondition of (*), so it is changed into a root individual.
This ABox is isomorphic to A1

5, so we can repeat the same inferences forever.
We solve this problem with an NI -rule that refines (*). Assume that A contains an

individual s that satisfies the precondition of (*)—that is, A contains assertions R(s, a)
and A(s), where a is a root or a named individual, s is a blockable individual that is not a
successor of a, and a must satisfy an at-most restriction ≤ n R−.A. In any model of A, there
can be at most n different individuals bi that participate in assertions of the form R(bi, a)
and A(bi). Hence, we associate with a a set of n fresh root individuals {b1, . . . , bn} that
represent the R−-neighbors of a. We turn s into a root individual by nondeterministically
choosing bj from this set and merging s into bj . In this way, the number of new root
individuals that can be introduced as a result of the at-most restriction ≤ n R−.A on a is
limited to n. The complete definition of the NI -rule is given in Table 5 on page 196. In the
example from Figure 7, the NI -rule introduces at most two fresh root individuals. When
the NI -rule is applied for the third time, instead of introducing e, one of the previously
introduced root individuals is reused, which ensures termination of the calculus.

When formulating the NI -rule, we are faced with a technical problem: at-most re-
striction concepts are translated in our calculus into DL-clauses, which makes testing the
condition from the previous paragraph difficult. For example, an application of the Hyp-
rule to the third DL-clause in (6) (obtained from the axiom � 
 ≤ 2 S−.�) can produce
an equality such as c ≈ b; this equality alone does not reflect the fact that a must satisfy
the at-most restriction ≤ 2 S−.�. To enable the application of the NI -rule, we introduce
annotated equalities in which the annotations establish an association with the at-most
restriction. The third DL-clause from (6) is thus represented in our algorithm as follows:

S(y1, x) ∧ S(y2, x) ∧ S(y3, x) →
y1 ≈ y2 @x

≤2 S−.� ∨ y2 ≈ y3 @x
≤2 S−.� ∨ y1 ≈ y3 @x

≤2 S−.�
(7)

The Hyp-rule then derives c ≈ b @a
≤2 S−.�, which has the same meaning as c ≈ b; however,

the annotation says that, since a must satisfy the at-most restriction ≤ 2 S−.�, both b and
c must also be merged with one of the (two) individuals reserved as S−-neighbors of a.
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Figure 8: The “Caterpillar” Example

3.2.5 Nominals and Merging

The introduction of the NI -rule leads to another problem: repeated merging between root
individuals can lead to nontermination in a “caterpillar” derivation. Consider, for example,
an application of the hypertableau calculus to the following knowledge base:

A6 =
{

S(a, a), ∃R.B(a)
}

C6 =
{

B(x) → ∃R.C(x), C(x) → ∃S.D(x),
D(x) → x ≈ a, S(y1, x) ∧ S(y2, x) → y1 ≈ y2 @x

≤1 S−.�

}
(8)

The ABox and the first DL-clause cause the introduction of two new blockable individ-
uals b and c; the next two DL-clauses connect c with a by the role S; the last DL-clause
produces c ≈ c@x

≤1 S−.�; and an application of the NI -rule to this assertion causes c to
become a root individual. The ABox A1

6 resulting from these inferences is shown in the
left-hand side of Figure 8a. Since S is inverse-functional, the individuals a and c must be
merged. Because individual c is a root, it is no longer a descendant of a, so we can choose
to merge a into c. The blockable individual b is then pruned (in order to avoid the problems
outlined in Section 3.2.3), and the resulting ABox is shown in the middle part of Figure
8a. The existential restriction ∃R.B on c, however, is not satisfied, so a similar sequence
of rule applications constructs the ABox A2

6 shown in the right-hand side of of Figure 8a.
This ABox is isomorphic to A1

6, so the same inferences can be repeated forever.
This problem can be intuitively explained by the following observation. The NI -rule

introduces fresh root individuals as neighbors of an existing root individual; thus, each
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root individual in an ABox can be seen as a part of a “chain” showing which individual
caused the introduction of which root individual. Each chain is initially anchored at a
named individual: such individuals occur in the input ABox and are not introduced by the
NI -rule. The length of a path of blockable individuals can be used to limit the length of
the “chains” of root individuals. If we allow chain anchors to be removed from an ABox,
then the chains remain limited in length in any given ABox; however, over the course of
derivation, one end of the chain can be extended indefinitely as the other end is shortened.

We solve this problem by allowing named individuals to be merged only into other
named individuals, as specified by the postcondition of the ≈-rule in Table 5 on page
196. This ensures that each chain of root individuals always remains anchored at a named
individual. In our example, instead of merging a into c, we merge c into a, which results
in the ABox shown in Figure 8b. No derivation rule is applicable to this ABox, so the
algorithm terminates.

3.2.6 The NI -Rule and Unraveling

The NI -rule is required not only to ensure that ABoxes are forest shaped, but also to
enable the application of blocking and unraveling. Consider, for example, the knowledge
base shown in (9), in which we omit the annotations on equalities for the sake of clarity.
Intuitively, the axioms of the knowledge base state that the individual a can have no R−-
neighbors, and that there is an infinite chain of individuals each of which is an S−-neighbor
of a.

A7 = { A(a), (∃R.B)(a), }

C7 =

⎧⎪⎪⎨⎪⎪⎩
A(x) ∧R(y, x) → ⊥, B(x) → (∃R.B)(x), B(x) → (∃S.{a})(x),
R(y1, x) ∧R(y2, x) → y1 ≈ y2,
S(y1, x) ∧ S(y2, x) ∧ S(y3, x) ∧ S(y4, x) →

y1 ≈ y2 ∨ y1 ≈ y3 ∨ y1 ≈ y4 ∨ y2 ≈ y3 ∨ y2 ≈ y4 ∨ y3 ≈ y4,

⎫⎪⎪⎬⎪⎪⎭
(9)

Without the NI -rule, an application of our calculus to A7 and C7 might produce the
ABox A1

7 shown in Figure 9a. The individual d is blocked in A1
7 by the individual c, so

the derivation terminates. Note that the last DL-clause from C7 (which corresponds to the
axiom � 
 ≤ 3 S−.�) is satisfied: a is the only individual in A1

7 that has S−-neighbors and
it has only two such neighbors. To construct a model from A1

7, we unravel the blocked parts
of the ABox—that is, we construct an infinite path that extends past d by “duplicating”
the fragment of the model between c and d an infinite number of times. This, however,
creates additional S−-neighbors of a, which invalidates the last DL-clause from C7; thus,
the unraveled ABox does not define a model of A7 and C7.

The NI -rule elegantly solves this problem. Since a must satisfy an at-most restriction of
the form ≤ 3 S−.�, as soon as S(b, a), S(c, a), and S(d, a) are derived, the NI -rule is applied
to turn b, c, and d into root individuals. This corrects the problems with unraveling: root
individuals do not become blocked, so we introduce another fresh blockable individual e.
This individual is merged with another S−-neighbor of a, producing an individual with two
R−-neighbors, as illustrated in Figure 9b. R is inverse-functional, however, so the neighbors
are merged. Merging continues until b has been merged into a, causing a to become its own
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Figure 9: The NI -rule and Unraveling

R-neighbor, at which point our algorithm correctly determines that the knowledge base
represented by A7 and C7 is unsatisfiable.

3.3 Related Work

3.3.1 Hypertableau vs. Absorption

Absorption has been extensively used in tableau calculi to address the problems with or-
branching outlined in Section 3.1.1 (Horrocks, 2007). The basic absorption algorithm tries to
rewrite GCIs into the form A 
 C where A is an atomic concept. After such preprocessing,
instead of deriving ¬A 	 C for each individual in an ABox, C(s) is derived only if the ABox
contains A(s); thus, the nondeterminism introduced by the absorbed GCIs is localized. This
basic technique has been refined and extended in several ways. Negative absorption rewrites
GCIs into the form ¬A 
 C where A is an atomic concept; then, C(s) is derived only if
an ABox contains ¬A(s) (Horrocks, 2007). Role absorption rewrites GCIs into the form
∃R.� 
 C; then, C(s) is derived only if an ABox contains R(s, t) (Tsarkov & Horrocks,
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2004). Binary absorption rewrites GCIs into the form A1 �A2 
 C; then, C(s) is derived
only if an ABox contains both A1(s) and A2(s) (Hudek & Weddell, 2006).

These techniques have proven indispensable in practice; however, our analysis shows po-
tential for further improvement. For example, the axiom ∃R.A 
 A from (2) cannot be ab-
sorbed directly, and applying role absorption to (2) produces the axiom ∃R.� 
 A 	 ∀R.¬A
containing a disjunction in the consequent. Binary absorption is not directly applicable to
(2) since the axiom does not contain two concepts on the left-hand side of 
, but the algo-
rithm by Hudek and Weddell (2006) additionally transforms (2) into an absorbable axiom
A 
 ∀R−.A. Consider, however, the following axiom:

� 
 ∀R.¬C 	 ∀S.D(10)

The binary absorption algorithm can process the two disjuncts in (10) in two ways. If
∀R.¬C is processed before ∀S.D, then (10) is transformed into the axioms shown in (11),
both of which can be applied deterministically in a tableau algorithm. If, however, ∀S.D is
processed before ∀R.¬C, then (10) is transformed into the axioms shown in (12). The first
axiom is absorbable, but the second is not, so a tableau algorithm will be nondeterministic.

C 
 ∀R−.Q1 Q1 
 ∀S.D(11)
Q2 
 ∀R.¬C � 
 D 	 ∀S−.Q2(12)

Heuristics are used in practice to find a “good” absorption (see, e.g., Wu & Haarslev, 2008),
but there are no guarantees that the result will incur the “least” amount of nondeterminism;
this is so even on Horn knowledge bases, for which reasoning without any nondeterminism
is possible in principle (Hustadt et al., 2005). In contrast, our algorithm is guaranteed
to preprocesses a Horn knowledge base into Horn DL-clauses that will always result in
deterministic derivations. For example, (10) is transformed into a Horn DL-clause (13).

R(x, y1) ∧ C(y1) ∧ S(x, y2) → D(y2)(13)

Even in the case of inherently nondeterministic knowledge bases, absorption can be
further optimized. Consider axiom (14), which is translated into DL-clause (15):

� 
 A 	 ∀R.B 	 ∀S.C(14)
R(x, y1) ∧ S(x, y2) → A(x) ∨B(y1) ∨ C(y2)(15)

The binary absorption algorithm transforms (14) into the following axioms:

Q1 �Q2 
 A(16)
� 
 B 	 ∀R−.Q1(17)
� 
 C 	 ∀S−.Q2(18)

Axiom (16) is absorbable; however, (17) and (18) are not, so their application introduces a
nondeterministic choice point for each individual occurring in an ABox. This problem can
be ameliorated by using role absorption and transforming (17) and (18) into (19) and (20):

∃R−.� 
 B 	 ∀R−.Q1(19)
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∃S−.� 
 C 	 ∀S−.Q2(20)

Now (19) can be used to derive (B 	 ∀R−.Q1)(b) from R(a, b), and (20) can be used to
derive (C 	 ∀S−.Q2)(d) from S(c, d); however, these two disjunctions are derived even if
a �= c. In contrast, the DL-clause (15) derives a disjunction only if a = c; thus, literals
R(x, y1) and S(x, y2) in (15) act as “guards.” The presence of variables in the antecedent
(the shared variable x in this example) makes the guards more selective than if each guard
were applied in isolation. Furthermore, if a = c, we derive a disjunction A(a) ∨B(b) ∨ C(d),
which involves three different individuals (a, b, and d in this case); in contrast, consequences
of tableau algorithms typically involve just one individual. Thus, through the usage of
variables, DL-clauses can be more global in their effect than tableau rules.

To the best of our knowledge, no known absorption technique can localize the effects of
axioms with number restrictions, such as (21).

≥ 2 R.B 
 A(21)

In order to ensure that only instances of B are counted, tableau algorithms need to include
a choose-rule that, for each assertion R(a, b), nondeterministically derives B(b) or ¬B(b).
In the hypertableau setting, however, (21) is translated into the following DL-clause:

R(x, y1) ∧R(x, y2) ∧B(y1) ∧B(y2) → A(x) ∨ y1 ≈ y2(22)

No choose-rule is needed, as the DL-clause is simply applied to assertions of the form
R(a, b), B(b), R(a, c), and B(c); furthermore, the conclusion is a tautology whenever b = c.
The presence of “guard” atoms in the antecedent of (22) thus significantly reduces the
nondeterminism introduced by such number restrictions. Furthermore, on Horn knowledge
bases with number restrictions (which includes the common case of functional roles), our
calculus exhibits no nondeterminism; in contrast, tableau calculi still need the choose-rule,
which introduces nondeterminism even if all GCIs have been fully absorbed.

The hypertableau calculus as presented in this paper does not generalize negative ab-
sorption directly; for example, the negatively absorbed axiom (23) is translated into a
DL-clause (24) which is then applied to all individuals in an ABox.

¬A 
 B(23)
→ A(x) ∨B(x)(24)

Negative absorption can, however, easily be applied in our setting: to negatively absorb an
atomic concept A, we simply replace in the input ABox and the DL-clauses all occurrences
of A with ¬A′ where A′ is a fresh concept, and then move the literals involving A′ to the
appropriate side of DL-clauses. In our example, (24) would be thus converted into (25),
which can then be applied deterministically.

A′(x) → B(x)(25)

Note that this will transform a DL-clause A(x) → B(x) into → A′(x) ∨B(a); however, a
similar situation arises in tableau calculi, where applying negative absorption to ¬A 
 B
means that A 
 B cannot be absorbed.
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To summarize, unlike various absorption techniques that are guided primarily by heuris-
tics, the hypertableau calculus provides a framework that captures all variants of absorption
we are aware of, guarantees deterministic behavior whenever the input knowledge base is
Horn, eliminates the need for the nondeterministic choose-rule, and allows for a more pow-
erful use of “guard” atoms to further localize any remaining nondeterminism. Furthermore,
in Section 4.1.3 we show that the our calculus provides a proof-theoretic framework for DLs
that can uniformly handle certain useful extensions of SHOIQ+.

3.3.2 Relationship with Caching

Various caching optimizations can be used to reduce the sizes of the models constructed
during knowledge base classification (Ding & Haarslev, 2006; Horrocks, 2007). In the pro-
posed approaches, caching is used in parallel with blocking—that is, caching alone does
not guarantee termination of the calculus, and caching must be carefully integrated with
blocking in order not to affect soundness and/or completeness. This integration is particu-
larly problematic in the presence of inverse roles. In contrast, anywhere blocking alone is
sufficient to guarantee termination of the calculus. Furthermore, in Section 6.2 we present
an optimization of anywhere blocking that can be seen as a very simple but effective form of
general caching. Finally, as we discuss in Section 7, an efficient implementation of anywhere
blocking can be obtained using very simple techniques. Thus, anywhere blocking achieves
many of the effects of caching without much of the added complexity.

Donini and Massacci (2000) have used anywhere blocking with caching of unsatisfiable
concepts to obtain a tableau algorithm for the DL ALC that runs in single exponential time.
Goré and Nguyen (2007) have presented an algorithm for the DL SHI that also runs in ex-
ponential time and achieves termination solely by caching both satisfiable and unsatisfiable
concepts. These algorithms, however, seem to be incompatible with all absorption variants,
and the latter are essential for making tableau algorithms practical. Furthermore, it is
unclear how to extend these algorithms to DLs that provide number restrictions, nominals,
and inverse roles, such as SHOIQ+.

3.3.3 Relationship with First-Order Calculi

The original hypertableau calculus for first-order logic was subsequently extended with
equality and has been implemented in the KRHyper theorem prover (Baumgartner, Fur-
bach, & Pelzer, 2008). The calculus can be used for finite model generation, and it decides
function-free clause logic.

Hyperresolution with splitting has been used to decide several description and modal
logics (Georgieva et al., 2003; Hustadt & Schmidt, 1999). These approaches, however, rely
on skolemization, which, as we have discussed previously, can be inefficient in practice.
Furthermore, these approaches deal with logics that are much weaker than SHOIQ+; in
particular, we are not aware of a hyperresolution-based decision procedure that can handle
inverse roles, number restrictions, and nominals.

Our hypertableau calculus is related to the Extended Positive (EP) tableau calculus for
first-order logic by Bry and Torge (1998). Instead of relying on skolemization, EP satisfies
existential quantifiers by introducing new constants, and this is done in a way that makes
the calculus complete for finite satisfiability. EP is, however, unlikely to be practical due to
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a high degree of nondeterminism. Furthermore, EP does not provide a decision procedure
for DLs such as SHOIQ+ that do not enjoy the finite model property (Baader & Nutt,
2007). Consider, for example, the knowledge base whose TBox contains axioms (26) and
(27), and whose ABox contains assertion (28):

A 
 ∃R.A(26)
� 
 ≤ 1 R−.�(27)

(¬A � ∃R.A)(a)(28)

EP will try to satisfy the existential quantifier on a by “reusing” a—that is, by adding
assertions R(a, a) and A(a). This leads to a contradiction, so EP will backtrack, introduce
a fresh individual b, and add assertions R(a, b) and A(b); to satisfy (26), it will then also
add ∃R.A(b). To satisfy the existential quantifier in the latter assertion, EP will again try
to “reuse” a; this will fail, so it will try to “reuse” b by adding an assertion R(b, b). Due
to (27), however, b will be merged into a, which results in a contradiction; therefore, EP
will backtrack, introduce yet another fresh individual c and add the assertions R(b, c), A(c),
and ∃R.A(c). By repeating the argument, it is easy to see that EP will generate ever larger
models and will not terminate. This is unsurprising since the knowledge base is satisfied
only in infinite models. To achieve termination on such knowledge bases, EP would need
to be extended with blocking techniques such as the ones described in this paper.

Baumgartner and Schmidt (2006) developed a so-called blocking transformation of first-
order clauses, which can improve the performance of bottom-up model generation methods.
Roughly speaking, the clauses are modified in a way that makes a bottom-up calculus derive
s ≈ t or s �≈ t for each term s that is a subterm of t; then, an application of paramodulation
to s ≈ t achieves an effect that is analogous to “reusing” s instead of t in the EP tableau
calculus. This transformation, however, does not ensure termination for DLs that do not
have the finite model property. For example, for the same reasons as explained in the previ-
ous paragraph, hyperresolution with splitting does not terminate on the clauses obtained by
an application of the blocking transformation to (the clauses corresponding to) (26)–(28).
Furthermore, even for DLs that enjoy the finite model property, an “unlucky” sequence of
applications of derivation rules can prevent a bottom-up model generation method with
blocking from terminating (please refer to Section 3.2.3 for more details).

4. The Satisfiability Checking Algorithm

We now present the hypertableau algorithm that can be used to check the satisfiability of
a SHOIQ+ knowledge base K. Our algorithm consists of two phases: the preprocessing
phase is described in Section 4.1, and the hypertableau phase is described in Section 4.2.

4.1 Preprocessing

The goal of the preprocessing phase is to transform a SHOIQ+ knowledge base K into an
ABox ΞA(K) and a set of DL-clauses ΞT R(K) that are equisatisfiable with K.

Definition 1 (DL-Clause). The concepts �, ⊥, and concepts of the form A and ¬A for A
an atomic concept are called literal concepts. Let NV be a set of variables disjoint from the
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Table 2: Satisfaction of DL-Clauses in an Interpretation

I, μ |= C(s) iff sI,μ ∈ CI

I, μ |= R(s, t) iff 〈sI,μ, tI,μ〉 ∈ RI

I, μ |= s ≈ t iff sI,μ = tI,μ

I, μ |=
∧m

i=1 Ui →
∨n

j=1 Vj iff I, μ |= Ui for each 1 ≤ i ≤ m implies
I, μ |= Vj for some 1 ≤ j ≤ n

I |=
∧m

i=1 Ui →
∨n

j=1 Vj iff I, μ |=
∧m

i=1 Ui →
∨n

j=1 Vj for all mappings μ

I |= C iff I |= r for each DL-clause r ∈ C

set of individuals NI . An atom is an expression of the form B(s), ≥ n S.B(s), R(s, t), or
s ≈ t, for s and t individuals or variables, B a literal concept, R an atomic role, S a (not
necessarily atomic) role, and n a positive integer. A DL-clause is an expression of the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. The conjunction U1 ∧ . . . ∧ Um is called the
antecedent, and the disjunction V1 ∨ . . . ∨ Vn is called the consequent. The empty antecedent
and the empty consequent of a DL-clause are written as � and ⊥, respectively.

Let I = (�I , ·I) be an interpretation and μ : NV →�I a mapping of variables to ele-
ments of the interpretation domain. Let aI,μ = aI for an individual a and xI,μ = μ(x) for
a variable x. Satisfaction of an atom, DL-clause, and a set of DL-clauses C in I and μ is
defined in Table 2.

4.1.1 Elimination of Transitivity Axioms

Transitivity axioms are handled in tableau algorithms by the ∀+-rule: if R is transitive
and an ABox contains ∀R.C(s) and R(s, t), the ∀+-rule derives ∀R.C(t). In our algorithm,
however, concepts of the form ∀R.C are translated into DL-clauses, so the ∀+-rule cannot
be applied. Therefore, instead of handling transitivity directly, we encode a SHOIQ+

knowledge base K into an equisatisfiable ALCHOIQ+ knowledge base Ω(K). This encoding
eliminates all transitivity axioms, but simulates their effects using additional GCIs.

Definition 2. Given a SHOIQ+ knowledge base K = (R, T ,A), the concept closure of K
is the smallest set of concepts clos(K) such that

• if C 
 D ∈ T , then nnf(¬C 	D) ∈ clos(K),

• if C(a) ∈ A, then nnf(C) ∈ clos(K),

• if C ∈ clos(K) and D syntactically occurs in C, then D ∈ clos(K),

• if ≤ n R.C ∈ clos(K), then ¬̇C ∈ clos(K), and

• if ∀R.C ∈ clos(K), S 
∗
R R, and Tra(S) ∈ R, then ∀S.C ∈ clos(K).
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The Ω-encoding of K is the ALCHOIQ+ knowledge base Ω(K) = (R′, T ′,A) where R′ is
obtained from R by removing all transitivity axioms and

T ′ = T ∪ {∀R.C 
 ∀S.(∀S.C) | ∀R.C ∈ clos(K), S 
∗
R R, and Tra(S) ∈ R}.

Similar encodings are known for various description (Tobies, 2001) and modal (Schmidt
& Hustadt, 2003) logics. Note that, in order to guarantee decidability (Horrocks, Sattler,
& Tobies, 2000a), number restrictions and local reflexivity are allowed in SHOIQ+ only
on simple roles—that is, on roles not having transitive subroles; for similar reasons, role
disjointness, irreflexivity, and asymmetry axioms are also allowed only on simple roles.

Lemma 1. A SHOIQ+ knowledge base K is satisfiable if and only if Ω(K) is satisfiable,
and Ω(K) can be computed in time polynomial in |K|.

The full proof of an analogous result for the DL SHIQ is given by Motik (2006) in The-
orem 5.2.3, and the generalization of this result to SHOIQ+ is straightforward; therefore,
we omit the proof of Lemma 1 for the sake of brevity. After the elimination of transitivity
axioms, there is no distinction between simple and complex roles. Hence, in the rest of
this paper we assume that all roles are simple unless otherwise stated and, without loss of
generality, we treat ∃R.B as a syntactic shortcut for ≥ 1 R.B.

4.1.2 Normalization

Before translation into a set of DL-clauses, a a knowledge base is first brought into a
normalized form. This is done in order to make all negations explicit, and to ensure that
the resulting DL-clauses are compatible with blocking.

To understand the first issue, consider the axiom ¬A 
 ¬(∃R.∃R.∃R.B). Converting this
axiom into DL-clauses is not straightforward because of the implicit negations; for example,
the concept A is seemingly negated but, due to the negation implicit in the implication, A
actually occurs positively in the axiom. Therefore, we replace this axiom with the following
equivalent axiom. This makes all negations explicit, so the result can be easily translated
into a DL-clause.

� 
 A 	 ∀R.∀R.∀R.¬B � R(x, y1) ∧R(y1, y2) ∧R(y2, y3) ∧B(y3) → A(x)(29)

To understand the second issue, consider the knowledge base K8, consisting of an ABox
A8 and a TBox that corresponds to the set of DL-clauses C8.

A8 = { ¬A(a), B(a) }
C8 = { R(x, y1) ∧R(y1, y2) ∧R(y2, y3) ∧B(y3) → A(x), B(x) → ∃R.B(x) }(30)

By applying the rules from Section 3.2, our algorithm constructs on K8 the ABox shown
in Figure 10. According to the definition of blocking introduced in Definition 7,9 c is now
blocked by b; furthermore, no rule is applicable to the ABox, so the algorithm terminates,
leading us to believe thatK8 is satisfiable. The ABox, however, does not represent a model of
K8: if we expand ∃R.B(c) into R(c, d) and B(d), by the first DL-clause in C8 we can derive

9. The version of blocking introduced in Definition 7 differs from the one presented in Section 3.1.2 in that
the concept label LA(s) of an individual s consists only of atomic concepts A such that A(s) ∈ A.
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a

B
∃R.B
¬A

b

B
∃R.B

c

B
∃R.B

R R

Figure 10: Incorrect Blocking due to Lack of Normalization

A(a), which then contradicts ¬A(a). This problem arises because the antecedent of the
first DL-clause in C8 checks for a path of three R-successors, whereas the pairwise blocking
condition ensures only that all paths of length two are fully constructed. Intuitively, the
antecedents of each DL-clause should check for paths that “fit” into the fully constructed
model fragments. We can ensure this by renaming complex concepts into simpler ones.
Thus, we transform the culprit DL-clause into the following ones, which check only for
paths of length one.

� 
 A 	 ∀R.¬Q1 � R(x, y) ∧Q1(y) → A(x)(31)
� 
 Q1 	 ∀R.¬Q2 � R(x, y) ∧Q2(y) → Q1(x)(32)
� 
 Q2 	 ∀R.¬B � R(x, y) ∧B(y) → Q2(x)(33)

The application of these DL-clauses to the ABox shown in Figure 10 would additionally
derive Q2(a), Q2(b), and Q1(a), so c would not be blocked. The calculus would then expand
∃R.B(c) and discover a contradiction.

To formalize these ideas, we define a normalized form of DL knowledge bases.

Definition 3 (Normalized Form). A GCI is normalized if it is of the form � 

⊔n

i=1 Ci,
where each Ci is of the form B, {a}, ∀R.B, ∃R.Self, ¬∃R.Self, ≥ n R.B, or ≤ n R.B, for
B a literal concept, R a role, and n a nonnegative integer.

A TBox T is normalized if each GCI in it is normalized. An ABox A is normalized if
each concept assertion in A contains only a literal concept, each role assertion in A contains
only an atomic role, and A contains at least one assertion. An ALCHOIQ+ knowledge
base K = (R, T ,A) is normalized if T and A are normalized.

The following transformation can be used to normalize a knowledge base.

Definition 4 (Normalization). For an ALCHOIQ+ knowledge base K, the knowledge base
Δ(K) is computed as shown in Table 3.

Normalization can be seen as a variant of the well-known structural transformation
(Plaisted & Greenbaum, 1986; Nonnengart & Weidenbach, 2001). An application of the
structural transformation to (29) would replace each complex subconcept with a positive
atomic concept, eventually producing � 
 A 	 ∀R.Q1. This axiom cannot be translated
into a Horn DL-clause, whereas (29) can; thus, the structural transformation can destroy
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Table 3: The Functions Used in the Normalization

Δ(K) = {�(a)} ∪
⋃

α∈R∪A
Δ(α) ∪

⋃
C1	C2∈T

Δ(� 
 nnf(¬C1 	 C2))

Δ(� 
 C 	 C ′) = Δ(� 
 C 	 αC′) ∪
⋃

1≤i≤n
Δ(� 
 ¬̇αC′ 	 Ci)

for C ′ of the form C ′ = C1 � . . . � Cn and n ≥ 2
Δ(� 
 C 	 ∀R.D) = Δ(� 
 C 	 ∀R.αD) ∪Δ(� 
 ¬̇αD 	D)

Δ(� 
 C 	 ≥ n R.D) = Δ(� 
 C 	 ≥ n R.αD) ∪Δ(� 
 ¬̇αD 	D)
Δ(� 
 C 	 ≤ n R.D) = Δ(� 
 C 	 ≤ n R.¬̇α¬̇D) ∪Δ(� 
 ¬̇α¬̇D 	 ¬̇D)

Δ(� 
 C 	 ¬{s}) =
{
⊥ if C is empty,
Δ(C(s)) otherwise.

Δ(D(s)) = {αD(s)} ∪Δ(� 
 ¬̇αD 	 nnf(D))
Δ(R−(s, t)) = {R(t, s)}

Δ(β) = {β} for any other axiom β

αC =
{

QC if pos(C) = true
¬QC if pos(C) = false

, where QC is a fresh atomic concept unique for C

pos(�) = false pos(⊥) = false
pos(A) = true pos(¬A) = false

pos({s}) = true pos(¬{s}) = false
pos(∃R.Self) = true pos(¬∃R.Self) = false
pos(C1 � C2) = pos(C1) ∨ pos(C2) pos(C1 	 C2) = pos(C1) ∨ pos(C2)
pos(∀R.C1) = pos(C1) pos(≤ n R.C1) =

{
pos(¬̇C1) if n = 0
true otherwisepos(≥ n R.C1) = true

Note: A is an atomic concept, C(i) are arbitrary concepts, C is a possibly empty
disjunction of arbitrary concepts, D is not a literal concept, and a is a fresh individual.
Note that 	 is commutative, so C ′ in C 	 C ′ is not necessarily the right-most disjunct.

Horn-ness. To prevent this, we introduce the function pos(C) (c.f. Table 3) that returns
false if the clausification of C does not require adding atoms into the consequent of a DL-
clause. We then replace an occurrence of a concept C in a concept D with a negative literal
concept ¬QC if pos(C) = false, and with a positive literal concept QC if pos(C) = true.
Special care must be taken when replacing a concept D in a concept ≤ n R.D: since D
occurs in ≤ n R.D under an implicit negation, we replace D with ¬̇α¬̇D in order to preserve
Horn-ness. On a Horn knowledge base K (Hustadt et al., 2005), normalization performs the
same replacements as the one presented by Hustadt et al., so Δ(K) is a Horn knowledge
base as well.

Lemma 2. The following properties hold for each ALCHOIQ+ knowledge base K and the
corresponding knowledge base Δ(K):

• K is satisfiable if and only if Δ(K) is satisfiable;

• Δ(K) is normalized; and
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• Δ(K) can be computed in time polynomial in |K|.

Proof. (Sketch) Since our transformation can be seen a syntactic variant of the structural
transformation, the proof that K and Δ(K) are equisatisfiable is completely analogous to
the ones by Plaisted and Greenbaum (1986) and Nonnengart and Weidenbach (2001), so we
omit it for the sake of brevity. For the second claim, note that Δ essentially rewrites each
GCI into a form � 


⊔n
i=1 Ci and then keeps replacing nested subconcepts of Ci until the

GCI becomes normalized; it adds �(a) to the ABox so that the ABox is not empty; and
it replaces all inverse role assertions with equivalent assertions on the atomic roles. Thus,
Δ(K) is normalized. Finally, each occurrence of a concept in K can be replaced with a new
atomic concept at most once, and all necessary syntactic transformations can be performed
in polynomial time, so Δ(K) can be computed in polynomial time.

4.1.3 Translation into DL-Clauses

We now introduce the notion of HT-clauses—syntactically restricted DL-clauses on which
our hypertableau calculus is guaranteed to terminate. In the rest of this paper, we often
use the function ar, which, given a role R and variables or constants s and t, returns an
atom that is semantically equivalent to R(s, t) but that contains an atomic role; that is,

ar(R, s, t) =
{

R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S− .

Definition 5 (HT-Clause). We assume that, for each individual a, the set of atomic con-
cepts NC contains a unique nominal guard concept which we denote as Oa; furthermore,
we assume that nominal guard concepts do not occur in any input knowledge base.

An annotated equality is an atom of the form s ≈ t @u
≤n S.B, where s, t, and u are

constants or variables, n is a nonnegative integer, S is a role, and B is a literal concept;
the part @u

≤n S.B of the atom is called the annotation. This atom is semantically equivalent
to s ≈ t.10

An HT-clause is a DL-clause r of the following form, for m ≥ 0 and n ≥ 0:

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn(34)

Furthermore, it must be possible to separate the variables into a center variable x, a set
of branch variables yi, and a set of nominal variables zj such that the following properties
hold, for A an atomic concept, B a literal concept not containing a nominal guard concept,
Oa a nominal guard concept, R an atomic role, and S a role.

• Each atom in the antecedent of r is of the form A(x), R(x, x), R(x, yi), R(yi, x),
A(yi), or A(zj).

• Each atom in the consequent of r is of the form B(x), ≥ h S.B(x), B(yi), R(x, x),
R(x, yi), R(yi, x), R(x, zj), R(zj , x), x ≈ zj, or yi ≈ yj @x

≤h S.B.

• Each yi occurs in the antecedent of r in an atom of the form R(x, yi) or R(yi, x).

10. As explained in Section 3.2.4, annotations are only used to ensure termination of the hypertableau phase.
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• Each zj occurs in the antecedent of r in an atom of the form Oa(zj).

• Each equality yi ≈ yj @x
≤h S.A in the consequent of r occurs in a subclause of r of the

form (35) where y1, . . . , yh+1 are branch variables such that no yk with 1 ≤ k ≤ h + 1
occurs elsewhere in r.

. . .
h+1∧
k=1

[ar(S, x, yk) ∧A(yk)] . . .→ . . .
∨

1≤k<
≤h+1

yk ≈ y
 @x
≤h S.A . . .(35)

• Each equality yi ≈ yj @x
≤h S.¬A in the consequent of r occurs in a subclause of r of the

form (36) where y1, . . . , yh+1 are branch variables such that no yk with 1 ≤ k ≤ h + 1
occurs elsewhere in r.

. . .
h+1∧
k=1

ar(S, x, yk) . . .→ . . .

h+1∨
k=1

A(yk) ∨
∨

1≤k<
≤h+1

yk ≈ y
 @x
≤h S.¬A . . .(36)

HT-clauses are more general than what is strictly needed to captureALCHOIQ+ knowl-
edge bases. For example, HT-clauses of the form R(x, y) ∧A(y) → S(x, y) express a form of
relativized role inclusions, and HT-clauses of the form R(x, y) ∧ S(y, x) → U(x, y) ∨ T (y, x)
capture safe role expressions (Tobies, 2001).

We now show how to transform a normalized ALCHOIQ+ knowledge base into a set
of HT-clauses, after which we explain the need for nominal guard concepts.

Definition 6 (Clausification). The clausification of a normalized ALCHOIQ+ knowledge
base K = (R, T ,A) is the pair Ξ(K) = (ΞT R(K),ΞA(K)) in which ΞT R(K) is a set of DL-
clauses and ΞA(K) is an ABox, both obtained as shown in Table 4.

By Definition 3, concepts of the form ¬{a} are converted to ABox assertions during
normalization, so Table 4 need not handle them. Positive nominal concepts are natu-
rally translated into equalities containing constants; for example, � 
 ¬A 	 {a} corre-
sponds to A(x) → x ≈ a. Such DL-clauses are impractical: given an equality assertion
a ≈ b, the ≈-rule would need to replace all occurrences of a with b not only in the asser-
tions, but in the DL-clauses as well; thus, the mentioned DL-clause should be replaced
with A(x) → x ≈ b. To avoid the need for changing a set of DL-clauses in a derivation,
we “extract” all constants into the ABox; for example, � 
 ¬A 	 {a} is transformed into
the DL-clause A(x) ∧Oa(z{a}) → x ≈ z{a} and the assertion Oa(a). All constants are thus
“pushed” into the assertions, so the ≈-rule can perform replacements only in the ABox.

Lemma 3. Let K be a normalized ALCHIQ knowledge base. Then, K is equisatisfiable
with Ξ(K) = (ΞT R(K),ΞA(K)), and ΞT R(K) contains only HT-clauses.

Proof. By inspecting Table 4, ΞT R(KB) clearly contains only HT-clauses. The following
equivalences between DL concepts and first-order formulae are well known (Borgida, 1996):

∀R.B(x) ≡ ∀y : ¬R(x, y) ∨B(y)
≤ n R.B(x) ≡ ∀y1, . . . , yn+1 :

∧
1≤i≤n+1

[R(x, yi) ∧B(yi)]→
∨

1≤i<j≤n+1
yi ≈ yj

{a}(x) ≡ x ≈ a
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Table 4: Translation of a Normalized Knowledge Base to HT-Clauses

ΞT (T ) = {
n∧

i=1
lhs(Ci) →

n∨
i=1

rhs(Ci) | for each � 

n⊔

i=1
Ci in T }

ΞR(R) = {ar(R, x, y) → ar(S, x, y) | for each R 
 S in R} ∪
{ar(S1, x, y) ∧ ar(S2, x, y) → ⊥ | for each Dis(S1, S2) ∈ R} ∪
{� → ar(R, x, x) | for each Ref(R) ∈ R} ∪
{ar(S, x, x) → ⊥ | for each Irr(S) ∈ R} ∪
{ar(R, x, y) → ar(R, y, x) | for each Sym(R) ∈ R} ∪
{ar(S, x, y) ∧ ar(S, y, x) → ⊥ | for each Asy(S) ∈ R}

ΞT R(K) = ΞT (T ) ∪ ΞR(R)

ΞA(K) = A ∪ {Oa(a) | for each {a} occurring in K}

Note: Whenever lhs(Ci) or rhs(Ci) is undefined, it is omitted in the HT-clause.
C lhs(C) rhs(C)
A A(x)

¬A A(x)

{a} Oa(zC) x ≈ zC

≥ n R.A ≥ n R.A(x)

≥ n R.¬A ≥ n R.¬A(x)

∃R.Self ar(R, x, x)

¬∃R.Self ar(R, x, x)

∀R.A ar(R, x, yC) A(yC)

∀R.¬A ar(R, x, yC) ∧A(yC)

≤ n R.A
n+1∧
i=1

[ar(R, x, yi
C) ∧A(yi

C)]
∨

1≤i<j≤n+1
yi

C ≈ yj
C @x

≤n R.A

≤ n R.¬A
n+1∧
i=1

ar(R, x, yi
C)

n+1∨
i=1

A(yi
C) ∨

∨
1≤i<j≤n+1

yi
C ≈ yj

C @x
≤n R.¬A

Note: Each y
(i)
C and zC is a fresh variable unique for C (and i).

Let Ξ′
T R(K) be the set of HT-clauses defined just like ΞT R(K), but with the difference that

lhs({a}) = � and rhs({a}) = x ≈ a. Then, (Ξ′
T R(K),ΞA(K)) is obtained from K by replac-

ing concepts of the form ∀R.B, ≤ n R.B and {a} with the equivalent first-order formulae,
so K and (Ξ′

T R(K),ΞA(K)) are clearly equisatisfiable. We now show that (Ξ′
T R(K),ΞA(K))

is equisatisfiable with (ΞT R(K),ΞA(K)).
(⇒) Each model I ′ of (Ξ′

T R(K),ΞA(K)) is extended to a model I of (ΞT R(K),ΞA(K))
by setting OI

a = {aI′} for each nominal guard concept Oa.
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(⇐) Each model I of Ξ(K) is a model of (Ξ′
T R(K),ΞA(K)): for each γ ∈ Ξ′

T R(K), we
have δ ∈ ΞT R(K) and Oak

(ak) ∈ ΞA(K), where γ and δ are of the form shown below.

γ =
∧

Ui →
∨

Vj ∨
∨n

k=1 xk ≈ ak

δ =
∧

Ui ∧
∧n

k=1 Oak
(z{ak}) →

∨
Vj ∨

∨n
k=1 xk ≈ z{ak}

Now if the disjunction
∨n

k=1 xk ≈ ak in some γ were not true in I for some values of
x1, . . . , xn, then clearly δ would not be true in I for the same values of x1, . . . , xn.

4.2 The Hypertableau Calculus for HT-Clauses

We now present the hypertableau calculus for deciding the satisfiability of an ABox A
and a set of HT-clauses C. As explained in Section 3, our algorithm uses several types of
individuals. Each individual is either root or blockable as summarized next; when we refer
simply to an individual, we mean either a root or a blockable one.

• Root individuals are those that either occur in the input ABox, or are introduced by
the NI -rule. Their important characteristic is that they can be connected in arbitrary,
and not just tree-like, ways.

– Root individuals that occur in the input ABox are called named individuals.

– Root individuals that are introduced by the NI -rule are defined as finite strings
of the form a.γ1. . . . .γn where a is a named individual, each γ
 is of the form
〈R.B.i〉, and n ≥ 0. Root individuals introduced by applying the NI -rule to an
assertion s ≈ t @u

≤n R.B are all of the form u.〈R.B.i〉 with 1 ≤ i ≤ n.

• Blockable individuals are introduced by the ≥-rule, and make up the tree-like parts of
a model. The set of blockable individuals is disjoint from the set of root individuals.
Blockable individuals are defined as finite strings of the form s.i1.i2. . . . .in where s
is a root individual, each i
 is an integer, and n ≥ 1. This string representation
naturally induces the parent–child relationship between individuals; for example, s.2
is the second child of the individual s, which can be either blockable or root.

We now introduce our algorithm.

Definition 7 (Hypertableau Algorithm).
Individuals. Given a set of named individuals NI , the set of root individuals NO is

the smallest set such that NI ⊆ NO and, if x ∈ NO, then x.〈R,B, i〉 ∈ NO for each role
R, literal concept B, and positive integer i. The set of all individuals NA is the smallest
set such that NO ⊆ NA and, if x ∈ NA, then x.i ∈ NA for each positive integer i. The
individuals in NA \NO are blockable individuals. A blockable individual x.i is a successor
of x, and x is a predecessor of x.i. Descendant and ancestor are the transitive closures of
successor and predecessor, respectively.

ABoxes. The hypertableau algorithm operates on ABoxes that are obtained by extending
the standard definition from Section 2 as follows.

• In addition to assertions from Section 2, an ABox can contain annotated equality
assertions and a special assertion ⊥ that is false in all interpretations. Furthermore,
assertions can refer to the individuals from NA and not only from NI .
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• Each (in)equality s ≈ t (s �≈ t) also stands for the symmetric (in)equality t ≈ s (t �≈ s).
The same is true for annotated equalities.

• An ABox A can contain renamings of the form a #→ b where a and b are root indi-
viduals. Let #→∗ be the reflexive-transitive closure of #→ in A. An individual b is the
canonical name of a root individual a in A, written b = ‖a‖A, if b is the only individ-
ual such that a #→∗ b and there exists no individual c �= b such that b #→∗ c; if no such
individual exists, then ‖a‖A = a.11

An input ABox is an ABox containing only named individuals, no annotated equalities,
and no renamings, and in which all concepts are literal and all roles are atomic.

Satisfaction of such ABoxes in an interpretation is obtained by a straightforward gen-
eralization of the definitions in Section 2: all individuals are interpreted as elements of the
interpretation domain �I , and I |= a #→ b iff aI = bI .

Pairwise Anywhere Blocking. The labels of an individual s and of an individual
pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = { A | A(s) ∈ A and A is an atomic concept }
LA(s, t) = { R | R(s, t) ∈ A }

Let ≺ be a strict ordering (i.e., a transitive and irreflexive relation) on NA containing
the ancestor relation—that is, if s′ is an ancestor of s, then s′ ≺ s. By induction on ≺, we
assign to each individual s in A a status as follows:

• a blockable individual s is directly blocked by a blockable individual t if and only if the
following conditions are satisfied, for s′ and t′ the predecessors of s and t, respectively:

– t is not blocked,

– t ≺ s,

– LA(s) = LA(t) and LA(s′) = LA(t′), and

– LA(s, s′) = LA(t, t′) and LA(s′, s) = LA(t′, t);

• s is indirectly blocked iff it has a predecessor that is blocked; and

• s is blocked iff it is either directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions containing
a descendant of s.

Merging. The ABox mergeA(s→ t) is obtained from pruneA(s) by replacing the indi-
vidual s with the individual t in all assertions and their annotations (but not in renamings)
and, if both s and t are root individuals, adding the renaming s #→ t.

Derivation Rules. Table 5 specifies derivation rules that, given an ABox A and a set
of HT-clauses C, derive one or more ABoxes A1, . . . ,An. In the Hyp-rule, σ is a mapping

11. As we show in Lemma 4, the derivation rules of our calculus ensure that �→ is a functional and acyclic
relation, so an individual b satisfying the definition always exists. The second part of the definition of
‖a‖A is thus just a technical aid necessary to make the definition complete.
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from the set of variables NV to the individuals occurring in the assertions of A, and σ(U)
is the result of replacing each variable x in the atom U with σ(x).

Rule Precedence. The ≈-rule can be applied to a (possibly annotated) equality s ≈ t
in an ABox A only if A does not contain an equality s ≈ t @u

≤n R.B to which the NI-rule is
applicable (with the same s and t).

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.
Derivation. For a set of HT-clauses C and an input ABox A, a derivation is a pair

(T, λ) where T is a finitely branching tree and λ is a function that labels the nodes of T with
ABoxes such that the following properties hold for each node t ∈ T :

• λ(t) = A if t is the root of T ;

• t is a leaf of T if ⊥ ∈ λ(t) or no derivation rule is applicable to λ(t) and C;

• t has children t1, . . . , tn such that λ(t1), . . . , λ(tn) are exactly the results of applying
one (arbitrarily chosen, but respecting the rule precedence) applicable rule to λ(t) and
C in all other cases.

We stress several important aspects of Definition 7. If the preconditions of the NI -rule
are satisfied for an annotated equality s ≈ t @u

≤n R.B, then the rule must be applied even
if s = t; hence, such an equality plays a role in a derivation even though it is a logical
tautology. Furthermore, even though the NI -rule is not applied to s ≈ t @u

≤n R.B if u is
a blockable individual, the equality cannot be eagerly simplified into s ≈ t because u can
subsequently be merged into a root individual so the annotation might become important.
Finally, if C has been obtained by a normalization of a DL knowledge base that does not
use nominals, inverse roles, or number restrictions, then the precondition of the NI -rule will
never be satisfied, so we need not keep track of annotations at all.

Renamings are used to keep track of root individuals that are merged into other root
individuals, which is necessary to make the NI -rule sound. For example, if a root individual
a.〈R,B, 2〉 is merged into a named individual b, then the NI -rule must use b instead of
a.〈R,B, 2〉 in all future inferences.

The proof of Lemma 6 shows that assertions containing at least one indirectly blocked
individual are not used to construct a model from an ABox labeling a leaf in a derivation. All
derivation rules are therefore applicable only to individuals that are either directly blocked
or not blocked, as this is sufficient for completeness. Since all rules are sound, however, one
may choose to disregard this restriction if that makes implementation easier.

We next introduce a notion of HT-ABoxes, which formalizes the idea of forest-shaped
ABoxes introduced in Section 3.1.2.

Definition 8 (HT-ABoxes). An ABox A is an HT-ABox if it satisfies the following con-
ditions, for R an atomic role, S a role, B a literal concept not containing a nominal guard
concept, Oa a nominal guard concept, s, t, u ∈ NA, a ∈ NO, b ∈ NI , and i, j integers.

1. Each role assertion in A is of the form R(a, s), R(s, a), R(s, s.i), R(s.i, s), or R(s, s).
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Table 5: Derivation Rules of the Hypertableau Calculus

Hyp-rule

If 1. r ∈ C, where r = U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn, and
2. a mapping σ from the variables in r to the individuals of A exists

such that
2.1 there is no x ∈ NV such that σ(x) is indirectly blocked,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) �∈ A for each 1 ≤ j ≤ n,

then A1 := A ∪ {⊥} if n = 0;
Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-rule

If 1. ≥ n R.B(s) ∈ A,
2. s is not blocked in A, and
3. A does not contain individuals u1, . . . , un such that
3.1 {ar(R, s, ui), B(ui) | 1 ≤ i ≤ n} ∪ {ui �≈ uj | 1 ≤ i < j ≤ n} ⊆ A, and
3.2 for each 1 ≤ i ≤ n, either ui is a successor of s or ui is not blocked in A,

then A1 := A ∪ {ar(R, s, ti), B(ti) | 1 ≤ i ≤ n} ∪ {ti �≈ tj | 1 ≤ i < j ≤ n}
where t1, . . . , tn are fresh distinct successors of s.

≈-rule

If 1. s ≈ t ∈ A (the equality can possibly be annotated),
2. s �= t, and
3. neither s nor t is indirectly blocked

then A1 := mergeA(s→ t) if t is a named individual, or t is a root individual
and s is not a named individual, or s is a descendant of t;
A1 := mergeA(t → s) otherwise.

⊥-rule
If s �≈ s ∈ A or {A(s),¬A(s)} ⊆ A where s is not indirectly blocked
then A1 := A ∪ {⊥}.

NI -rule

If 1. s ≈ t @u
≤n R.B ∈ A (the symmetry of ≈ applies as usual),

2. u is a root individual,
3. s is a blockable individual that is not a successor of u,
4. t is a blockable individual, and
5. neither s nor t is indirectly blocked

then Ai := mergeA(s→ ‖u.〈R,B, i〉‖A) for each 1 ≤ i ≤ n.

2. Each equality in A is either of the form s ≈ t @a
≤n R.B with s a blockable individual

that is not a successor of a and t a blockable individual, or it is a possibly annotated
equality of the form s.i ≈ s.j, s.i ≈ s, s.i.j ≈ s, s ≈ s, or s ≈ a. (The symmetry of ≈
applies in all these cases as usual.)

3. Each concept assertion in A is of the form B(s), ≥ n S.B(s), or Oa(b).

4. If A contains s ≈ t @u
≤n R.B, then A also contains ar(R, u, s) and ar(R, u, t).

5. If A contains a blockable individual s.i in some assertion, then A must contain an
assertion of the form R(s, s.i) or R(s.i, s).

6. A contains at least one assertion.
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Table 6: Cases in an Application of the Hyp-Rule to Role Assertions

ar(R, u, s) ar(R, u, t) s ≈ t @u
≤k R.B

ar(R, v, a) ar(R, v, b) a ≈ b @v
≤k R.B

ar(R, v, a) ar(R, v, v.n) a ≈ v.n@v
≤k R.B

ar(R, v, a) ar(R, v, v) a ≈ v @v
≤k R.B

ar(R, v.n, a) ar(R, v.n, v) a ≈ v @v.n
≤k R.B

ar(R, v, v.m) ar(R, v, v.n) v.m ≈ v.n@v
≤k R.B

ar(R, v, v.m) ar(R, v, v) v.m ≈ v @v
≤k R.B

ar(R, v.n, v.n.m) ar(R, v.n, v) v.n.m ≈ v @v.n
≤k R.B

ar(R, v, v) ar(R, v, v) v ≈ v @v
≤k R.B

ar(R, v.n, v.n) ar(R, v.n, v) v.n ≈ v @v.n
≤k R.B

ar(R, v.n, v) ar(R, v.n, v) v ≈ v @v.n
≤k R.B

7. The relation #→ in A is acyclic, A contains at most one renaming a #→ b for an
individual a, and, if A contains a #→ b, then a does not occur in any assertion in A.

Clearly, each input ABox is an HT-ABox. We now prove that, given an HT-ABox, our
calculus produces only HT-ABoxes.

Lemma 4 (HT-Preservation). For C a set of HT-clauses and A an HT-ABox, each ABox
A′ obtained by applying a derivation rule to C and A is an HT-ABox.

Proof. Let C, A, and A′ be as stated in the lemma. We now analyze each derivation rule
from Table 5 and show that A′ satisfies the remaining conditions of HT-ABoxes.

(Hyp-rule) Consider an application of the Hyp-rule to an HT-clause r of type (34) with
a mapping σ, deriving an assertion σ(V ).

Assume that V is of the form yi ≈ yj @x
≤k R.B, so σ(V ) is of the form s ≈ t @u

≤k R.B. By
Definition 5, the antecedent of r then contains atoms of the form ar(R, x, yi) and ar(R, x, yj)
so, by the precondition of the Hyp-rule, A contains assertions ar(R, u, s) and ar(R, u, t). If
u is a root individual and either s or t is a blockable individual that is not a successor
of u, then σ(V ) clearly satisfies Property (2) of HT-ABoxes. Otherwise, since A satisfies
Property (1) of HT-ABoxes, we have the possibilities shown in Table 6, for v a blockable
individual, and a and b root individuals. For brevity, we omit the symmetric combinations
where the roles of ar(R, u, s) and ar(R, u, t) are exchanged. Clearly, σ(V ) satisfies Property
(2) of HT-ABoxes. Finally, σ(V ) obviously satisfies Property (4) of HT-ABoxes.

Assume that V is of the form x ≈ zj , so σ(V ) is of the form s ≈ t. By Definition 5,
the antecedent of r then contains an atom Oa(zj), so either Oa(s) ∈ A or Oa(t) ∈ A. By
Property (3) of HT-ABoxes, either s or t is a named individual, so σ(V ) satisfies Property
(2) of HT-ABoxes.

Assume that V is of the form R(x, x). Then, σ(V ) is of the form R(s, s), and it satisfies
Property (1) of HT-ABoxes.
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Assume that V is of the form R(x, yi) or R(yi, x), so σ(V ) is of the form R(s, t). By
Definition 5, the antecedent of r then contains an atom of the form S(x, yi) or S(yi, x),
and either S(s, t) ∈ A or S(t, s) ∈ A; these assertions satisfy Property (1) of HT-ABoxes,
so R(s, t) satisfies it as well.

Assume that V is of the form R(x, zj) or R(zj , x), so σ(V ) is of the form R(s, t). By
Definition 5, the antecedent of r then contains an atom of the form Oa(zj) for Oa a nominal
guard concept, and either Oa(s) ∈ A or Oa(t) ∈ A; by Property (3) of HT-ABoxes, either
s or t is a named individual, so R(s, t) satisfies Property (1) of HT-ABoxes.

Assume that V is of the form B(x), ≥ n S.B(x), or B(yi), so σ(V ) is of the form B(s)
or ≥ n S.B(s). By Definition 5, B is a literal but not a nominal guard concept, so σ(V )
satisfies Property (3) of HT-ABoxes.

(≥-rule) Consider an application of the ≥-rule to an assertion ≥ n R.B(s). By Property
(3) of HT-ABoxes, B is not a nominal guard concept, so all assertions B(ti) introduced by
the rule satisfy Property (3) of HT-ABoxes. Furthermore, all ti introduced by the rule are
fresh blockable successors of s, and all role assertions introduced by the rule are of the form
R(s, ti) or R(ti, s), so they satisfy Properties (1) and (5) of HT-ABoxes. The inequalities
introduced by the rule trivially satisfy the properties of HT-ABoxes.

(≈-rule) Consider an application of the ≈-rule to a possibly annotated equality s ≈ t,
where s is merged into t (the annotation of the equality plays no role here). By the conditions
on the #→ relation of A, the ABox A contains no renaming for s or t, so the renaming s #→ t
is the only renaming for s in A′, and adding this renaming to A does not introduce a cycle
in #→. Merging replaces all occurrences of s in A, so no assertion of A′ contains s. Hence,
the #→ relation in A′ satisfies Property (7) of HT-ABoxes.

The NI -rule is not applicable to s ≈ t by the rule precedence, so, by the preconditions
of the NI -rule and Property (2) of HT-ABoxes, s ≈ t can be of the form v ≈ a, v.i ≈ v.j,
v.i ≈ v, or v.i.j ≈ v for a ∈ NO and v ∈ NA; we denote this property with (*). Since pruning
and replacements are applied to all assertions of A uniformly, A′ clearly satisfies Property
(4) of HT-ABoxes. Furthermore, pruning removes all successors of s, so A′ satisfies Property
(5) of HT-ABoxes. We next consider the types of assertions of A that change when s is
merged into t.

Consider a role assertion R(s, u) ∈ A that is changed into R(t, u) ∈ A′. If either t or
u is a root individual, then R(t, u) clearly satisfies Property (1) of HT-ABoxes, so assume
that t and u are both blockable individuals. Then, u is not a successor of s, since the ≈-rule
prunes all assertions that contain a descendant of the merged individual. But then, by (*)
and since R(s, u) satisfies Property (1) of HT-ABoxes, we have the possibilities shown in
Table 7. The cases when R(u, s) ∈ A is changed into R(u, t) ∈ A′ by merging are analogous.

We now consider the form of equalities that can be derived from other equalities via
merging. An equality u ≈ v @s

≤n R.C can be changed into u ≈ v @t
≤n R.C , but the resulting

equality always satisfies Property (2) of HT-ABoxes. Furthermore, for a a root individual,
s ≈ u @a

≤n R.C can be changed into t ≈ u @a
≤n R.C , and s ≈ a can be changed into t ≈ a;

however, in both cases, the resulting equality satisfies Property (2) of HT-ABoxes. For the
remaining cases, assume that a possibly annotated equality s ≈ u is changed into a possibly
annotated equality t ≈ u. If s is a root individual, then t is a root individual as well (the
≈-rule never merges a root individual into a blockable one), so t ≈ u satisfies Property (2) of
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Table 7: Cases in an Application of the ≈-Rule to Role Assertions

R(s, u) s ≈ t R(t, u)
R(v.i, v) v.i ≈ v.j R(v.j, v)
R(v.i, v) v.i ≈ v R(v, v)

R(t.j.i, t.j) t.j.i ≈ t R(t, t.j)
R(v.i, v.i) v.i ≈ v.j R(v.j, v.j)
R(v.i, v.i) v.i ≈ v R(v, v)

R(t.j.i, t.j.i) t.j.i ≈ t R(t, t)

Table 8: Cases in an Application of the ≈-Rule to Equalities

s ≈ u s ≈ t t ≈ u

v.i ≈ v.k v.i ≈ v.j v.j ≈ v.k
v.i ≈ v v.i ≈ v.j v.j ≈ v

u.k.i ≈ u u.k.i ≈ u.k.j u.k.j ≈ u
v.i ≈ v.k v.i ≈ v v ≈ v.k
v.i ≈ v v.i ≈ v v ≈ v

u.k.i ≈ u u.k.i ≈ u.k u.k ≈ u
t.j.i ≈ t.j.k t.j.i ≈ t t ≈ t.j.k
t.j.i ≈ t.j t.j.i ≈ t t ≈ t.j
t.j.i ≈ t t.j.i ≈ t t ≈ t

HT-ABoxes. Assume that s is a blockable individual. Since the ≈-rule prunes all assertions
that contain a descendant of the merged individual, u is not a successor of s. By (*),
Property (2) of HT-ABoxes, and the fact that the NI -rule is not applicable to A, we have
the possibilities shown in Table 8. In all cases, the resulting assertion satisfies Property (2)
of HT-ABoxes. Furthermore, replacing s with t in s ≈ t ∈ A results in t ≈ t ∈ A′, so A′

satisfies Property (6) of HT-ABoxes.
Consider an assertion C(s) ∈ A that is changed into C(t) ∈ A′. The only nontrivial case

is when C is a nominal guard concept Oa. By Property (3) of HT-ABoxes, s is then a named
individual. The ≈-rule replaces named individuals only with other named individuals, so t
is a named individual as well. Thus, C(t) satisfies Property (3) of HT-ABoxes.

(NI -rule) Consider an application of the NI -rule to an equality s ≈ t @u
≤n R.B that merges

s into a root individual ‖u.〈R,B, i〉‖A. The individual s is blockable, so no renaming is added
to A and the #→ relation in A′ satisfies Property (7) of HT-ABoxes. Since s is replaced by
a root individual in role and equality assertions, all resulting assertions satisfy Properties
(1) and (2) of HT-ABoxes. Since s is not a named individual, no assertion involving a
nominal guard concept is affected by merging, so A′ satisfies Property (3). Since pruning
and replacements are applied to all assertions of A uniformly, A′ clearly satisfies Property
(4) of HT-ABoxes. Pruning removes all successors of s, so A′ satisfies Property (5) of
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HT-ABoxes. Finally, A′ is clearly not empty, so it satisfies Property (6).

We next prove soundness and completeness of our calculus. We use these notions as is
customary in resolution-based theorem proving: a calculus is sound if its derivation rules
preserve satisfiability of a theory, and it is complete if, whenever the calculus terminates
without detecting a contradiction, the theory is indeed satisfiable.

Lemma 5 (Soundness). Let C be a set of HT-clauses and A an input ABox such that
(C,A) is satisfiable. Then, each derivation for C and A contains a branch such that λ(t) is
clash-free for each node t on the branch.

Proof. We say that a model I of an ABox A0 is NI-compatible with A0 if the following
conditions are satisfied:

• For each root individual a occurring in A0, each concept ≤ n R.B, and each α ∈ �I

such that aI ∈ (≤ n R.B)I , 〈aI , α〉 ∈ RI , and α ∈ BI , we have α = (a.〈R,B, i〉)I for
some 1 ≤ i ≤ n.12

• If s ≈ t @u
≤n R.B ∈ A0, then we have 〈uI , sI〉 ∈ RI , 〈uI , tI〉 ∈ RI , sI ∈ BI , tI ∈ BI , and

uI ∈ (≤ n R.B)I .13

To prove this lemma, we first show the following property (*): if (C,A0) is satisfiable in
a model that is NI -compatible with A0 and A1, . . . ,An are ABoxes obtained by applying a
derivation rule to C and A0, then some (C,Ai) is satisfiable in a model that is NI -compatible
withAi. Let I be a model of (C,A0) that is NI -compatible withA0, and consider all possible
derivation rules that can derive A1, . . . ,An from A0 and C.

(Hyp-rule) Consider an application of the Hyp-rule to an HT-clause r of the form (34).
Since σ(Ui) ∈ A0, we have I |= σ(Ui) for all 1 ≤ i ≤ m. But then, I |= σ(Vj) for some
1 ≤ j ≤ n. Since Aj := A0 ∪ {σ(Vj)}, we have I |= (C,Aj).

If I |= σ(Vj) for some atom Vj not of the form ψ = yk ≈ y
 @x
≤h R.B , then I is clearly NI -

compatible with Aj . Furthermore, for each Vj of the form ψ, clearly 〈σ(x)I , σ(yk)I〉 ∈ RI ,
〈σ(x)I , σ(y
)I〉 ∈ RI , σ(yk)I ∈ BI , and σ(y
)I ∈ BI . Let (**) denote these two properties.

Assume that I is not NI -compatible withAj for each 1 ≤ j ≤ n. By (**), then I �|= σ(Vj)
for each Vj not of the form ψ, and σ(x)I �∈ (≤ h R.B)I for each Vj of the form ψ. Let
μ : NV →�I be a variable mapping such that μ(x) = σ(x)I and μ(yk) = σ(yk)I for each
branch variable yk not occurring in an atom of the form ψ; furthermore, for each set of
branch variables y1, . . . , yh+1 occurring in an atom of the form ψ, we set μ(y1), . . . , μ(yh+1)
to arbitrarily chosen domain elements that verify σ(x)I �∈ (≤ h R.B)I . Clearly, I, μ �|= Vj

for each Vj not occurring in a subset (35) or (36) of r; furthermore, by the definition of μ,
we have that I, μ �|= Vj for each Vj occurring in a subset of (35) or (36) of r. But then, we
conclude I, μ �|= (C,A0), which is a contradiction.

(≥-rule) Since ≥ n R.B(s) ∈ A0, we have I |= ≥ n R.B(s), which implies that domain
elements α1, . . . , αn ∈ �I exist where 〈sI , αi〉 ∈ RI and αi ∈ BI for 1 ≤ i ≤ n, and αi �= αj

12. Intuitively, this condition ensures that each root individual a.〈R, B, i〉 is interpreted as an appropriate
“neighbor” of aI .

13. Intuitively, this condition ensures that u, s, and t are interpreted in I in accordance with the annotation.
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for 1 ≤ i < j ≤ n. Let I ′ be an interpretation obtained from I by setting tI
′

i = αi. Clearly,
I ′ |= ar(R, s, ti), I ′ |= B(ti), and I ′ |= ti �≈ tj for i �= j, so I ′ |= (C,A1). The individuals ti
are not root individuals, so I ′ is NI -compatible with A1.

(≈-rule) Assume that the ≈-rule is applied to the assertion s ≈ t ∈ A0 and s is merged
into t. Since I |= s ≈ t, we have sI = tI . Pruning removes assertions, so I is a model of the
pruned ABox by monotonicity. Merging simply replaces an individual with a synonym, so
I |= (C,A1). Furthermore, by Property (7) of HT-ABoxes, A does not contain renamings
for s and t, so ‖s‖A1 = t; hence, I is NI -compatible with A1.

(⊥-rule) This rule is never applicable if (C,A0) is satisfiable.
(NI -rule) Assume that the NI -rule is applied to some s ≈ t @u

≤n R.B ∈ A0 and s is
merged into a root individual. Since I is NI -compatible with A0, we have uI ∈ (≤ n R.B)I ,
〈uI , sI〉 ∈ RI , sI ∈ BI , and sI = (u.〈R,B, i〉)I for some 1 ≤ i ≤ n. Let vi = ‖u.〈R,B, i〉‖A0 ;
since I is NI -compatible, we have (u.〈R,B, i〉)I = vI

i . Thus, the NI -rule replaces s by its
synonym vi, so I |= (C,Ai) just like in the case of the ≈-rule. If vi does not occur in
A0, the interpretation I may not be NI -compatible with Ai because it does not interpret
vi.〈S, C, �〉 correctly. We then extend I to I ′ as follows. For each m, S, and C such that
vI
i ∈ (≤ m S.C)I , let α1, . . . , αk be the elements of �I such that 〈vI

i , αj〉 ∈ SI and αj ∈ CI ;
clearly, k ≤ m. We then set (vi.〈S, C, �〉)I′ = α
 for 1 ≤ � ≤ k. Since none of vi.〈S, C, �〉
occurs in Ai, we have I ′ |= (C,Ai), so I ′ is NI -compatible with Aj .

This completes the proof of (*). To prove the main claim of this lemma, let A be an
input ABox. Similarly as for the NI -rule in the proof of (*), we can extend I to a model I ′

of (C,A). Since A does not contain annotated equalities, I ′ is NI -compatible with A. The
claim of this lemma then follows by a straightforward inductive application of (*).

Lemma 6 (Completeness). If a derivation for a set of HT-clauses C and an input ABox A
exists in which some leaf node is labeled with a clash-free ABox A′, then (C,A) is satisfiable.

Proof. We prove the lemma by constructing from A′ a model of (C,A). Since our logic does
not have the finite model property, we obtain this model by unraveling A′ as intuitively
explained in Section 3.1.2. As usual, elements of the unraveled model are paths (Horrocks
& Sattler, 2001, 2007), as defined next.

Given an individual s that is directly blocked in A′, let the blocker of s be an arbitrarily
chosen but fixed individual t such that s is directly blocked by t.

A path is finite sequence of pairs of individuals p = [ s0
s′0

, . . . , sn
s′n

]. Let tail(p) = sn and
tail′(p) = s′n. Furthermore, let q = [p | sn+1

s′n+1
] be the path [s0

s′0
, . . . , sn

s′n
, sn+1

s′n+1
]; we say that q is a

successor of p, and p is a predecessor of q. The set of all paths P(A′) is defined inductively
as follows:

• [a
a ] ∈ P(A′) for each root individual a occurring in A′;

• [p | s′
s′ ] ∈ P(A′) if p ∈ P(A′), s′ is a successor of tail(p), s′ occurs in A′, and s′ is not

blocked in A′; and

• [p | s
s′ ] ∈ P(A′) if p ∈ P(A′), s′ is a successor of tail(p), s′ occurs in A′, s′ is directly

blocked in A′, and s is the blocker of s′ in A′.
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Table 9: The Construction of an Interpretation from A′

�I = P(A′)
aI = [a

a ] for each root individual a that occurs in an assertion in A′

aI = bI if a �= b and ‖a‖A′ = b

AI = {p ∈ �I | A(tail(p)) ∈ A′}
RI = {〈[a

a ], p〉 ∈ �I ×�I | a is a root individual and R(a, tail(p)) ∈ A′} ∪
{〈p, [a

a ]〉 ∈ �I ×�I | a is a root individual and R(tail(p), a) ∈ A′} ∪
{〈p, [p | s

s′ ]〉 ∈ �I ×�I | R(tail(p), s′) ∈ A′} ∪
{〈[p | s

s′ ], p〉 ∈ �I ×�I | R(s′, tail(p)) ∈ A′} ∪
{〈p, p〉 ∈ �I ×�I | R(tail(p), tail(p)) ∈ A′}

Let I be the interpretation constructed from A′ as shown in Table 9. A′ is an HT-ABox,
so �I is not empty. We now show that, for each ps of the form [ s

s′ ] or [qs | s
s′ ] and each

individual w, the following claims hold (*):

• R(s, s) ∈ A′ (resp. A(s) ∈ A′) iff 〈ps, ps〉 ∈ RI (resp. ps ∈ AI): Immediate by the
definition of I.

• If B(w) ∈ A′ and LA′(w) = LA′(s′) for B a literal concept, then ps ∈ BI : The proof
is immediate if B is atomic. If B = ¬A, since the ⊥-rule is not applicable to A′, we
have A(w) �∈ A′; but then, we have A(s′) �∈ A′ and A(s) �∈ A′, which by the case for
atomic concepts implies ps �∈ AI .

• If ≥ n R.B(s) ∈ A′, then ps ∈ (≥ n R.B)I : By the definition of paths, s is not blocked;
since the ≥-rule is not applicable to ≥ n R.B(s), individuals u1, . . . , un exist such that
ar(R, s, ui) ∈ A′ and B(ui) ∈ A′ for 1 ≤ i ≤ n, and ui �≈ uj ∈ A′ for 1 ≤ i < j ≤ n.
Each assertion ar(R, s, ui) satisfies Property (1) of HT-ABoxes, so each ui can be of
one of the following forms.

– ui = s. Let pui = ps. But then, by the previous two cases we conclude that
ar(R, s, ui) ∈ A′ and B(ui) ∈ A′ imply 〈ps, pui〉 ∈ RI and pui ∈ BI .

– ui is a successor of s. If ui is directly blocked by the blocker vi, let pui = [ps | vi
ui

];
otherwise, ui is not blocked because s is not blocked, and let pui = [ps | ui

ui
].

Either way, we have ar(R, tail(ps), ui) ∈ A′, which, by the definition of I, im-
plies 〈ps, pui〉 ∈ RI . Furthermore, B(ui) ∈ A′ and LA′(ui) = LA′(tail(pui)) imply
pui ∈ BI .

– ui is a blockable predecessor of s. Since s is blockable, we have ps = [qs | s
s′ ];

hence, let pui = qs. If s′ is not blocked, then s = s′ and tail(pui) = ui, so we have
ar(R, s′, tail(pui)) ∈ A′. If s′ is blocked by the blocker s, then by the definition of
pairwise blocking LA′(tail(pui), s

′) = LA′(ui, s) and LA′(s′, tail(pui)) = LA′(s, ui),
so we again have ar(R, s′, tail(pui)) ∈ A′. Either way, we have 〈ps, pui〉 ∈ RI by
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the definition of I. Furthermore, B(ui) ∈ A′ and LA′(ui) = LA′(tail(pui)) imply
pui ∈ BI .

– ui and s do not satisfy any of the previous three conditions. If s is a blockable
individual, then ui is a root individual, so let pui = [ui

ui
]. If s is a root individual,

then ui is not blocked in A′ by Condition 3.2 of the ≥-rule, so some pui ∈ �I

exists that has the form pui = [p | ui
ui

]. Either way, we have ar(R, s, ui) ∈ A′ and
B(ui) ∈ A′, which imply 〈ps, pui〉 ∈ RI and pui ∈ BI .

Consider now each 1 ≤ i < j ≤ n. If tail′(pui) �≈ tail′(puj ) ∈ A′, since ⊥ �∈ A′ and the
⊥-rule is not applicable, we have tail′(pui) �= tail′(puj ), so pui �= puj . Furthermore, if
tail′(pui) �≈ tail′(puj ) /∈ A′, this is because tail′(pui) �= ui, which is possible only if s′ is
directly blocked by the blocker s and ui = s or ui is a blockable predecessor of s. Note,
however, that s can have at most one blockable predecessor, and that there can be at
most one ui such that ui = s. Therefore, we have ui �= uj , which implies pui �= puj ,
and we conclude ps ∈ (≥ n R.B)I .

For an assertion α′ ∈ A′ of the form a ≈ b and a �≈ b with a and b named individuals, it
is straightforward to see that I |= α′. Furthermore, if α′ is of the form R(a, b) or B(a), or
≥ n R.B(a) with a a named individual, (*) implies I |= α′. Consider now each α ∈ A. By
induction on the application of the derivation rules, it is straightforward to show that, if
α �∈ A′, then A′ contains renamings that, when applied to α, produce an assertion α′ ∈ A′.
But then, since I |= α′, we have I |= α by the definition of I.

It remains to be shown that I |= C. Consider each HT-clause r ∈ C containing atoms of
the form Ai(x), Uk(x, x), ar(Ri, x, yi), Bi(yi), and Cj(zj) in the antecedent. Furthermore,
consider a variable mapping μ such that the antecedent of r is true in I and μ—that is,
px ∈ AI

i , 〈px, px〉 ∈ U I
k , 〈px, pyi〉 ∈ RI

i , pyi ∈ BI
i , and pzj ∈ CI

j for px = μ(x), pyi = μ(yi),
and pzj = μ(zj). Let s = tail(px), s′ = tail′(px), and t′i = tail′(pyi). By the definition of I
and the fact that LA′(s′i) = LA′(si), we have Ai(s) ∈ A′, Uk(s, s) ∈ A′, and Bi(t′i) ∈ A′.
Depending on the relationship between px and pyi , we define ti as follows.

• pyi is a successor of px or pyi = px. Let ti = t′i. Clearly, Bi(ti) ∈ A′; furthermore, the
definition of I and 〈px, pyi〉 ∈ RI

i imply ar(Ri, s, t
′
i) ∈ A′, so we have ar(Ri, s, ti) ∈ A′.

• pyi is a predecessor of px. We have the following cases.

– s directly blocks s′. Let ti be the predecessor of s; such ti exists since s is
blockable. The definition of I and 〈px, pyi〉 ∈ RI

i imply ar(Ri, s
′, tail(pyi)) ∈ A′

and B(tail(pyi)) ∈ A′, and by the definition of pairwise blocking we conclude
that ar(Ri, s, ti) ∈ A′ and Bi(ti) ∈ A′.

– s′ is not blocked. Let ti = t′i. By the definition of I, we have Bi(ti) ∈ A′ and
ar(Ri, s, ti) ∈ A′.

• pyi and px do not match any of the conditions mentioned thus far. By the definition
of I, then either px or pyi is of the form [aa ]. Let ti = tail(pyi). By 〈px, pyi〉 ∈ RI

i and
the definition of I, we conclude that Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′.
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By Definition 5, the antecedent of r contains an atom of the form Oa(zj) for each nominal
variable zj . Thus, by the definition of I and Property (3) of HT-ABoxes, we have pzj is of
the form [uj

uj
] for uj a named individual; furthermore, Cj(uj) ∈ A′.

Let σ be a mapping such that σ(x) = s, σ(yi) = ti, and σ(zj) = uj . Clearly, neither s
nor ti are indirectly blocked, and σ(Uj) ∈ A′ for each atom Uj in the antecedent of r. The
Hyp-rule is not applicable to r, A′, and σ, so r contains an atom Vi in the consequent such
that σ(Vi) ∈ A′. Depending on the type of Vi, we have the following possibilities.

Assume that Vi is of the form yi ≈ yj @x
≤k S.B; thus, we have ti ≈ tj @s

≤k S.B ∈ A′. Since
the ≈-rule is not applicable to A′, we have ti = tj . By Definition 5, r contains a subclause
of the form (35) or (36), so the antecedent of r contains atoms ar(S, x, yi) and ar(S, x, yj);
therefore, 〈px, pyi〉 ∈ SI and 〈px, pyj 〉 ∈ SI . The NI -rule is not applicable to ti ≈ tj @s

≤k S.B

so, by the preconditions of the NI -rule, if s is a root individual, then ti (tj) is either a root
individual or a successor of s. This rules out the possibility when px is of the form [aa ] and
pyi (pyj ) is neither a successor of px nor of the form [ bb ]. Hence, by the construction of I,
we have that pyi (pyj ) is either a successor of px, equal to px, the predecessor of px, or is
of the form [aa ]. We now consider the following cases (w.l.o.g. we omit the symmetric cases
obtained by swapping pyi and pyj ):

• pyi is of the form [aa ]. Then, ti = tj implies pyi = pyj by the definition of paths.

• pyi is a successor of px. Then, pyi = [px|ui
ti

] for ui = ti if ti is not blocked or ui the
blocker of ti. Either way, ti is different from s and the predecessor of s (if the latter
exists). We have the following possibilities for pyj :

– pyj is a successor of px. Then, pyj = [px|uj

tj
], so ti = tj clearly implies pyi = pyj .

– pyj = px or pyj is the predecessor of px. Then tj = s or tj is the predecessor of
s, which contradicts the fact that ti �= tj .

• pyi = px. Then ti = s. The only nontrivial case is if pyj is the predecessor of px; but
then, tj �= s, which contradicts the fact that ti �= tj .

• pyi is the predecessor of px. The only remaining possibility is for pyj to be the prede-
cessor of px. Since px can have at most one predecessor, we have pyi = pyj .

Thus, we conclude that I, μ |= r.
Assume that Vi is of the form x ≈ zj ; thus, we have s ≈ uj ∈ A. Since the ≈-rule is

not applicable to A′, we have s = uj . Since uj is a named individual, it cannot block other
individuals, so s′ = s, which implies px = pzj . Thus, I, μ |= r.

Assume that Vi is of the form Ti(x, x); thus, we have Ti(s, s) ∈ A′. By (*), we then have
〈px, px〉 ∈ RI

i . Thus, we have I, μ |= r.
Assume that Vi is of the form Di(x) for Di a literal concept or of the form ≥ n T.B;

thus, we have Di(s) ∈ A′. By (*), we then have px ∈ DI
i . Thus, we have I, μ |= r.

Assume that Vi is of the form Ei(yi) for Ei a literal concept; thus, we have Ei(ti) ∈ A′.
We have already established that LA′(ti) = LA′(t′i); by (*), we then have pyi ∈ EI

i . Thus,
we have I, μ |= r.
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Assume that Vi is of the form ar(Si, x, yi), so ar(Si, s, ti) ∈ A′. By the definition of
blocking, we have ar(Si, s

′, t′i) ∈ A′. Finally, by the definition of I, we have 〈px, pyi〉 ∈ SI
i .

Thus, we have I, μ |= r.
Assume that Vi is of the form ar(Sj , x, zj), so ar(Sj , s, uj) ∈ A′. Since uj is a named

individual, by the definition of I we have 〈px, pzj 〉 ∈ SI
j . Thus, we have I, μ |= r.

We next prove termination of the hypertableau calculus.

Lemma 7 (Termination). For a set of HT-clauses C and an input ABox A, let |C,A| be
the sum of the size of A, of the number of concepts and roles in C, and of %log n& for each
integer n occurring in C in an atom of the form ≥ n R.B and yi ≈ yj @x

≤n R.B. The total
number of individuals introduced on each path in each derivation for C and A is at most
doubly exponential in |C,A|, and each derivation for C and A is finite.

Proof. We prove the claim by showing that (i) each derivation rule can be applied at most
once to a fixed set of individuals on a derivation path, and (ii) the number of new individuals
introduced on each derivation path is at most doubly exponential in |C,A|. The supply of
blockable individuals is infinite, so we can assume that no blockable individual is introduced
twice on a derivation path. Furthermore, if the root individual s is removed from an ABox
A′ due to merging, then a renaming is added to A′ that ensures ‖s‖A′ �= s. Once a renaming
is added to A′, all ABoxes occurring below A′ in a derivation will contain this renaming as
well, so no subsequent application of the NI -rule can reintroduce s.

Next, we prove (i) by considering each derivation rule.

• An application of the Hyp-rule to an HT-clause r of the form (34) and a mapping
σ introduces an assertion σ(Vi), which prevents a subsequent reapplication of the
Hyp-rule to the same r and σ. Merging and pruning can remove σ(Vi) in subsequent
derivation steps, but this also removes at least one individual occurring in σ from the
set of potential premises of the Hyp-rule, thus preventing the reuse of the same σ in
a future application of the Hyp-rule to r.

• An application of the ≥-rule to an assertion ≥ n R.B(s) introduces t1, . . . , tn as fresh
successors of s and the assertions B(ti), ar(R, s, ti), and ti �≈ tj for 1 ≤ i < j ≤ n.
Thus, the individuals u1, . . . , un from Condition 3 of the ≥-rule can be matched to
t1, . . . , tn. Furthermore, if s is a root individual, none of ti can become blocked and
Condition 3.2 is always satisfied for ti; moreover, if s is blockable, Condition 3.2 is
trivially satisfied for ti. If some ti is merged into another individual v, then B(v),
ar(R, s, v), and v �≈ tj are added to the ABox, so the ABox still contains individuals
that can be matched to Condition 3 of the≥-rule. Finally, if some ti becomes indirectly
blocked, then s is blocked and the ≥-rule is not applicable to s.

• An application of the ≈-rule to s ≈ t removes either s or t, so the rule cannot be
reapplied to the same s and t

• An application of the ⊥-rule produces an ABox that labels a derivation leaf.

• An application of the NI -rule to an equality s ≈ t @u
≤n R.B removes s, so the rule

cannot be reapplied to the same ≤ n R.B, s and u.
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Next, we prove (ii)—that is, that the total number of individuals introduced on a deriva-
tion path is at most doubly exponential in |C,A|. A path of length n between individuals
s and t in an ABox A′ is a sequence of individuals u0, u1, . . . , un such that u0 = s, un = t,
and, for each 0 ≤ i ≤ n− 1, either R(ui, ui+1) ∈ A′ or R(ui+1, ui) ∈ A′ for R an atomic role.

A root path for a root individual t in an ABox A′ is a path between t and a named
individual s such that all intermediate individuals ui, 1 ≤ i ≤ n − 1, are root individuals.
The level lev(t) of t is the length of the shortest root path for t. Thus, lev(t) = 0 if t is a
named individual.

The depth dep(t) of an individual t is the number of ancestors of t. Thus, dep(t) = 0 if
t is a root individual. Due to Property (5) of HT-ABoxes, if an individual t occurs in an
ABox A′, then A′ contains a path of length dep(t) between a root individual s and t such
that the individuals ui, 0 ≤ i ≤ n − 1, are all ancestors of t; since each individual has at
most one predecessor, these ui are also the only ancestors of t.

We now show that the maximum level of a root individual and the maximum depth of
every individual are both at most exponential in the size of C and A.

An application of an derivation rule never increases the level of an individual. This is
because a named individual is never pruned and can be merged only into another named
individual,14 and a root individual can be merged only into another root individual. Such
rule applications can only make a root path shorter, and not longer.

Let m be the number of atomic concepts and n the number of atomic roles that occur
in A and C, let ℘ = 22m+2n + 1, and let A′ be an ABox labeling a node of a derivation for
A and C. We next show that (1) dep(t) ≤ ℘ for each individual t occurring in A′, and (2) if
t is a root individual, then lev(t) ≤ ℘.

(Claim 1) For a pair of individuals s and t occurring in A′, there are 2m different
possible labels LA′(s) and 2n different possible labels LA′(s, t). Thus, if A′ contains at least
℘ = 2m · 2m · 2n · 2n + 1 predecessor-successor pairs of blockable individuals, then A′ must
contain two pairs 〈s, s.i〉 and 〈t, t.j〉 such that the following conditions are satisfied:

LA′(s.i) = LA′(t.j) LA′(s) = LA′(t)
LA′(s, s.i) = LA′(t, t.j) LA′(s.i, s) = LA′(t.j, t)

Since ≺ contains the ancestor relation, a path in A′ containing ℘ blockable individuals
must include at least one blocked individual, so a blockable individual of depth ℘ must be
blocked. The ≥-rule is applied only to individuals that are not blocked, so the rule cannot
introduce an individual u such that dep(u) > ℘.

(Claim 2) We show that the following stronger claim (*) holds for each root individual
s occurring in an assertion in A′ (the symmetry of ≈ applies as usual):

1. lev(s) ≤ ℘;

2. if R(s, t) ∈ A′ or R(t, s) ∈ A′ or t ≈ u @s
≤n R.B ∈ A′ with t a blockable nonsuccessor

of s, then lev(s) + dep(t) ≤ ℘; and

3. if s ≈ t ∈ A′ with t a blockable nonsuccessor of s (where the equality can be anno-
tated), then lev(s) + dep(t) ≤ ℘ + 1.

14. If a derivation rule replaced a named individual with an individual that is not named, the levels of other
root individuals could increase.
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This claim is clearly true for the input ABox A labeling the root of a derivation, which
contains only named individuals. We now assume that (*) holds for some ABox A′ and
consider all possible derivation rules that can be applied to A′.

• Assume that the Hyp-rule derives an assertion R(s, t) or R(t, s), where s is a root
individual and t is a blockable nonsuccessor of s. Let R(x, y) or R(y, x) be the atom
from the consequent of an HT-clause r that is instantiated by the derivation rule. We
have the following two possibilities for the antecedent of r.

– The antecedent of r contains an atom of the form S(x, y) or S(y, x) that is
matched to an assertion of the form S(s, t) or S(t, s) in A′. Since A′ satisfies (*),
the resulting ABox satisfies (*) as well.

– The antecedent of r contains an atom of the form Oa(x) or Oa(y) that is matched
to an assertion of the form Oa(s) in A′ (since t is blockable, A′ cannot contain
Oa(t) by Property 3 of HT-ABoxes). Then dep(t) ≤ ℘ and lev(s) = 0, so the
resulting ABox satisfies (*) as well.

• Assume that the Hyp-rule derives an assertion t ≈ u @s
≤n R.B, where s is a root in-

dividual and t is a blockable nonsuccessor of s. By Definition 5, the antecedent of
the HT-clause then contains atoms of the form ar(R, x, yi) and ar(R, x, yj) that are
matched to assertions ar(R, s, t) and ar(R, s, u) in A′. Since A′ satisfies (*), we have
lev(s) + dep(t) ≤ ℘, so the resulting equality satisfies Item 2 of (*). To show that
t ≈ u @s

≤n R.B satisfies Item 3 of (*), assume that u is a root individual and t is a
nonsuccessor of u. Since A′ contains ar(R, s, u), we have that lev(u) ≤ lev(s) + 1; but
then, lev(u) + dep(t) ≤ ℘ + 1, as required.

• If the Hyp-rule derives an assertion s ≈ t, where s is a root individual and t is a
blockable nonsuccessor of s, the only remaining possibility is that the consequent of
the HT-clause then contains the equality x ≈ zj . By Definition 5, the antecedent
then contains Oa(zj) that is matched to an assertion Oa(s) in A′, where s is a named
individual. Then dep(t) ≤ ℘ and lev(s) = 0, so the resulting ABox satisfies (*).

• Assume that the ≥-rule introduces an assertion of the form R(s, t) or R(t, s) where
t is a fresh individual. Individual t is always a successor of s, so the resulting ABox
trivially satisfies (*).

• Assume that the ≈-rule is applied to an assertion of the form u ≈ s and that u is
merged into s. By the definition of merging, we have that dep(u) ≥ dep(s) and u is
pruned. If s is a blockable individual, then u is blockable as well, and the resulting
ABox satisfies (*) because u is replaced with an individual of equal or smaller depth.
Therefore, we assume that s is a root individual and consider the types of assertions
that can be added to A′ as a result of merging.

– If R(u, u) is changed into R(s, s), the resulting ABox clearly satisfies (*).
– Assume that R(u, t) where t is a root individual is changed into R(s, t). This

inference can make root paths to s and t only shorter and not longer, so the
levels of s and t can only decrease rather than increase. Thus, the resulting
ABox satisfies Item 1 of (*).
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– Assume that R(u, t), where t is a predecessor of u, is changed into R(s, t); the
only nontrivial case is when t is a blockable nonsuccessor of s. Since t is a
predecessor of u, we have dep(t) + 1 = dep(u); since A′ satisfies (*), we have
lev(s) + dep(u) ≤ ℘ + 1; but then, lev(s) + dep(t) ≤ ℘ as required.

– The cases when R(t, u) is changed into R(t, s) are analogous.

– Assume that a possibly annotated equality v ≈ u is changed into v ≈ s. The
only nontrivial case is when v is a blockable nonsuccessor of s. If u is a root
individual, then the level of s after merging is bounded by min(lev(s), lev(u))
before merging, so (*) is preserved. If u and v are both blockable individuals,
then by Property (2) of HT-ABoxes, either u is an ancestor of v, or u and v
are siblings, or v is an ancestor of u. If u is an ancestor of v, then pruning u
removes v ≈ u from A′. If v is a sibling or an ancestor of u, then u must be
a nonsuccessor of s, so lev(s) + dep(u) ≤ ℘ + 1; but then, dep(v) ≤ dep(u), so
lev(s) + dep(v) ≤ ℘ + 1 and (*) is preserved.

– Assume that v ≈ v′ @u
≤n R.B is changed into v ≈ v′ @s

≤n R.B or v ≈ s@s
≤n R.B. The

only nontrivial case is when v is a blockable nonsuccessor of s. Since u is pruned
before merging, by Properties (2) and (4) of HT-ABoxes v must be a prede-
cessor of u, so dep(v) + 1 = dep(u). Furthermore, by the same properties u
must be a blockable nonsuccessor of s, so lev(s) + dep(u) ≤ ℘ + 1. But then,
lev(s) + dep(v) ≤ ℘, as required.

• An application of the ⊥-rule trivially preserves (*).

• Assume that the NI -rule is applied to an assertion s ≈ t @u
≤n R.B replacing s with a

root individual v = ‖u.〈R,B, i〉‖A′ . If v already occurs in an assertion in A′, then v
satisfies Item 1 of (*). If, however, v is fresh, by Property (4) of HT-ABoxes v will be
connected to u by a role assertion, so lev(v) ≤ lev(u) + 1. Furthermore, since s is a
blockable nonsuccessor of u, we have lev(u) + dep(s) ≤ ℘. Finally, since s is blockable,
dep(s) ≥ 1, so lev(u) ≤ ℘− 1. As a consequence, we conclude that lev(v) ≤ ℘, which
proves Item 1 of (*). The proof that the assertions introduced through merging satisfy
(*) is analogous to the case for the ≈-rule.

We now complete the proof of claim (ii)—that is, that the total number of individuals
introduced by derivation rules is at most doubly exponential in |C,A|.

All named individuals are of level 0 and are never introduced by the derivation rules.
An application of the NI -rule to a root individual u of level � can introduce at most n root
individuals of level � + 1 for each concept ≤ n R.B that occurs in C. Thus, for each named
individual, the derivation rules can create a tree of root individuals. The maximum depth
of the tree is ℘, which is exponential in |C,A|. Furthermore, the maximum branching factor
b is equal to the sum of all numbers occurring in C in atoms of the form yi ≈ yj @x

≤n R.B.
Clearly, b is exponential in |C,A|, so each such tree is doubly exponential in |C,A|.15

Similarly, each root individual can become the root of a tree of blockable individuals of
depth ℘. Each blockable individual is introduced by applying the ≥-rule to its predecessor.

15. If numbers were coded in unary, then the branching factor would be polynomial, but each such tree
would still be doubly exponential in |C,A|.
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Furthermore, the ≥-rule can be applied to an individual s at most once for each concept
of the form ≥ n R.B. Thus, the branching factor is exponential assuming binary coding of
numbers, and each such tree is at most doubly exponential in |C,A|.

Thus, the total number of individuals appearing in a derivation is at most doubly expo-
nential in |C,A|. Since the branching factor in the derivation is exponentially bounded by
|C,A|, each derivation is finite.

We now state the main theorem of this section.

Theorem 1. The satisfiability of a SHOIQ+ knowledge base K can be decided by computing
K′ = Δ(Ω(K)) and then checking whether some derivation for Ξ(K′) contains a leaf node
labeled with a clash-free ABox. Such an algorithm can be implemented such that it runs in
2NExpTime in |K|.

Proof. The first part of the theorem follows immediately from Lemmas 1, 2, 5, and 6.
By Lemma 7, the total number of individuals is doubly exponential in |ΞA(K′),ΞT R(K′)|.
Since the structural transformation is polynomial, the total number of individuals is doubly
exponential in |K|. Thus, the existence of a leaf derivation node labeled with a clash-free
ABox can be checked by nondeterministically applying the hypertableau derivation rules to
construct an ABox that is at most doubly exponential in |K|.

5. Discussion

In this section we discuss the possibilities of optimizing the blocking condition to single and
subset blocking; furthermore, we argue that modifying the algorithm to make it optimal
w.r.t. worst-case complexity might be difficult.

5.1 Single Blocking

For DLs such as SHOQ+ that do not provide for inverse roles, pairwise blocking can be
weakened to atomic single blocking, defined as follows.

Definition 9 (Atomic Single Blocking). Atomic single blocking is obtained from pairwise
blocking (see Definition 7) by changing the notion of direct blocking: a blockable individual
s is directly blocked by a blockable individual t if and only if t is not blocked, t ≺ s, and
LA(s) = LA(t) for LA(s) as in Definition 7.16

In some cases, this simpler blocking condition can make the hypertableau algorithm
construct smaller ABoxes, which can lead to increased efficiency. We next formalize the
notion of HT-clauses to which atomic single blocking is applicable.

Definition 10 (Simple HT-Clause). An HT-clause r is simple if it satisfies the following
restrictions, for x a center variable, yi a branch variable, zj a nominal variable, B a literal
concept, and R an atomic role:

• Each atom in the antecedent of r is of the form A(x), R(x, x), R(x, yi), A(yi), or
A(zj).

16. The name “atomic” reflects the fact that LA(s) contains only atomic concepts.
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• Each atom in the consequent of r is of the form B(x), ≥ h R.B(x), B(yi), R(x, x),
R(x, yi), R(x, zj), x ≈ zj, or yi ≈ yj.

It is straightforward to see that, if K is a SHOQ+ knowledge base, then ΞT R(K) contains
only simple HT-clauses. The completeness of the hypertableau algorithm with atomic single
blocking on simple HT-clauses is straightforward to show.

Lemma 8. Let C be a set of simple HT-clauses, and A an input ABox. If a derivation with
atomic single blocking for C and A exists in which a leaf node is labeled with a clash-free
ABox A′, then (C,A) is satisfiable.

Proof. By slightly modifying the proof of Lemma 4, it is possible to show the following
property (*): each atom in A′ involving an atomic role is of the form R(s, a), R(s, s), or
R(s, s.i), for a a named individual and s any individual.

Let I be a model constructed in the same way as in Lemma 6, but by using single
blocking. Due to (*), whenever 〈p1, p2〉 ∈ RI , then p2 is either of the form [aa ] for a a named
individual, it is a successor of p1, or p2 = p1. The proof that I is a model of (C,A) is a
straightforward consequence of the following observations about the proof of Lemma 6:

• In the proof that ≥ n R.B(s) ∈ A′ implies ps ∈ (≥ n R.B)I , individual ui can never
be a blockable predecessor of s. Thus, labels LA′(s, ui), LA′(ui, s), and LA′(ui) are
never relevant.

• In the proof that I |= C, it is not possible that pyi is a predecessor of px. Thus, labels
LA′(s′, tail(pyi)), LA′(tail(pyi), s

′), and LA′(tail(pyi)) are never relevant.

The proof that I is a model of (A, C) thus requires only LA′(s) = LA′(t) to hold when s
is blocked by the blocker t; hence, I is a model of (A, C) even if atomic single blocking is
used.

The following variant of single blocking can also be applied to DLs with inverse roles
but no number restrictions, such as SHOI.

Definition 11 (Full Single Blocking). Full single blocking is obtained from atomic single
blocking (see Definition 9) by changing the definition of LA(s) as follows:

LA(s) = { C | C(s) ∈ A where C is of the form A or ≥ 1 R.B
with A an atomic and B a literal concept }

For t to directly block s in A under atomic single blocking, it suffices if s and t occur
in the same atomic concepts in A. Intuitively, this is because the model construction from
Lemma 6 “copies” all nonatomic concepts from t to s; hence, assertions of the form C(s)
where C is not atomic are not relevant. In contrast, in full single blocking, s and t must
occur in A in exactly the same concepts (apart from negated atomic concepts). Intuitively,
given a clash-free ABox A′ to which no derivation rule is applicable, a model for (A, C) is
constructed from A′ by replacing s with t; for the result to be a model, the two individuals
must occur in exactly the same concepts.
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Figure 11: Problems with Single Blocking

Full single blocking must be applied with care in the hypertableau setting. Consider the
following knowledge base K9, consisting of an ABox A9 and a set of HT-clauses C9.

A9 = { ∃T.C(a) }
C9 = {C(x) → ∃R.D(x), D(x) → ∃S−.C(x), R(x, y1) ∧ S(x, y2) → ⊥}(37)

On K9, the hypertableau algorithm with full single blocking produces the ABox shown in
Figure 11. The individual d is blocked by b, so the algorithm terminates; an expansion of
∃R.D(d), however, would reveal that K9 is unsatisfiable. The problem arises because the
HT-clause R(x, y1) ∧ S(x, y2) → ⊥ contains two role atoms, which allows the HT-clause to
examine both the successor and the predecessor of x. Full single blocking, however, does
not ensure that both predecessors and successors of x have been fully built. We can correct
this problem by requiring the normalized GCIs to contain at most one ∀R.C concept. For
example, if we replace our HT-clause with R(x, y1) → Q(x) and Q(x) ∧ S(x, y2) → ⊥, then
the first HT-clause would additionally derive Q(b), so d would not be blocked by b.

We can apply full single blocking to the DL SHOI provided that each HT-clause con-
tains at most one role atom in the antecedent. We can always ensure this by suitably
renaming complex concepts with atomic ones.

Lemma 9. Let A be an ABox and C a set of HT-clauses such that, for each r ∈ C, ( i) r
contains no atoms of the form R(x, x), ( ii) the antecedent of r contains at most one role
atom, and ( iii) all at-least restriction concepts are of the form ≥ 1 S.B for S a role and B
a literal concept. If a derivation with full single blocking for C and A exists in which a leaf
node is labeled with a clash-free ABox A′, then (C,A) is satisfiable.

Proof. Let A′′ be obtained from A′ by removing each assertion containing an indirectly
blocked individual. Since no derivation rule is applicable to indirectly blocked individuals,
no derivation rule is applicable to A′′ and C. For an individual s occurring in A′′, let
[s]A′′ = s if s is not blocked in A′′, and let [s]A′′ = s′ if s is blocked in A′′ by the blocker s′.

Note the following useful property (*): if ¬A(s) ∈ A′′, then A(s) �∈ A′′ since the ⊥-rule
is not applicable to A′′; but then, A([s]A′′) �∈ A′′ as well.

We now construct an interpretation I from A′′ as follows.

�I = {s | s occurs in A′′ and it is not blocked in A′′}
sI = [s]A′′ for each individual s occurring in A′′

AI = {[s]A′′ | A(s) ∈ A′′}
RI = {〈[s]A′′ , [t]A′′〉 | R(s, t) ∈ A′′}
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It is straightforward to see that I |= A′′. Consider now each HT-clause r ∈ C that contains
in the antecedent one atom of the form R(x, y), as well as atoms of the form Ai(x), Bi(y),
Ci(zi). Let σ be a mapping from the variables of r to the individuals in A′′ such that
I |= σ(Ui) for each atom Ui from the antecedent of r. By the definition of I, individuals s
and t then exist such that R(s, t) ∈ A′′, σ(x) = [s]A′′ , and σ(y) = [t]A′′ . By the definition
of full single blocking, then Ai(s) ∈ A′′ and Bi(t) ∈ A′′ as well. Furthermore, since each
zi occurs in a nominal guard concept, σ(zi) is a named individual. Let σ′ be such that
σ′(x) = s, σ′(y) = t, and σ′(zi) = σ(zi). Since the Hyp-rule is not applicable to C and A′′

for σ′, we have σ′(Vj) ∈ A′′ for some atom Vj from the consequent of r. Consider now the
possible forms that Vj can have.

• If Vj = S(x, y), then I |= S(σ(x), σ(y)) by the definition of I. The case Vj = S(y, x)
is analogous.

• If Vj = A(x) for A an atomic concept, then A([s]A′′) ∈ A′′ by the definition of full
single blocking; but then, I |= A(σ(x)) by the definition of I. The case when Vj = A(y)
is analogous.

• If Vj = ¬A(x), then A([s]A′′) �∈ A′′ by (*); but then, by the definition of I we have
I |= ¬A(σ(x)). The case when Vj = ¬A(y) is analogous.

• If Vj = D(x) for D = ≥ 1 R.B, then D([s]A′′) ∈ A′′ by the definition of full single
blocking. Since the ≥-rule is not applicable to [s]A′′ , an individual t exists such that
ar(R, s, t) ∈ A′′ and if B is atomic, then B(t) ∈ A′′, and if B = ¬A, then A(t) �∈ A′′.
By the definition of full single blocking, if B is atomic, then B([t]A′′) ∈ A′′, and if
B = ¬A, then A([t]A′′) �∈ A′′. By the definition of I, we have 〈[s]A′′ , [t]A′′〉 ∈ RI , and
[t]A′′ ∈ BI ; therefore, I |= D(σ(x)). The case when Vj = D(y) is analogous.

• If Vj = x ≈ zi, then σ′(x) ≈ σ′(zi) ∈ A′′; since the ≈-rule is not applicable to A′′, we
have σ′(x) = σ′(zi). But then, since named individuals cannot block other individuals,
we have σ(x) = σ′(x); hence, I |= σ(x) ≈ σ(zi).

Thus, in all cases we have I |= σ(Vj). The case when r does not contain a role atom R(x, y)
in the antecedent is analogous, so I |= (A, C).

5.2 Subset Blocking

In tableau algorithms for DLs without inverse roles, full single blocking condition from
Definition 11 can be further weakened to full subset blocking (Baader et al., 1996).

Definition 12 (Full Subset Blocking). Full subset blocking is obtained from full single
blocking (see Definition 11) by changing the notion of direct blocking: a blockable individual s
is directly blocked by an individual t if and only if t is not blocked, t ≺ s, and LA(s) ⊆ LA(t).

Full subset blocking is problematic in the hypertableau setting. Consider the knowledge
base that consists of an ABox A10 and a TBox corresponding to the HT-clauses C10.

A10 = { ∃T.C(a) }

C10 =
{

C(x) → ∃R.C(x), C(x) → ∃S.D(x),
S(x, y) ∧D(y) → E(x), R(x, y) ∧ E(y) → ⊥

}
(38)
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Figure 12: Problems with Full Subset Blocking

On K10, our algorithm can produce the ABox shown in Figure 12, in which d is blocked by
b. If, however, we expand ∃S.D(d) into S(d, e) and D(e), we can derive E(d); together with
R(b, d) and the HT-clause R(x, y) ∧ E(y) → ⊥, we get a contradiction.

The problem arises because, in the hypertableau setting, the syntactic distinction be-
tween atomic and inverse roles is lost: an atom R−(x, y) is transformed (by the function
ar) into the semantically equivalent atom R(y, x). The HT-clause S(x, y) ∧D(y) → E(x)
can be seen as including an implicit inverse role, because it examines a successor of x in the
antecedent in order to derive new information about x in the consequent, thus mimicking
the behavior of tableau algorithms with the semantically equivalent GCI D 
 ∀S−.E.

The semantically equivalent but inverse-free GCI ∃S.D 
 E would, in our hypertableau
algorithm, be transformed into exactly the same HT-clause. In the tableau setting, how-
ever, this GCI would be treated very differently: it would result in the 
-rule deriv-
ing (E 	 ∀S.¬D)(s) for all individuals s. A similar effect could be achieved in the hy-
pertableau setting by translating ∃S.D 
 E into two HT-clauses: � → E(x) ∨Q(x) and
Q(x) ∧ S(x, y) ∧D(y) → ⊥. This introduces nondeterminism, but solves the problem with
full subset blocking by deriving either E(c) or Q(c), the first of which leads to an immediate
contradiction, and the second of which delays blocking.

In general, it is easy to see that full subset blocking could be used in the hypertableau
setting by modifying the preprocessing phase so as to ensure that HT-clauses do not include
such implicit inverses. It is not clear, however, if this would be very useful: it would result
in (possibly) smaller ABoxes, but at the cost of (possibly) larger derivation trees.

5.3 The Number of Blockable Individuals

Buchheit et al. (1993) presented a tableau algorithm for the DL ALCNR which, due to
anywhere blocking, runs in NExpTime instead of 2NExpTime, and Donini et al. (1998)
presented a similar result for the basic DLALC. It is interesting to compare these algorithms
to ours to see whether anywhere blocking can improve the worst-case complexity of our
algorithm when K is a SHIQ+ knowledge base. In such a case, no HT-clause in Ξ(K)
contains a nominal guard concept, which prevents the derivation of assertions satisfying the
preconditions of the NI -rule; hence, no new root individuals are introduced in a derivation,
which eliminates a significant source of complexity.

The following example shows that, unfortunately, anywhere blocking does not im-
prove the worst-case complexity; in fact, we identify a tension between and- and or-
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branching. In the example, we use the well-known encoding of binary numbers by con-
cepts B0, B1, . . . , Bk−1: we assign to each individual s in an ABox A a binary number
�A(s) = bk−1 . . . b1b0 such that bi = 1 if and only if Bi(s) ∈ A. Using k concepts, we can
thus encode 2k different binary numbers. Furthermore, for any atomic role R, using the
well-known R-successor counting formula (Tobies, 2000), we can ensure that, whenever an
individual t is an R-successor of s in A, then �A(t) = (�A(s) + 1) mod 2k; we omit this
formula for the sake of brevity. Let K11 be the following knowledge base. For the sake of
brevity, we omit the HT-clauses corresponding to the axioms in K11.

C(a)(39)
C 
 ∃L.C � ∃R.C(40)

(The R-successor formula for B0, . . . , Bk−1)(41)
(The L-successor formula for B0, . . . , Bk−1)(42)

B0 � . . . �Bk−1 
 A(43)
∃L.A � ∃R.A 
 A(44)

Figure 13 schematically presents a derivation on K11 in which a doubly exponential
number of blockable individuals is introduced.17 For simplicity of presentation, we use
single anywhere blocking. Due to (39)–(42), our algorithm can create individuals a.1, a.2,
a.1.1, a.1.2, a.1.1.1, a.1.1.2, and so on, such that s.1 is an L-successor of s, and s.2 is an
R-successor of s. After creating the individuals of the form a.12k−1.1 and a.12k−1.2 where
12k−1 is a string of 2k−1 ones, each individual x.1 blocks x.2 (c.f. Figure 13a). But then, due
to (43), a.12k−1.1 and a.12k−1.2 become instances of A. By (44), a.12k−1 is made an instance
of A as well, so it does not block its sibling a.12k−2.2 any more; hence, a.12k−2.2 is now
expanded to exponential depth (c.f. Figure 13b). By repeating this process, the algorithm
derives that a.12k−2 is an instance of A, but then it does not block its sibling a.12k−3.2 (c.f.
Figure 13d). Eventually, the algorithm constructs a binary tree of exponential depth, thus
creating a doubly-exponential number of blockable nodes in total (c.f. Figure 13d).

Buchheit et al. and Donini et al. obtained the nondeterministic exponential behavior
by applying the �-, 	-, ∀-, and 
-rules exhaustively before applying the ∃-rule. Such a
strategy ensures that the label of an individual s is fully constructed before introducing
a successor of s, which prevents individuals from being indirectly blocked. On K11, this
means that the GCI (44) is applied to each individual s before introducing its successors.
Thus, before the existentials on s are expanded, the assertion (∀L.¬A 	 ∀R.¬A 	A)(s) is
introduced and one disjunct is chosen nondeterministically. The choices (∀L.¬A)(s) and
(∀R.¬A)(s) will lead to a clash, so the algorithm eventually derives A(s), before it expands
the existentials on s and introduces s.1 and s.2. Thus, while generating at most exponential
models, this algorithm incurs a massive amount of nondeterminism.

Nondeterministic exponential behavior can be guaranteed in the hypertableau algorithm
by nondeterministically fixing the label of each individual before applying the ≤-rule to it.
This technique is similar to the one used by Tobies (2001) in order to obtain a PSpace

17. Initially, we suggested informally that our algorithm should run in NExpTime on SHIQ (Motik, Shearer,
& Horrocks, 2007). As this example shows, this is not the case.
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Figure 13: Creation of an Exponentially Deep Binary Tree of Blockable Individuals
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decision procedure for concept satisfiability in a DL with inverse roles but without GCIs.
The performance results in Section 7, however, seem to suggest that this might not be
beneficial in practice. Still, it might be worth exploring whether nondeterministically adding
concepts to labels of individuals can be used as an optimization that would detect “early
blocks” and thus prevent the construction of large models.

5.4 The Number of Root Individuals

SHOIQ is NExpTime-complete (Tobies, 2000), and it is straightforward to extend this
result to SHOIQ+. Thus, one might wonder whether the complexity result in Theorem 1
can be sharpened to obtain a worst-case optimal decision procedure. This, unfortunately, is
not the case: we present an example on which our algorithm generates a doubly-exponential
number of root individuals. We construct K12 by extending K11 (axioms (39)–(44)) with
the following two axioms:

B0 � . . . �Bk−1 
 {b}(45)
A 
 ≤ 2 L−.� �≤ 2 R−.�(46)

As shown in Section 5.3, the axioms of K11 can cause our algorithm to construct a
binary tree of blockable individuals with exponential depth. Axiom (45) of K12, however,
merges the leaves of this tree into the single named individual b, and axiom (46) ensures that
the NI-rule is applied to each of the remaining blockable individuals, beginning with the
neighbors of b. If, at each application of the NI-rule, we always merge blockable individuals
into root individuals as shown in Figure 14a, then our algorithm constructs the ABox shown
in Figure 14b, which contains two binary trees of root individuals of depth 2k/2. Unlike
the case with K11, fully constructing individual labels does not avoid double-exponential
behavior, since the promotion of blockable individuals to root individuals prevents blocking.

6. Algorithm Optimizations

DL reasoning algorithms are often used in practice to compute a classification of a knowledge
base K—that is, to determine whether K |= A 
 B for each pair of atomic concepts A and
B occurring in K. A näıve classification algorithm would involve a quadratic number of calls
to the subsumption checking algorithm, each of which can potentially be highly expensive.
To obtain acceptable levels of performance, various optimizations have been developed that
reduce the number of subsumption checks and the time required for each check (Baader,
Hollunder, Nebel, Profitlich, & Franconi, 1994). The well-known dependency-directed back-
tracking optimization (Horrocks, 2007) can readily be used with the hypertableau calculus.
Furthermore, we have developed two simple optimizations that, to the best of our knowl-
edge, have not been considered previously in the literature.

6.1 Reading Classification Relationships from Concept Labels

Let (A, C) be an ABox and a set of HT-clauses obtained by clausifying a knowledge base
K, and let A and B be atomic concepts for which we want to check whether K |= A 
 B;
since A and B are atomic, this is the case if and only if (A′, C) is unsatisfiable where
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(a) A root introduction strategy for the NI-rule

a
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(b) The resulting tree, containing a doubly-exponential
number of root individuals

A′ = A ∪ {A(a),¬B(a)} and a is a fresh individual. Let A1 be a clash-free ABox labeling
a leaf in a derivation from (A′, C). We can use A1 to learn the following things about
subsumption in K. The proofs of these claims are straightforward.

1. If C(a) ∈ A1 for some concept C and the derivation of C(a) does not depend on a
nondeterministic choice, then K |= A 
 C.
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2. If A1 has been obtained from A′ deterministically, then K |= A 
 C only if C(a) ∈ A1.

3. If C(b) ∈ A1 but D(b) �∈ A1 for C and D concepts and b an individual that is not
blocked, then K �|= C 
 D.

Thus, if K is deterministic, we can classify it using a linear number of calls to the hyper-
tableau algorithm: for each atomic concept A, we check the satisfiability of (A ∪ {A(a)}, C);
if the algorithm produces a clash-free ABox A1, the set of subsumers of A are contained
in LA1(a). These optimizations are applicable in the case of tableau algorithms as well;
however, they might be less effective due to increased or-branching.

6.2 Caching Blocking Labels

Let T and R be a SHIQ+ TBox and RBox, respectively, and let C = ΞT R(T ∪ R); since
T does not contain nominals, no assertions involving nominal guard concepts are needed.
Furthermore, assume that the classification of T ∪ R involves n calls to the hypertableau
algorithm for ({Ai(ai),¬Bi(ai)}, C). Then, if a derivation for ({Ai(ai),¬Bi(ai)}, C) contains
a leaf node labeled with a clash-free ABox Ai, we can use the nonblocked individuals from
Ai as blockers in all subsequent satisfiability checks of ({Aj(aj),¬Bj(aj)}, C) for j > i.

This is a simple consequence of the following fact. Let I1 and I2 be two models of T ∪R
such that �I1 ∩�I2 = ∅; furthermore, let I be defined as �I = �I1 ∪�I2 , AI = AI1 ∪AI2 ,
and RI = RI1 ∪RI2 , for each atomic concept A and each atomic role R. Then, by a simple
induction on the structure of axioms in T ∪ R, it is trivial to show that I |= T ∪ R. This
property does not hold in the presence of nominals, which can impose a bound on the
number of elements in the interpretation of a concept; the bound could be satisfied in I1

and I2 individually, but violated in I.
Our optimization is correct because, instead of ({Ai(ai),¬Bi(ai)}, C), we can check the

satisfiability of (Ai ∪ {Ai(ai),¬Bi(ai)}, C), and in doing so we can use the individuals from
Ai as potential blockers due to anywhere blocking. This optimization can be seen as a very
simple form of model caching (Horrocks, 2007), and it has been key to obtaining the results
that we present in Section 7. For example, on GALEN only one subsumption test is costly
because it computes a substantial part of a model of the TBox; all subsequent subsumption
tests reuse large parts of that model.

In practice, we do not need to keep the entire ABox Ai around; rather, for each non-
blocked blockable individual t with a predecessor t′, we simply need to retain the sets LAi(t),
LAi(t

′), LAi(t, t
′), and LAi(t

′, t).

7. Implementation and Evaluation

Based on the calculus from Section 4, we have implemented a prototype DL reasoner called
HermiT. In order to estimate how well our calculus performs in practice, we have compared
HermiT with two state-of-the-art tableau reasoners on several practical problems. The
objective of this evaluation was not to establish the superiority of HermiT, but to compare
the behavior of our calculus with that of the tableau calculi used in many existing systems,
and to demonstrate the usefulness of our calculus on realistic problems.

It is important to understand that HermiT is a prototype, and as such does not always
outperform the well-established reasoners. In particular, HermiT may be uncompetitive
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on ontologies where specialized optimizations are needed for good performance. For exam-
ple, HermiT cannot process the SNOMED CT ontology due to the very large number of
concepts, while many other reasoners can classify the ontology easily. These reasoners, how-
ever, employ techniques that are quite different from the standard tableau algorithm; for
example, on an EL++ ontology such as SNOMED CT, Pellet uses the reasoning algorithm
by Baader, Brandt, and Lutz (2005), and other reasoners employ specialized techniques as
well (Haarslev, Möller, & Wandelt, 2008). Similarly, artificial test problems such as those
used in the TANCS comparison at the Tableaux’98 conference (Balsiger & Heuerding, 1998;
Balsiger, Heuerding, & Schwendimann, 2000) and the DL’98 workshop (Horrocks & Patel-
Schneider, 1998b) are often either easy for reasoners employing particular optimizations or
are only difficult due to the fact that they encode large propositional satisfiability problems
(Horrocks & Patel-Schneider, 1998a). Since our goal was to demonstrate the usefulness of
the hypertableau calculus on realistic problems, we have chosen to ignore such ontologies
and test problems, as they mainly test specialized calculi and optimizations that are appli-
cable to various sublanguages of SHOIQ+. Instead, we focus our evaluation on practical
ontologies in which the main difficulty is due to nontrivial reasoning problems encountered
during classification.

In addition to the hypertableau calculus described in Section 4, HermiT also implements
the optimizations from Section 6 and the well-known dependency directed backtracking
optimization (Horrocks, 2007). Thus, HermiT fully supports SHOIQ+ and it can perform
both satisfiability and subsumption testing as well as knowledge base classification. An
extensive discussion of implementation techniques is beyond the scope of this paper; we
only comment briefly on the implementation of anywhere blocking. In the DL community,
it is commonly understood that anywhere blocking is more costly than ancestor blocking
because, to determine the blocking status of an individual, one may need to examine all
individuals in an ABox and not just the individual’s ancestors. Our implementation avoids
this problem by maintaining a hash table in which individuals are indexed by their four
blocking labels. The table is created by scanning all individuals in A in the increasing
sequence of the ordering ≺. For each individual s in A, if the parent of s is blocked, then
s is indirectly blocked; otherwise, the algorithm queries the hash table for an individual
whose blocking labels are equal to those of s. If the hash table contains such an individual
t, then s is directly blocked in A by t; otherwise, s is not blocked in A so it is added into
the hash table. The blocking status of all individuals in A can thus be determined with a
linear number of hash table lookups.

We used Pellet 2.0.0rc4 (Parsia & Sirin, 2004) and FaCT++ 1.2.2 (Tsarkov & Horrocks,
2006) as reference implementations of the SHOIQ tableau algorithm (Horrocks & Sattler,
2007). Pellet employs ancestor blocking, while FaCT++ has recently been extended with
anywhere blocking. At the time of writing, however, the implementation of anywhere
blocking in FaCT++ was known to be incorrect,18 so we switched this feature off and used
FaCT++ with ancestor blocking as well. To measure the effects of ancestor vs. anywhere
blocking, we also used HermiT-Anc—a version of HermiT with ancestor blocking.

We used a collection of 392 test ontologies that we assembled from three independent
sources.

18. Personal communication with Dmitry Tsarkov.
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• The Gardiner ontology suite (Gardiner, Horrocks, & Tsarkov, 2006) is a collection of
OWL ontologies gathered from the Web and includes many of the most commonly-
used OWL ontologies.

• The Open Biological Ontologies (OBO) Foundry19 is a collection of biology and life
science ontologies.

• GALEN (Rector & Rogers, 2006) is a large and complex biomedical ontology which
has proven notoriously difficult to classify with existing reasoners.

We have preprocessed all ontologies to resolve ontology imports and eliminate some trivial
syntactic errors. Thus, each test ontology can be parsed as a single file using the OWL
API. All test ontologies are available online.20

We measured the time needed to classify each test ontology using the mentioned reason-
ers. All tests were performed on a 2.2 GHz MacBook Pro with 2 GB of physical memory.
A classification attempt was aborted if it exhausted all available memory (Java tools were
allowed to use 1 GB of heap space), or if it exceeded a timeout of 30 minutes.

The three reasoners exhibited negligible differences in performance on most of the test
ontologies. Therefore, we discuss next only the test results for “interesting” ontologies—
that is, ontologies that can be classified by at least one of the tested reasoners, and that
are either not trivial or on which the tested reasoners exhibited a significant difference in
performance. These include several ontologies from the OBO corpus (Molecule Role, XP
Uber Anatomy, XP Plant Anatomy, Cellular Component, Gazetteer, CHEBI), two versions
of the National Cancer Institute (NCI) Thesaurus (Hartel et al., 2005), two versions of the
GALEN medical terminology ontology, two versions of the Foundational Model of Anatomy
(FMA) (Golbreich et al., 2006), the Wine ontology from the OWL Guide,21 two SWEET
ontologies developed at NASA,22 and a version of the DOLCE ontology developed at the
Institute of Cognitive Science and Technology of the Italian National Research Council.23

Basic statistical information about these ontologies is summarized in Table 10.
We noticed that, for all three reasoners, classification times may vary from run to run.

For Pellet and HermiT, this is due to Java’s collection library: the order of iteration over
collections often depends on the objects’ hash codes, and these may vary from run to run;
that, in turn, may change the order in which the derivation rules are applied, and some
orders may be better than others. We conjecture that FaCT++ is susceptible to similar
variations. While the times may vary, we have not noticed a case where an ontology might
be successfully classified in one run, but not in another. Therefore, in Table 11 we present
the classification times for the “interesting” ontologies that we obtained on one particular
run; these times can be taken as being “typical.” We identified four groups of ontologies,
which we delineate in Tables 10 and 11 by horizontal lines.

19. http://obofoundry.org/

20. http://hermit-reasoner.com/2009/JAIR_benchmarks/

21. http://www.w3.org/TR/owl-guide/

22. http://sweet.jpl.nasa.gov/ontology/

23. http://www.loa-cnr.it/DOLCE.html
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Table 10: Statistics of “Interesting” Ontologies

Number of Axioms
Ontology Name Classes Roles Individuals TBox RBox ABox Expressivity

Molecule Role 8849 2 128056 9243 1 128056 ALE+
XP Uber Anatomy 11427 82 88955 14669 80 88955 ALEHIF+
XP Plant Anatomy 19145 82 86099 35770 87 86099 SHIF

XP Regulators 25520 4 155169 42896 3 155169 SH
Cellular Component 27889 4 163244 47345 3 163244 SH

NCI-1 27652 70 0 46800 140 0 ALE
Gazetteer 150979 2 214804 167349 2 214804 ALE+

GALEN-doctored 2748 413 0 3937 799 0 ALEHIF+
GALEN-undoctored 2748 413 0 4179 800 0 ALEHIF+

CHEBI 20977 9 243972 38375 2 243972 ALE+
FMA-Lite 75141 2 46225 119558 3 46225 ALEI+

SWEET Phenomena 1728 145 171 2419 239 491 SHOIN (D)
SWEET Numerics 1506 177 113 2184 305 340 SHOIN (D)

Wine 138 17 206 355 40 494 SHOIN (D)
DOLCE-Plans 118 264 27 265 948 68 SHOIN (D)

NCI-2 70576 189 0 100304 290 0 ALCH(D)
FMA-Constitutional 41648 168 85 122695 395 86 ALCOIF(D)

On the ontologies in the first group, HermiT performs similarly to HermiT-Anc, which
suggests little impact of anywhere blocking on the performance. Consequently, we believe
that HermiT outperforms the other reasoners mainly due to the reduced nondeterminism of
the hypertableau calculus. As shown in Table 10, Molecule Role, XP Uber Anatomy, and
NCI-1 do not use disjunctions, so HermiT classifies them deterministically using a linear
number of calls to the hypertableau algorithm. FaCT++ outperforms HermiT on NCI-1
because this ontology can be classified using the completely defined concepts optimization
(Tsarkov & Horrocks, 2005a), which FaCT++ implements but HermiT does not. This
optimization enables FaCT++ to use simpler structural reasoning techniques on ontologies
that satisfy certain syntactic constraints.

On the ontologies in the second group, HermiT-Anc is significantly slower than HermiT.
This suggests that anywhere blocking significantly improves the performance since it pre-
vents the construction of large models. Pellet runs out of memory on all ontologies in this
group; furthermore, FaCT++ cannot process two of them and is significantly slower than
HermiT on CHEBI. FaCT++, however, is faster than HermiT-Anc on CHEBI and GALEN-
doctored, and we conjecture that this is mainly due to the ordering heuristics (Tsarkov &
Horrocks, 2005b) used by FaCT++. The superior performance of HermiT on the ontologies
in this group is mainly due to the fact that all of these ontologies can be classified deter-
ministically using a linear number of concept satisfiability tests. Furthermore, HermiT’s
classification time is in most cases dominated by only the first such test, as the caching of
blocking labels described in Section 6.2 makes subsequent tests easy.

On the ontologies in the third group, HermiT is significantly slower than the other
reasoners. As Table 10 shows, all ontologies in this group contain nominals, which prevents
HermiT from caching blocking labels. Furthermore, due to nominals, the ABox must be
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Table 11: Results of Performance Evaluation

Ontology Name
Classification Times (seconds)

HermiT HermiT-Anc Pellet FaCT++
Molecule Role 3.3 3.4 25.7 304.5

XP Uber Anatomy 5.4 4.9 — 86.0
XP Plant Anatomy 12.8 11.2 87.2 22.9

XP Regulators 14.1 17.1 35.4 66.6
Celular Component 18.6 18.0 40.5 76.7

NCI-1 14.1 14.4 23.2 3.0
Gazetteer 131.9 132.3 — —

GALEN-doctored 8.8 456.3 — 15.9
GALEN-undoctored 126.3 — — —

CHEBI 24.2 — — 397.0
FMA-Lite 107.2 — — —

SWEET Phenomena 13.5 11.2 — 0.2
SWEET Numerics 76.7 72.6 3.7 0.2

Wine 343.7 524.6 19.5 162.1
DOLCE-Plans 1075.1 — 105.1 —

NCI-2 — — 172.0 60.7
FMA-Constitutional — — — 616.7

Note: entry — means that reasoner was unable to classify the ontology either
due to time out or memory exhaustion.

taken into account during classification, and HermiT currently reapplies the hypertableau
rules to the entire ABox in each run. Effectively, HermiT does not reuse any computation
between different hypertableau runs. The other two reasoners, however, use the completion
graph caching optimization (Sirin, Cuenca Grau, & Parsia, 2006), in which the tableau rules
are first applied to the entire ABox, and the resulting completion graph is used as a starting
point in each subsequent run.

HermiT was unable to classify the two ontologies in the fourth group. Both NCI-2 and
FMA-Constitutional use disjunctions, so they cannot be classified using a linear number
of concept satisfiability tests; instead, HermiT uses the classification algorithm by Baader
et al. (1994). All classification tests are straightforward (each test takes less than 50 ms);
however, the resulting taxonomy is rather shallow, so HermiT makes an almost quadratic
number of tests. Both Pellet and FaCT++, however, use more optimized versions of the
classification algorithm that reduce the number of tests that need to be performed.

To summarize, although HermiT is not better than Pellet and FaCT++ on all ontologies,
our results clearly demonstrate the practical potential of both the reduced nondetermin-
ism and anywhere blocking. In fact, anywhere blocking can mean the difference between
success and failure on complex ontologies, which suggests that and-branching is a more sig-
nificant source of inefficiency in practice than or-branching. Anywhere blocking is applicable
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to tableau calculi as well (as mentioned earlier, FaCT++ already contains a preliminary
version of it), so we believe that our results can be used to improve the performance of
tableau reasoners as well without the need for a major redesign. Conversely, most of the
optimizations used in tableau reasoners can be used with the hypertableau algorithm, and
incorporating them into HermiT would make HermiT competitive with Pellet and FaCT++
in those cases where HermiT is currently slower.

8. Conclusion

In this paper we presented a novel reasoning algorithm for DLs. The algorithm is based on
hyperresolution with anywhere blocking, which reduces the nondeterminism due to GCIs
and the sizes of generated models. Furthermore, the algorithm uses a novel refinement of the
NI -rule which can reduce the amount of nondeterminism introduced in order to handle the
interaction between nominals, inverse roles, and number restrictions (Horrocks & Sattler,
2007). This refined version of the NI -rule is equally applicable to tableau algorithms.

We have implemented our calculus and have conducted an extensive performance com-
parison. Our results show that the combination of the new calculus and novel optimizations
significantly increases the performance of DL reasoning in practice: our reasoner is currently
the only one that can classify several complex ontologies.

Despite this advance in performance, there are still some ontologies, such as the full
version of GALEN,24 that defeat HermiT (and state-of-the-art tableau reasoners). This is
because the large number of cyclic axioms in these ontologies cause HermiT to construct
extremely large ABoxes and eventually exhaust all available memory. To alleviate this
problem, we have developed a reasoning technique in which the ≥-rule is modified to non-
deterministically reuse individuals from the ABox generated thus far. Initial experiments
with this technique have shown very promising results (Motik & Horrocks, 2008).

Finally, we plan to extend our technique to the DL SROIQ, which extends SHOIQ
with more expressive role inclusion axioms that allow us to express, for example, that the
brother of a person’s father is also that person’s uncle. This logic is of considerable interest
as it underpins OWL 2—the extension of OWL currently being standardized by the W3C.
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