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MacAleese5, Gert B. Eijkel5, Ron M. A. Heeren5, Astrid E. Alewijnse1, Stephan L. M. Peters1*

1 Department of Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands, 2 Vascular Medicine, Academic Medical Center,

Amsterdam, The Netherlands, 3 Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands, 4 Department of Biochemistry, Virginia

Commonwealth University, Richmond, Virginia, United States of America, 5 FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands

Abstract

Background: Hypertension is, amongst others, characterized by endothelial dysfunction and vascular remodeling. As
sphingolipids have been implicated in both the regulation of vascular contractility and growth, we investigated whether
sphingolipid biology is altered in hypertension and whether this is reflected in altered vascular function.

Methods and Findings: In isolated carotid arteries from spontaneously hypertensive rats (SHR) and normotensive Wistar-
Kyoto (WKY) rats, shifting the ceramide/S1P ratio towards ceramide dominance by administration of a sphingosine kinase
inhibitor (dimethylsphingosine) or exogenous application of sphingomyelinase, induced marked endothelium-dependent
contractions in SHR vessels (DMS: 1.460.4 and SMase: 2.160.1 mN/mm; n = 10), that were virtually absent in WKY vessels
(DMS: 0.060.0 and SMase: 0.660.1 mN/mm; n = 9, p,0.05). Imaging mass spectrometry and immunohistochemistry
indicated that these contractions were most likely mediated by ceramide and dependent on iPLA2, cyclooxygenase-1 and
thromboxane synthase. Expression levels of these enzymes were higher in SHR vessels. In concurrence, infusion of
dimethylsphingosine caused a marked rise in blood pressure in anesthetized SHR (4264%; n = 7), but not in WKY
(212610%; n = 6). Lipidomics analysis by mass spectrometry, revealed elevated levels of ceramide in arterial tissue of SHR
compared to WKY (691642 vs. 419627 pmol, n = 3–5 respectively, p,0.05). These pronounced alterations in SHR
sphingolipid biology are also reflected in increased plasma ceramide levels (513619 pmol WKY vs. 645625 pmol SHR,
n = 6–12, p,0.05). Interestingly, we observed similar increases in ceramide levels (correlating with hypertension grade) in
plasma from humans with essential hypertension (18568 pmol vs. 252623 pmol; n = 18 normotensive vs. n = 19
hypertensive patients, p,0.05).

Conclusions: Hypertension is associated with marked alterations in vascular sphingolipid biology such as elevated ceramide
levels and signaling, that contribute to increased vascular tone.
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Introduction

Hypertension is a major risk factor for cardiac, cerebrovascular

and renal disease. It is associated with increased vasomotor tone,

decreased vasodilator potential and inward remodeling of blood

vessels. The presence of vasomotor imbalance in essential

hypertension is partly mediated by decreased nitric oxide

bioavailability and elevated release of endothelium-derived

contractile factor (EDCF) as characteristics of endothelial

dysfunction, and impaired smooth muscle cell responsiveness

towards relaxing factors [1,2]. Regulation of vascular reactivity

and cellular growth have been shown to be partially mediated by

an intrinsic network of bioactive lipids classified as sphingolipids,

of which sphingomyelin is abundantly present in virtually all cells.

Sphingomyelin is an ubiquitous membrane (sphingo)phospho-

lipid that may serve as a substrate for sphingomyelinases for the

production of ceramide [3]. Ceramide can be further converted

into ceramide-1-phosphate (C1P), glucosylceramide or sphingosine

by phosphorylation, glucosylation or deacylation, respectively.

Subsequently, sphingosine can be phosphorylated by sphingosine

kinases to yield sphingosine-1-phosphate (S1P), which can target

five G-protein coupled S1P receptors (S1P1–5), of which S1P1–3 are

expressed in the cardiovascular system [4]. S1P receptor activation

induces proliferation of many cell types including vascular cells [5].

Conversely, sphingosine and ceramide, the precursors of S1P,

have growth-inhibiting and pro-apoptotic actions [6]. Because of

these opposing actions of sphingomyelin metabolites, this system is

also referred to as the ceramide/S1P rheostat [7]. In addition to
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these growth-regulating properties, we and others have shown that

sphingolipids are involved in the regulation of vascular tone, for

instance by regulating nitric oxide and EDHF-mediated relaxing

responses in different types of blood vessels [8–10].

Because sphingolipids are involved in the regulation of both

vascular growth and vascular tone, we hypothesized that in

essential hypertension, sphingolipid ratios are altered, resulting in

an altered vasomotor function. Here we show that 1) Elevation of

vascular ceramide leads to vasoconstriction due to increased TXA2

release in vessels of SHR. 2) These constrictions are only observed

in vessels of SHR due to increased expression of enzymes involved

in thromboxane A2 synthesis. 3) That basal ceramide levels are

elevated in both SHR and humans with hypertension.

Results

Modulation of sphingolipid metabolism induces
transient constrictions in isolated SHR carotid artery

Contractile responses of isolated carotid artery segments to K+

(100 mmol/L) and phenylephrine (Phe; 0.3 mmol/L) were slightly

reduced in vessels of SHR compared to WKY (Table 1).

Endothelium-dependent relaxation to methacholine (MCh;

10 mmol/L) during Phe pre-contraction was impaired in SHR,

reflecting endothelial dysfunction (maximal relaxation: 9161%

WKY vs 5061% SHR, n = 10, p,0.05, Fig. 1A and Table 1).

Incubation of the carotid artery segments with the sphingosine

kinase inhibitor dimethylsphingosine (DMS; 10 mmol/L) or

dihydrosphingosine (DHS; 30 mmol/L, data not shown) induced

a marked transient contraction in SHR vessels, which was absent

in age-matched WKY rats (Fig. 1A). In addition, exogenously

applied neutral sphingomyelinase (SMase; 0.1 U/mL) evoked

similar contractile responses in SHR vessels that were much less

pronounced in vessels of WKY (Fig. 1A). When DMS and SMase

were applied simultaneously, contraction was slightly higher, but

not synergistically elevated (Fig. 1B), suggesting a similar

mechanism of action. Importantly, contractions induced by

DMS or SMase in the SHR carotid artery were completely

abolished by mechanical removal of the endothelium. In contrast,

the nitric oxide synthase inhibitor L-NAME significantly increased

DMS-induced and SMase-induced contractions (Fig. 1C).

Sphingomyelinase-induced contractions require
cyclooxygenase-1 and involve elevated thromboxane
A2 production

The non-selective cyclooxygenase (COX) inhibitor indometha-

cin (10 mmol/L) and the COX-1 selective inhibitor SC560

(1 mmol/L) entirely prevented SMase-induced contraction in

SHR carotid artery (Fig. 2), while the COX-2 selective inhibitor

NS398 (1 mmol/L) was without effect. Applying higher concen-

trations of NS398 resulted in decrease contractile responses,

however, at these concentrations NS398 is reported to non-

specifically inhibit COX [11]. Since COX products include

contractile prostaglandins and thromboxane, we applied the

thromboxane/prostaglandin (TP) receptor antagonist SQ29548,

which concentration-dependently inhibited SMase-induced con-

tractions. Furthermore, the thromboxane synthase (TXAS)

inhibitor Ozagrel concentration-dependently inhibited vascular

contraction (Fig. 2). In order to investigate whether the sensitivity

of agonist-induced TP receptor activation was different for SHR

and WKY carotid arteries, we generated concentration-response

curves for the thromboxane analogue U46619, which was not

different between SHR and WKY (Fig. S1). Immunohistochemical

quantification of COX-1 and TXAS expression showed that

COX-1 was elevated in SHR smooth muscle cells compared to

WKY (Fig. 3A). TXAS expression in SHR was significantly

elevated compared to WKY in endothelium (Fig. 3B).

Calcium-independent phospholipase A2 is the source of
arachidonic acid in SMase-induced contractions

To investigate which enzyme was mainly responsible for

generating the COX substrate arachidonic acid, several phospho-

lipase A2 (PLA2) inhibitors were applied. The individual or

combined addition of inhibitors of cytosolic PLA2 (AACOF3;

30 mmol/L) or secretory PLA2 (Luffariellolide; 2 mmol/L) to

SMase-induced contractions were without effect. However, the

calcium-independent PLA2 (iPLA2)-specific inhibitor Bromoenol

lactone (BEL, 25 mmol/L) significantly inhibited SMase-induced

contractions (Fig. 2). In line with this, immunohistochemical

quantification indicated increased expression of iPLA2 in the

endothelium and a decreased expression in smooth muscle cells of

SHR. Accordingly, the ratio of EC/VSMC iPLA2 expression was

markedly shifted towards the endothelium in SHR compared to

WKY vessels (Fig. 3C). Imaging mass spectrometry and experi-

ments with SMaseD (which generates C1P directly from

sphingomyelin) revealed that ceramide (and not C1P) is most

likely responsible for iPLA2 activation (Fig. S2, Fig. S3).

In vivo administration of DMS results in a marked rise of
blood pressure in SHR but not WKY

To investigate whether sphingolipid modulation also differen-

tially affects blood pressure in vivo, DMS was applied i.v. to

isoflurane-anesthetized SHR and WKY. Arterial blood pressure

was measured, as well as common carotid blood flow using a

transit time flow probe. Baseline hemodynamic values that were

obtained after stabilization of the preparation are shown in

Table 1. Mean arterial pressure was substantially higher in SHR

than in WKY. In SHR, application of DMS, but not vehicle,

resulted in a significant increase in mean arterial pressure (Fig. 4),

accompanied by a further rise in carotid artery resistance and

slightly decreased heart rate (Fig. S4). In WKY however, DMS

had little effect on blood pressure. The heart rate was not

significantly different between SHR and WKY after DMS

administration.

Ceramide levels are increased in arterial tissue of SHR
Mass spectrometric analysis [12] revealed significantly increased

levels of total ceramide in arterial tissue (aorta) of hypertensive rats

compared to normotensive rats. No significant changes in total

sphingomyelin, C1P, sphingosine and S1P were observed (Fig. 5A).

The significant increase in total ceramide was mainly due to

increased C16:0, C18:0 and C24:1 ceramides (Fig. S5).

Plasma ceramide levels are increased in both
hypertensive rats and humans

Mass spectrometric lipidomics analysis revealed increased total

ceramide levels and slightly increased sphingosine levels in blood

plasma from SHR (Fig. 5B). The increased total ceramide levels

were mainly due to increases in C16:0, C22:0 C24:1 and C24:0

ceramides (Fig. S5).

In plasma of humans with stage 2+3 essential hypertension,

ceramide levels were significantly higher compared to healthy

normotensive controls (243.2623.5 pmol vs 183.2611.1 pmol

respectively, n = 18–19, p,0.05; Fig. 6A). Moreover, ceramide

levels correlated with increasing severity of hypertension, with

ceramide levels in humans with stage 1 hypertension being

intermediate of those from normotensives and stage 2–3

hypertensives (Fig. 6B). The distribution pattern of sphingolipids

Sphingolipids in Essential Hypertension
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in plasma of humans was virtually identical of that found in rats.

Increases in C24:1 and C24:0 ceramides mainly accounted for the

observed increase in total plasma ceramide in hypertensive

humans (Fig. S5). In contrast to significantly altered hypertensive

patient plasma S1P levels compared to normotensive patients

(37.061.8 pmol vs 32.061.2 pmol respectively, p,0.05), no

significant changes in plasma S1P in rats were seen

(355.6617.1 pmol vs 312.1616.7 pmol respectively, p.0.05).

Whether this reflects species differences or differences in sample

collection remains to be determined [13]. In respect of

Figure 1. DMS-induced and SMase-induced contraction in SHR and WKY carotid artery. A) Original tracing of rat carotid artery segments
exposed to DMS (10 mmol/L) or SMase (0.1 U/mL). Note reduced relaxing response to MCh (10 mmol/L) in SHR, indicating pronounced endothelial
dysfunction. B) Maximal contractile responses to DMS and/or SMase in intact WKY and SHR vessels and C) SHR vessel responses in the presence of
L-NAME or endothelium-denudation (-EC). Phenylephrine (Phe), methacholine (MCh), dimethylsphingosine (DMS), sphingomyelinase C (SMase),
Nv-Nitro-L-arginine methyl ester (L-NAME). Data presented as mean 6 SEM, n = 5–6, (*) p,0.05.
doi:10.1371/journal.pone.0021817.g001

Sphingolipids in Essential Hypertension
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sphingomyelin and C1P levels, no significant changes where found

in both human and rat samples with the given sample size,

although a trend of decreased C1P plasma levels was observed in

human hypertensives (29.061.7 pmol normotensives vs

26.061.9 pmol hypertensives, p.0.05).

Discussion

Previous studies from our group and others have shown that

sphingolipids are involved in the regulation of the release or action

of endothelium-derived relaxing factors (NO and EDHF)

[8,14,15]. Here we show for the first time that 1) Elevation of

vascular ceramide leads to vasoconstriction due to increased TXA2

release in vessels of SHR. 2) These constrictions are only observed

in vessels of SHR due to increased expression of enzymes involved

in thromboxane A2 synthesis. 3) That basal ceramide levels are

elevated in both SHR and humans with hypertension.

Altered sphingolipid biology in hypertension
Because sphingolipids have vasoactive properties and play a

pivotal role in cellular growth, we hypothesized that the

sphingolipid system is involved in hypertension, a condition

associated with altered vascular contractility and remodeling.

Alterations in sphingolipid biology in hypertension were exempli-

fied by the fact that pharmacological modulation of vascular

sphingolipid composition, by means of the application of the

sphingosine kinase inhibitors DMS or DHS, induced pronounced

transient contractile responses in isolated carotid arteries from

SHR but not from WKY. In analogy to sphingosine kinase

inhibition, also the exogenous application of SMase induced

contractions in carotid arteries from SHR, but only minor

responses in arteries from WKY.

Mechanism of SMase and DMS-induced contractions
Simultaneous application of DMS and SMase induced stronger

arterial contractions than either component alone, but without

signs of synergy, suggesting common pathways. Both modulators

likely induce an accumulation of ceramide as a shared mechanism,

as has been shown for SMase [16] and DMS in several cellular

systems [17,18]. Interestingly, the transient contractions induced

by both DMS and SMase proved to be endothelium-dependent

since mechanical removal of the endothelium abolished the

contractions. In contrast, pre-incubation with the NO synthase

inhibitor L-NAME augmented these contractions, indicating that

the contractions are not due to a reduced NO bioavailability.

This endothelium dependency presents similarities to the

‘‘classical’’ endothelium-derived contractile factor (EDCF) de-

scribed in the vasculature of SHR and human patients with

Table 1. General characteristics of anaesthetized SHR and
WKY rats and ex vivo carotid artery segments.

Parameters WKY SHR

n 10 10

Weight, gram 48268 36066 *

MAP, mmHg (under isoflurane) 7163 9566 *

Blood flow, mL/min (systolic, carotid a.) 2863 1862 *

Heart rate, BPM (under isoflurane) 343610 30965 *

Lumen Ø, mm (segment at 90 mmHg) 11196122 106969 *

Constriction, mN/mm (3rd K+) 4.160.2 3.560.1 *

Relaxation, %Phe preconstriction 9161 5061 *

Data expressed as mean 6SEM, (*) p,0.05.
doi:10.1371/journal.pone.0021817.t001

Figure 2. Characterization of SMase-induced contraction in SHR carotid artery. SMase-induced contraction, in absence and presence of the
non-specific COX inhibitor indomethacin (Indo), COX-1 specific inhibitor SC560, COX-2 specific inhibitor NS398, the PLA2 inhibitors AACOF3 (cPLA2)
and Luffariellolide (Luff; sPLA2), Bromoenol lactone (BEL; iPLA2), the thromboxane synthase inhibitor Ozagrel and the thromboxane receptor
antagonist SQ29548 (SQ29). Data presented as mean 6 SEM, n = 4–6, (*) p,0.05 compared to control SMase.
doi:10.1371/journal.pone.0021817.g002

Sphingolipids in Essential Hypertension
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essential hypertension [1,19,20]. Impaired relaxing responses to

acetylcholine in both SHR and human essential hypertension

involve the release of a COX-1-derived EDCF. The prostanoids

PGH2, PGI2 and thromboxane A2 have been suggested as the

EDCFs responsible for increased vascular tone in hypertension

[2].

In the present study, both DMS- and SMase-induced contrac-

tions in SHR carotid arteries could be decreased by selective COX-

1 inhibition but not by inhibition of COX-2. Furthermore, the fact

that TXAS inhibition attenuated SMase-induced contractions,

suggests that under our experimental conditions the contractions

are caused by the generation of TXA2. Although the involvement of

PGI2 is unlikely, its contribution cannot be fully excluded [21]. The

prominent role of TXA2 is further supported by the observation that

SMase-induced contractions were concentration-dependently

inhibited by the TP-receptor antagonist SQ29548. The possibility

that SHR thromboxane signaling is potentiated due to increased TP

receptor expression or affinity in VSMCs is unlikely because the

concentration-response-curves for the thromboxane analogue

U46619 were comparable in SHR and WKY arteries. This is also

in line with other studies, showing no TP receptor expression

changes in SHR [22]. Thus, it seems that modulation of endothelial

sphingolipid composition by ceramide elevation induces a COX-1-

dependent release of TXA2 in vessels from SHR. Immunohisto-

chemical analysis indicated elevated COX-1 expression in SHR

vascular smooth muscle cells, which is supported by findings of Ge et

al. [23], that smooth muscle cells from SHR aorta display elevated

COX-1 mRNA expression. In addition to COX-1, we observed

Figure 3. Immunohistochemistry of relevant proteins in SHR carotid artery. A) Immunohistochemical staining (left, typical staining images;
2006 magnification) and quantification (right) of SHR or WKY carotid artery segments depicting cell nuclei staining (blue), with/without the von
Willebrand Factor (vWF) endothelium marker (green) and cyclooxygenase-1 (COX-1; red). B) thromboxane synthase (TXAS; red) and C) calcium-
independent phospholipase A2 (iPLA2; red). Please note the increased EC/VSMC iPLA2 expression ratio in SHR. Data presented as mean 6 SEM, n = 5–
6, (*) p,0.05, scale bars 100 mm.
doi:10.1371/journal.pone.0021817.g003

Sphingolipids in Essential Hypertension
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that also TXAS protein expression is increased in SHR, as has been

previously shown by Tang et al. [22], at the mRNA level. The

increased TXAS protein expression reached statistical significance

in SHR carotid artery endothelium.

The link between sphingolipid metabolism and
eicosanoid synthesis

In the process of EDCF generation, substrate delivery to COX-

1 depends primarily on PLA2 activity (for recent reviews see

Vanhoutte et al. [24] and Feletou et al. [2]). Three PLA2 subtypes

have been described thus far. While secretory PLA2 (sPLA2) and

cytosolic PLA2 (cPLA2) require calcium for activation, calcium-

independent PLA2 (iPLA2), located in both cytosolic and

membrane fractions, does not require Ca2+ directly for catalytic

activity [25]. Importantly, sphingolipids have previously been

implicated in PLA2 activation; both ceramide and C1P have been

shown to activate sPLA2 and/or cPLA2 in vitro [26,27]. However,

in the present study both single and combined addition of non-

specific cPLA2 and sPLA2 inhibitors did not affect SMase-induced

contractions. The iPLA2-specific inhibitor BEL nevertheless, was

effective in this respect, suggesting that endogenous iPLA2 may

contribute to the contractile phenotype of arteries in SHR. This is

also in line with the recent findings of Wong et al. [28], and is

further supported by our immunohistochemical finding that the

endothelium in SHR (compared to WKY) expresses significantly

more iPLA2, while levels appeared lower in the smooth muscle

layer of the artery segments. This results in a remarkable increase

in the ratio of endothelium/smooth muscle iPLA2 expression in

the carotid arteries of SHR. That ceramides are able to activate

iPLA2 is supported by findings of Gong et al [29]. In the present

study imaging mass spectrometry and experiments with SMaseD

revealed that ceramide (and not C1P) is most likely responsible for

iPLA2 activation (Fig. S2, Fig. S3).

Pathophysiological role of sphingolipids in hypertension-
associated endothelial dysfunction

The aforementioned findings indicate that ceramide participates

in the prominent role of thromboxane A2 in the SHR. Our

lipidomics (LC-MS) analysis revealed that in arterial tissue of SHR

ceramide levels were significantly higher when compared to

normotensive WKY rats. It is tempting to speculate that the

elevated basal arterial ceramide levels observed in our study

contribute to endothelial dysfunction in SHR since these may lead

to constitutive TXA2 production. In this regard, it is noteworthy

that thromboxane receptor antagonism completely restored

endothelial function in SHR. Furthermore, increased ceramide

levels in hypertension may possibly be derived from elevated

angiotensin II type 2 receptor signaling, which has been linked to

ceramide production (for review see Berry et al. [30]) Results from

another study by Johns et al. indicated decreased levels of ceramide

in smooth muscle cells of SHR [31]. This discrepancy may be due

to the fact that we determined ceramide levels directly in freshly

Figure 4. In vivo effects of DMS infusion in SHR and WKY. Rats
were treated with bolus injection and subsequent infusion of DMS
(3 mg/kg followed by 6 mg/kg/hr) or vehicle (0.75% rat serum albumin
in saline) during recording of mean arterial pressure (MAP). Data
expressed as mean maximal change from baseline 6 SEM, n = 6–8,
(*) p,0.05.
doi:10.1371/journal.pone.0021817.g004

Figure 5. Liquid-chromatography-mass spectrometry measure-
ments of total sphingolipid content. Content was measured in A)
SHR and WKY aorta homogenate and B) blood plasma. Data presented
as mean 6 SEM, n = 3–5 (for 6–10 pooled aortas) and 6–12 (for plasma
samples), (*) p,0.05.
doi:10.1371/journal.pone.0021817.g005

Sphingolipids in Essential Hypertension
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isolated vessels whereas Johns et al. [31] used cultured smooth

muscle cells between passages 3 and 12, which is known to induce

phenotypic changes including changes in sphingolipid signaling

[32].

The physiological relevance of ceramide-induced thromboxane

A2 release (Fig. S6) is reflected by the observation that in vivo

infusion of DMS resulted in increased arterial resistance and blood

pressure in SHR, but not WKY rats. This marked blood pressure

elevation was probably not due to cardiac effects of DMS since we

observed a concomitant decrease in heart rate. The rise in

systemic blood pressure indicates that, in addition to large conduit

vessels such as the carotid artery, also resistance vessels of SHR are

sensitive to DMS. Although the contractions to DMS in isolated

carotid arteries were not due to inhibition of NO production, as

indicated by the augmented contractile response in the presence of

L-NAME, a possible inhibitory effect of DMS on NO production

in vivo in other vascular beds cannot be excluded. The DMS-

induced pressor response clearly emphasizes the importance of

altered sphingolipid biology in vascular tone and blood pressure

regulation in vivo in hypertensive rats.

Interestingly, the altered sphingolipid biology and elevated

arterial ceramide levels in the vasculature of SHR are also

reflected in increased plasma ceramide levels. Moreover, analysis

of plasma from hypertensive- and normotensive humans revealed

similar elevations in ceramide levels in patients with essential

hypertension. Ceramide plasma levels showed a stepwise increase

with increasing severity of hypertension, with ceramide levels in

patients with stage 1 hypertension being intermediate of those

from normotensives and stage 2–3 hypertensives. This implies that

similar pathophysiological mechanisms in human hypertension

may contribute to increased vascular tone and endothelial

dysfunction. Of interest, very recently, a genetic analysis by

Fenger et al. also suggested the involvement of the ceramide/S1P

rheostat in the blood pressure regulation in human hypertension

on a genetic basis [33].

In summary, we provide new insight in the pathophysiological

role of sphingolipids in endothelial function and hypertension.

We demonstrate that elevation of vascular ceramide in SHR

induces a marked endothelium-dependent release of TXA2 that

may contribute to endothelial dysfunction in hypertension. A

prerequisite for this contractile response to ceramide is the

increased arterial expression of enzymes involved in TXA2

synthesis as observed in vessels from hypertensive animals.

Moreover, basal ceramide levels are increased in both SHR

and humans with hypertension. The present study does not allow

us to draw conclusions on causality. Since the development of

hypertension in SHR precedes the development of endothelial

dysfunction it is unlikely that the alterations in sphingolipid levels

are the primary causative factor of hypertension. Nevertheless,

both our in vitro and in vivo data clearly demonstrate that these

alterations in sphingolipid biology can contribute to an increased

vascular tone. Further research of the role of sphingolipids in the

pathophysiology of human essential hypertension is therefore

warranted.

Materials and Methods

Ethics statement
Written informed consent was obtained from all participants,

and the study was approved by the local Research Ethics

Committee of the Academic Medical Center.

The experiments involving animals in this study followed a

protocol approved by the Animal Ethical Committee of the

University of Amsterdam (DFC101766) and Maastricht University

(2008-139), The Netherlands, in accordance with EU regulation

on the care and use of laboratory animals.

Human subjects
Blood plasma was obtained from otherwise healthy age-

matched treatment-naı̈ve patients with stage 1 hypertension

(n = 12) or stage 2 and 3 hypertension (n = 19) and normotensive

controls (n = 18). Patient characteristics are summarized in table 2.

Blood pressure was measured three times following current

guideline recommendations with an aneroid sphygmomanometer.

The average of the last two blood pressure recordings was taken

for analysis. Patients with confirmed or suspected of secondary

hypertension, pregnant women and patients aged ,18 years and

patients with (a history of) alcohol abuse were excluded from

participation.

Figure 6. Liquid-chromatography-mass spectrometry measure-
ments of sphingolipid content in human blood plasma. A)
Quantification of total sphingolipid pools in human plasma. Human
samples were collected from normotensive controls (BP,140/
90 mmHg) and from patients with stage 2 and 3 hypertension
(BP$160/100). B) Total plasma ceramide levels in normotensives
compared to stage 1 hypertensives (BP 140–159/90–99 mmHg) and
stage 2+3 hypertensives. (Data presented as mean 6 SEM, n = 18 for
normotensive controls n = 12 for patients with stage 1 hypertension,
n = 19 for stage 2+3 hypertension. (*) p,0.05.
doi:10.1371/journal.pone.0021817.g006
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Animals
Adult six month old male Spontaneously Hypertensive rats

(SHR) and Wistar Kyoto rats (WKY) were purchased from Charles

River (Maastricht, The Netherlands). Rats were anaesthetized by

i.p. injection of 75 mg/kg pentobarbital (O.B.G., Utrecht, The

Netherlands). Heparin (750 IU, Leo Pharma B.V., Weesp, The

Netherlands) was injected i.p. to prevent blood coagulation and

thrombocyte-derived sphingosine-1-phosphate release. After tissue

isolation, the animals were euthanized by exsanguination.

Arterial preparation and isometric force recording
Carotid artery segments were isolated form 6 months old SHR

and WKY rats and mounted into a wire myograph for isometric

force measurements as described by Mulders et al. [9] (see

Supporting Information S1). The sphingosine kinase inhibitor

DMS (10 mmol/L) and the exogenous enzyme SMase (0.1 U/mL;

from Staphylococcus aureus) or SMaseD (20 mL/OD280:0.4; from

Staphylococcus aureus) were applied to segments to measure

alterations in vasomotor tone within one hour. Inhibitors or

antagonists were administered 30 min prior to these agents. In

some experiments, the thromboxane/prostanoid receptor agonist

U46619 was applied in half-log concentration increments.

Immunohistochemistry
Enzyme expression in carotid artery segments of 6 months old

WKY and SHR were quantified using a custom protocol

developed in collaboration with Nikon Instruments Europe BV

on unprocessed images (see Supporting Information S1).

In vivo DMS administration
In vivo effects of DMS in isoflurane-anesthetized SHR and WKY

were investigated by i.v. infusion (3 mg/kg, based on a pilot dose

finding). Blood pressure, heart rate and carotid artery blood flow

were recorded (see Supporting Information S1).

Liquid chromatography - mass spectrometry of blood
plasma and aorta

Blood plasma and aortic tissue from 6 months old SHR and

WKY was isolated (Table 1). In addition, we assessed circulating

sphingolipids in blood plasma obtained from otherwise healthy age-

matched treatment naı̈ve patients with stage 1 hypertension (n = 12)

or stage 2 and 3 hypertension (n = 19) and normotensive controls

(n = 18). Baseline characteristics according to blood pressure

category are depicted in table 2. All samples were processed

according to an established protocol as published by Merrill et al.

[34] and Wijesinghe et al. [12] (see Supporting Information S1).

Statistical data analysis
The isometric tension measurements in carotid artery segments

are presented as mean 6SEM with ‘n’ being the number of

individual rats. Peak contraction values (relative tension, mN/mm)

during the experiments were gathered and expressed in column

graphs. Column statistics were performed by one-way ANOVA

including Dunnett’s multiple comparisons test (95% confidence

interval) with DMS or SMase values as control. The SMase

controls were the same group of data for all appropriate figures.

For protein quantification by IHC and lipid content quantification

by LC-MS, Student’s t-test was performed to compare single

conditions between SHR and WKY or normotensive versus

hypertensive subjects. Data measured in vivo were expressed as

relative percentage and compared using one-way ANOVA

including Tukey’s multiple comparison test. All statistical analyses

were performed using Prism (GraphPad Prism Software, San

Diego, CA, USA). Values of p,0.05 were considered to be

statistically significant.

Supporting Information

Figure S1 Concentration-response curve of the throm-
boxane analogue U46619 in SHR and WKY carotid
artery. Data presented as mean 6 SEM, n = 4–6.

(TIF)

Figure S2 Sphingomyelinase D-induced contractions in
SHR carotid artery. Quantification of SMaseD-induced con-

tractions in SHR carotid artery, which was lower in WKY and

comparable to SMaseC. Data presented as mean 6 SEM, n = 2–4.

(TIF)

Figure S3 Mass spectrometry imaging of lipids involved
in SMase-induced contraction in SHR carotid artery. A)

High resolution total ion count image of SHR carotid artery sample

(left, bottom scale bar 100 mm) and image of increased mass counts

corresponding to treatment with SMase (depiction of SMase-treated

segment total ion count minus untreated count; right image; blue)

showing highest changes in luminal side of blood vessel (endothelial

area). B) Discriminant analysis of untreated and SMase-treated tissue

categories: spectra are grouped per tissue and both tissue categories

are separated along the discriminant function. Projection of mass

spectra of standards (dots) on discriminant function (standards plotted

above DA zero correspond with elevated presence after SMase

treatment). C) Plot of the loadings for each mass channel in the

direction of main separation between tissue groups (i.e. first DA

function), showing masses (deviating from zero) that were elevated

(top) or decreased (bottom) after SMase treatment. Sphingomyelinase

C (SMase), non-treated (NT), ceramide-1- phosphate (C1P),

sphingosine-1-phosphate (S1P).

(TIF)

Figure S4 In vivo effects of DMS infusion in SHR and
WKY. Rats were treated with bolus injection and subsequent

infusion of DMS (3 mg/kg followed by 6 mg/kg/hr) or vehicle

(0.75% rat serum albumin in saline) during recording of A) carotid

artery systolic blood flow (Peak flow) and B) heart rate (HR). Data

expressed as mean maximal change from baseline 6 SEM, n = 6–8,

(*) p,0.05.

(TIF)

Table 2. Patient characteristics.

Parameters Normotensive Stage 1 HT Stage 2 and 3 HT

n 18 12 19

Age, years 44.162.5 44.162.8 47.462.6

MAP, mmHg 91.761.9 108.461.3 * 131.0616.6 *#

Systolic BP, mmHg 12162 14363 * 17166 *#

Diastolic BP, mmHg 7762 9161 * 11163 *#

Male, n (%) 7 (39) 9 (75) 9 (47)

Black, n (%) 9 (50) 5 (42) 7 (37)

BMI, kg/m2 27.361.3 26.060.9 26.860.9

Diabetes, n (%) 0 (0) 0 (0) 1 (5)

Current smoking, n (%) 2 (11) 1 (8) 4 (21)

Mean arterial pressure (MAP), body mass index (BMI), blood pressure (BP). Data
expressed as mean 6SEM or percentage of total (%), (*) p,0.05 vs
normotensive subjects, and (#) p,0.05 vs Stage 1 hypertensives (HT).
doi:10.1371/journal.pone.0021817.t002
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Figure S5 Ceramide subspecies in human and rat
tissue. A) Plasma spectrum of measured ceramide subspecies in rat

(SHR vs WKY) and normotensive vs. hypertensive patients. B) Rat aorta

homogenate spectrum of ceramide subspecies. n = 6–19, (*) p,0.05.

(TIF)

Figure S6 Potential mechanism of sphingolipid-medi-
ated release of thromboxane A2 in SHR carotid artery.
Accumulation of ceramide by the sphingolipid modulators SMase

and DMS induces thromboxane A2 production in an iPLA2, COX-

1 and TXAS-mediated pathway. Upregulated enzyme expression

or lipid levels in SHR carotid arteries indicated by white arrows.

(TIF)

Supporting Information S1

(DOC)
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