
E-Mail karger@karger.com

 Review 

 Cerebrovasc Dis 2016;42:255–262 
 DOI: 10.1159/000446082 

 Hypertension and the Brain: A Risk 
Factor for More Than Heart Disease 

 Anja Meissner    a, b   

  a    Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS),  Barcelona , Spain;  b    Department of Neurology, 
University Hospital Münster,  Münster , Germany
 

impact of anti-hypertensive therapy on cognitive perfor-
mance with conflicting results.  Summary:  In light of the cur-
rent knowledge, it becomes apparent that there is an urgent 
need to understand the mechanisms underlying hyperten-
sion-induced cerebrovascular complications in order to 
identify effective therapeutic targets to prevent and most 
importantly also reverse cognitive decline mediated through 
hypertension.  Key Message:  This review summarizes the 
current knowledge of cSVD pathogenesis as well as possible 
links to hypertension-mediated cerebrovascular complica-
tions. By pointing out knowledge gaps, it aims to spur future 
studies in search of specific targets helping to prevent ther-
apy failures and decelerate the rapidly progressing neuro-
degeneration of patients suffering from cerebrovascular 
 diseases emanating from hypertension. 

 © 2016 S. Karger AG, Basel 

 Introduction 

 As our life expectancy increases and the proportion of 
older adults in our population grows, cognitive changes 
emanating from cerebrovascular disease are becoming 
an increasingly common problem. With disease progres-
sion, these cognitive changes often transition into de-
mentia, gradually leading to decreased quality of life and 
a considerable burden of care for other members of the 
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 Abstract 

  Background:  Cerebral small vessel disease (cSVD), a com-
mon risk factor for cognitive impairment, involves unspecif-
ic arteriopathy characterized by hypertrophy and endothe-
lial dysfunction that alter cerebrovascular function and 
 auto-regulation of cerebral blood flow (CBF). Microbleed-
ings, subcortical lacunar infarctions and diffuse areas of 
white matter lesions resulting from vascular injury are asso-
ciated with reduced cognitive function mostly characterized 
by difficulties in learning and retention, attention deficits, 
gait disorders or depression. In recent years, it has become 
evident that vascular risk factors contribute to the develop-
ment of cSVD and associated vascular cognitive impairment 
(VCI). Among them, hypertension emerged as such a major 
modifiable risk factor since the brain presents an early target 
for organ damage due to changes in blood pressure (BP). 
Subsequently both high and, especially in the elderly, low 
BP  have been linked to cognitive decline, which initiated 
controversial discussions about BP control as a potential 
therapeutic strategy to achieve optimal brain perfusion and 
thus, reduce the occurrence of cSVD and cognitive dysfunc-
tion. Yet, recent randomized controlled trials examined the 
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family and the community. While Alzheimer’s disease 
(AD) is the most prevalent cause of dementia, cerebro-
vascular disease has been increasingly accepted as the 
second most common etiology of vascular cognitive im-
pairment and dementia worldwide. Cerebral small vessel 
disease (cSVD), a group of pathological processes affect-
ing the small arteries, arterioles, venules, and capillaries 
of the brain, is not only a major contributor to stroke in 
humans but also an important cause of vascular and 
mixed dementia  [1, 2] . The clinical manifestations of 
cSVD comprise a wide range of symptoms including 
signs typical of stroke onset, neurological deficits ranging 
from mild to progressive cognitive decline, dementia, de-
pression, and physical disabilities  [3] . Especially, the 
overlap of risk factors accounting for AD and cSVD 
makes their clinical differentiation often challenging  [4];  
thus, the estimated proportion of dementia caused by 
cSVD ranges between 36 and 67%  [5] . Regardless of the 
medical, social and economic importance, specialized  
treatments are missing due to poor understanding of the 
disease pathogenesis.

  It has become evident that vascular risk factors con-
tribute to the pathogenesis of cSVD and hence, the devel-
opment of cognitive impairment  [6, 7] . Among them, hy-
pertension emerges as a major modifiable risk factor for 
cerebral complications. Pathological changes in BP have 
been directly linked to cognitive decline, which initiated 
controversial discussions about BP control as a potential 
therapeutic strategy to achieve optimal brain perfusion 
and thus, reduce the occurrence of a mild stage of cogni-
tive impairment preceding both AD and vascular demen-
tia  [8, 9] . Yet, the underlying mechanisms linking hyper-
tension to cognitive decline and specifically, to cSVD 
have not yet been fully elucidated, which makes the search 
for effective therapies challenging.

  Cerebrovascular Dysfunction during cSVD and 

Hypertension and Its Consequences for the Brain 

 The unspecific arteriopathy typical for cSVD is char-
acterized by hypertrophy, endothelial dysfunction, en-
larged perivascular spaces  [10]  and enhanced permeabil-
ity, resulting in micro-bleedings, subcortical lacunar in-
farctions and diffuse areas of white-matter lesions  [11, 
12] . Microscopic infarcts and microbleeds have been as-
sociated with cognitive dysfunction accompanying vas-
cular pathologies such as leukoaraiosis, lacunar infarcts, 
large infarcts, as well as with AD  [7] . Number and loca-
tion of such microscopic infarcts are major determinants 

of cognitive dysfunction  [13] , whereby a cortical and sub-
cortical location is commonly associated with dementia 
 [14, 15] . Vascular changes underlying cSVD likely in-
clude inflammatory events that result in endothelial fail-
ure and neurovascular unit dysfunction  [16] . Immune 
cells infiltrate the central nervous system (CNS) in many 
neurodegenerative disorders, in which their participation 
has critical influence on outcomes such as cerebrovascu-
lar responsiveness and brain perfusion, microglial activa-
tion and hence, neuronal dysfunction, neuro-inflamma-
tion and -degeneration  [17] . Leukocyte migration modi-
fies the permeability of the neurovascular unit and marks 
an early event in vascular injury  [18] .

  During hypertension, the cerebral microcirculation 
can be compromised in various ways, ranging from func-
tional changes affecting vasomotor capacity, usually 
modifying blood flow transiently, to complete physical 
damage resulting from conditions like thrombosis  [19] . 
Subsequent critical global or regional cerebral perfusion 
deficits cause a suppression of brain activity and cogni-
tive dysfunction  [20] . Besides, inflammation can deterio-
rate the vessel wall through impairing endothelial func-
tion, which results in reduced functionality of the micro-
vasculature that can render the cells it nourishes ischemic, 
and, if sustained, lead to irreversible neuronal damage 
 [21] . Hypertension-associated cerebral microbleeds are 
typically located in basal ganglia, thalamus, brain stem, 
and cerebellum, while a lobar distribution is frequently 
linked to cerebral amyloid angiopathy  [22] . Diffuse 
white-matter damage or leukoaraiosis are also attribut-
able to high systolic BP, and indicate a reduction in 
white-matter density possibly translating into impaired 
cognitive functioning  [23] . White-matter lesions are 
thought to evolve from a combination of demyelination, 
lacunar infarcts and axonal loss and are not only associ-
ated with ischemic and hemorrhagic stroke but also with 
dementia, especially with deficits in motor speed and ex-
ecutive functions  [24, 25] . Interestingly, hypertension 
has also been correlated to increased amounts of 
amyloid-β deposited in the brain of ApoE4 carriers as 
people with both the risk allele and high BP accumulated 
significantly more amyloid-β than normotensive ApoE4 
controls  [26] . Interestingly, the use of antihypertensive 
medication reduced amyloid-β deposition suggesting an 
interaction between a gene and a vascular risk factor. 
Nevertheless, the mechanism that ties ApoE4 to hyper-
tension remains unclear, but hypertension’s negative ef-
fects on blood-brain barrier (BBB) integrity might pro-
mote the observed increase in amyloid-β deposition in 
hypertensive ApoE4.
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  Mechanisms Underlying Hypertension-Associated 

Cerebrovascular Dysfunction 

 The microcirculation plays an important role in the 
pathophysiology of hypertension since primarily small 
arteries and arterioles determine peripheral resistance. 
Enhanced vasoconstriction, compromised vasodilata-
tion, increased wall-to-lumen ratio associated with re-
duced lumen diameter, and rarefaction of small arteries, 
alone or in combination, promote the increase of total 
peripheral resistance and mean BP values. Likewise, the 
loss of elastic fiber integrity through the degeneration of 
elastin fibers and a concurrent deposition of stiffer col-
lagen promote an increased vascular fragility and arterial 
stiffness  [27, 28] . Vascular calcification resulting from 
oxidative stress and inflammatory processes, in which 
pro-inflammatory cytokines like tumor necrosis factor 
alpha (TNF-α) play a crucial role, equally compromises 
arterial elasticity and hence, functionality with deleteri-
ous consequences  [29, 30] . Adding to these structural fac-
tors, reduced availability of endothelial nitric oxide fur-
ther stimulates arterial stiffness not only by contributing 
to a pro-constrictive state but also by fueling hypertrophy 
 [31] . Independent of its basis, the resulting amplified 
large artery stiffness leads to elevated central systolic and 
pulse pressures that, when transmitted into cerebral ar-
teries, potentially lead to remodeling and a progressive 
impairment of the arterial lumen. Augmented arterial 
pulse pressure due to large artery stiffening can result in 
the development of white-matter lesions  [32]  since espe-
cially, the terminal white-matter arterioles are susceptible 
targets for pressure-induced structural alterations  [33] . 
These structural alterations may support a chronic hy-
poxic state through impaired vascular function, and in-
crease the risk of long-term disability.

  BP varies markedly during normal daily activities. To 
adequately respond to the BP variations without detri-
mental effects on cerebral blood flow (CBF), cerebral ar-
terioles adjust their resistance according to intravascular 
pressure  [34] . Thus, CBF remains constant over a wide 
range of BP changes. This plateau phase is determined by 
upper and lower limits, which are shifted to higher BP 
values during chronic hypertension to maintain the same 
level of CBF  [35] . Within the cerebrovascular tree, a gra-
dient of myogenic activity exists; proximal arteries exhib-
it marginal myogenic tone, whereas more distal sections 
possess a substantially higher myogenic activity  [36, 37] . 
However, under pathologic conditions, proximal arteries 
also present augmented myogenic tone, resulting in CBF 
alterations  [37–39] . Even if under such conditions global 

perfusion is maintained, regional perfusion deficits may 
occur, leading to local hypoxia-induced tissue damage. 
To date, most studies describing the effect of hyperten-
sion on the cerebral microvasculature comprised large in-
tracranial arteries such as the middle cerebral artery  [40, 
41] , while less attention has been paid to smaller vessels 
 [37, 39]  or even to parenchymal arterioles  [42, 43] . Since 
especially these small arteries and arterioles possess high-
er myogenic responsiveness compared to larger vessels 
 [44]  hypertension could negatively affect their structure 
and/or function to an extent that might cause white mat-
ter lesions and concomitantly, lead to the development of 
vascular cognitive impairment  [45] .

  The exact mechanisms how hypertension affects auto-
regulation are not completely understood but they likely 
include a combination of myogenic tone alterations and 
artery remodeling. At times of elevated intraluminal pres-
sure, wall thickness increases to maintain artery wall 
stress within a physiological range generally leading to 
reduced lumen diameter and increase in wall-to-lumen 
ratio. In hypertension, the typical inward remodeling of 
cerebral arteries together with increased myogenic tone 
may limit auto-regulation of CBF. A consecutive reduc-
tion of CBF potentially increases the likeliness of for in-
stance, the development of ischemic situations with del-
eterious consequences for oxygen tension that, when per-
manently reduced, might also affect neuronal structures 
furthest away from the capillary surface. Patients with ex-
aggerated variability of BP are at increased risk of isch-
emic insults and silent strokes  [46] , which suggests that 
recurring acute or permanent hypoperfusion could favor 
brain damage and the occurrence of cognitive impair-
ment. Indeed, CBF measurements in patients with isch-
emic leukoaraiosis revealed significantly reduced CBF 
within deep white-matter  [47, 48] .

  Besides structural alterations, hypertension also pro-
vokes abnormally low densities of arterioles and capillar-
ies. Vessel rarefaction might be causative to a reduction 
in CBF and hence, increasing the risk of cognitive decline 
in patients with hypertension  [49] . Although not direct-
ly shown in experimental hypertension, a mouse model 
of small vessel disease revealed capillary loss in white-
matter regions prior to the occurrence of any overt re-
duction in CBF or visible white-matter injury  [45] . Yet, 
there are no studies documenting cerebral artery rarefac-
tion in hypertensive patients although capillary rarefac-
tion appears to be a regular complication with implica-
tions for deleterious end-organ damage apart from the 
brain  [19, 50] . Further experimental studies are needed 
to elucidate upon the possible involvement of cerebral 
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vessel rarefaction in the hypertensive brain especially, 
since studies showed that pro-angiogenic and anti-hy-
pertensive therapies enhanced vessel density  [51, 52] .

  Endothelial Involvement in Hypertension-Mediated 

Cerebrovascular Dysfunction 

 Endothelial cells (ECs) that determine the interface be-
tween circulating blood and vessel wall are conferred es-
sential significance in the maintenance of vascular integ-
rity, regulation of vascular tone and hence, adequate tis-
sue perfusion  [53] . Endothelium-derived vasoactive 
factors participate in the maintenance of resting CBF by 
coordinating the vasodilatation and the response to me-
chanical forces  [54] . They furthermore concert the in-
crease in CBF upon brain activation, the so-called func-
tional hyperemia, which is attenuated in patients with 
chronic hypertension and has been associated to reduced 
cognitive function  [55, 56] . It is well known that compro-
mised endothelial function in patients with hypertension 
results in reduced vasodilation, increased vascular tone 
and thrombo-inflammation  [40, 41, 56, 57] , but whether 
this represents a key aspect in symptomatic lacunar stroke 
and cSVD remains to be determined. However, the func-
tional impairment of the endothelium appears to be an 
early indicator of vascular dysfunction in small and large 
vessel disease  [58, 59] . Unfortunately, the direct assess-
ment of endothelial function in the human brain is chal-
lenging, which limits the number of available studies to a 
few. A recent study analyzed measurements of cerebral 
and peripheral vessel reactivity in response to CO 2  inha-
lation using transcranial Doppler and duplex ultrasound 
in patients with lacunar stroke and control subjects  [60] . 
Here, abnormalities in peripheral artery reactivity seemed 
to be related to vascular risk factors, and severity of endo-
thelial dysfunction in cerebral arteries correlated with the 
occurrence of lacunar stroke in patients with cSVD  [60] . 
Impaired endothelial function has been furthermore 
shown by assessing endothelial nitric oxide signaling in 
patients with lacunar infarction and associated cSVD  [61, 
62] . Endothelial-derived nitric oxide predominantly con-
tributes to the regulation of local vascular tone and BP by 
promoting vasodilatory responses, while also mediating 
anti-inflammatory and anti-thrombotic effects by inhib-
iting leukocyte adhesion and platelet aggregation  [63, 64] . 
The disruption of endothelium-dependent nitric oxide 
signaling may be promoted by oxidative stress, driven 
primarily by the NADPH oxidases that have been impli-
cated in cerebral vascular dysfunction associated with 

cSVD risk factors and cerebral amyloid angiopathy  [65–
67] . Reactive oxygen species (ROS) are key mediators of 
cerebrovascular dysfunction in hypertension, as they 
contribute to vessel rarefaction and structural remodel-
ing of cerebral blood vessels and hence, lead to function-
al alterations with profound consequences for CBF. Spe-
cifically, experimental studies comprising rodent models 
of hypertension report that targeting the ROS producing 
enzyme NADPH oxidase or its assembly protects from 
cerebrovascular oxidative stress and consequently, from 
alterations in endothelium-dependent relaxation and 
functional hyperemia  [65, 68, 69] . To date, existing stud-
ies showing the direct effect of hypertension on cerebral 
artery tone  [43, 70]  mostly describe endothelial dysfunc-
tion in isolated artery approaches; only a few studies show 
a direct link between endothelium-dependent vasodila-
tion and CBF. Moreover, histological analyses of post-
mortem tissue from patients with severe cSVD present 
evidence of an intact endothelial layer in small arteries in 
the frontal white-matter, while showing an apparent loss 
of myocytes and other mural cells  [71, 72] . Specifically, 
pericyte loss and basement membrane thickening link 
risk factors, such as ageing, hypertension and diabetes 
with functional disturbances in CBF and with cSVD  [73] . 
This complexity makes further experimental approaches 
to illuminate  upon the vasodilatory capacity of small ce-
rebral arteries exposed to high BP before and during overt 
cSVD necessary.

  Endothelial Activation and BBB Involvement 

 In blood vessels, EC integrity is a primary target for 
mechanotransduction-dependent challenges. In a variety 
of vascular-based pathologies, the link between intercel-
lular junctions and the cytoskeleton is frequently disrupt-
ed or impaired causing the loss of proper mechanotrans-
duction signaling and most importantly, a destabilization 
of the endothelial barrier function  [74] . Cerebral ECs 
possess a particularly low transport capacity preventing 
substance entry into the brain. The integrity of the BBB is 
therefore of essential importance to maintain the homeo-
stasis of the cerebral microenvironments and hence, nor-
mal brain function.

  The imbalance between vasoactive substances as well as 
chronic disturbances in hemodynamic forces caused by, 
for instance, hypertension lead to endothelial activation, a 
prerequisite for thrombo-inflammation and an early indi-
cator of BBB impairment that is mostly accompanied by 
the elevation of adhesion molecules orchestrating leuko-
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cyte rolling, adhesion and migration  [18] . Peripheral 
markers of endothelial activation like soluble vascular cel-
lular adhesion molecule-1, soluble intercellular adhesion 
molecule-1 (sICAM-1), sP-selectin, and sE-selectin asso-
ciate with cSVD-related MRI markers and reduced cogni-
tive performance in patients with essential hypertension, 
indicating a role of endothelial activation in the pathogen-
esis of hypertension-mediated cSVD  [75, 76] . Indepen-
dently, sICAM-1 levels appear to be an essential marker 
for lacunar stroke, early neurological deterioration and in 
patients with white-matter lesions  [61, 77] . However, since 
it may not be exclusively of endothelial origin, sICAM-1 
fails to provide strong support for correlating endothelial 
activation and vascular-based cognitive impairment. Oth-
er, more specific, endothelial activation markers emerged 
from studies showing an independent relationship be-
tween sE-selectin and the number of microbleeds in pa-
tients with cSVD  [16] . Despite existing evidence linking 
endothelial activation and cSVD, the fact that elevated cir-
culating markers of endothelial activation in patients with 
cSVD may derive from any vascular bed permits direct as-
sociation of cerebro-endothelial activation, inflamma-
tion-induced artery stiffening and resulting impairment of 
auto-regulation of CBF. Nevertheless, there is evidence 
showing elevation of adhesion molecules, leukocyte roll-
ing along cerebral vessels and T-cells infiltration and ac-
cumulation in perivascular spaces during hypertension 
that suggest a causative link between endothelial activa-
tion and cerebrovascular dysfunction  [78–80] .

  EC activation has also been conferred with regulatory 
function during exocytosis of P-selectin, tissue plasmino-
gen activator and von Willebrand factor (vWF)  [18] . Es-
pecially, vWF expression is elevated in both chronic and 
acute inflammation. Its augmentation in patients with la-
cunar infarcts aligns with findings correlating a pro-
thrombotic status with markers of cSVD in elderly hyper-
tensive patients  [81] . Thrombo-inflammation promotes 
vessel occlusions and endothelial-mediated vascular inju-
ries leading to increased BBB permeability, triggering fur-
ther damage of the vessel wall and finally resulting in ves-
sel ruptures  [82] . Such endothelial-based sites of leakage 
have been discussed as early endothelial injury promoting 
the impairment of the BBB in a model of hypertension-
induced cSVD  [82] . BBB impairment resulting from al-
terations of its cellular components has been described to 
occur during neurodegenerative diseases  [83] , but was 
also associated with cSVD and lacunar infarcts  [84, 85] . 
However, it remains elusive whether BBB dysfunction is 
the primary cause for changes to happen in the cerebral 
microvasculature, since to date, studies only reported an 

increased BBB permeability at times of clinically evident 
cSVD  [84] . Nevertheless, increasing numbers of activated 
circulating immune cell, endothelial activation and the 
presence of activated microglia in the CNS of hyperten-
sive individuals suggest a link between chronically elevat-
ed BP and BBB impairment.

  Conclusions 

 Hypertension elicits multiple negative effects on the 
vasculature with devastating consequences for auto-reg-
ulation of CBF. Local disturbances in CBF lead to brain 
lesions affecting important white-matter tracts and man-
ifesting as complete and incomplete infarcts, microbleeds 
and white-matter hyperintensities. Since hypertension 
has a direct negative effect on the vasomotor function of 
cerebral arteries that is comparable to that observed in 
other cardiovascular pathologies, the risk of cerebrovas-
cular damage and cognitive decline mediated through hy-
pertension need to be considered for future experimental 
studies and clinical trials. Recent findings among partici-
pants in the Framingham Heart Study showing that the 
incidence of dementia has declined over the course of 3 
decades  [86]  give rise to the hope that the burden of de-
mentia is decelerating. However, the observed dependen-
cy on education in particular does not reduce the urgency 
to unravel the mechanistic link between hypertension 
and cognitive decline. Recent randomized controlled tri-
als examined the impact of anti-hypertensive therapy on 
cognitive performance with conflicting results. A meta-
analysis of longitudinal studies showed that anti-hyper-
tensive treatment reduces the risk of the development of 
cognitive decline and vascular dementia but failed to re-
verse the already established hypertension-associated 
cognitive dysfunction  [87] .

  Increasing evidence indicating that vascular dementia 
and AD share common pathogenic mechanisms medi-
ated by vascular risk factors  [88] , highlights the urgency 
to understand underlying mechanisms of hypertension-
induced cerebrovascular complications leading to cSVD 
and associated cognitive impairment in order to identify 
and isolate effective therapeutic targets that can prevent 
and most importantly reverse cognitive decline mediated 
by hypertension.
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