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Abstract: Prolonged population aging and unhealthy lifestyles contribute to the progressive preva-
lence of arterial hypertension. This is accompanied by low-grade inflammation and over time results
in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel
remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase
the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of
“connexome” cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling
for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in
promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available
literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling,
hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects
of antihypertensive agents, including anti-inflammatory. Therefore, further research is required
to identify specific molecular targets and pathways that will protect connexomes, and it is also
necessary to develop new approaches to maintain heart function in patients suffering from primary
or pulmonary arterial hypertension.
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1. Introduction

Herein, we focus on pro-arrhythmic disorders elicited by primary hypertension (HTN).
This is a prevalent risk factor for cardiovascular disease in the general population that
includes younger people. HTN is defined as systolic blood pressure above 140 mmHg or di-
astolic blood pressure above 80 mmHg. These can result in hypertensive heart disease from
pressure overload. HTN-induced compensated myocardial hypertrophy can aggravate left
heart dysfunction over an extended period. This is mainly due to fibrosis, and it results in
heart failure (HF). HTN also promotes the occurrence of cardiac arrhythmias, including
ventricular fibrillation (VF) and atrial fibrillation (AF). In addition to HTN, there is also an
increased incidence of pulmonary arterial hypertension (PAH) which affects right heart
function. PAH is caused by pulmonary vasculopathy, and it results in elevated pulmonary
arterial pressure above 25 mmHg at rest. This is a most serious clinical problem and has
adverse prognosis due to heart disease progression and the accompanying myocardial
fibrosis contributing to HF. There is also a further risk of VF and AF. Further research
is also essential to differentiate gender differences in both primary HTN and PAH for
efficient treatment.

It has been established that myocardial connexin-43 (Cx43) channels ensure electrical
coupling between cardiomyocytes and are crucial in the development of malignant cardiac
arrhythmias [1]. The available literature indicates that HTN and PAH deteriorate Cx43 chan-
nels and mediate communication at the heart’s gap junctions (GJs), as well as the function of
adhesive junctions [2–6]. Cx43 GJs are essential for electrical coupling and the propagation
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of action potentials between cardiomyocytes [7]. Desmosomes (D) and adherens junctions
(AJs) are junctions responsible for cardiac myocyte adhesion and mechanical force trans-
duction via actin filaments [8] located in the intercalated discs (ID), and their impairment
or dysfunction in heart disease can facilitate VF or AF and contribute to HF [9–11].

Research suggests that it is important to consider connexomes and “area composite”,
complex proteins which underly the interaction of Cx43-formed GJs, D, and AJs at the
intercalated discs. This is highlighted in Figure 1, and Figure 2 shows their localization
on the cardiomyocyte lateral aspect. Connexome defects are essential in arrhythmogenic
cardiomyopathy [12–17], and are most likely implicated in both AF and VF promoted by
HTN or PAH [11,18,19].
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Figure 1. Intercalated discs comprise three distinct junctional complexes, the “connexome”: adherens
junction (AJ), desmosome (D), and gap junction (GJ). These work together to mediate cardiomyocyte
mechanical and electrical coupling. There are also various interacting proteins that can modulate
connexome function [10,12–18]. Disorders of this complex structure appear to be pro-arrhythmic and
promote mechanical heart dysfunction.Electron microscopic images adapted from [11].
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It is most important that the connexomes affect both cardiomyocyte electrical coupling
through Cx43 channels and mechanical force transduction by adhesive junctions. It is
conditio sine qua non for synchronized myocardial contraction, and this is impaired in heart
disease [8,9,20]. In addition, ion channels and Cx43 hemichannels form part of the connex-
ome, and these affect its function [7]. Therefore, connexome’s structural and functional
preservation presents a challenging target for pharmacological and non-pharmacological
approaches [10]. These will enhance the fight against life-threatening cardiac arrhythmias
in general, and in HTN and PAH in particular.
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myocardial excitation, and this can directly depress cardiac performance [28]. 

Figure 2. Connexomes are identified on the lateral sides of the hypertrophied guinea pig car-
diomyocytes. Their AJ, D, and GJ components are destroyed by progressive extracellular collagen
deposition [21]. Scale bar represents 1 micrometer.

2. Factors Involved in the Development of Re-Entrant Cardiac Arrhythmias, VF, and AF

The heart can “die” due to the following three major events: electromechanical dis-
sociation, asystole, and VF, which is the most frequent case. In addition, AF is the most
frequent arrhythmia in the population. AF deteriorates heart function and can cause
stroke. The basic electrophysiological mechanisms of cardiac arrhythmias include the fol-
lowing: (1) abnormal electrical impulse generation through ectopic pacemaker-like activity
or triggered activity and (2) abnormal electrical impulse propagation, due to blocks of
conduction and re-entrant excitation. Simultaneous operation of abnormalities 1 and 2
may occur [7,22–25].

Figure 3 highlights that arrhythmogenic substrates, electrical triggers, and modulations
are the three major factors in AF and VF development. Heart disease-related myocardial
structural and ion channel remodeling are the established arrhythmogenic substrates. This
includes hypertrophy, fibrosis, D and AJ impairment, and altered Cx43 topology and
its downregulation. These changes can influence anisotropic conduction and promote
discontinuous and re-entrant action potential propagation [26,27]. Fibrosis causes extreme
disturbance of Cx43 GJ distribution at the myocardial interface, and defines the location of
re-entry circuits that cause ventricular arrhythmia [2]. In addition, heterogeneous Cx43 GJ
expression adversely affects the normal pattern of coordinated myocardial excitation, and
this can directly depress cardiac performance [28].
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Figure 3. Tentative connexome implications in pro-arrhythmic disorders induced by HTN and PAH.

Research indicates that abnormal Ca2+ handling, Ca2+-overload, and ischemia-related
acidosis induce Cx43-GJ uncoupling. When this is combined with ion current abnormalities,
it can trigger the electrical disorders that initiate AF or VF occurrence [4,6,19,24,29,30].

Modulating factors, such as humoral and autonomic tone misbalance [31,32], inflam-
mation, and redox dysregulation [22,33], as well as various stressors, such as stretch [34,35],
impact the susceptibility of the heart to re-entrant arrhythmias. Finally, Cx43 hemichannel
activation is fundamental to this process, because it can promote pro-arrhythmic signal-
ing [7,24] and Cx43 GJ redistribution or inhibition.

Although the basic mechanisms that can cause cardiac arrhythmias are known, there
is little understanding of the changes in cardiac electrical properties in heart disease, and
this includes those in HTN and PAH. These properties appear to be the immediate cause of
the operation of the arrhythmogenic mechanisms which occur in cardiac conditions and
disease. Both AF and VF are assumed to occur due to ectopic impulse initiation, blocking
conduction, and circuit re-entry. Although, AF can self-terminate and VF can be transient
in the heart, avoiding arrhythmogenic substrates under the control of modulating factors.
However, sustained AF or VF can aggravate the myocardial injury and connexome function
(Figure 4). Therefore, protection of the connexome, GJ, and adhesion of the perinexus
to preserve sodium channels and cardiac conduction present promising anti-arrhythmic
research targets [36].
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Figure 4. AF and VF aggravate connexome impairment. This includes AJ, D, and GJ due to Ca2 -
overload, ischemia, and other factors. The subcellular rat heart alterations shown in the (A–C) images
indicate desynchronized contraction of neighboring cardiomyocytes, and image (D) shows vary-
ing degrees of injury attributed to connexome impairment. Scale bar represents 0.1 micrometer.
Adapted from [19].
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3. Connexome Impairment Promoting AF or VF Development in Primary HTN

Primary or essential HTN is a prevalent risk factor jeopardizing cardiovascular health,
and its increase in younger people is very alarming [37,38]. HTN is a multifactorial
disease, and its etiopathogenesis includes the interplay between the genetic, epigenetic,
environmental, and lifestyle factors which lead to meta-inflammation, oxidative stress,
and auto-antibody production [23,39–52]. In addition, insufficient myocardial perfusion
to match overall metabolic demand has been identified as an elevated risk of heart failure
(HF) in symptomatic patients with HTN [53]. Adverse HTN consequences promote stroke,
as well as heart electro-mechanical dysfunction, and this can lead to the development of
AF or VF and subsequent HF [54–57]. Therefore, primary or essential HTN has become a
target of considerable global public health concern [38,58].

Numerous animal and human heart studies indicate that HTN-induced structural
remodeling involves hypertrophy, a shift in myosin heavy chains, cytoskeletal proteins,
fibrosis, channelopathy, altered Ca2+ handling, and Cx43 disorders of the left ventricle.
These are crucial in impaired conduction, electrical instability, heart mechanical dysfunction,
and cardiac arrhythmias [47,54,55,57,59–70].

In addition, the progression of left ventricular alterations to HF is associated with
right ventricular dysfunction and electrical instability [71]. This contributes to an adverse
prognosis. Moreover, changes in membrane lipid composition have been reported in
cardiac hypertrophy, and these can also affect GJ coupling and conduction [72].

Available literature indicates that HTN results in altered connexomes on the cardiomy-
ocyte lateral sides, in addition to its multiple locations in ID. The subcellular alterations
indicate connexome abnormalities. These include the AJ dehiscence, internalization, and
GJ degradation, as demonstrated in Figures 5 and 6.

HTN-induced structural remodeling causes Cx43 redistribution from GJs to the car-
diomyocyte lateral sides [61,62,67,74], Cx43 downregulation [73,75–77], and D and AJs
dehiscence [4,19]. Delocalization of the Cx43 from GJs is a major pathologic-mechanism in
hypertensive electrochemical remodeling [74,78]. The N-cadherin/catenin complex of AJs
is a master regulator of ID function [18], and N-cadherin loss leads to altered Cx43 with
reduced conduction velocity (CV) and arrhythmogenesis [13,39].

It is important that Cx43 cardiomyocyte lateralization is accompanied by the remod-
eling of D and microtubule-associated proteins [79]. This remodeling can affect electrical
synchrony under conditions of disrupted ID integrity. Cadherin dysregulation has been
demonstrated in IDs of spontaneously hypertensive stroke-prone rats [80]. This can con-
tribute to altered heart function. In addition, reduced Cx43 expression triggers increased
fibrosis due to enhanced fibroblast activity [81]. Therefore, the implications of arrhythmo-
genic fibroblast–cardiomyocyte interactions should be considered [82].

LVH is associated with increased intracellular resistivity which can be solely attributed
to increased junctional resistance between adjacent cells [83]. Cardiac hypertrophy is
known to be regulated by micro RNAs [84], and the upregulation of muscle-specific miR-1
noted in hypertrophy can affect cardiac arrhythmogenicity by targeting the GJA1 gene
which encodes Cx43 [85]. Gender differences in miR-1 [86] can partly explain higher Cx43
protein levels in females [87] and their lower cardiac arrhythmia susceptibility [55]. It is also
important that chronic distress promotes miR-1 expression [35], and this increases Cx43
displacement and induces ventricular tachyarrhythmias in hypertrophic rat hearts [88].
In addition, there is dysregulated miR-1 processing in the SHR heart associated with
aging [89]. The implication of miRs in the development of cardiac arrhythmias has also
been comprehensively reviewed [90].
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GJ remodeling in human decompensated cardiac hypertrophy is associated with
increased interaction of Cx43 with zonula occludens-1 (ZO-1) [91,92]. This could be impli-
cated in the downregulation and decreased size of Cx43 GJs contributing to the arrhythmic
substrate. In addition, ZO-1 as a connexin-interacting protein, determines AJ and GJ local-
ization at the intercalated disc [93]. Moreover, high mechanical load induces rapid Cx43
phosphorylation loss, followed by decreased Cx43 protein levels [94]. It has been revealed



Biomolecules 2023, 13, 330 7 of 17

that phospho-Ser-368 Cx43 channels were segregated into the GJ center following PKC
activation, and these were subsequently internalized and degraded [95]. Of note, ubiqui-
tination is critical for GJ internalization [96], desmin mediates TNF-α-induced aggregate
formation, and ID reorganization in the failing heart [97].

Data in the literature indicate proposed factors and mechanisms that may be involved
in pro-arrhythmic “connexome” dysfunction in chronic arterial hypertension, as outlined
in Figure 7.

Biomolecules 2023, 13, x FOR PEER REVIEW 7 of 17 
 

 
Figure 6. Electron microscope images illustrate connexome impairment in SHR hearts. Varying 
degrees of AJ dehiscence are apparent in images (A–C), and these are accompanied by GJs loss. 
The connexome impairment also results in asynchronized contractions of neighbouring cardiomy-
ocytes (A,D). Long-lasting HTN related structural remodeling includes severely injured cardiomy-
ocytes, with the destroyed connexome at the intercalated disc (arrowhead in (E)) and on the cardi-
omyocytes lateral side (F). This is accompanied with progressive fibrosis. Scale bar represents 1 
micrometer. Adapted from [3]. 

LVH is associated with increased intracellular resistivity which can be solely at-
tributed to increased junctional resistance between adjacent cells [83]. Cardiac hypertro-
phy is known to be regulated by micro RNAs [84], and the upregulation of muscle-specific 
miR-1 noted in hypertrophy can affect cardiac arrhythmogenicity by targeting the GJA1 
gene which encodes Cx43 [85]. Gender differences in miR-1 [86] can partly explain higher 
Cx43 protein levels in females [87] and their lower cardiac arrhythmia susceptibility [55]. 
It is also important that chronic distress promotes miR-1 expression [35], and this increases 
Cx43 displacement and induces ventricular tachyarrhythmias in hypertrophic rat hearts 
[88]. In addition, there is dysregulated miR-1 processing in the SHR heart associated with 
aging [89]. The implication of miRs in the development of cardiac arrhythmias has also 
been comprehensively reviewed [90]. 

GJ remodeling in human decompensated cardiac hypertrophy is associated with in-
creased interaction of Cx43 with zonula occludens-1 (ZO-1) [91,92]. This could be impli-
cated in the downregulation and decreased size of Cx43 GJs contributing to the arrhyth-
mic substrate. In addition, ZO-1 as a connexin-interacting protein, determines AJ and GJ 

Figure 6. Electron microscope images illustrate connexome impairment in SHR hearts. Vary-
ing degrees of AJ dehiscence are apparent in images (A–C), and these are accompanied by GJs
loss. The connexome impairment also results in asynchronized contractions of neighbouring
cardiomyocytes (A,D). Long-lasting HTN related structural remodeling includes severely injured
cardiomyocytes, with the destroyed connexome at the intercalated disc (arrowhead in (E)) and on the
cardiomyocytes lateral side (F). This is accompanied with progressive fibrosis. Scale bar represents
1 micrometer. Adapted from [3].
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Interventions Associated with Protecting Connexome in Primary HTN

The spontaneously hypertensive rat (SHR) is the most frequent experimental model
used to imitate human primary HTN. The SHR treatment with the phenylbutyrate short-
chain fatty acid derivative and captopril both improved myocardial function, regressed
cardiac hypertrophy, and enhanced recovery from HF [98]. It is important here that the
gene set combination related to oxidative stress, growth, inflammation, protein degradation,
and pro-fibrotic TGF-β signaling were downregulated; and these effects were most likely
associated with improved connexome function.

The literature cites the following treatment influences on cellular communication,
impulse conduction, and adhesive junctions:

(1) The distribution of Cx43 GJs became more regular and confined to the ID and attenu-
ation of LVH in SHR after treatment with the atorvastatin 3-hydroxy-3-methylglutaryl coen-
zyme A inhibitor [99]. It is also noted [22] that statins have pleiotropic anti-inflammatory
and anti-oxidative effects, and that they alter membrane lipid composition. This could
protect connexome function.

(2) The activation of Ang II and AT1 receptors decreases GJ conductance in the failing
heart, with consequent impairment of impulse propagation [100]. In addition, both Ang II
and aldosterone promote inflammation and enhance collagen deposition and interstitial
fibrosis with serious consequences for the spread of electrical activity through the my-
ocardium. Ang II also induces sudden arrhythmic death and electrical remodeling in rats
which harbor the human renin and angiotensin genes [68].

(3) The arrhythmias was attributed to inflammation, interstitial fibrosis, reduced
transcripts of potassium channel subunit Kv4.3, and gap-junction Cx43 that was partly
abolished by losartan. However, a chronic losartan blockade of the Ang II AT1 receptors in-
creased intercellular communication, reduced fibrosis, and improved impulse propagation
in the failing heart [100]. Ventricular conductance velocity was also enhanced to some extent
by increased GJ conductance, decreased interstitial fibrosis, and structural remodeling.

(4) Candesartan is a further receptor blocker, but its action did not cause fibrosis
regression in the SHR’s left atrium at a dose sufficient to reduce blood pressure and left
ventricular hypertrophy [101]. In contrast to Ang II, angiotensin (1–7) has an opposite effect
on impulse propagation, excitability, and cardiac arrhythmia [102].

(5) Gap junction A1-20k is required for Cx43 passage to the intercalated disc. This
attenuates LVH by regulating GJ formation and mitochondrial function [103].

(6) Resolvin D2 protected cardiovascular function and structure when administered
before and after the development of Ang II-induced HTN by attenuating inflammation
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and fibrosis [104]. It is also important that hydrogen sulfide attenuated inflammation by
regulating lymphocyte-confined Cx43 expression in the SHR [105]. This indicates that the
resolution of inflammation could be an effective therapy against the target organ damage
associated with HTN.

(7) This concept is supported by recent reviews which stressed the pleiotropic an-
tiarrhythmic properties of cardioprotective agents affecting inflammation and oxidative
stress [22,106]. These included statin sodium glucose co-transporter-2 inhibitors (SGLT2i)
and omega-3 fatty acids. Consequently, these compounds attenuated the downregulation
of myocardial Cx43 expression and its abnormal topology, and reduced fibrotic areas in
heart ventricles in conditions, such as primary HTN.

(8) However, defective fatty acid uptake is involved in myocardial remodeling in the
SHR [107]. In contrast, omega-3 fatty acids intake attenuated Cx43 GJ lateralization and
ameliorated the integrity of GJs, AJs, and the sarcolemma in SHR hearts. This rendered
them less susceptible to inducible VF [40,55,73,76].

(9) Omega-3 fatty acids decreased the protein kinase PKCδ involved in SHR extracel-
lular matrix remodeling [108]. These acids also increased the PKCε expression associated
with Cx43 preservation at the GJs [109].

(10) Dietary omega-3 fatty acids and renin inhibition with aliskiren improved both
electrical remodeling and the antiarrhythmic effects attributed to improved Cx43 expres-
sion. This also prevented Cx43 redistribution in the model of high human renin primary
hypertension [69]. In addition, aliskiren ameliorates maladaptive Cx43 remodeling in
the SHR [110].

(11) Finally, early primary HTN therapy can attenuate myocardial structural remodel-
ing and suppress myocardial LVH and fibrosis in the SHR [111]. For example, relaxin can
suppress AF by reversing fibrosis and LVH, and it can then increase CV and Na+ current in
this rat strain [112].

4. Connexome Impairment Promoting VF or AF in PAH

There is an increasing incidence of pulmonary arterial hypertension (PAH) in the gen-
eral population. This is in addition to problems caused by primary HTN. The elevated pres-
sure in PAH affects the pulmonary circulation and right heart function, and the attendant
proliferative vasculopathy results in ongoing increased right ventricular afterload, struc-
tural remodeling, and mechanical HF. PAH is multi-factorial, and its etiopathogenesis is not
completely understood because of its relationship with underlying somatic disease [49].

PAH is similar to primary HTN, as it is influenced by genetic, epigenetic, and environ-
mental factors. However, hypertension is the most common causative factor of cardiac re-
modeling [113,114]. PAH also has similar involvement in the renin-angiotensin-aldosterone
signaling system, and noncoding RNAs have a prevalent effect as biomarkers and thera-
peutic targets in preventing heart dysfunction and malignant cardiac arrhythmias [49,115].

Various authors consider that Cx43 downregulation, its dephosphorylation and inter-
nalization, and the dysregulated Cx43-mediated signaling in the right ventricle offer crucial
intervention targets. [116–119]. In addition, Cx43 heterogeneous expression in the right
ventricular outflow tract presents a substrate for idiopathic ventricular arrhythmias [120].
Strauss et. al. (2022) add that predominant right ventricular remodeling promotes multi-
wavelet re-entry which underlies ventricular tachycardia [121].

Disorganized GJ distribution and altered anisotropic conduction predispose re-entrant
arrhythmias [122]. There is also the implication of endothelin-1 in atrial arrhythmogenesis,
and this presents a therapeutic target [123]. However, PAH can be associated with left heart
disease, and this is an increasingly prevalent therapeutic problem associated with poor
prognosis [124]. This is partly because right ventricular failure induced by blood pressure
overload is associated with left ventricular electric remodeling. In addition, reduced Cx43
levels promote this remodeling through impaired cellular impulse transmission [125].

Finally, right heart disease maintains AF due to re-entrant activity, and its underlying
substrate involves fibrosis and consequent conduction abnormalities [126].
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Interventions Associated with Connexome Protection in PAH

PAH is characterized by reduced angiotensin-converting enzyme-2 activity (ACE2).
In contrast, ACE2 augmentation improves pulmonary hemodynamics and reduces oxidant
and inflammatory mediator markers [127]. Targeting this pathway most likely protects the
connexome and should prove beneficial in PAH.

There were also the following therapeutic interventions:
The benefit of combined nicorandil and colchicine therapy and associated Cx43 preser-

vation in the PAH rat model [128] and attenuated PAH was recorded in this species due to
the propylthiouracil thyroid-suppressing agent’s pleiotropic properties [129].

The bosentan dual endothelin receptor antagonist partly reversed Cx43 remodeling
in the PAH hypertrophied right ventricle [130], and combined sildenafil and beraprost
inhibited PAH arrhythmogenesis. This combination substantially suppressed hypertrophy
and fibrosis and preserved Cx43 expression [131].

Finally, sildenafil confers protection in the PAH rat model by suppressing pro-fibrotic
signaling and enhancing Cx43 in the right ventricle [132], and carbenoxolone decreases
PAH-induced pulmonary inflammation and arteriolar remodeling in this model by decreas-
ing T-lymphocyte connexin expression.

5. Lifestyle Recommendation as Treatment for Arterial Hypertension to
Protect Connexome

In the context of the topic of this article it should be emphasized that arterial hy-
pertension and high blood pressure-related cardiovascular disease remain global health
hazards posing a major socio-economic and healthcare challenge. The global prevalence
of hypertension is estimated to be in the range of 30–45% [38]. In Europe, ∼25% of heart
attacks have been linked with hypertension and ∼40% of deaths per annum are caused by
hypertension-related cardiovascular disease [133].

Lifestyle interventions are an essential and established part of hypertension manage-
ment and, in combination with anti-hypertensive drug treatment, provide a most effective
strategy to achieve recommended blood pressure targets and reduce cardiovascular mortal-
ity. Indeed, guidelines for the management of arterial hypertension strongly recommend
lifestyle advice. Mediterranean diet, salt, sugar, and alcohol reduction, smoking cessation,
elimination or overcome of stressful events and regular physical activity as well as preven-
tion obesity are essential components not only for the management of hypertension but
also for prevention of development of hypertension.

As suggested by most actual systematic reviews [133,134] non-pharmacological factors
are the prerequisite for the analysis of research gaps on the way for the future generation of
guideline recommendations on lifestyle treatment in patients with hypertension. Education
and routine blood pressure screening should be part of the new perspectives in prevention
of hypertension in general population including young. Thus, multi-level approach is a
future warranty to reducing the public health burden from increased blood pressure [135]
and to protect connexome.

6. Conclusions and Perspectives

Research confirms that oxidative stress, a low-grade inflammatory state, and ischemia
are involved in hypertension-induced cardiomyocyte junction impairment. Herein we
introduce the “connexome” term which combines desmosomes, gap junctions, adherens
junctions, and ion channels; and the term is thus defined. The connexome is most important
in cardiomyocyte adhesion and the propagation of contractile force, and it is essential for
cardiomyocyte coupling which enables electrical and molecular signal transmission. The
connexome, therefore, ensures appropriate synchronized heart function; and its impairment
is a major component in life-threatening cardiac arrhythmias and heart failure in primary
hypertension and pulmonary hypertension. However, there has also been the expressed
opinion that preserving the connexome in arterial hypertension treatment can hinder
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myocardial structural remodeling, hypertrophy, and fibrosis, as well as the occurrence of
cardiac arrhythmias.

In conclusion, while major research confirms the beneficial pleiotropic effects of anti-
hypertensive and anti-inflammatory agents, further research is essential to identify specific
molecular targets and pathways that protect the connexome. This combination will help
formulate new clinical approaches to maintain heart function in patients with arterial
hypertension. Moreover, lifestyle advice remains one of the crucial pillars of both anti-
hypertensive treatment and hypertension prevention.
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