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Abstract

Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has

affected more than seven million people worldwide, contributing to 0.4 million deaths as of June 2020. The fact that the

virus uses angiotensin-converting enzyme (ACE)-2 as the cell entry receptor and that hypertension as well as cardiovascular

disorders frequently coexist with COVID-19 have generated considerable discussion on the management of patients with

hypertension. In addition, the COVID-19 pandemic necessitates the development of and adaptation to a “New Normal”

lifestyle, which will have a profound impact not only on communicable diseases but also on noncommunicable diseases,

including hypertension. Summarizing what is known and what requires further investigation in this field may help to

address the challenges we face. In the present review, we critically evaluate the existing evidence for the epidemiological

association between COVID-19 and hypertension. We also summarize the current knowledge regarding the pathophysiology

of SARS-CoV-2 infection with an emphasis on ACE2, the cardiovascular system, and the kidney. Finally, we review

evidence on the use of antihypertensive medication, namely, ACE inhibitors and angiotensin receptor blockers, in patients

with COVID-19.
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Coronavirus disease-2019 (COVID-19) and
hypertension: premonition of convergence
of communicable diseases and
noncommunicable diseases

In recent years, it has been well recognized that non-

communicable diseases (NCDs), including hypertension,

are the main health issue, since ~70% of the causes of

death in the world (57 million deaths/year) are attributed

to NCDs. However, the sudden emergence of COVID-

19, a communicable disease (CD), has changed our

concept toward health and diseases. Indeed, we are

harshly reminded that CDs can seriously threaten all

aspects of life, including health, economics, education,

and human relations. Furthermore, we must change our

concept of a normal life to a “New Normal” one [1]. It is

predicted that the pandemic of COVID-19 will create

another pandemic of NCDs [2], and this prediction is

plausible considering the similar situations manifested in

the evacuation performed in the Great East Japan

Earthquake on March 11, 2011. Even two years after the

disaster, the blood pressure (BP) of the evacuees

remained significantly elevated by an average of ~4~5

mmHg [3]. In this context, it is deeply concerning that a

new disease entity is emerging, that is, the convergence

of CDs and NCDs without borders. Thus far, we have

been attempting to understand NCDs as lifestyle-related

diseases, focusing upon each person’s specific lifestyle

in personalized medicine. However, from now on, we

should also dissect out the pathophysiology of con-

vergence of CDs and NCDs from each person’s lifestyle

in society where he/she is living, and should take care of

life-environment as life-environment-related diseases.

We also should pay more attention to virus-infected

spaces of life as pressing matters, as well as global

warming, which has been gradually recognized as an

urgent issue.

To cope with this new disease entity, it is necessary to

know the FACTS with regard to COVID-19 and NCDs.

This is especially true for hypertension because severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), a novel virus that causes COVID-19, utilizes

angiotensin-converting enzyme (ACE)-2, one of the

components of the renin-angiotensin system (RAS), for

its entry into the body and because hypertension-

associated diseases have been revealed to be factors

contributing to the severity of COVID-19. We should

also realize what is known and not yet known, and what

requires further clarification. Here, we review recent

literature regarding hypertension and COVID-19 avail-

able as of June 7th, 2020.

Epidemiological findings on the association
between hypertension and COVID-19

Prevalence of hypertension among COVID-19
patients

Although emerging reports have demonstrated a high

prevalence of hypertension among patients with COVID-19

[4–6], evidence is still insufficient (Table 1). For example,

58 of 191 Chinese patients with COVID-19 (30.4%; median

age, 56.0 years) [4] and 509 of 1043 Italian patients with

available data (48.8%, 95% confidence intervals, 46-52%;

mean age among all 1591 study patients, 63 years) [5] had

hypertension, and investigators in these studies [4, 5]

reported a high prevalence of hypertension among patients

with COVID-19. However, a Chinese nationwide survey

showed that 44.6% of the population aged 55–64 years had

hypertension [7], and 45.2% of the Italian population aged

60–69 years had hypertension according to an Italian

inclusive general practitioner database [8]. Furthermore, in a

US case series including 5700 sequentially hospitalized

COVID-19 patients (median age, 63 years), 3026 (56.6%)

had hypertension [6], with the prevalence of hypertension

among COVID-19 patients also being lower than the US

general population (estimated to be 63–77% of the popula-

tion aged 55–64 years [9]). Furthermore, it should be noted

that demographic data among patients, including comor-

bidities, were collected by different methods (by electronic

medical records [4, 6] or by phone [5]). Most importantly,

none of the currently available epidemiological studies

regarding COVID-19 and hypertension (Table 1) clearly

state the diagnostic methodology used or the criteria for

hypertension, e.g., BP values based on office or out-of-office

measurement, as well as self-reported or testimony of a

family in serious situations. These variations would make

the comparison of reported incidence with that in the general

population inaccurate. Taking the high proportion of indi-

viduals with hypertension who are not aware of their con-

dition [10] into account, it would be a reasonable assumption

that the prevalence of hypertension in these reports [4–6]

may be underestimated. Nevertheless, no supporting report

was found that shows a higher rate of hypertension among

patients with COVID-19, and there have been no reliable

reports demonstrating an increased risk of SARS-CoV-2

infection in the presence of hypertension.

Impact of hypertension on the severity and
mortality of COVID-19

Comparisons of COVID-19 patients with mild and severe

clinical symptoms can be used to evaluate whether
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hypertension is a risk factor for aggravation of the disease.

According to a retrospective study consisting of 487

COVID-19 patients in Zhejiang Province of China, the

prevalence of hypertension was higher in the 49 severe

cases than in the 438 mild cases (53.1% vs. 16.7%, p <

0.0001) [11]. Further multivariable-adjusted analysis

revealed that male sex, age ≥50 years old, and hypertension

were independent factors for COVID-19 severity on

admission (odds ratio, 2.71; 95% confidence intervals

1.32–5.59) [11]. In another study involving 548 inpatients

in Wuhan, China, where the first COVID-19 outbreak

occurred in December 2019 [12], the prevalence of hyper-

tension was significantly higher in patients with severe

COVID-19 than in nonsevere cases (38.7% vs. 22.2%, p <

0.001). In a logistic model with adjustment for age, high

lactate dehydrogenase (LDH), and D-dimer, hypertension

was independently associated with the severity of COVID-

19 on admission (odds ratio, 2.01; 95% confidence inter-

vals, 1.27–3.17) [12].

However, it should be noted that hypertension is

commonly accompanied by many comorbidities that are

major determinant factors for the severity of COVID-19.

The study in Wuhan [12] also reported that male sex, age

≥65 years old, high white blood cell count, LDH, cardiac

injury, hyperglycemia, and high dose corticosteroid were

independent predictive factors for death in a

multivariable-adjusted Cox proportional hazard model.

Nonetheless, hypertension was not included as a candi-

date explanatory factor in the multivariate analysis. A

French single-center study [13] reported that hyperten-

sion was not significantly associated with progression of

COVID-19, as defined as the requirement of invasive

mechanical ventilation during hospitalization (OR, 2.29;

95% CI, 0.89–5.84; p= 0.08), even though the associa-

tion was significant in a univariate model. In these and

other studies, hypertension was not selected as an inde-

pendent factor for COVID-19 severity based on

multivariable-adjusted analysis, despite being identified

as a risk factor by univariate [4, 12–14] or bivariate [15]

survival analysis. Although some studies report that

hypertension can be an independent risk factor for severe

COVID-19 [11, 12], it would be plausible to interpret

that the high prevalence of hypertension among

patients with severe and fatal COVID-19 may be attrib-

uted to the vulnerability of older individuals to SARS-

CoV-2 infection. At present, there is no clear epide-

miological evidence supporting that hypertension itself

is an independent risk factor for developing severe dis-

ease in patients with COVID-19. We, therefore, agree

with the conclusion of the Centers for Disease

Control and Prevention (CDC), which does not include

hypertension in the list of risk factors for COVID-19

severity [16].

Key comorbidities of hypertension in relation to
COVID-19

As mentioned above, age is the essential risk factor for

increased severity and mortality in COVID-19. In Japan, the

mortality rates among COVID-19 patients aged 70–79 and

≥80 years were 6.8% and 14.8%, respectively, whereas

COVID-19 mortality in all age groups was 2.6% as of 7

May 2020 [17]. In addition to age, available reports have

suggested a variety of underlying medical conditions to be

associated with COVID-19 disease severity and mortality

[4–6, 11, 12, 15, 16]. Furthermore, the majority of these risk

factors are observed in patients with hypertension [9, 18]. In

clinical practice, one may not always have enough time to

assess comorbidities in acute-phase patients with COVID-

19. In such situations, hypertension diagnosed by various

methods might be regarded as a marker of the severity of

the disease.

Obesity is another crucial issue that needs to be discussed

since it is often accompanied by hypertension and is

recognized as a novel risk factor for COVID-19 [13]. It may

also be a determinant of disease severity, independent of

age and hypertension [14, 19]. Obesity might worsen the

clinical course of COVID-19 by decreasing expiratory

reserve volume, impeding diaphragm excursion, and

restricting ventilation [20]. Furthermore, obesity, especially

abdominal obesity, increases inflammatory cytokines and

oxidative stress and causes hypertension, diabetes, and

dyslipidemia [21]. These comorbidities accelerate athero-

sclerosis, which leads to cardiovascular complications and

may increase the severity and mortality of COVID-19.

Recently, patients with both obesity and hypertension have

been increasing in Japan [22], and these patients are at

particularly high risk for severe disease in COVID-19 and

thus require careful observation and intensive treatment.

Similar to hypertension, the definition of obesity is not

consistent among studies/countries, which needs to be

considered.

COVID-19 and ACE2

ACE2 as the entry receptor for SARS-CoV-2

The first step of SARS-CoV-2 infection in humans is con-

tact of the virus with cell-surface ACE2 (Fig. 1). ACE2

interacts with external SARS-CoV-2 by binding to the

receptor-binding domain (RBD) of the viral spike protein

[23]. This process is followed by proteolytic cleavage of the

spike protein, which allows fusion to cells, and transmem-

brane protease serine 2 (TMPRSS2) has been identified as a

protease responsible for the reaction (Fig. 1) [24]. Although

SARS-CoV, which was responsible for SARS outbreaks in
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2002–2004, uses the same ACE2 and TMPRSS2 for entry,

our understanding of the differences between SARS-CoV

and SARS-CoV-2 with regard to their cell entry mechanism

has been rapidly developed by recent studies, including

structural analysis of these viruses [25–29]. Interestingly,

ACE2 binds with higher affinity to the RBD of SARS-CoV-

2 than that of SARS-CoV. Paradoxically, however, the

affinity of ACE2 for the entire SARS-CoV-2 spike protein

is comparable to that of SARS-CoV, suggesting that the

SARS-CoV-2 RBD is less exposed than is the SARS-CoV

RBD [26].

Organs responsible for SARS-CoV-2 entry

In the human lung, type II alveolar epithelial cells coexpress

ACE2 and TMPRSS2 and are considered to be primarily

responsible for virus entry in both SARS and COVID-19

[30, 31]. It was recently reported that ACE2 and TMPRSS2

are highly coexpressed in nasal and corneal epithelial cells

[31]. Enterocytes also coexpress ACE2 and TMPRSS2 [31],

and SARS-CoV-2 as well as SARS-CoV rapidly infect

human small intestinal organoids [31]. These findings

suggest alternative pathways of viral entry via the upper

airways, eyes and intestinal organs. A recent report by

Bunyavanich et al. found that ACE2 mRNA expression in

the nasal epithelium increased with age when data were

stratified into groups of younger children (<10 years), older

children (10–17 years), young adults (18–24 years), and

adults (≥25 years), which might help to explain the rela-

tively low prevalence of COVID-19 in children [32].

The role of ACE2 in COVID-19

The argument about the role of ACE2 in the pathogenesis of

COVID-19 has been complicated by the multifunctionality

of ACE2 in addition to serving as the entry receptor for

SARS-CoV-2. ACE2 was identified in 2000, and accumu-

lating evidence has established diverse roles of ACE2,

including as a negative regulator of the RAS, interacting

protein with apelin peptides, and as a chaperone protein for

the amino acid transporter B0AT1 (SLC6A19) [33]. Similar

to SARS-CoV [34], infection with SARS-CoV-2 may

downregulate cell-surface ACE2, leading to the reduced

activity of ACE2 in infected organs. Moreover, the binding

of ACE2 to SARS-CoV, and probably to SARS-CoV-2,

increases the activity of disintegrin and metalloproteinase

domain-containing protein 17 (ADAM17), also named

tumor necrosis factor-α convertase (TACE) [35]. ADAM17

induces ectodomain shedding of ACE2 and produces cir-

culating soluble ACE2, which can be detected in blood tests

(Fig. 1) [36]. This mechanism could also reduce the cell-

surface ACE2 [35]. The decrease in cell-surface ACE2 by
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these pathways appears to reduce the chance of further

invasion by the virus. However, it might also attenuate the

inhibition of RAS by ACE2 in infected organs. It was

reported that depletion of ACE2 worsened acute lung

inflammation induced by acid aspiration, sepsis, or endo-

toxin in mice [37]. In that study, severe lung inflammation

induced by acid aspiration was alleviated in mice geneti-

cally lacking ACE or angiotensin II type 1a receptor, and

also by losartan, an angiotensin II type 1 receptor antago-

nist, suggesting that local activation of RAS contributes to

lung inflammation in pneumonia [37]. Moreover, a research

group reported that the SARS spike protein binds to pul-

monary ACE2, exacerbating acid-induced pneumonia

accompanied by an increase in angiotensin II concentration,

and that the pathologic alterations were rescued by losartan

in wild-type mice [34]. Given the evidence that angiotensin

II is a key mediator of tissue inflammation [38, 39], these

findings suggest that downregulation of ACE2 in response

to the binding of SARS-CoV, and probably SARS-CoV2,

may serve as a mechanism to counteract viral infection at

the expense of an increase in angiotensin II.

Interestingly, Ziegler et al. recently reported that ACE2

is upregulated by stimulation by interferon, an antiviral

cytokine, in SARS-CoV-2 target cells such as in the lung,

nose, and small intestine [40]. Given the abovementioned

roles of ACE2 in the respiratory system, upregulation of

ACE2 appears to be involved in the series of tissue-

protective responses induced by interferon. However,

SARS-CoV-2 may exploit this innate immune mechanism

to enhance infection [40], and the process would even-

tually lead to a decrease in cell-surface ACE2. Although

this proposed mechanism requires further validation,

including in vivo experiments, these data indicate that the

pathophysiology of COVID-19 depends on the critical

balance between the SARS-CoV-2 viral load and host

defense mechanism.

The potential influence of RAS inhibitors on
COVID-19

In the early phase of the COVID-19 pandemic, it was

proposed that antihypertensive treatment using ACE

inhibitors or angiotensin receptor blockers (ARBs) may

contribute to adverse outcomes in patients with hyper-

tension and COVID-19 [41]. This hypothesis was pri-

marily based on previous experimental studies showing

that RAS inhibitors could alter tissue activity or expres-

sion of ACE2. While these studies were mainly conducted

using heart [42–51], arterial [52–55], and kidney

[43, 45, 46, 56–59] tissues, some papers showed that

changes in ACE2 expression also occurred in the lung

[60–62] (Table 2). There are also several reports indicat-

ing that mineralocorticoid receptor antagonists (MRAs)

increase the expression or activity of ACE2 in the heart

and kidney [48, 49, 63–65] (Table 2). Most of these stu-

dies have suggested that these antihypertensive drugs

might increase tissue expression and/or activity of ACE2,

though some have reported no alternation or a decrease of

ACE2 in response to the drug [48–50, 59] (Table 2).

Nevertheless, increased membrane expression of ACE2

induced by these drugs can theoretically increase the

chance of virus entry into organs, but it is also con-

ceivable that RAS inhibition contributes to organ pro-

tection against respiratory infection, as mentioned above

[34, 37]. In addition, cellular entry of SARS-CoV-2

depends not only on ACE2 but also on proteolytic clea-

vage primarily by TMPRSS2. Therefore, while the

increase in ACE2 by these drugs can be harmful at least in

terms of viral invasion in organs that coexpress ACE2 and

TMPRSS2, it remains unknown how increased tissue

levels of ACE2 would alter the severity of COVID-19 in

organs that lack proteases mediating fusion of the virus.

Finally, there is little evidence that the therapeutic dose of

RAS inhibitors influences tissue expression or activity of

ACE2 in humans. Further investigation is required to

clarify whether the influence of RAS inhibitors on

COVID-19 is beneficial, neutral, or harmful.

Circulating ACE2 as a biomarker of SARS-CoV-2
infection?

Given the essential role of ACE2 in SARS-CoV-2 infection,

it has been postulated that the circulating plasma con-

centration of ACE2 can serve as a biomarker to predict

susceptibility to COVID-19 or disease severity. Circulating

ACE2 levels are theoretically modulated by the activity of

ADAM17, which cleaves cellular ACE2 in the cardiovas-

cular system, as well as ACE2 abundance in each organ.

Given the previous in vitro finding that ACE2 binding to

SARS-CoV increases the truncated form of ACE2 by acti-

vating ADAM17 [35], it is theoretically conceivable that

SARS-CoV and SARS-CoV-2 infection can alter circulat-

ing ACE2 levels. Nevertheless, it remains unknown whe-

ther circulating ACE2 levels have any relationship with

ACE2 abundance in the respiratory system or intestinal

tissues. Moreover, circulating ACE2 levels are increased in

patients with cardiovascular diseases (CVDs), including

heart failure [66, 67] and arterial fibrillation [68], chronic

kidney disease (CKD) [69], atherosclerosis [70], and stroke

[71]. In addition, circulating ACE2 levels are reported to

be higher in male than in female patients with heart failure

[72]. These data indicate that circulating levels of ACE2 can

largely be affected by cardiovascular comorbidities or other

characteristics. Further studies are needed to clarify whether

circulating ACE2 is indeed associated with susceptibility to

or disease severity of COVID-19.
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ACE2 in COVID-19 from a therapeutic point of view

From a therapeutic point of view, supplementation with

soluble exogenous ACE2 can theoretically be favorable for

protection against COVID-19, as it can inhibit interaction of

the virus with endogenous ACE2. In fact, it was recently

reported that human recombinant soluble ACE2 can inhibit

infection of SARS-CoV-2 in human blood vessel organoids

and human kidney organoids (Fig. 1) [73].

Cardiovascular and cerebrovascular
complications in COVID-19

COVID-19 and thromboembolic complications

The risk of venous and arterial thromboembolic complica-

tions has been reported to be higher in patients with

COVID-19. Klok et al. demonstrated the cumulative inci-

dence of venous thromboembolism (VTE) in 27% and

ischemic stroke in 3.7% of patients with COVID-19 pneu-

monia [74]. Lodigiani et al. also reported that among 388

COVID-19 inpatients, the ratio of thromboembolic events,

including VTE, ischemic stroke, and ischemic heart disease,

was higher in intensive care unit (ICU) patients (27.6%)

than in patients in the general ward (6.6%) [75]. Regarding

stroke, patients with severe infection exhibited neurologic

manifestations such as acute cerebrovascular diseases (5.7%

in severe vs 0.8% in nonsevere, respectively) [76]. In

SARS, a case of VTE in multiple organs was described

[77], but there are very few reports on SARS-induced

thrombotic complications. Large-artery ischemic strokes

occurred in 0.7% of Taiwanese [78] and 2% of Singaporean

[79] SARS patients. For cases in Singapore, the authors

considered that stroke occurred as a side effect of intensive

treatment, such as intravenous immunoglobulin; thus, the

incidence of VTE and ischemic stroke in COVID-19

patients appears to be remarkably higher than that in

SARS patients. According to several reports of “stroke

cases” with COVID-19 [80–84], almost all showed elevated

plasma D-dimer levels. Additionally, higher D-dimer levels

on admission effectively predicted in-hospital mortality in

patients with COVID-19 [4, 85, 86]. Among thromboem-

bolic complications, VTE was a common complication in

hospitalized patients (observed in 20%) with COVID-19

and was associated with death (adjusted hazard ratio [HR]:

2.4) [87]. In particular, lower extremity deep-vein throm-

bosis (DVT) was detected in 85.4% of critically ill COVID-

19 patients [88]. These findings indicate that abnormalities

in the coagulation cascade result in VTE and stroke after

SARS-CoV-2 infection. Therefore, systemic antic-

oagulation therapy may improve outcomes in COVID-19

patients [89].T
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Possible mechanisms of SARS-CoV-2-induced
endothelial injury

SARS-CoV-2-induced ischemic organ damage appears to

be associated with a hyperinflammatory state, cytokine

storm, vascular endothelial damage or fibrinogen con-

sumption coagulopathy (Fig. 1) [84]. Yang et al. clearly

reviewed the underlying mechanisms of the dysfunctional

coagulatory response in the pathogenesis of influenza A

virus [90]. Toll-like receptors (TLRs) have a central role in

innate immunity. Viral pathogen-associated molecular pat-

terns such as viral proteins, double-stranded RNA, and

single-stranded RNA initially activate the innate immune

system [91]. Using in silico studies on the interaction of the

SARS-CoV-2 spike glycoprotein with human TLRs,

Choudhury et al. demonstrated that TLR4 is most likely to

be involved in recognizing molecular patterns from SARS-

CoV-2 to induce inflammatory responses [92]. Other TLRs,

such as TLR5, TLR7, and TLR8, have been also reported to

also be involved in SARS-CoV-2 infection [93, 94]. TLRs

activate a common signaling pathway via MyD88, leading

to the production of proinflammatory cytokines [95]. Fur-

ther activation of the innate immune response to eradicate

the virus induces overproduction of pro-inflammatory

cytokines, resulting in a “cytokine storm” [96] of over-

activated neutrophils, monocytes, and lymphocytes. Coa-

gulation is a highly organized process that involves

endothelial cells (ECs), platelets and coagulation factors in

the sequential action of primary and secondary hemostasis

and fibrinolysis [97]. Inflammatory cytokines and leukocyte

activation lead to EC activation and endothelial dysfunction

via multiple mechanisms, including direct damage, loss of

tight junctions, and hyperpermeability induced by inflam-

matory factors [90]. Activated or injured ECs initiate coa-

gulation by activating platelets and expression of

coagulation components (Fig. 1). Visseren et al. found that

respiratory virus-infected ECs exhibit procoagulant activity

associated with the induction of tissue factor (TF) expres-

sion [98]. The coagulation cascade is initiated after expo-

sure of TF to the blood. Recently, Varga et al. reported the

pathology of EC dysfunction in COVID-19 based on

postmortem analysis of three cases [99]. As ECs express

ACE2 [30], viral inclusion structures in ECs and diffuse

endothelial inflammation, such as endotheliitis, has been

observed. These results suggest that SARS-CoV-2 virus

infection directly and indirectly injures ECs and may acti-

vate the coagulation pathway. Very recently, Ackermann

et al. performed morphologic and molecular analyses in the

peripheral lung of seven cases of COVID-19 at autopsy

[100], and severe EC injury associated with the presence of

intracellular virus, disrupted cell membranes, widespread

thrombosis with microangiopathy, and new vessel growth

were observed. Ma et al. reported that human umbilical vein

endothelial cells (HUVECs) express both ACE2 and

TMPRSS2 mRNAs [101]. Human dermal microvascular

endothelial cells are also known to express TMPRSS2

[102]. However, whether SARS-CoV-2 induces EC injury

directly or indirectly remains unclear. An increase in vas-

cular permeability induced by EC injury plays a pathogenic

role in the development of pulmonary fibrosis [103], and

acute respiratory distress syndrome (ARDS) is characterized

by acute respiratory failure, bilateral pulmonary infiltrates,

and noncardiogenic pulmonary edema resulting from vas-

cular hyperpermeability [104]. Thus, EC injury can lead to

respiratory dysfunction and may be a key factor that

determines the clinical outcome of COVID-19 patients.

COVID-19 and Kawasaki disease

Verdoni et al. surprisingly reported a 30-fold increase in the

incidence of Kawasaki-like disease (KLD) during the

SARS-CoV-2 epidemic [105]. In that study, 10 patients

were diagnosed with KLD between February 18, 2020 and

April 20, 2020, compared with 19 patients in the five years

before the beginning of the COVID-19 pandemic [105].

Two of 10 patients were positive for SARS-CoV-2 by

reverse-transcriptase quantitative PCR assay, and eight of

10 patients diagnosed with KLD were positive for SARS-

CoV-2 IgG and/or IgM antibodies. Kawasaki disease (KD)

is an acute systemic vasculitis with coronary artery

abnormalities that predominantly affects young children

[106]. Necrotizing arteritis, subacute chronic vasculitis, and

luminal myofibroblastic proliferation are three linked pro-

cesses associated with KD [107]. Although a correlation

between viral infections and KD was reported [108, 109], it

is not clear whether KD-associated infections are causal or

incidental. KD might also be associated with a dysregulated

innate immune response;[110] however, a link between

SARS-CoV-2 infection and KLD has not been

demonstrated.

Myocardial injury associated with COVID-19

Clinical manifestations of cardiovascular disorders asso-

ciated with COVID-19 are diverse, with heart failure,

arrhythmia, cardiogenic shock, acute myocardial infarction

(AMI), and myocarditis having been reported [4, 85, 111–

114]. In an initial report from Wuhan, China, Huang et al.

documented that acute cardiac injury, as defined by the

elevation of cardiac biomarkers (e.g., troponin I) or new

abnormalities in electrocardiography and echocardiography,

was present in 12.2% of 41 inpatients with COVID-19

[115]. In another study, acute cardiac injury (7.2%; using

the same definition as above) and arrhythmia (16.7%) were

common complications among 138 hospitalized patients

with COVID-19 [85]. Cardiac complications in COVID-19
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are associated with a poor clinical outcome [116, 117]. In

one study, 19.7% of 416 hospitalized patients with COVID-

19 had abnormally high levels of troponin I, and those with

elevated troponin I levels had higher mortality (51.2%) than

did those with lower levels (4.5%) [117]. Another study

showed that elevation in troponin T levels is associated with

the occurrence of malignant arrhythmias and fatal outcomes

[116].

As described above, SARS-CoV-2 infection promotes

vascular endothelial injury and thromboembolism, which

can result in ischemic heart disease and stroke [84, 112].

However, cases of myocardial injury with no evidence of

obstructive coronary disease have also been reported

[114, 118, 119], suggesting that COVID-19 interacts with

the cardiovascular system through multiple mechanisms.

Possible mechanisms of cardiovascular injury in
COVID-19

Although the molecular causes of myocardial injury in

COVID-19 have remained elusive, several mechanisms can

be considered. Severe viral infection triggers systemic

inflammatory response syndrome, which increases the risk

of plaque rupture and thrombus formation, resulting in the

occurrence of atherosclerotic diseases. For example, there is

a significant association between the incidence of AMI and

influenza [120]. In addition, several papers have reported

the occurrence of AMI in COVID-19 patients [112, 121],

though more studies are necessary to determine the actual

prevalence. Cytokine storms can both cause plaque

instability and promote cardiovascular inflammation and

myocardial depression [122, 123], which may be involved

in myocarditis and stress-induced cardiomyopathy in

COVID-19 patients [114, 124].

Furthermore, recent data suggest that a substantial por-

tion of patients with COVID-19 have risk factors for

atherosclerotic disease, which include hypertension, obe-

sity, smoking, and diabetes mellitus [6, 85, 111, 115].

Because severe respiratory viral infection induces hypox-

emia and abnormal hemodynamic changes, enhanced BP

variability may also trigger cardiovascular events in

COVID-19 patients with atherosclerotic risk factors. These

mechanisms likely act in parallel to cause cardiac damage,

resulting in severe clinical manifestations such as AMI,

ventricular arrhythmias, and congestive heart failure.

It is currently unknown whether SARS-CoV-2 infects

cardiomyocytes. Autopsy studies have reported the detec-

tion of SARS-CoV-2 RNA in the heart [125]. However, the

cell types in which viral RNA was detected were not

defined. Endomyocardial biopsy in a case of COVID-19

with cardiogenic shock revealed viral particles in interstitial

macrophages but not in cardiomyocytes [126]. Although

ACE2 is expressed in human cardiomyocytes [127], there

appears to be little expression of TMPRSS2 in these cells

[31]. Therefore, the direct pathogenic role of SARS-CoV-2

in cardiomyocytes needs further investigation.

Acute kidney injury (AKI) in COVID-19: incidence and
clinical significance

In addition to cardiac complications, accumulating data

indicate that renal abnormalities frequently accompany

COVID-19, though there does seem to be a geographic

difference in the occurrence of AKI. Several single-center

studies from Wuhan report that AKI developed in 3–7% of

patients with COVID-19 [85, 115, 128], and the reported

incidence of AKI in a multicenter study involving 1099 in-

hospital patients in 30 provinces across mainland China was

0.5% [129]. Studies in the US found AKI incidence to be

higher than that in the aforementioned reports. For instance,

the incidence of AKI was 19.1% among critically ill

patients in a small single-center study in Seattle [111], and

in a multicenter study conducted in the largest academic

health system in New York [6, 130], AKI occurred in

36.6% of 5449 patients admitted with COVID-19, of whom

14.3% required renal replacement therapy (RRT).

This geographic difference in the occurrence of AKI

might be explained by several factors, including disease

severity, ethnicity, and comorbid conditions (such as

diabetes and coronary artery disease), all of which are

reported to be independent risk factors for AKI in COVID-

19 [130].

AKI in COVID-19 is highly associated with respiratory

failure. In one study, as many as 89.7% of mechanically

ventilated patients developed AKI, whereas AKI occurred

in 21.7% of nonventilated patients [130]. The demand for

RRT may significantly increase during the COVID-19

pandemic, and clinicians should be aware of the possibi-

lity of facing challenges in delivering RRT to COVID-19

patients [131]. Moreover, in line with findings for SARS

[132], the mortality rate seems much higher among

COVID-19 patients with AKI than among those without

AKI. In a report by Zhou et al. [4], AKI was observed

only in 0.7% of survivors, whereas 50.0% of nonsurvivors

had AKI. Consistently, a dose-dependent relationship

between mortality and the severity of AKI was observed

in a different cohort, with stage 3 AKI being associated

with a fourfold increase in mortality risk [133]. A poor

prognosis for COVID-19 patients with AKI was also

confirmed in a US cohort [130]. In addition, renal

abnormalities associated with COVID-19 may not

necessarily be limited to AKI. Pei et al. reported that

proteinuria and hematuria were seen in 65.7% and 41.7%

of 333 patients with COVID-19 pneumonia, respectively

[134]. Glomerulopathy associated with COVID-19 has

also been reported [135, 136].
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Mechanisms of kidney injury associated with
COVID-19

Multiple mechanisms explaining the occurrence of kidney

injury in COVID-19 have been proposed, which include but

are not limited to the following: hemodynamic instability

and renal ischemia, ARDS and the cytokine storm, rhab-

domyolysis, hypercoagulability and thrombosis, cardiac

failure and kidney congestion, and direct renal infection of

SARS-CoV-2. In one study, AKI was more common in

patients with cardiac injury than in those without cardiac

injury, suggesting a cardio-renal interaction [117].

In autopsy data for 26 cases, diffuse proximal tubule

injury was prominent, along with erythrocyte aggregates in

peritubular capillaries, ischemic changes with fibrin thrombi

in glomeruli, and pigmented casts indicative of rhabdo-

myolysis [137]. Of note, this study identified virus particles

with crown-like morphology in electron microscopy within

renal tubules and podocytes, which was accompanied by

degenerative changes such as vacuolization and necrotic

epithelia. Another study also identified abundant viral forms

in the area of vacuolated tubules in a case of COVID-19 at

autopsy [138]. These reports were followed by the demon-

stration of SARS-CoV-2 RNA in the kidney [125, 139].

Such histopathological analyses of cases postmortem indi-

cate that SARS-CoV-2 may have tropism for the kidney,

especially in severe cases, though the pathogenic role of

direct infection remains undetermined. ACE2 is abundant in

renal proximal tubules [31, 140], and its levels are altered in

disease states such as diabetes mellitus [140–142]. However,

TMPRSS2 is highly expressed in the more distal portion of

the renal tubules [31]. At present, it is unclear how SARS-

CoV-2 enters renal cells and whether comorbid conditions

affect the cellular tropism of the virus in the kidney. It also

remains to be determined whether renal infection with

SARS-CoV-2 indeed contributes to kidney injury.

COVID-19 in advanced CKD

Several lines of evidence suggest that CKD patients, espe-

cially those at advanced stages, are vulnerable to SARS-

CoV-2 infection. In a multicenter study of 5700 patients

hospitalized with COVID-19, end-stage kidney disease

(ESKD) was present in 3.5% of all cases [6]. Conversely,

the prevalence of laboratory-confirmed COVID-19 was

2.1% in 7154 patients undergoing hemodialysis in Wuhan,

which was apparently higher than the morbidity of the

general population in that area (~0.5% as of March 2020)

[143]. In a cross-sectional study of 3802 cases with SARS-

CoV-2 test results, CKD was associated with a positive

SARS-CoV-2 result after adjustment for potential con-

founding variables [144]. Moreover, a higher baseline

serum creatinine level is an independent risk factor for

in-hospital death in COVID-19 [133], suggesting that

ESKD patients are at high risk of developing severe disease.

In recent reports, the overall mortality rate for ESKD

patients with COVID-19 was 29% (out of 94 cases) in Italy

[145] and 31% (of 59 cases) in New York [146]. The basis

for such vulnerability is likely multifactorial, and both

medical (older age, immune cell dysfunction, cardiovas-

cular and pulmonary comorbidities) and environmental

factors need to be considered [147, 148]. Currently, several

guiding principles have been proposed to mitigate the risk

of COVID-19 in ESKD patients [149–151].

Antihypertensive agents during the COVID-
19 pandemic

Use of ACE inhibitors and ARBs in patients with
COVID-19

Because ACE inhibitors and ARBs may increase the amount

of ACE2, whether these drugs should be discontinued during

the COVID-19 pandemic has been a topic of discussion

[152, 153]. The role of ACE2 in the pathophysiology of

COVID-19 as well as experimental evidence for ACE2 and

RAS inhibitors are reviewed in detail in the previous sections.

In the following sections, we discuss the clinical evidence for

COVID-19 and antihypertensive agents.

Although several reports in an early phase of the

COVID-19 pandemic have suggested the relationship

between COVID-19 and ACE inhibitors or ARBs

[154, 155], it is possible that the association between

COVID-19 and hypertensive medication results from

reverse causality because older patients, who are at the

highest risk for COVID-19, tend to have multiple comor-

bidities, including hypertension and CVD. Moreover,

adjustments for age and other possible confounding factors

were not performed in most of the early studies [156–158].

Several recent reports analyze the effect of ACE inhibitors

and ARBs on clinical outcomes in patients with COVID-19

and hypertension [159, 160]. A retrospective, single-site,

cohort study fromWuhan compared clinical outcomes among

126 COVID-19 patients with pre-existing hypertension (43 of

whom were taking either ACE inhibitors or ARBs; 83 of

whom were not taking these agents) and 125 age- and sex-

matched COVID-19 control patients without hypertension

[159]. In that study, it was found that ACE inhibitors or

ARBs did not increase the risk of morbidity or mortality in

patients with SARS-CoV-2 infection. Moreover, the study

showed a nonsignificant trend toward marginally lower cri-

tical illness and death rates in patients taking ACE inhibitors

or ARBs compared to those taking other antihypertensive

agents. In a study from Spain, a case-population study (1139

cases and 11,390 population controls) showed that users of
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ACE inhibitors or ARBs had an adjusted odds ratio for

COVID-19 requiring admission to hospital of 0.94 (95% CI

0.77–1.15) compared to users of other antihypertensive

drugs, with no increased risk for ACE inhibitors or ARBs

[160]. This study concluded that ACE inhibitors or ARBs do

not increase the risk of COVID-19 requiring admission to the

hospital, including fatal cases and those admitted to ICU, and

that these agents should not be discontinued to prevent the

development of severe COVID-19 [160].

Two other retrospective cohort studies from China

comparing disease severity and mortality rates between

hypertensive patients taking ACE inhibitors or ARBs and

those not taking these agents are available [161, 162]. One,

a single-center study, showed that the percentage of patients

taking ACE inhibitors and ARBs did not differ between

those with severe and nonsevere infections or between

survivors and nonsurvivors [161]. In the other, a multicenter

cohort study, hypertensive patients with COVID-19 who

were taking ACE inhibitors or ARBs were compared with

those who were taking antihypertensive drugs other than

ACE inhibitors and ARBs as well as patients with COVID-

19 without hypertension [162]. The risk for 28-day all-cause

mortality was lower in the ACE inhibitor/ARB group than

in the control group (adjusted HR 0.42, 95% CI 0.19–0.92;

P= 0.03) and in matched subgroup analysis (adjusted HR

0.30, 95% CI 0.12–0.70; P= 0.01).

In addition, two clinical studies from northern Italy and

from New York provide further evidence on the association

between antihypertensive medication and COVID-19

[163, 164]. In the case-control study in Italy, which inclu-

ded 6272 patients with COVID-19 and 30,759 controls

matched for age, sex, and municipality of residence, after

adjustment for drugs and coexisting conditions, the odds

ratios for the use of ACE inhibitors and ARBs were 0.96

(95% CI 0.87–1.07) and 0.95 (95% CI 0.86–1.05),

respectively, among all patients and 0.91 (95% CI

0.69–1.21) and 0.83 (95% CI 0.63–1.10), respectively,

among patients who had a severe or fatal course of the

disease [163]. In the New York study, none of the major

classes of antihypertensive drugs, including ACE inhibitors

and ARBs, were associated with a positive SARS-CoV-2

test or disease severity [164].

Taken together, the data from these six studies, although

retrospective, from different countries [159–164] provide

evidence for continuing treatment with ACE inhibitors or

ARBs in patients with hypertension during the COVID-19

pandemic. Moreover, a recent meta-analysis showed the

potential benefit of ACE inhibitors or ARBs in patients with

hypertension [165]. In nine studies comprising 3936

patients with hypertension and COVID-19, ACE inhibitors

or ARB treatment was not associated with disease severity

but was related to lower mortality from COVID-19 com-

pared with other antihypertensive drugs. Although future

well-designed randomized controlled trials are needed,

these results suggest that treatment with ACE inhibitors or

ARBs should be continued in COVID-19 patients with

hypertension [165–167].

Use of other antihypertensive agents in patients
with COVID-19

The aforementioned two studies on RAS inhibitors also

address the association of COVID-19 with other classes of

antihypertensive agents [163, 164]. In one study, the

adjusted odds ratios for COVID-19 associated with the use

of calcium-channel blockers, beta-blockers, thiazide diure-

tics, loop diuretics, and MRA were 1.03 (95%

CI 0.95–1.12), 0.99 (95% CI 0.91–1.08), 1.03 (95% CI

0.86–1.23), 1.46 (95% CI 1.23–1.73), and 0.90 (95% CI

0.75–1.07), respectively [163]. Thus, none of the anti-

hypertensive agents except loop diuretics were associated

with an increased risk of COVID-19 in multivariate ana-

lysis. In the study population, loop diuretics were used more

frequently in patients with COVID-19 than controls (13.9%

versus 7.8%; relative difference, 43.6%) [163], and their use

may reflect the existence of severe comorbidities such as

heart failure and renal dysfunction, the severities of which

were not appropriately quantified [163]. In another study,

calcium-channel blockers, beta-blockers, and thiazide

diuretics were not associated with an increased likelihood of

a positive SARS-CoV-2 test [164].

Statements on the use of antihypertensive agents
from hypertensive societies and associations
worldwide

The International Society of Hypertension [168], the Eur-

opean Society of Hypertension [169], the European Society

of Cardiology [170], and the American Heart Association/

Heart Failure Society of America/American College of

Cardiology [171] have already made a statement on

the use of RAS inhibitors during the COVID-19 pandemic.

the Japanese Society of Hypertension [172] and the Japa-

nese Circulation Society [173, 174] have also provided

statements regarding the management of cardiovascular

diseases during the COVID-19 pandemic. All these state-

ments indicate that there is no good evidence to change or

discontinue ACE inhibitors or ARBs to avoid or manage

SARS-CoV-2 infection.

Current conclusion regarding the use of
antihypertensive agents during the COVID-19
pandemic

In the early phase of the COVID-19 pandemic, there was

considerable confusion regarding whether ACE inhibitors
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or ARBs may have adverse effects on COVID-19 patient

morbidity and mortality, which was based on the specula-

tion that ACE2 can be upregulated by ACE inhibitors or

ARBs. However, the evidence of ACE2 upregulation is

limited to experimental studies. Furthermore, there have

been no clinical studies supporting the hypothesis that ACE

inhibitors and ARBs augment susceptibility to infection and

worsen all-cause mortality and cardiovascular outcomes in

COVID-19 patients. Thus, treatment with ACE inhibitors

and ARBs should be continued in high-risk patients who

have received guideline-directed medical therapy, and

hypertension should be managed in accordance with the

Japanese Society of Hypertension Guidelines for the Man-

agement of Hypertension (JSH2019) [18].

Areas of uncertainty and future perspectives

In this article, we review recent studies on COVID-19 in the

context of hypertension and related diseases. As discussed

in detail, there are no reliable reports on whether SARS-

CoV-2 infection risk is increased in patients with hyper-

tension. Hypertension is known to be associated with

endothelial injury, especially in the elderly [175], and recent

evidence suggests that thromboembolism triggered by

endothelial injury is one of the important complications that

influence disease outcome in COVID-19. At this time, it is

unclear whether pre-existing endothelial injury increases the

severity of COVID-19; however, hypertensive patients with

atherosclerotic diseases may need to be carefully monitored

for the occurrence of new-onset CVDs during SARS-CoV-2

infection.

Given that hypertension is the leading contributor to the

development of cardiovascular and kidney diseases and

given that myocardial injury and advanced CKD are asso-

ciated with an increased risk of severe disease following

SARS-CoV-2 infection, optimal management of hyperten-

sion can contribute to a better prognosis of COVID-19 by

mitigating the progression of these disorders. Regardless, a

major challenge is to achieve target BP control in the “New

Normal” lifestyle, in which health care workers may have a

reduced opportunity for in-person clinical examination of

patients. In the Great East Japan Earthquake in 2011,

medical care for patients with hypertension was compro-

mised (“disaster hypertension”) [176]. After the recognition

of BP increases following the disaster, which may have

contributed to the increased cardiovascular events

[176, 177], the remote BP monitoring system using infor-

mation and communication technology (ICT) was intro-

duced and was indeed useful in achieving target BP control

[178, 179]. Therefore, in the post-COVID-19 era, medical

practice using ICT may need to be widely implemented for

the management of hypertension. In addition, the COVID-

19 pandemic may increase the risk of mental disorders—

owing to, for example, anxiety, economic issues, and

decreased physical activity—all of which can potentially

compromise BP control. It is currently unknown whether

the COVID-19 pandemic will affect BP control and the

development of CVDs in the long term; nonetheless, it is

necessary to carefully monitor each patient’s BP.

Last, in addition to the development of effective treat-

ment, vaccination for SARS-CoV-2 will of course be

helpful. In the case of influenza infection, several epide-

miological studies and randomized control trials have

clearly shown that there is a strong inverse relationship

between influenza vaccination and the risk of cardiovascular

events [180].
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