
HYPERTREES, PROJECTIONS, AND

MODULI OF STABLE RATIONAL CURVES

ANA-MARIA CASTRAVET AND JENIA TEVELEV

ABSTRACT. We give a conjectural description for the cone of effective

divisors of the Grothendieck–Knudsen moduli space M0,n of stable ra-
tional curves with n marked points. Namely, we introduce new combi-
natorial structures called hypertrees and show that they give exceptional

divisors on M0,n with many remarkable properties.

§1. INTRODUCTION

A major open problem inspired by the pioneering work of Harris and
Mumford [HM] on the Kodaira dimension of the moduli space of stable
curves, is to understand geometry of its birational models, and in particular
to describe its cone of effective divisors and a decomposition of this cone
into Mori chambers [HK] encoding ample divisors on birational models.

Here we study the genus zero case. The moduli spaces M0,n parame-
trize stable rational curves, i.e., nodal trees of P1’s with n marked points
and without automorphisms. For any subset I of marked points, M0,n has
a natural boundary divisor δI whose general element parametrizes stable
rational curves with two irreducible components, one marked by points in
I and another marked by points in Ic. We will introduce new combinatorial
objects called hypertrees with an eye towards the following

1.1. CONJECTURE. The effective cone of M0,n is generated by boundary divisors
and by divisors DΓ (defined below) parametrized by irreducible hypertrees.

1.2. DEFINITION. A hypertree Γ = {Γ1, . . . ,Γd} on a set N is a collection of
subsets of N such that the following conditions are satisfied:

• Any subset Γj has at least three elements;
• Any i ∈ N is contained in at least two subsets Γj ;
• (convexity axiom)

∣

∣

⋃

j∈S

Γj
∣

∣− 2 ≥
∑

j∈S

(|Γj | − 2) for any S ⊂ {1, . . . , d}; (‡)

• (normalization)

|N | − 2 =
∑

j∈{1,...,d}

(|Γj | − 2). (†)

A hypertree Γ is irreducible if (‡) is a strict inequality for 1 < |S| < d.
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FIGURE 1. Irreducible hypertrees for n < 10. Points correspond
to elements of N and lines correspond to Γ1, . . . ,Γd.

1.3. REMARK. The most common hypertrees are composed of triples. In this
case (†) becomes d = n− 2 and (‡) becomes

∣

∣

⋃

j∈S

Γj
∣

∣ ≥ |S|+ 2 for any S ⊂ {1, . . . , n− 2},

i.e., Γ is sufficiently capacious. If we consider pairs instead of triples, and
change 2 to 1 in (†) and (‡), then it is easy to see that Γ will be a connected
tree on vertices {1, . . . , n}. This explains our term “hypertree”.

1.4. DEFINITION. For any irreducible hypertree Γ on the set {1, . . . , n}, let
DΓ ⊂M0,n be the closure of the locus in M0,n obtained by

FIGURE 2. Hypertree divisor as the locus of projections

• choosing a planar realization of Γ: a configuration of different points
p1, . . . , pn ∈ P2 such that, for any subset S ⊂ {1, . . . , n} with at least
three points, {pi}i∈S are collinear if and only if S ⊂ Γj for some j.

• projecting p1, . . . , pn from a point p ∈ P2 to points q1, . . . , qn ∈ P1;
• representing the datum (P1; q1, . . . , qn) by a point of M0,n.

If Γ is an irreducible hypertree on a subset K ⊂ {1, . . . , n}, we abuse nota-
tion and let DΓ ⊂ M0,n be the pull-back of DΓ ⊂ M0,K with respect to the

forgetful map M0,n →M0,K .
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Here is our first result:

1.5. THEOREM. For any irreducible hypertree Γ, the locus DΓ ⊂ M0,n is a non-
empty irreducible divisor, which generates an extremal ray of the effective cone of
M0,n. Moreover, this divisor is exceptional: there exists a birational contraction

M0,n 99K XΓ

onto a normal projective variety XΓ (see Theorem 1.10), and DΓ is the irreducible
component of its exceptional locus that intersects M0,n.

Notice that apriori it is not at all clear that an irreducible hypertree has a
planar realization, but we will show that this is always the case. Moreover,
any irreducible hypertree on any subset K ⊂ N gives rise, by pull-back via
the forgetful map πK to an effective divisor which generates an extremal
ray of the effective cone of M0,n (see Lemma 7.8).

1.6. SPHERICAL HYPERTREES. We discovered that any even (i.e., bicolored)
triangulation of a 2-sphere gives a hypertree. Any such triangulation has a
collection of “black” faces and a collection of “white” faces. We will show

that each of these collections is a hypertree. These spherical hypertrees are ir-
reducible unless the triangulation is a connected sum of two triangulations
obtained by removing a white triangle from one triangulation, a black tri-
angle from another, and then gluing along the cuts.

One can ask if different hypertrees can give the same divisor of M0,n.
This turns out to be a difficult question. We can prove the following

1.7. THEOREM. Let Γ and Γ′ be generic hypertrees (see Definition 7.6). Then

DΓ = DΓ′

if and and only if Γ and Γ′ are the black and white hypertrees of an even triangu-
lation of a sphere that is not a connected sum.

In other words, the map from the discrete “moduli space” of hypertrees
to the set of vertices of the effective cone of M0,n generically looks like
the normalization of the node (which corresponds to triangulations of a
2-sphere). However, on the boundary of this discrete moduli space of hy-
pertrees, the map is a more complicated “contraction”. For example, in §9
we study the triangulation of a bipyramid, when many hypertrees collapse
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to the same vertex. This is an interesting case because the corresponding
divisor DΓ is a pull-back of the classical Brill–Noether “gonality” divisor
on M2k+1 used by Harris and Mumford [HM].

We would like to explain why divisors DΓ are exceptional, i.e., how to
construct a contracting birational map f : M0,n 99K XΓ in Theorem 1.5.
The map is called contracting if for one (and hence for any) resolution

Z
g ւ ցh

M0,n 99K XΓ

g-exceptional divisors are also h-exceptional. A typical example is a com-
position of a small modification and a morphism.

To explain the idea, take a general smooth curve Σ of genus g. By Brill–
Noether theory [ACGH], the variety G1

g+1, parameterizing pencils of divi-
sors of degree g + 1 on Σ, is smooth. We have a natural morphism

v : G1
g+1 →W 1

g+1 ≃ Picg+1(Σ),

which assigns to a pencil of divisors its linear equivalence class. By Brill–
Noether theory, v is birational, and has an exceptional divisor D over

W 2
g+1 = {L ∈ Picg+1(Σ) |h0(L) ≥ 3},

which is non-empty and has codimension 3 in Picg+1(Σ). So, for example,
it is immediately clear that D is an extremal ray of Eff(G1

g+1).

Generically, G1
g+1 parameterizes globally generated pencils, i.e., it con-

tains a scheme of degree g+1 morphisms Σ → P1 (modulo automorphisms)
as an open subset. So D generically parameterizes pencils that can be ob-
tained by choosing a “planar realization”, i.e., a morphism Σ → P2, and
then taking composition with the projection from a general point.

Next we degenerate a smooth curve to the union of rational curves with
combinatorics encoded in a hypertree.

1.8. DEFINITION. We work with schemes over an algebraically closed field k.
A curve ΣΓ of genus

g = d− 1

is called a hypertree curve if it has d irreducible components, each isomor-
phic to P1 and marked by Γj , j = 1, . . . , d. These components are glued at
identical markings as a scheme-theoretic push-out: at each singular point
i ∈ N , ΣΓ is locally isomorphic to the union of coordinate axes in Avi ,

Other extremal rays can be found using methods of Bauer–Szemberg [BS].
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where vi is the valence of i, i.e., the number of subsets Γj that contain i. We
consider ΣΓ as a marked curve (by indexing its singularities).

The most common case is when all Γj ’s are triples. If this is not the case,
then hypertree curves have moduli, namely

MΓ :=
∏

j=1,...,d

M0,Γj
.

Then we have to adjust our construction a little bit: ΣΓ will be the universal
curve over the moduli space MΓ.

By definition of the push-out, M0,n can be identified with a variety of
morphisms f : ΣΓ → P1 (modulo the free action of PGL2) that send sin-
gular points p1, . . . , pn of ΣΓ to different points q1, . . . , qn ∈ P1. This gives a
morphism

v : M0,n → Pic1, f 7→ f∗OP(1) (1.8.1)

fromM0,n to the (relative overMΓ) Picard scheme Pic1 of line bundles on Σ
of degree 1 on each irreducible component. This is the analogue of the map
G1
g+1 → Picg+1 in the smooth case. The locus DΓ ⊂ M0,n defined above

corresponds to the divisor D in the smooth case.
We have to compactify the source and the target of the map v.

1.9. DEFINITION. A nodal curve ΣsΓ, called a stable hypertree curve, is ob-
tained by inserting a P1 with vi markings instead of each singular point of
ΣΓ with vi > 2. If vi > 3 then we do not allow extra moduli, instead we

arbitrarily fix cross-ratios of marked points on inserted P1’s. Let Pic1 be the
Picard scheme of invertible sheaves on Σs of degree 1 on each irreducible
component coming from Σ and degree 0 on each component inserted at a
non-nodal point of Σ.

1.10. THEOREM. Let Γ be an irreducible hypertree. Any sheaf in Pic1 is Gieseker-
stable w.r.t. the dualizing sheaf ωΣs . Let XΓ be the normalization of the main
component in the compactified Jacobian of Σs relative over

MΓ =
∏

j=1,...,d

M0,Γj

The map v of (1.8.1) induces a contracting birational map v : M0,n 99K XΓ and
DΓ is the only component of the exceptional locus that intersects M0,n.
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1.11. REMARKS. (a) A stable hypertree curve is a special case of a graph
curve of Bayer and Eisenbud [BE].

(b) All irreducible hypertrees for small n were found by Scheidwasser
[Sch] using computer search. Up to the action of Sn, there are 93 hyper-
trees for n = 10, 1027 hypertrees for n = 11, and so on. See Fig. 1 for all
hypertrees for n < 10.

(c) There are no irreducible hypertrees for n = 5. This reflects the fact
that the effective cone of M0,5 ≃ Bl4 P2 is generated by boundary divisors
alone, i.e., by the ten (−1)-curves.

(d) The first proofs that Eff(M0,6) is not generated by boundary divisors
were found by Keel and Vermeire [V]. (In particular, this shows that, for
any n ≥ 6, Eff(M0,n) is not generated by boundary divisors.) Their de-
scription of an extremal divisor is very different from ours, which perhaps
explains why it was not generalized to all n before. We will compare the
two approaches in §9.

(e) Hassett and Tschinkel [HT] proved that Eff(M0,6) is generated by
boundary and Keel–Vermeire divisors. So the Conjecture is true for n = 6.
It was proved by the first author [Ca] that in fact the Cox ring of M0,6 is
generated by boundary and hypertree divisors. A pipe dream would be to
prove an analogous statement for any n.

(f) The existence of birational contractions XΓ supports the conjecture of
Hu and Keel [HK] that M0,n is a Mori dream space. The map v of (1.8.1)

is the first example of a birational contraction of M0,n whose exceptional
locus intersects the interiorM0,n. Birational contractions whose exceptional
locus lies in the boundary have been previously constructed by Hassett
[Has]. In particular, the map v gives a (hypothetical) new Mori chamber
of M0,n. It would be interesting to factor M0,n 99K XΓ through a small
Q-factorial modification, which perhaps has a functorial meaning.

(g) We take only irreducible hypertrees in Theorem 1.5 because if Γ is
not irreducible, then if we define DΓ as above, any component of DΓ will
be equal to π−1(DΓ′), where π : M0,n → M0,k is a forgetful map and Γ′ is
an irreducible hypertree on a subset K ⊂ N (see Lemma 4.11).

(h) As Fig. 1 suggests, the number of new extremal rays grows rapidly
with n. One reason for this is the existence of spherical hypertrees, another
reason is a “Fibonaccian” inductive construction (Theorem 7.18) that mul-
tiplies irreducible non-spherical hypertrees.

(i) Keel and McKernan [KM] proved that the effective cone of the sym-
metrization M0,n/Sn is generated by boundary divisors for any n. So in
some sense our hypertree divisors reflect Sn-monodromy.

Let us explain the layout of the paper. We start in §2 by introducing Brill–
Noether loci of hypertree curves and use a trick to show that a hypertree
divisor (if non-empty) is an extremal ray of the effective cone of M0,n. In §3
we introduce capacity, which measures how far is a collection of subsets
from being a hypertree. We relate capacity to the dimension of the image
of a product of linear projections. In §4 we use calculations with discrep-
ancies to show that a hypertree divisor is non-empty and irreducible. We
also (partially) compute its class. In §5 we study a compactified Jacobian of
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a hypertree curve and show that M0,n is birationally contracted to it. In §6
we prove the characterization of DΓ via projections of points given in the
Introduction: in the previous sections we define DΓ in a somewhat weaker
fashion as a Brill–Noether locus. In §7 we study spherical and generic hy-
pertrees. In particular, we show that if a hypertree is generic then the hy-
pertree divisor uniquely determines the hypertree, except in the case when
the hypertree is spherical (in which case the divisor uniquely determines
the triangulation). We also give an inductive construction of many non-
spherical generic hypertrees. Section §8 is very elementary: we use basic
linear algebra to deduce determinantal equations for hypertree divisors.
As a corollary, we show that black and white hypertrees of a triangulated
sphere give the same divisors on M0,n. In Section §9 we relate hypertree

divisors to gonality divisors on Mg via various gluing maps M0,n → Mg.
Finally, in Section §10 we use the program Macaulay to give several exam-
ples of moving divisors on M0,n which are pull-backs of extremal divisors

on Mg,k via maps M0,n → Mg,k (n = 2g + k) obtained by gluing pairs of

markings. These divisors onM0,n are linearly equivalent to sums of bound-
ary (thus, at least in our examples, this construction does not lead to any
new interesting divisors on M0,n).

ACKNOWLEDGEMENTS. We are grateful to Sean Keel for teaching us Mg,
to Valery Alexeev and Lucia Caporaso for answering our questions about
compactified Jacobians, to Igor Dolgachev, Gabi Farkas, Janos Kollàr, and
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§2. BRILL–NOETHER LOCI OF HYPERTREE CURVES

We fix a hypertree Γ = {Γ1, . . . ,Γd} and consider a hypertree curve Σ.

2.1. DEFINITION. A linear system on Σ is called admissible if it is globally
generated and the corresponding morphism Σ → Pk sends singular points
of Σ to different points. An invertible sheaf L is called admissible if the
complete linear system |L| is admissible.

We define the Brill–Noether loci W r and Gr [ACGH] as follows. First
suppose that Γ consists of triples. Then Σ has genus g = n − 3 and the
Picard scheme Pic1 of line bundles of degree 1 on each irreducible com-
ponent is isomorphic to Gg

m (not canonically). The Brill–Noether locus W r

parametrizes admissible line bundles L ∈ Pic1 such that

h0(Σ, L) ≥ r + 1.

The locus Gr parametrizes admissible pencils on ΣΓ such that the corre-
sponding line bundle is in W r. So we have a natural forgetful map

Gr
v

−→W r.

If Γ contains not just triples, things get a little bit more complicated. Let’s
give a functorial definition that works in general. The space MΓ defined in
the Introduction represents a functor

MΓ : Schemes→ Sets

that sends a scheme S to the set of isomorphism classes of flat families
Σ → S with reduced geometric fibers isomorphic to hypertree curves.
A hypertree curve is connected and it is easy to compute its genus

g = n− 3− dimMΓ = d− 1. (2.1.1)

Consider the relative Picard functor

Pic1 : Schemes→ Sets

that sends a scheme S to an object Σ of MΓ(S) equipped with an invert-
ible sheaf on Σ of multi-degree (1, . . . , 1) modulo pull-backs of invertible
sheaves on S. This functor is represented by a Gg

m-torsor over MΓ. This
torsor is in fact trivial. Notice that the dimension of Pic1 is always equal to
n− 3. Let

G1 : Schemes→ Sets

be a functor that sends a scheme S to the set of isomorphism classes of

(1) a family {p : Σ → S} in MΓ(S);
(2) a morphism f : Σ → P1

S such that (a) images of irreducible compo-
nents of Σsing are disjoint and (b) each irreducible component of Σ
maps isomorphically onto P1

S .
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Here two morphisms are considered isomorphic if they differ by isomor-
phisms of S-schemes both on the source and the target. Let

v : G1 → Pic1

be the natural transformation such that

(Σ → S, f : Σ → P1
S) 7→ (Σ → S, f∗OP1

S
(1)).

We will see below that G1 is represented byM0,n. For any r ≥ 2, letGr ⊂ G1

be a closed subset (with an induced reduced scheme structure) of points
where p∗(f

∗OP1
G1
(1)) has rank at least r + 1 (where (p, f) is the universal

family of G1). We define W r ⊂ Pic1 as a scheme-theoretic image of Gr.

2.2. DEFINITION. Let f : X → Y be a quasiprojective morphism of Noe-
therian schemes. The exceptional locus Exc(f) is a complement to the union
of points in X isolated in their fibers. Exc(f) is closed [EGA3, 4.4.3].

2.3. DEFINITION. An extremal ray R of a closed convex cone C ⊂ Rs is
called an edge if the vectorspace R⊥ ⊂ (Rs)∗ (of linear forms that vanish
on R) is generated by supporting hyperplanes for C. This technical condi-
tion means that C is “not rounded” at R.

2.4. THEOREM. The functor G1 is represented by M0,n. The map

v : M0,n ≃ G1 → Pic1

is birational. Its exceptional locus is G2. The map v induces an isomorphism

M0,n \G
2 ≃ v(M0,n \G

2) =W 1 \W 2 ⊂ Pic1 . (2.4.1)

Any irreducible component of G2 is a divisor whose closure in M0,n generates an

edge of Eff(M0,n). The closure of the pre-image of G2 in M0,n+1 with respect to
the forgetful map M0,n+1 →M0,n is contracted by a birational morphism

d
∏

j=1

πΓj∪{n+1} : M0,n+1 →
d
∏

j=1

M0,Γj∪{n+1}. (2.4.2)

All other exceptional divisors of this morphism belong to the boundary.

2.5. REMARK. In subsequent sections we will show that if the hypertree is
irreducible, then G2 is non-empty and irreducible. By definition, a point
in G2 can be obtained by mapping a hypertree curve to P2 and projecting
its singular vertices from a point. The definition of the divisor DΓ in the
Introduction is stronger, but eventually we will show that DΓ = Ḡ2.

2.6. REMARK. If we consider collections Γ satisfying only the first two con-
ditions in Definition 1.2 (i.e., the convexity and normality axioms may fail),
one may similarly define hypertree curves and Brill-Noether loci. The map
v may not be birational anymore, but parts of Theorem 2.10 still hold: the
functor G1 is represented by M0,n and the exceptional locus of the map v is
G2. In Section §3 we will give conditions under which the map v is bira-
tional onto its image (see Remark 3.3).

Proof of Theorem 2.4. We proceed in several steps.
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2.7. Each datum (Σ → S, f : Σ → P1
S) ∈ G1(S) gives rise to an isomor-

phism class of a flat family over S with reduced geometric fibers given
by P1 and with n disjoint sections given by images of irreducible compo-
nents of Σsing. This gives a natural transformation G1 → M0,n which is in
fact a natural isomorphism: given a flat family of marked P1’s, we can just
push-out d copies of P1

S along sections in each Γi. This gives a flat family of
hypertree curves over S and its map to P1

S , i.e., a datum in G1(S).

2.8. Next we define two auxilliary Brill–Noether loci, Cr and G̃r. We call an
effective Cartier divisor admissible if it does not contain singular points. On
the level of geometric points,

Cr = {a curve Σ, an admissible divisor D on Σ such that O(D) ∈W r},

G̃r = {(L, V ) ∈ Gr, an admissible D ∈ |V |}.

These loci fit in the natural commutative diagram of forgetful maps

G̃r −−−−→ Cr




y





y
D 7→O(D)

Gr −−−−→ W r

On the scheme-theoretic level, let Σsm be the smooth locus of the univer-
sal family Σ → MΓ with irreducible components Σsm

1 , . . . ,Σsm
d . Let

C0 = Σ
sm
1 ×MΓ

. . .×MΓ
Σ
sm
d

and let

u : C0 → Pic1

be the Abel map that sends (p1, . . . , pd) ∈ C0(S) to OΣ(p1 + . . .+ pd). Geo-
metric fibers of u are open subsets of admissible divisors in complete linear
systems on Pic1(Σk). Let

Cr := u−1(Wr) ⊂ C0.

Finally, we define G̃1 as a functor Schemes → Sets that sends S to the
datum (Σ → S, f : Σ → P1

S) ∈ G1(S) and a section s : S → P1
S disjoint

from images of irreducible components of Σ \ Σ
sm. We define G̃r as the

preimage of Gr for the forgetful map G̃r → Gr. We also have the natural

transformation G̃r → C0 that sends (Σ → S, f : Σ → P1
S , s) to f−1(s(S)). It

factors through Cr. The same argument as above shows that G̃1 is isomor-

phic to M0,n+1 and that C0 is isomorphic to
d
∏

j=1
M0,Γj∪{n+1}.
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2.9. To summarize, , we have the following commutative diagram

G̃1

$$
I

I

I

I

I

I

I

I

I

I

I

V
// C1 //

  
A

A

A

A

A

A

A

A

C0

u

''
N

N

N

N

N

N

N

N

N

N

N

N

N

G1 v
// W1 // Pic1

��

M0,n+1

d∏

j=1
πΓj∪{n+1}

//

πN

!!
C

C

C

C

C

C

C

C

C

C

C

C

d
∏

j=1

M0,Γj∪{n+1} d∏

j=1
πΓj

$$
I

I

I

I

I

I

I

I

I

M0,n

d∏

j=1
πΓj

// MΓ

where, for any subset I ⊂ N with |I| ≥ 4,

πI : M0,n →M0,I

is the morphism given by dropping the points of N \ I (and stabilizing).

2.10. It is clear from the definition that the exceptional locus of v is exactly
G2 and that v is birational if and only if G1 6= G2. This is equivalent to

G̃1 6= G̃2, which is equivalent to V being birational. This is proved in The-
orem 3.2.

2.11. Finally, we note that G̃2 is the preimage of G2. Since the closure of

G̃2 is in the exceptional locus of the regular morphism (2.4.2), Lemma 2.12
below shows that the closure of any irreducible component of G2 in M0,n

is a divisor that generates an edge of Eff(M0,n).

This finishes the proof of the Theorem. �

2.12. LEMMA. Consider the diagram of morphisms

X
f

−−−−→ Y

p





y

Z

of projective Q-factorial varieties. Suppose that f is birational and that p is faith-
fully flat. Let D be an irreducible component of Exc(f). If p(D) 6= Z and a
generic fiber of p along p(D) is irreducible then p(D) is a divisor that generates an
extremal ray (in fact an edge) of Eff(Z).

Proof. D is a divisor by van der Wärden’s purity theorem [EGA4, 21.12.12].

It is well-known that it generates an edge of Eff(X). Since p is flat and
p(D) 6= Z, p(D) is an irreducible divisor. Since p−1(p(D)) is irreducible
(e.g. by [T, Lem. 2.6]), p−1(p(D)) = D. It follows that p(D) generates an

edge of Eff(Z) because Eff(Z) injects in Eff(X) by the pull-back p∗. �

2.13. REMARK. An interesting feature of this argument is that we study

divisors G2 ⊂ M0,n by pulling them to M0,n+1 and then contracting the
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preimage by a birational morphism. This gives a method of proving ex-

tremality of divisors by a flat base change. In §5 we will contract G2 by
a contracting birational map (but not a morphism) from M0,n to the com-
pactified Jacobian of the stable hypertree curve Σs.

§3. CAPACITY AND PRODUCT OF LINEAR PROJECTIONS

3.1. DEFINITION. Let Γ = {Γα} be an arbitrary collection of subsets of the
set N = {1, . . . , n} such that each subset has at least three elements. We
define its capacity as

cap(Γ) = max
Γ′







∑

β

(

|Γ′
β | − 2

)







,

where Γ′ runs through all sub-collections of Γ that satisfy the convexity
axiom (‡). Here Γ′ = {Γ′

β} is a sub-collection of Γ if each Γ′
β is a subset of

some Γ′
α. For example, if Γ is a hypertree then

cap(Γ) = n− 2

by the convexity and normalization axioms.

3.2. THEOREM. Let Γ = {Γα} be an arbitrary collection of subsets of the set
N = {1, . . . , n} such that each subset has at least three elements and Γα 6⊂ Γβ if
α 6= β. The capacity of Γ is equal to the dimension of the image of the map

πΓ∪{n+1} :=
d
∏

j=1

πΓj∪{n+1} : M0,n+1 →
d
∏

j=1

M0,Γj∪{n+1}. (3.2.1)

Moreover, πΓ∪{n+1} is birational onto its image if and only if Γ has maximum
capacity n− 2. In particular, πΓ∪{n+1} if and only if Γ satisfies (‡) and (†).

3.3. REMARK. Let Γ be an arbitrary collection of subsets of the set N =
{1, . . . , n}, satisfying the first two conditions in Definition 1.2 (see Remark
2.6). If Γ has maximum capacity n− 2, by Theorem 3.2 the map πΓ∪{n+1} is

birational onto its image and it follows that G2 is a proper subset of G1.

To prove Theorem 3.2 we need two lemmas on linear projections.

3.4. DEFINITION. For a projective subspace U ⊂ Pr, let

πU : Pr 99K Pl(U)

be a linear projection from U , where l(U) = codimU − 1.

3.5. LEMMA. Let U1, . . . , Us ⊂ Pr be subspaces such that Ui 6⊂ Uj when i 6= j.
Then (a) the rational map

π = πU1 × . . .× πUs : P
r 99K Pl(U1) × . . .× Pl(Us)

is dominant if and only if

l

(

⋂

i∈S

Ui

)

≥
∑

i∈S

l(Ui) for any S ⊂ {1, . . . , s}. (3.5.1)

(b) If r = l(U1) + . . .+ l(Us) and π is dominant then π is birational.
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Proof. Let li := l(Ui). The scheme-theoretic fibers of the morphism Pr \
⋃

i Ui → Pl1 × . . . × Pls are open subsets of projective subspaces. This im-
plies (b). Now assume that π is dominant but (3.5.1) is not satisfied, for
example we may assume that W = U1 ∩ . . . ∩ Um has dimension

w ≥ r − (l1 + . . .+ lm). (3.5.2)

The projections πUi
for i = 1, . . . ,m factor through the projection πW :

Pr 99K Pr−w−1. It follows that the map:

π′ = πU1 × . . .× πUm : Pr 99K Pl1 × . . .× Plm

factors through πW . If π is dominant, then so is π′, and therefore the in-
duced map Pr−w−1 99K Pl1×. . .×Plm is dominant, which contradicts (3.5.2).

Assume (3.5.1). We’ll show that π is dominant. We argue by induction
on r. Let H be a general hyperplane containing Us. It suffices to prove that
the restriction of πU1×. . .×πUs−1 onH is dominant. Subspaces U ′

i := Ui∩H
have codimension li + 1 in H and, therefore, by induction assumption, it
suffices to prove that

dim
⋂

i∈S

U ′
i < (r − 1)−

∑

i∈S

li for any S ⊂ {1, . . . , r − 1}. (3.5.3)

Let W :=
⋂

i∈S
Ui. Let L :=

∑

i∈S
li. By (3.5.1), dimW < r − L and, therefore,

dimH ∩W < r − L − 1 (i.e., we have (3.5.3)) unless W ⊂ Us. But in the
latter case dim

⋂

i∈S
U ′
i = dim(Us ∩W ) < r − (ls + L) by (3.5.1). �

We would like to work out the case when all subspaces U1, . . . , Us are
intersections of subspaces spanned by subsets of points p1, . . . , pn ∈ Pn−2

in linearly general position. Let N = {1, . . . , n}. For any non-empty subset
I ⊂ N , let HI = 〈pi〉i 6∈I .

3.6. LEMMA. The rational map

π = πHΓ1
× . . .× πHΓl

: Pn−2 99K P|Γ1|−2 × . . .× P|Γl|−2

is dominant if and only if (‡) holds. It is birational if and only if (‡) and (†) hold.

Proof. For any S ⊂ {1, . . . , l}, let eS be the number of connected compo-
nents of N (with respect to {Γi}i∈S) that have at least two elements. Let

HS =
⋂

i∈S

HΓi
.

Let W ⊂ Anx1,...,xn be a hyperplane
∑

xi = 0. In appropriate coordi-

nates, P(W ) is a projective space dual to Pn−2 and subspaces HI ⊂ Pn−2

are projectively dual to projectivizations of linear subspaces 〈xi − xj〉i,j∈I .
It follows that HS is projectively dual to a subspace 〈ei − ej〉∃k∈S: i,j∈Γk

,
which implies that

l(HS) = |
⋃

i∈S

Γi| − eS − 1.

By Lemma 3.5, it follows that π is dominant if and only if

|
⋃

i∈S

Γi| − eS − 1 ≥
∑

i∈S

(|Γi| − 2) for any S ⊂ {1, . . . , l}. (3.6.1)
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It remains to check that (3.6.1) and (‡) are equivalent. It is clear that (3.6.1)
implies (‡). Now assume (‡). Let I1, . . . , IeS be connected components of N
(with respect to {Γi}i∈S) that have at least two elements. This gives a par-
tition S = S1 ⊔ . . . ⊔ SeS such that Ik =

⋃

j∈Sk

Γj for any k. Applying (‡) for

each Sk gives

|
⋃

i∈S

Γi| − eS − 1 ≥
∑

k

(

|
⋃

i∈Sk

Γi| − 2
)

≥
∑

k

∑

i∈Sk

(|Γi| − 2) =
∑

i∈S

(|Γi| − 2)

and this is nothing but (3.6.1). �

Proof of Theorem 3.2. Let p1, . . . , pn ∈ Pn−2 be general points. We have a
birational morphism

Ψ : M0,n+1 → Pn−2

(the Kapranov blow-up model), which is an iterated blow-up of Pn−2 along
the points p1, . . . , pn, the proper transforms of lines connecting these points,
and so on. Moreover, we have a commutative diagram of rational maps

M0,n+1
Ψ

−−−−→ Pn−2

πS∪{n+1}





y





y

pS

M0,k+1
Ψ

−−−−→ Pk−2

for each subset S ⊂ N with k elements, where pS is a linear projection
away from the linear span of points pi for i 6∈ S, see [Ka]. It follows that the
“moreover” part of the theorem is just a reformulation of Lemma 3.6.

Let

Z ⊂MΓ∪{n+1} :=

d
∏

j=1

M0,Γj∪{n+1}

be the image of πΓ∪{n+1}. Notice that πΓ′∪{n+1} factors through πΓ∪{n+1}

for any sub-collection Γ′. So it follows from Lemma 3.6 that

dimZ ≥ cap(Γ)

and that, to prove an opposite inequality, it suffices to show the following.
Suppose that Z 6= MΓ∪{n+1}. We claim that one can choose a proper sub-
collection Γ′ such that dim p(Z) = dimZ, where

p : MΓ∪{n+1} →MΓ′∪{n+1}

is an obvious projection. Consider all possible maximal sub-collections,
i.e., let J be an indexing set obtained by taking |Γα| for each Γα. For each j ∈
J , let Γ′

j be a sub-collection obtained by removing the corresponding index
from the corresponding Γα. Let z ∈ Z be a general smooth point. Notice
that z projects intoM0,Γα∪{n+1} for each α, and so for each j ∈ J , the fiber of

pj : MΓ∪{n+1} → MΓ′
j∪{n+1} passing through z is a smooth rational curve.

Moreover, it is easy to see that tangent vectors to these rational curves at
z generate the tangent space to MΓ∪{n+1} at z. Since Z is smooth at z, it
follows that pj |Z is generically finite for one of the projections. �
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We have to refine Theorem 3.2 to see how the map

π : M0,n+1 →MΓ∪{n+1} :=
∏

Γα

M0,Γα∪{n+1} (3.6.2)

affects the divisors of M0,n+1. We borrow a definition from matroid theory.

3.7. DEFINITION. Let I ⊂ N be any subset. We define the contracted collec-
tion ΓI to be the collection of subsets of I∪{p} obtained from Γ by replacing
all the indices in Ic with p (and removing all subsets with less than three el-
ements). We define the restricted collection Γ′

I to be the collection of subsets
in Ic given by intersecting each Γα with Ic (and removing subsets with less
than three elements).

3.8. LEMMA. For any hypertree Γ we have

codimπ
(

δI∪{n+1}

)

− 1 = n− 3− cap(ΓI)− cap(Γ′
I).

Proof. For I ⊂ N , consider the products of forgetful maps:

πI :M0,I∪{p,n+1} →
∏

Γα⊂I

M0,Γα∪{n+1} ×
∏

Γα∩Ic 6=∅,|Γα∩I|≥2

M0,(Γα∩I)∪{p,n+1}.

π′I :M0,Ic∪{p} →
∏

|Γα∩Ic|≥3

M0,(Γα∩Ic)∪{p},

By Theorem 3.2, we have

dim Im(πI) = cap(ΓI) and dim Im(π′I) = cap(Γ′
I).

Note that

δI∪{n+1} ≃M0,I∪{p,n+1} ×M0,Ic∪{p}

and the restriction of the map π to δI∪{n+1} factors as the product πI × π′I
followed by a closed embedding. �

3.9. LEMMA. Let Γ be an irreducible hypertree and let I ⊂ N be a subset such
that 2 ≤ |I| ≤ n− 2 and either Ic ⊆ Γβ for some β, or |Ic| = 2. Then

cap(ΓI) = |I ∪ {p}| − 2.

Proof. We construct a sub-collection Γ′ of ΓI that satisfies the convexity ax-
iom and

∑

α

(

|Γ′
α|−2

)

= |I|−1. Without loss of generality, we may assume
Ic = {1, . . . , l}. We define Γ′ as follows:

(i) If Ic ( Γβ , let Γ′ = ΓI ;
(ii) If Ic = Γβ or if |Ic| = l = 2 and Ic * Γα for any α: we may assume

that 1 ∈ Γ1 (note that Γ1 ∩ I
c = {1}). Let Γ′

1 = Γ1 \ {1} if |Γ1| ≥ 4
(omit Γ′

1 otherwise), Γ′
α = (ΓI)α for all α 6= 1.

Note that in all the cases
∑

α

(

|Γ′
α|−2

)

= |I|−1. Hence, the condition (‡)
holds for the set of all indices α that appear in Γ′. Assume that (‡) fails for
a proper subset T of indices α:

|
⋃

α∈T

Γ′
α| ≤

∑

α∈T

(

|Γ′
α| − 2

)

+ 1 ≤
∑

α∈T

(

|Γα| − 2
)

+ 1. (3.9.1)
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Let k = |
(
⋃

α∈T Γα
)

∩ Ic| ≤ l. Then we have

|
⋃

α∈T

Γ′
α| ≥ |

⋃

α∈T

Γα| − k + 1. (3.9.2)

Since Γ is an irreducible hypertree, we have:

|
⋃

α∈T

Γα| ≥
∑

α∈T

(

|Γα| − 2
)

+ 3. (3.9.3)

By (3.9.1), (3.9.2), (3.9.3) we have k ≥ 3. This is a contradiction if |Ic| = 2.
Assume now that Ic ⊂ Γβ . Let k′ = |

(
⋃

α∈T Γα
)

∩ Γβ |. Then k ≤ k′.
Consider the case when β /∈ T . Since Γ is an irreducible hypertree, we
have:

|
⋃

α∈T

Γα|+ |Γβ |−k
′ = |

⋃

α∈T

Γα∪Γβ | ≥
∑

α∈T

(

|Γα|−2
)

+
(

|Γβ |−2
)

+3. (3.9.4)

By (3.9.1), (3.9.2), (3.9.4) it follows that
∑

α∈T

(

|Γα| − 2
)

+ 1 ≥
∑

α∈T

(

|Γα| − 2
)

+ k′ − k + 2,

which is a contradiction, since k′ − k ≥ 0.
Consider the case when β ∈ T (only possible in case (i)). As (‡) fails,

|
⋃

α∈T

Γ′
α| ≤

∑

α∈T

(

|Γα|−2
)

+1 ≤
∑

α∈T,α6=β

(

|Γα|−2
)

+
(

|Γβ |− l−1
)

+1. (3.9.5)

It follows from (3.9.5), (3.9.2), (3.9.3) that
∑

α∈T

(

|Γα| − 2
)

− l + 2 ≥
∑

α∈T

(

|Γα| − 2
)

− l + 4,

which is a contradiction. This finishes the proof. �

3.10. LEMMA. For any hypertree Γ (not necessarily irreducible), the collection Γ′
I

satisfies the convexity axiom (‡). In particular,

cap(Γ′
I) =

∑

|Γα∩Ic|≥3

(

|Γα ∩ Ic| − 2
)

. (3.10.1)

If moreover, Γ is an irreducible hypertree and if |Ic| = 2 or if Ic ⊆ Γα for some α,
then cap(Γ′

I) = |Ic| − 2. Otherwise,

cap(Γ′
I) < |Ic| − 2.

Proof. Arguing by contradiction, let S ⊂ Γ′
I be a subset such that

∣

∣

⋃

j∈S

(Γ′
I)j
∣

∣− 2 <
∑

j∈S

(|(Γ′
I)j | − 2)

Let Il = {1, . . . , l}. After renumbering, we can assume that I = Ik. Since
Γ′
I0

= Γ′
∅ = Γ, which satisfies (‡), there exists l such that

∣

∣

⋃

j∈S

(Γ′
Il
)j
∣

∣− 2 ≥
∑

j∈S

(|(Γ′
Il
)j | − 2) (3.10.2)

but
∣

∣

⋃

j∈S

(Γ′
Il+1

)j
∣

∣− 2 <
∑

j∈S

(|(Γ′
Il+1

)j | − 2) (3.10.3)
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It follows that some subsets (Γ′
Il
)j contain l+1, and so the LHS in (3.10.3) is

equal to the LHS in (3.10.2) minus 1. However, the RHS in (3.10.3) is equal
to the RHS in (3.10.2) minus the number of subsets (Γ′

Il
)j that contain l+1.

This is a contradiction. This proves that Γ′
I satisfies the convexity axiom (‡).

Clearly, if |Ic| = 2 or if Ic ⊆ Γα for some α, then cap(Γ′
I) = |Ic| − 2. As-

sume now that |Ic| > 2 and Ic * Γα for any α. We argue by contradiction:
assume that |Ic| − 2 = cap(Γ′

I). If |Γ′
I | = 0, then it follows that |Ic| = 2.

Similarly, if |Γ′
I | = 1, it follows that Ic ⊂ Γα, for the unique α giving Γ′

I .
Hence, we can assume that |Γ′

I | > 1.
If |S| 6= 0, 1, d, the same proof as above shows that we have

∣

∣

⋃

j∈S

(Γ′
I)j
∣

∣− 2 >
∑

j∈S

(|(Γ′
I)j | − 2)

Hence, if |Γ′
I | 6= d, then cap(Γ′

I) < |Ic| − 2.
Assume now that |Γ′

I | = d. We have:

|Ic| − 2 = cap(Γ′
I) =

d
∑

α=1

(

|Γα ∩ Ic| − 2
)

.

It follows that

|I| =
d
∑

α=1

(

|Γα ∩ I|
)

.

It follows that the subsets Γα ∩ I , for all α, are disjoint. This is a contra-
diction since every i ∈ I belongs to at least two subsets Γα. �

3.11. LEMMA. The following conditions are equivalent:

• A boundary divisor δI∪{n+1} is not contracted by π.
• n− 3 = cap(ΓI) + cap(Γ′

I).
• |Ic| = 2 or Ic ⊂ Γα for some α.

Proof. The equivalence of the first two conditions follows from Lemma 3.8.
If |Ic| = 2 or Ic ⊂ Γα for some α then cap(ΓI) = |I|−1 by Lemma 3.9 and

cap(Γ′
I) = |Ic| − 2 by Lemma 3.10. It follows that codimπ

(

δI∪{n+1}

)

= 1 by
Lemma 3.8 .

Assume that |Ic| > 2 and Ic * Γα for any α. Then cap(Γ′
I) < |Ic| − 2

by Lemma 3.10. Since cap(ΓI) ≤ |I| − 1, it follows by Lemma 3.8 that
codimπ

(

δI∪{n+1}

)

> 1. �

§4. IRREDUCIBILITY OF DΓ AND ITS CLASS

In this section we define DΓ as the closure of G2 ⊂M0,n in M0,n. We will
show in Section §6 that this coincides with a stronger definition ofDΓ given
in the Introduction. Rather than computing the class of DΓ directly, we
(partially) compute the class of its pull-back π∗NDΓ, where πN : M0,n+1 →
M0,n is the forgetful map. We will use the fact π∗NDΓ is one of the divisors in
the exceptional locus of the map π of (3.6.2) with other possible exceptional
divisors all listed in Lemma 3.11.

4.1. NOTATION. One advantage of M0,n+1 over M0,n is that PicM0,n+1 has
an equivariant basis with respect to permutations of the first n indices.
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Let Ψ : M0,n+1 → Pn−2 be the Kapranov iterated blow-up of Pn−2 along
points p1, . . . , pn and proper transforms of subspaces 〈pi〉i∈I for |I| ≤ n− 3.
Let EI be the exceptional divisor over this subspace. Recall that PicM0,n+1

is freely generated by H := Ψ∗O(1) and by the classes EI .

We denote as usual by vi the valence of i ∈ N .

4.2. THEOREM. Let Γ = {Γ1, . . . ,Γd} be an irreducible hypertree onN . ThenDΓ

is non-empty, irreducible, and v(DΓ) =W 2 ⊂ Pic1 has codimension 3. We have

π∗NDΓ ∼ (d− 1)H −
∑

I⊂N
1≤|I|≤n−3

mIEI ,

where
mI ≥ |I| − 1 + |{Γα |Γα ⊂ Ic}| − cap(ΓI), (4.2.1)

m{i} = d− vi, (4.2.2)

mN\Γα
= 1, (4.2.3)

mΓα = d+ |Γα| −
∑

i∈Γα

vi. (4.2.4)

If I is properly contained in Γα then

mN\I = 0, (4.2.5)

mI = d+ |I| − 1−
∑

i∈I

vi. (4.2.6)

Proof. By Theorem 3.2, the map π of (3.6.2) is a birational morphism. By The-
orem 2.4, its exceptional locus consists of E := π∗NDΓ and the boundary
divisors δI∪{n+1} contracted by π (where I ⊂ N , 1 ≤ |I| ≤ n− 2).

4.3. LEMMA. DΓ is non-empty and irreducible.

Proof. It suffices to show that π∗NDΓ is non-empty and irreducible. We com-
pare ranks of the Neron–Severi groups and use the fact that

ρ(M0,n+1)− ρ

(

∏

Γα

M0,Γα∪{n+1}

)

is equal to the number of irreducible components in Exc(π). We have

ρ(M0,n+1) = 2n − 1−
n(n+ 1)

2
and

ρ

(

∏

Γα

M0,Γα∪{n+1}

)

=
d
∑

α=1

(

2|Γα| − 1−
|Γα|(|Γα|+ 1)

2

)

The total number of boundary divisors ofM0,n+1 is 2n−n−2. By Lemma 3.11,
the number of boundary components not contracted by π is

n(n− 1)

2
+

d
∑

α=1

(

2|Γα| − 1− |Γα| −
|Γα|(|Γα| − 1)

2

)

It follows after some simple manipulations that the number of irreducible
components of E is exactly one. �
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4.4. Next we compare the canonical classes. We have

KM0,n+1
−π∗KMΓ∪{n+1}

= cE+
∑

δI∪{n+1}∈Exc(π)

aIδI∪{n+1} = cE+
∑

I⊂N
1≤|I|≤n−3

aIEI ,

(4.4.1)
for some positive integers aI and c, see [KoM, p. 53]. Here we use the
fact that if |I| = n − 2 then δI∪{n+1} is not an exceptional divisor in the

Kapranov model, but a proper transform of the hyperplane in Pn−2 that
passes through all pi, i ∈ I . These divisors are not in Exc(π) by Lemma 3.11.

4.5. We use the following basic property of discrepancies:

c ≥ codimπ(E)− 1 and aI ≥ codimπ
(

δI∪{n+1}

)

− 1.

By Lemma 3.8, it follows that

aI ≥ n− 3− cap(ΓI)− cap(Γ′
I). (4.5.1)

4.6. Next we compute the canonical classes. Standard calculations give

KM0,n+1
= −(n− 1)H +

∑

I

(

n− 2− |I|
)

EI

and

π∗Γα∪{n+1}KMΓα∪{n+1}
= −(|Γα| − 1)



H −
∑

I∩Γα=∅

EI



+

+
∑

I′⊂Γα
1≤|I′|≤|Γα|−3

(

|Γα| − 2− |I ′|
)

∑

I′′⊂N\Γα

EI′∪I′′ .

Combining these formulas together gives

mI ≥ |I| − 1− cap(ΓI)− cap(Γ′
I)+

+
∑

I∩Γα=∅

(|Γα| − 1) +
∑

1≤|Γα∩I|≤|Γα|−3

(

|Γα| − 2− |Γα ∩ I|
)

.

This formula along with (3.10.1) imply formula (4.2.1).

4.7. LEMMA. Formulas (4.2.2)–(4.2.6) hold.

Proof. Using (4.2.1) it is easy to see that the LHS of any of these formulas is
greater than or equal to the RHS.

Since boundary divisors δN∪{n+1}\Γα
and δN∪{n+1}\I are not in the excep-

tional locus of π, formulas (4.2.3) and (4.2.5) follow from (4.4.1) and from
the calculations of the canonical classes above.

By projection formula, π∗NDΓ · C = 0 for any curve C in the fiber of πN .
Let C be a general fiber. Then Ψ(C) is a rational normal curve in Pn−2, and
therefore H · C = n − 2. We have Ei · C = δi,n+1 · C = 1 and any other
boundary divisor EI intersects C trivially. It follows that

0 = π∗NDΓ · C = (n− 2)(d− 1)−
n
∑

i=1

mi ≤ (n− 2)(d− 1)−
n
∑

i=1

(d− vi) =

(n− 2)(d− 1)− nd+
n
∑

i=1

vi = (n− 2)(d− 1)− nd+ (n− 2) + 2d = 0.
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It follows that mi = d− vi for any i.
Now let C be the curve in the fiber of πN over a general point in δΓα

such that the (n + 1)-st marked point moves along the component with
points marked by I ⊂ Γα. Then H · C = |I| − 1, δi,n+1 · C = 1 if i ∈ I
and 0 otherwise, δI∪{n+1} ·C = −1, δN∪{n+1}\I ·C = 1, and other boundary
divisors intersect C trivially. Since we already know that mi = d−vi by the
above, and that mN\I = 1 (if I = Γα) and 0 otherwise by (4.2.3) and (4.2.5),
a simple calculation gives mI . �

Finally, we claim that

c = 1, codimπ(E) = 2, and codim v(DΓ) = 3.

Indeed, c obviously divides all coefficients mI but some of them are equal
to 1 by (4.2.3). So c = 1. Since E is exceptional and c ≥ codimπ(E) − 1, we
have codimπ(E) = 2. It follows by Theorem 2.4 that the map E → π(E) is
generically a P1-bundle, i.e. W2 6= W3. Since G2 → W 2 has 2-dimensional
fibers outside of W 3, we have the formula codim v(DΓ) = 3. �

The reader is perhaps disappointed that we do not give a closed formula
for the class of a hypertree divisorDΓ. The difficulty of computing this class
stems from the fact that π has (exponentially) many exceptional boundary
divisors and the discrepancy of a boundary divisor δI ⊂ M0,n+1 for the
map π (3.6.2) is not always equal to codimπ(δI)− 1. However, there is one
case when they are equal, namely when codimπ(δI) = 2. This happens
quite often: see for example Lemma 7.12, which is used in Theorem 7.7 to
recover a hypertree from its class.

4.8. DEFINITION. A triple {i, j, k} ⊂ N is called a wheel of an irreducible hy-
pertree Γ, if it is not contained in any hyperedge, but there are hyperedges
Γα1 , Γα2 , Γα3 of Γ such that {i, j} ⊂ Γα1 , {j, k} ⊂ Γα2 , {i, k} ⊂ Γα3 .

4.9. LEMMA. Suppose Γ contains only triples, with {i, j, k} not one of them and
not a wheel, with the property that

cap(ΓN\{i,j,k}) = n− 4

(which is equivalent to codimπ(δi,j,k) = 2). Then we have equality in (4.2.1).

Proof. We know that codimπ(δi,j,k) = 2 and we are claiming that the dis-
crepancy of π at δi,j,k is equal to 1. It will be enough to show that that no

other divisor of M0,n+1 has the same image as δijk under π. Indeed, then
we can cut by hypersurfaces in a very ample linear system on the target
of π to reduce the discrepancy calculation to the case of a birational mor-
phism of smooth surfaces with a unique exceptional divisor over a point,
in which case the discrepancy is equal to 1 by standard factorization results
for birational morphisms of smooth surfaces [Ha, 5.3].

We write a↔ b if vertices a, b ∈ N belong to some Γα. Up to symmetries,
there are three possible cases.

(X) i↔ j and j ↔ k.
(Y) i↔ j but i 6↔ k and j 6↔ k.
(Z) i 6↔ j, j 6↔ k, and i 6↔ k.
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Notice that π(δi,j,k) belongs to the boundary MΓ∪{n+1} \ MΓ∪{n+1} in
cases (X) and (Y). So in these cases π(δi,j,k) can not be equal to π(E), where
E = π∗N (DΓ) is the only exceptional divisor of π intersecting the interior
M0,n+1. In case (Z), the image of δi,j,k intersects the interior MΓ, but we
claim that in this case π(δi,j,k) 6= π(E) as well. Arguing by contradiction,

suppose π(δi,j,k) = π(E). Notice that the rational map v : M0,n 99K Gn−3
m

of Theorem 2.4 is defined at the generic point of δijk ⊂ M0,n in case Z: just
take a map Σ → P1 that collapses points i, j, k to the same point and pull-
back OP1(1) (a similar analysis will be given below, see Lemma 4.10). Since
W 2 ⊂ Gn−3

m has codimension 3, a generic line bundle in W 2 has h0 = 3

(see Thm. 4.2). Passing to an open subset in M0,n containing the generic
point of δijk, we have that v(δijk) = W 2. But this implies that, in a planar
realization that corresponds to a generic line bundle in W 2, points i, j, k are
collinear. We will show in Theorem 6.1 that this is not the case.

So it remains to check the statement for boundary divisors only, i.e., to
show that if π(δijk) = π(δI) and n+ 1 6∈ I then I = {i, j, k}. Let Γ′ ⊂ Γ be a
subset of all triples other than the triple containing {i, j} (in cases (X) and
(Y)) and the triple containing {j, k} (in case (X)). Consider the morphism

π′ :M0,n+1 →MΓ′∪{n+1} :=
∏

Γα∈Γ′

MΓα∪{n+1}.

Then we have π′(δijk) = π′(δI) has dimension n − 4 and intersects the
interior MΓ′ . So I has the following properties:

• i, j, k ∈ I in case (X); i, j ∈ I in case (Y).
• I contains s whole triples from Γ′ and q “separate” points in N not

related by ↔ to any other point in I .

From δI ≃M0,|I|+1×M0,(n+1)−|I|+1 we have the following easy estimate

n− 4 = dimπ′(δI) ≤ s+ dimM0,(n+1)−|I|+1 = n− |I|+ s− 1,

and therefore

|I| ≤ s+ 3. (4.9.1)

Consider the case (X). Since

n− 4 = dimπ(δi,j,k) = cap((Γ′)N\{i,j,k})

it follows that for any subset T (|T | ≥ 2) of triples from Γ′,

|
⋃

α∈T

Γα| ≥ |T |+ 4,

if i, j, k ∈
⋃

α∈T Γα.
Assume s ≥ 2. If i, j, k ∈

⋃

Γα⊂I
Γα then we have:

|I| − q ≥ |
⋃

Γα⊂I

Γα| ≥ s+ 4,

which contradicts (4.9.1).
If one of i, j, k, say i, is not in

⋃

Γα⊂I
Γα then

|I \ {i}| − q ≥ |
⋃

Γα⊂I

Γα| ≥ s+ 3,
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which again contradicts (4.9.1).
Assume s = 1. Let Γ1 be the unique triple in Γ′ contained in I . We

have |I| = q + 3 and by (4.9.1) |I| ≤ 4. It follows that q = 0 or 1. Since
i, j, k ∈ I it follows that at least two of the indices i, j, k are in Γ1, which is
a contradiction.

Consider now the cases (Y), (Z). We have a usual diagram of morphisms

M0,n+1
π′

−−−−→ MΓ′∪{n+1}

πN





y





y
D 7→O(D)

M0,n
v

−−−−→ Pic1(Σ′).

4.10. LEMMA. The morphism v can be extended to generic points of δijk and δI as
follows: Let C be a fiber of the universal family over a general point of δijk (resp.,
δI ). On one component C1 we have points i, j, k (resp. I) and the attaching point
p, while on the other component C2 we have points N \ {i, j, k} (resp. N \ I) and
the attaching point q. This gives a morphism f : Σ′ → P1 obtained by sending
points in N \ {i, j, k} (resp. N \ I) to the corresponding points of the second
component of C and by sending points in i, j, k (resp. I) to the point q. Consider
the line bundle L = f∗OP1(1). The line bundle L has degree 0 on the components
Γα ⊂ I . Each such component Γα can be identified with C1, thus we can twist L

by OΣ′(p), which gives a line bundle in L̃ ∈ Pic1(Σ).

Proof. Take |Γ′| copies of of the universal familyM0,n+1 overM0,n, indexed
by triples in Γ′. Let X be the push-out of these families, glued along sec-
tions, as prescribed by Γ′. (The fiber of X over a point in M0,n is Σ.) Let

U be the open in M0,n which is the union of M0,n and δi,j,k (resp. δI ), not
containing any other boundary strata. Let X0 be the preimage of U in X.

There are maps u : X0 → U × Σ (given by stabilization) and f : X0 →
U × P1 (obtained by contracting the points in I). Let M = f∗ØP1(1) and
L = u∗(M). It follows from a local calculation in [F] that L is invertible and
for m ∈ U we have Lm ∈ Pic1(Σ) satisfying the Lemma. �

After shrinking M0,n to an open subset containing generic points of δijk
and δI , this gives

v(δijk) = v(δI).

In case (Z), v(δijk) 6⊂W 2, i.e. a general line bundle L in v(δijk) has h0 = 2
and it induces a map f : Σ → P1 that collapses only the points i, j, k to the
point q. Since v(δijk) = v(δI), the map f collapses the points in I to the
point q. It follows that I = {i, j, k}. This finishes case (Z).

In case (Y), since π′(δijk) has codimension 1, the map π′|δijk generically

has 1-dimensional fibers, this implies that v(δijk) 6⊂ W 3, i.e. a general line
bundle in v(δijk) has h0 = 3 and gives an admissible map f : Σ′ → P2 such

that points i, j, k belong to a line H ⊂ P2. The corresponding point of M0,n

is obtained by projecting Σ′ from a general point of H . Note that the points
in N \ {i, j, k} will be mapped to distinct points via this projection, hence
no points in N \ {i, j, k} will lie on the line H .

The same analysis for δI combined with the fact that v(δijk) = v(δI)
shows that via the map f the points in I are collinear. Since in Case (Y)
i, j ∈ I , it follows that the points in I lie onH . This implies I = {i, j, k}. �
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Finally, we analyze hypertrees that are not irreducible. Recall that we
denote by DΓ the closure of G2(Γ) in M0,n.

4.11. LEMMA. If Γ is not irreducible and DΓ 6= ∅, then for every irreducible D
component of DΓ there exists an irreducible hypertree Γ′ on a subset N ′ ⊂ N such
that

D = π−1(DΓ′),

where π : M0,n →M0,N ′ is a forgetful map.

Proof. If Γ′ is an irreducible hypertree, then DΓ′ is an irreducible divisor in
M0,N ′ intersecting the interior. Since π is flat with irreducible fibers along
points in M0,N ′ , π−1(D′

Γ) is irreducible. Hence, it is enough to prove D ⊂
π−1(DΓ′). Note, since DΓ 6= ∅, we have G2(Γ) 6= ∅.

We argue by induction on d. Let S ⊂ {1, . . . , d} be a subset such that (‡)
is an equality. We may assume that S is minimal with this property. Let
d′ = |S|, let Γ′ be a collection of Γi for i ∈ S. Let N ′ = ∪i∈SΓi. Then Γ′ is
almost a hypertree: all axioms are satisfied except possibly for the second
axiom: it could happen that there exists an index i ∈ N ′ that belongs to
only one subset Γ′

j . In this case we can remove i from N ′ (and remove Γ′
j

from Γ′ if |Γ′
j | = 3). Continuing in this fashion, we get a subset N ′ ⊂ N and

a hypertree Γ′ on it. By minimality of S, Γ′ is irreducible.
Let D be a component of DΓ (i.e., the closure of a component of G2(Γ)).

If D ⊆ π−1(DΓ′), then we are done. Assume now that D is not contained
in π−1(DΓ′). Then a dense open in D is disjoint from π−1(G2(Γ′)); hence, a
general element in D∩G2(Γ) is obtained via projection from a map Σ → Pr

(r ≥ 2) that maps Σ′ to a line. Let

Γ′′ = (Γ \ Γ′) ∪ {Γ0}, where Γ0 =
⋃

Γi∈Γ′

Γi.

If there exists an index i ∈ N that belongs to only one subset Γ′′
i , we

remove it. LetN ′′ be the remaining set if indices. It is easy to check that Γ′′ is
a hypertree on N ′′. Moreover, our assumptions imply that D ⊆ π−1(DΓ′′).
By our induction assumption, any component of D′′

Γ is the preimage by a

forgetful map of some DΓ̃ for some irreducible hypertree Γ̃. �

§5. COMPACTIFIED JACOBIANS OF HYPERTREE CURVES

Our goal in this section is to prove Theorem 1.10: if Γ is an irreducible hy-
pertree then the hypertree divisorDΓ ⊂M0,n is contracted by a contracting
birational map to the compactified Jacobian.

We start by considering any hypertree, not necessarily irreducible. We
extend the universal stable hypergraph curve Σs/MΓ to a curve overMΓ in
an obvious way. Let ΣsΩ be one of the geometric fibers.

5.1. DEFINITION. A coherent sheaf on ΣsΩ is called Gieseker semi-stable (resp.
Gieseker stable) if it is torsion-free, has rank 1 at generic points of ΣsΩ, and is
semi-stable (resp. stable) with respect to the canonical polarization ωΣs

Ω
.

The compactified Jacobian [OS, Ca] Pic/MΓ parametrizes gr-equivalence
classes of Gieseker semi-stable sheaves. By [Si], it is functorial: consider
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the functor
Pic : Schemes→ Sets

that assigns to a scheme S the set of coherent sheaves on ΣsS flat over S
and such that its restriction to any geometric fiber ΣsΩ is Gieseker semi-

stable. Then there exists a natural transformation Pic→ hPic which has the

universal property: for any scheme T , any natural transformation Pic →
hT factors through a unique morphism Pic → T .

Over each geometric point of MΓ, Pic is a stable toric variety of Pic0(ΣΩ)
and its normalization is a disjoint union of toric varieties.

5.2. PROPOSITION. A pull-back of an invertible sheaf in Pic1(ΣΩ) is Gieseker
stable on ΣsΩ.

Proof. Let X = Σs be a stable hypertree curve. We call an irreducible com-
ponent ofX black if it is a proper transform of a component of Σ. Otherwise
we call it white. It is well-known that slope stability on reducible curves re-
duces to the following Gieseker’s basic inequality. For any proper subcurve
Y ⊂ X , we have

∣

∣

∣

∣

b(Y )− b(X)
m(Y )

m(X)

∣

∣

∣

∣

<
1

2
#Y. (5.2.1)

Here,

b(S) = degL|S , m(S) = degωΣs |S , and #Y := |Y ∩X \ Y |.

In our case, b(S) is just the number of black components in S, and we have

m(X) = 2g − 2 = 2d− 4.

We denote m := m(Y ), b = b(Y ), and have to show that

|(2d− 4)b− dm| < (d− 2)#Y. (5.2.2)

5.3. It is easy to see that the complementary subcurve Y c := X \ Y satisfies
(5.2.1) if and only if Y does. Hence, by interchanging Y with Y c, we can
assume that

dm− (2d− 4)b ≥ 0 (5.3.1)

and try to show that

dm− (2d− 4)b− (d− 2)#Y < 0 (5.3.2)

5.4. Consider a white component w1 of Σs which is not in Y but such that
at least one adjacent black component is in Y . Enumerate the black com-
ponents in Y intersecting w1 as b1, b2, ..., bi, and the rest as bi+1, ..., bk, with
1 ≤ i ≤ k (and k ≥ 3). We claim that adding w1 to Y does not decrease the
left hand side in (5.3.2) and increases the left hand side in (5.3.1). We only
need to show that dm − (d − 2)#Y increases. Adding w1 to Y increases m
by k − 2. If the original value of #Y is x + i, where i is the contribution
from w1 intersecting b1 through bi, then the value after adding w1 to Y is
x + k − i. Hence, #Y increases by k − 2i. Then the difference of values of
the left hand side is

d(k − 2)− (d− 2)(k − 2i) = (d− 2)i+ k − d ≥ (d− 2) + 3− d > 0.

Hence we can assume that all white lines hit by a black component in Y are
also in Y : by showing (5.3.2) in this situation, we show (5.3.2) in general.
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5.5. Let Pi be the number of singular points of Σ of valence i. Then
∑

Pi = n and
∑

iPi = 2d+ n− 2.

This is because
∑

iPi is the total number of times a singular point is hit by a
component in Σ. This is equal to

∑

|Γα|, which by the normalization axiom
equals 2d+ n− 2. So we have

∑

(i− 1)Pi = 2d+ n− 2− n = 2d− 2. (5.5.1)

Let pi be the number of singular points of Σ of valence i hit by the image
of Y . Then (5.5.1) implies that

∑

i

(i− 1)pi ≤ 2d− 2. (5.5.2)

with strict inequality if Y does not cover all the points in N .
Let bi be the number of black components in Y with i singular points. By

the convexity axiom, we have
∑

i pi ≥
∑

i(i − 2)bi + 2. If Y covers all the
points in N then we claim that this inequality is strict: otherwise, as Y is
a proper subcurve of X , the convexity axiom would be violated when we
consider the components of Y and one extra component that is not in Y .
This inequality together with (5.5.2) (at least one being strict) implies that

∑

i

(i− d)pi + (d− 1)
∑

i

(i− 2)bi < 0. (5.5.3)

Let l′i be the number of isolated white components with i singularities
(i.e., those not hit by any black components in Y ). Since we obviously have
∑

(i− d)l′i ≤ 0, (5.5.3) implies that
∑

i

(i− d)pi +
∑

i

(i− d)l′i + (d− 1)
∑

i

(i− 2)bi < 0. (5.5.4)

We claim that this inequality is equivalent to (5.3.2). Let li be the number
of white components in Y with i singular points. Then

m =
∑

(i− 2)bi +
∑

(i− 2)li =
∑

(i− 2)bi +
∑

(i− 2)l′i +
∑

(i− 2)pi,

since
∑

(i − 2)l′i is the contribution to
∑

(i − 2)li by isolated white compo-
nents in Y and

∑

(i − 2)pi is the contribution by white components hit by
black components in Y , which we can assume are all in Y . We also have

#Y =
∑

il′i +
∑

ipi −
∑

ibi, (5.5.5)

where
∑

il′i is the contribution to #Y by isolated white components in Y ,
∑

ipi is the total number of times a point in the image of Y in Σ is hit by
a black component (not necessarily in Y ) and

∑

ibi is the total number of
times a black component in Y hits one of these points, so their difference is
the contribution to #Y by everything except isolated white components.

So we have
dm− (2d− 4)b− (d− 2)#Y =

2
∑

(i− d)pi + 2
∑

(i− d)l′i + 2(d− 1)
∑

(i− 2)bi < 0

by (5.5.4). �

5.6. COROLLARY. Pic1 ⊂ Pic.
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5.7. Let Pic
1

be the normalization of the closure of Pic1 in Pic. It com-
pactifies the Gg

m-torsor Pic1 over MΓ by adding boundary divisors of two
sorts, vertical and horizontal. Vertical boundary divisors are divisors over
the boundary of MΓ. The boundary divisors of MΓ are parametrized by
subsets I ⊂ Γα with |I|, |Γα \ I| > 1. The corresponding hypertree curve
Σ′ generically has d + 1 irreducible component, with the α’s component
broken into a nodal curve with two components, C1

α (with singular points
indexed by I) and C2

α (with singular points indexed by Γα \ I). There could
be two corresponding vertical boundary divisors. Generically they param-
etrize line bundles on Σ′ that have degree 1 on C1

α and degree 0 on C2
α

(resp. degree 0 on C1
α and degree 1 on C2

α) and degree 1 on the remaining
components. Notice that apriori it is not clear that these loci are non-empty
divisors: one has to check that these line bundles are Gieseker semi-stable.

Horizontal boundary divisors are toric (over a geometric point of MΓ)

and can be described as follows. Choose a node in Σs and let Σ̂ be a curve
obtained from Σs by inserting a strictly semistable P1 at the node. Start with

the multidegree 1 and choose a multidegree d̂ on Σ̂ such that the degree on
the extra P1 is 1 and the degree on one of the neighboring black components
is lowered from 1 to 0 (lowering the degree on a white component would
lead to an unstable sheaf). The corresponding Gieseker semi-stable sheaves

on Σs are push-forwards of invertible sheaves F̂ on Σ̂ of a given Gieseker

semi-stable multidegree with respect to the stabilization morphism Σ̂ →
Σs. Note that this creates a sheaf which is not invertible at the node. An
easy count shows that potentially this gives as many as 2d−2+n horizontal
divisors.

5.8. LEMMA. If Γ is an irreducible hypertree then Pic
1

has a maximal possible
number of horizontal (2d− 2 + n) and vertical boundary divisors.

Proof. This is a numerical question: one has to check that the correspond-
ing multidegrees are Gieseker-stable. The proof is parallel to the proof of
Proposition 5.2: a stronger (by 1) inequality satisfied by an irreducible hy-
pertree compensates for the difference (by 1) in the multidegree. We omit
this calculation. �

5.9. EXAMPLE. The papers [OS] and [Al] contain a recipe for presenting the

polytope of Pic
1

as a slice of the hypercube. We won’t go into the details
here but let us give our favorite example. Let Σ be the Keel–Vermeire curve
with 4 components indexed by {1, 2, 3, 4}. Then the polytope is the rhombic
dodecahedron of Fig. 3. The normals to its faces are given by roots αij =
{ei − ej} of the root system A3, where i, j ∈ {1, 2, 3, 4}, i 6= j. To describe a
pure sheaf from the corresponding toric codimension 1 stratum, consider a
quasi-stable curve Σij obtained by inserting a P1 at the node of Σ where i-
th and j-th components intersect. Now just pushforward to Σ an invertible
sheaf that has degree 1 on this P1 and at any component of Σij other than
the proper transform of the i-th component of Σ (where the degree is 0).

Now we can prove Theorem 1.10.
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FIGURE 3. Compactified Jacobian of the Keel–Vermeire curve.

Proof. Our proof is parallel to the proof of irreducibility ofDΓ in Lemma 4.3.

Consider the birational map v : M0,n 99K Pic
1
. Note that Pic

1
is in general

not Q-factorial. The map v contracts only one divisor intersecting M0,n,
namely DΓ. The map v is necessarily contracting if

ρ(M0,n)− ρ′(Pic
1
) = 1 + |{boundary divisors contracted by v}|.

(Here ρ′(X) denotes the rank of the class group Cl(X)). Computation of
this number shows that it suffices to check that the following boundary
divisors are not contracted by v:

• δij for {i, j} 6⊂ Γα;
• δI for I ⊂ Γβ .

We use the commutative diagram of rational maps (with v and the Abel
map not everywhere defined)

M0,n+1
π

−−−−→
∏

αM0,Γα∪{n+1}

πN





y





y

u

M0,n
v

−−−−→ Pic
1

We lift boundary divisors of M0,n defined above to boundary divisors

δij and δI of M0,n+1, respectively. By Lemma 3.11, these divisors are not
contracted by π. Notice that π(δij) and π(δΓβ

) are not boundary divisors of

MΓ∪{n+1} and are therefore mapped to Pic1. We will prove in Lemma 5.10

that v(δij) and v(δΓβ
) are divisors in Pic

1
(but not boundary divisors).

Next we consider δI such that 1 < |I| < |Γα| − 1. This divisor is mapped
to a divisor

{δI ⊂M0,Γα∪{n+1}} ×
∏

β 6=α

M0,Γβ∪{n+1} ⊂MΓ∪{n+1}.

Note that the Abel map can be extended to the interior of this divisor and

maps it to the corresponding vertical boundary divisor of Pic
1
. By Lemma

5.10 (iii), this map is dominant.
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Finally, consider δΓα\{i}. This divisor is mapped to a divisor

{δi,n+1 ⊂M0,Γα∪{n+1}} ×
∏

β 6=α

M0,Γβ∪{n+1} ⊂MΓ∪{n+1}.

This divisor maps onto the horizontal boundary divisor that corresponds
to the i-th node of the α-th irreducible component (use Lemma 5.10 (iv)).

5.10. LEMMA. The Abel map restricted to π(δI) generically has one-dimensional
fibers if I is either contained in some Γβ or if |I| = 2.

Proof. Let N = (N \ I) ∪ {p}. Denote by δoI the interior of the boundary δI :

δoI
∼=M0,I∪{p} ×M0,N∪{p}.

Let Γ be the collection of subsets of N obtained by identifying the points
in I with p (and throwing away any subsets with fewer than three ele-
ments). Note that Γ has maximum capacity (moreover, in case (ii), (iii),
(iv) Γ is a hypertree on N ) and therefore, Remark 3.3 applies.

We denote by Σ the corresponding hypertree curve and by Pic
1

Γ
the rel-

ative Picard scheme of line bundles of multi-degree (1, . . . , 1). Similarly,

we let G1
Γ

, G̃1
Γ

, etc be the corresponding Brill-Noether loci. We will use the

usual commutative diagram of morphisms (with π the product of forgetful
maps and u the Abel map corresponding to Γ):

M0,N∪{p}
π

−−−−→
∏

αM0,Γα∪{p}

πN





y





y
u

M0,N −−−−→ Pic
1

Γ

.

The main observation that we will use is that generically along the image
of π, the Abel map u has one-dimensional fibers.

Consider first the case when |I| = 2 for I 6⊂ Γα for any α. We have:

δoI
∼=MN∪{p,n+1}

∼= G̃1
Γ
.

A point [m] in M0,N∪{p,n+1} corresponds via the above isomorphism to a

morphism f : Σ → P1 and an admissible section s of f
∗
Ø(1). By abuse of

notation we consider [m] as a point of δoI . Then π([m]) ∈ MΓ∪{n+1} corre-
sponds to a pair (Σ, s), where s is an admissible section such that s = ρ∗s,
where ρ : Σ → Σ is the map that collapses i, j to p. Case (i) now follows
from the following commutative diagram:

M0,N∪{p}
π

−−−−→ π(M0,N∪{p})
u

−−−−→ u(π(M0,N∪{p}))

∼=





y

∼=





y
ρ∗





y
ρ∗

δ0I
π

−−−−→ π(δ0I )
u

−−−−→ u(π(δ0I )).

as the vertical maps (which are given by pull-back by ρ) are bijective.

Consider now case when I = Γβ . A point [m] in M0,N∪{p}
∼= G̃1

Γ
corre-

sponds to a morphism f : Σ → P1 and an admissible section s of f
∗
Ø(1).

We have:
δoI

∼=MN∪{p,n+1} ×MΓβ∪{p}
∼= G̃1

Γ
×MΓβ∪{p}.
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If ([m], [m′]) ∈ δoI then the point π([m], [m′]) in MΓ∪{n+1} corresponds to
a pair (Σ, s) with the following properties: there is a morphism

ρ : Σ → Σ

that collapses the component Σβ to p, and if q ∈ Σβ is determined by [m′] ∈
MΓβ∪{p}, then s = ρ∗s+ q is the corresponding admissible section. Note, if

we fix a point in the image of π(δoI ) via the Abel map, this fixes the element
[m′], and thus q. Case (ii) now follows from a similar commutative diagram
(in the diagram above, take products with MΓβ∪{p} in the first row).

The remaining cases are similar. �

�

§6. PLANAR REALIZATIONS OF HYPERTREES

To distinguish between the Brill-Noether loci of different collections of
subsets, we denote by G2(Γ) the Brill-Noether locus G2 corresponding to
a collection of subsets Γ = {Γ1, . . . ,Γd}. Recall that an element of G2(Γ)
can be obtained by composing a morphism Σ → P2 with a linear projection
P2 99K P1, such that the morphism

• has degree 1 on each component of Σ,
• separates points in N .

So basically we choose N different points in P2 such that for each α, the
points in Γα are collinear. By Theorem 4.2, if Γ is an irreducible hypertree,
G2(Γ) is an irreducible subvariety of codimension 1 in M0,n. Recall that a
hypertree Γ has a planar realization if there exists a map Σ → P2 such that all
points in N are distinct and the points in a subset S ⊂ N with are collinear
if and only if S ⊂ Γα for some α. Clearly, this is an open condition on G2(Γ).
We prove that this open set is non-empty:

6.1. THEOREM. Any irreducible hypertree has a planar realization.

Proof. Let Γ = {Γ1, . . . ,Γd} be an irreducible hypertree. Assume Γ does not
have a planar realization. It follows that there is a triple

Γ0 = {a, b, c} ⊂ N,

not contained in any Γα, such that the points in Γ0 are collinear for any
Σ → P2 that gives a point of G2(Γ).

Let Γ̃ = Γ ∪ {Γ0}. By our assumption, G2(Γ) = G2(Γ̃). We may assume
a ∈ Γ1. Since Γ1 does not contain Γ0, we may assume b /∈ Γ1. Let Γ′

1 =
Γ1 \ {a}. Construct a new collection of subsets Γ′:

(A) If |Γ1| = 3, let Γ′ = {Γ2, . . . ,Γd,Γ0}
(B) If |Γ1| ≥ 4, let Γ′ = {Γ′

1,Γ2, . . . ,Γd,Γ0}.

6.2. CLAIM. The collection of subsets Γ′ is a hypertree.
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Proof of Claim 6.2. We prove that Γ′ satisfies the convexity axiom (‡). As Γ
is an irreducible hypertree, for any S ⊂ {2, . . . , d} we have:

∣

∣Γ0 ∪
⋃

j∈S

Γj
∣

∣ ≥
∣

∣

⋃

j∈S

Γj
∣

∣ ≥
∑

j∈S

(|Γj | − 2) + 3 =

=
∑

j∈S

(|Γj | − 2) + (|Γ0| − 2) + 2.

Similarly, if S ( {2, . . . , d} we have
∣

∣Γ′
1 ∪ Γ0 ∪

⋃

j∈S

Γj
∣

∣ ≥
∣

∣Γ′
1 ∪

⋃

j∈S

Γj
∣

∣ ≥

≥
∣

∣Γ1 ∪
⋃

j∈S

Γj
∣

∣− 1 ≥
∑

j∈S

(|Γj | − 2) + (|Γ1| − 2) + 3− 1 =

=
∑

j∈S

(|Γj | − 2) + (|Γ′
1| − 2) + (|Γ0| − 2) + 2.

It is easy to see that Γ′ satisfies the normalization axiom (†). It follows
that Γ′ is a hypertree (possibly not irreducible). �

We use our working definition of DΓ, namely DΓ = G2(Γ). Similarly,

DΓ′ = G2(Γ′). By Theorem 2.4 and Theorem 3.2 D′
Γ is a divisor in M0,n

(possibly reducible) and the map

π′ : M0,n+1 →MΓ′∪{n+1} :=
∏

Γ′
α

M0,Γ′
α∪{n+1}

is a birational morphism whose exceptional locus consists of π−1
N (DΓ′) and

boundary divisors in M0,n+1 contracted by π′.

By Theorem 4.2, DΓ = G2(Γ) is an irreducible divisor in M0,n. In ad-

dition, we have G2(Γ̃) ⊆ G2(Γ′) and by assumption G2(Γ̃) = G2(Γ). It

follows that DΓ is an irreducible component of DΓ′ = G2(Γ′).

Let E1, . . . , Es be the irreducible components of π−1
N DΓ′ . We may assume

E1 = π−1
N DΓ. By Theorem 4.2, we have:

E1 = π−1
N DΓ = (d− 1)H −

∑

I⊂N
1≤|I|≤n−3

mIEI ,

where mI satisfies the inequality (4.2.1). By (4.2.2) we have m{i} = d− vi.

6.3. NOTATION. Let d′ be the number of hyperedges in Γ′. (Hence, d′ = d in
Case (A) and d′ = d+1 in Case (B).) Denote by v′i the valence of i ∈ N in Γ′.

6.4. LEMMA. The classes of the divisors Ei are subject to the following relation:
s
∑

i=1

ciEi = (d′ − 1)H −
∑

I⊂N
1≤|I|≤n−3

m′
IEI −

∑

|I|=n−2

δI∪{n+1}∈Exc(π′)

a′IδI∪{n+1}, (6.4.1)

where c1, . . . , cs are positive integers, a′I is the discrepancy of the divisor δI∪{n+1}

with respect to the map π′ and the integersm′
I ≥ 0 satisfy the following inequality:

m′
I ≥ |I| − 1− cap((Γ′)I) +

∣

∣{Γ′
α |Γ

′
α ⊂ Ic}

∣

∣ . (6.4.2)
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In particular, we have:

m′
i ≥ d′ − v′i.

Proof. Note that formula (4.4.1) still holds (the map π′ is birational):

s
∑

i=1

ciEi = KM0,n+1
− π′

∗
KMΓ∪{n+1}

−
∑

δI∪{n+1}∈Exc(π′)

a′IδI∪{n+1}. (6.4.3)

For the purpose of the Lemma, we ignore the terms a′IδI∪{n+1} for |I| =
n − 2 in the above formula. Then the lemma follows from 4.6, combined
with the inequality a′I ≥ codimπ′(δI∪{n+1})− 1 and Lemma 3.10. �

We compare the coefficient of H in both sides of the equation (6.4.1).
Recall that the coefficient of H in E1 is d− 1.

Consider first Case (A). Since the degree of H is at least d − 1 in the left
hand-side, and at most d − 1 on the right, it follows that a′I = 0 for all
|I| = n− 2 and moreover s = 1, c1 = 1, i.e., we have:

E1 = π−1
N DΓ = (d− 1)H −

∑

I⊂N
1≤|I|≤n−3

m′
IEI .

It follows that mi = m′
i for all i. By Lemma 6.4, m′

i ≥ d − v′i. By (4.2.2)
mi = d−vi. This leads to a contradiction, since v′i < vi for all i ∈ Γ1\{a, b, c}
(we use here the assumption that Γ1 \ {a, b, c} 6= ∅).

Consider now Case (B). The coefficient of H on the right hand-side of
(6.4.1) is at most d, while the the coefficient of H in E ′

1 is d − 1. If s > 1,
it follows that s = 2 and E2 is an irreducible divisor that has H-degree 1.
From the Kapranov blow-up model of M0,n+1 one can see that either E2 is
a boundary divisor or h0(E2) > 1. This is a contradiction, since E2 is a divi-
sor that intersects the interior of M0,n+1 and moreover, it is an exceptional
divisor for the birational map π′. The same argument shows that c1 = 1.

Moreover, we must have a′I0 = 1, for some |I0| = n − 2 (with a′I = 0 for
all I 6= I0). Let {u, v} = Ic0. We have:

E1 = π−1
N DΓ = dH −

∑

I⊂N
1≤|I|≤n−3

m′
IEI − δu,v.

In particular, mi = m′
i − 1 for all i 6= u, v and mi = m′

i if i ∈ {u, v}. Note
that v′b = vb + 1, v′c = vc + 1, while v′i = vi for all i 6= b, c. By Lemma 6.4,
m′
i ≥ d′ − v′i = d+ 1− v′i for all i. Since mi = d− vi for all i, it follows that

if i 6= {b, c} then i 6= {u, v}, i.e., {u, v} = {b, c}. We have:

E1 = π−1
N DΓ = dH −

∑

I⊂N
1≤|I|≤n−3

m′
IEI − δb,c. (6.4.4)

We consider the coefficients mI and m′
I for I = Γ′

1. By (4.2.6), we have

mI = d+ |I| − 1−
∑

i∈I

vi. (6.4.5)

By Lemma 6.4, we have:

m′
I ≥ |I| − 1− cap((Γ′)I) +

∣

∣{Γ′
α |Γ

′
α ⊂ Ic}

∣

∣ . (6.4.6)
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Recall that we assume b /∈ Γ1. Note that

|{Γα |Γα ⊂ Ic}| = d−
∑

i∈I

vi + |I| − 1. (6.4.7)

We will compare |{Γα |Γα ⊂ Ic}| with |{Γ′
α |Γ

′
α ⊂ Ic}|.

We consider two cases. First, assume c /∈ Γ1. Then (Γ′)I = {I}. Hence,
cap((Γ′)I) = |I| − 2. Since Γ0 = {a, b, c} ⊂ Ic it follows that:

m′
I ≥ 1 +

∣

∣{Γ′
α |Γ

′
α ⊂ Ic}

∣

∣ = 2 + |{Γα |Γα ⊂ Ic}| = d+ |I|+ 1−
∑

i∈I

vi,

which contradicts (6.4.5) since by (6.4.4) mI = m′
I − 1.

Now assume c ∈ Γ1. By (6.4.7) and from Γ0 * Ic it follows that

m′
I ≥ 1 +

∣

∣{Γ′
α |Γ

′
α ⊂ Ic}

∣

∣ = 1 + |{Γα |Γα ⊂ Ic}| = d+ |I| −
∑

i∈I

vi.

This contradicts (6.4.5), since by (6.4.4), mI = m′
I . �

§7. SPHERICAL AND NOT SO SPHERICAL HYPERTREES

7.1. THEOREM. Let K be an even (i.e., bicolored) triangulation of a sphere with n
vertices. Then its collection of black (resp. white) triangles Γ (resp. Γ′) is a hyper-
tree. It is irreducible if and only if K is not a connected sum of two triangulations.

Proof. Let d (resp. d′) be the number of triangles in Γ (resp. Γ′). Since K has
3d = 3d′ edges, we have d = d′. By Euler’s formula,

n− 3d+ 2d = 2,

and therefore d = n− 2.

7.2. Take any k black triangles Γ1, . . . ,Γk and let ∆ ⊂ S2 be their union.
As a simplical complex, ∆ has k faces, 3k edges, and |Γ1 ∪ . . .∪Γk| vertices.
Since h2(∆) = 0, we have

χ(∆) = h0(∆)− h1(∆) =
∣

∣

k
⋃

i=1

Γi
∣

∣− 2k.

Abusing notatation, let S2 \ ∆ denote the simplicial complex obtained by
removing interiors of triangles in ∆. Let D be the closure of a connected
component of the set S2 \∆ with vertices removed. Note that D is not nec-
essarily a polygon (it is not necessarily simply connected), but its bound-
ary edges are well-defined. Their number e(D) is equal to three times the
number of white triangles inside D minus three times the number of black
triangles inside D. It follows that 3|e(D). Then the number of edges in
∂(S2 \∆) = ∂∆ equals

3k =
∑

e(Di) ≥ 3h0(S
2 \∆). (7.2.1)

This implies that

h0(S
2 \∆) ≤ k for any union ∆ of k black (resp. white) faces, (7.2.2)
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7.3 (Γ satisfies the convexity axiom (‡)). By Alexander duality,

h1(∆) = h0(S
2 \∆)− 1 ≤ k − 1,

and we have
∣

∣

k
⋃

i=1

Γi
∣

∣− 2 = 2k + h0(∆)− h1(∆)− 2 ≥

≥ 2k + h0(∆) + 1− k − 2 ≥ k.

It follows that Γ is a hypertree.

7.4. Suppose that Γ is not irreducible. Then one can find a subset of k black
triangles Γ1, . . . ,Γk as above with 1 < k < n − 2 such that all inequalities
above are equalities, i.e.

h0(S
2 \∆) = k, h0(∆) = 1.

Hence, S2 \∆ has k connected components D1, . . . , Dk. Moreover, using
(7.2.1) we have e(Di) = 3 for all i. Some (but not all) of the Di’s are just
white triangles K, others are unions of black and white triangles. But all
of them are simpy-connected polygons, since h1(S

2 \∆) = 0 by Alexander
duality (hence, S2 \∆ is simply connected).

Now it is clear that we are done: Let D be one of the connected compo-
nents of S2 \ ∆ which is not a white triangle. But the boundary of D is a
triangle, and it is clear that K is a connected sum of two triangulations K1

and K2 glued along the boundary of D. Namely, K1 is formed by removing
all triangles inside D and gluing a white triangle along the boundary of D
instead. And K2 is formed by removing all triangles not in D and gluing a
black triangle along the boundary of D instead.

And the other way around, if K is a connected sum of triangulations K1

and K2 then Γ is not irreducible: just take the set S to be the set of all black
triangles of K1. �

The proof of Theorem 7.1 shows the following:

7.5. LEMMA. If K is an even triangulation of a sphere andD is a polygon such that
any triangle inside D adjacent to a boundary edge of D is white (equivalently, D
is one of the connected components of the complement to a union of black triangles
in K) then the number of edges of D is divisible by 3. Moreover, K is irreducible if
and only if whenever the number of edges of D is three, then D is a white triangle
or the complement of a black triangle.

We will prove in Corollary 8.4 that white and black hypertrees of any
irreducible even triangulation give the same divisor on M0,n. We will now
show that under a mild genericity assumption there are no other hypertrees
that give the same divisor.

7.6. DEFINITION. Let Γ be an irreducible hypertree composed of triples. We
call Γ generic if for any triple {i, j, k} ⊂ N that is not a hyperedge or a wheel
(see 4.8), we have

cap(ΓN\{i,j,k}) = n− 4, (7.6.1)

where ΓN\{i,j,k} is the collection of triples obtained from Γ by identifying
vertices i, j, and k (and removing triples which contain two of the points
i, j, k).
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7.7. THEOREM. Let Γ, Γ′ be generic hypertrees. IfDΓ = DΓ′ then Γ′ is irreducible
and there exists a bicolored triangulation K of S2 such that Γ is its collection of
black faces and Γ′ is its collection of white faces. In this case Γ uniquely determines
the triangulation.

Theorem 7.7 and Lemmas 7.8, 7.9 give a lower bound on the number of
extremal rays of the effective cone of M0,n, namely, the number of generic
non-spherical irreducible hypertrees plus half of the number of generic
spherical irreducible hypertrees (on all subsets of N ).

7.8. LEMMA. Let Γ be an irreducible hypertree on a subset K of N and consider
the forgetful map πK :M0,n →M0,K . Then π−1

K DΓ generates an extremal ray of

Eff(M0,n).

Proof. We may assume without loss of generality that K = {1, . . . , k} for
k ≤ n. By Theorem 4.3, the divisor DΓ is irreducible. Therefore, the divisor

π−1
K DΓ is irreducible. Moreover, πΓ∪{n+1}(DΓ) has codimension at least two

in MΓ∪{n+1}. It is enough to construct a hypertree Γ̃ on the set N such that

π−1
K DΓ is in the exceptional locus of πΓ̃∪{n+1}. This will be the case if for

example Γ ⊆ Γ̃. Let Γ̃ = Γ ∪ {Γ′
1, . . . ,Γ

′
n−k} where

Γ′
1 = {k + 1, 1, 2}, Γ′

2 = {k + 2, 1, 3}, . . . ,Γ′
n−k = {n, 1, n− k}.

�

7.9. LEMMA. Let Γ be an irreducible hypertree on N . If for some forgetful maps

π :M0,Ñ →M0,N and π′ :M0,Ñ →M0,N ′ for subsets N and N ′ of Ñ , we have

π−1(DΓ) = π′
−1

(DΓ′),

for some irreducible hypertree Γ′ on N ′ ⊆ Ñ , then N = N ′, DΓ = DΓ′ .

Proof. Consider the divisor class of the pull-back D of π−1(DΓ) to M0,|Ñ |+1

in the Kapranov model with respect to the |Ñ |+1 marking. Using Theorem
4.2, we have

D = (d− 1)H −
∑

i∈Ñ\N

(d− 1)Ei −
∑

i∈N

(d− vi)Ei . . . ,

where vi ≥ 2 is the valence of i in Γ. If

π−1(DΓ) = π′
−1

(DΓ′),

then d = d′ and by reading off the coefficients of Ei that are equal to d− 1,
it follows that N = N ′ and DΓ = DΓ′ . �

Proof of Theorem 7.7. Comparing the classes of DΓ and D′
Γ given in Theo-

rem 4.2, we see that d = d′ = n − 2, i.e., Γ′ is also composed of triples, and
for each i ∈ N , the hypertrees Γ and Γ′ have the same valences vi.

Let Ξ (resp. Ξ′) be the collection of wheels of Γ (resp. Γ′). We claim that

Γ ∪ Ξ = Γ′ ∪ Ξ′.

Let m (resp., m′) be coefficients of the class of DΓ (resp. DΓ′), as in Theo-
rem 4.2. Then by (4.2.3) and (4.2.1) m′

N\{i,j,k} ≥ 1 for any triple {i, j, k} that

is a hyperedge or a wheel in Γ′. But since Γ is a generic hypertree, using
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Lemma 4.9, we have mN\{i,j,k} = 0 for any triple {i, j, k} which is not a
hyperedge or a wheel. This proves that Γ′ ∪Ξ′ ⊂ Γ∪Ξ. Since both Γ, Γ′ are
generic hypertrees, this proves the claim.

Suppose Γ 6= Γ′. Without loss of generality, we can assume that

Γ1 ∈ Γ \ Γ′.

We are going to construct a finite bi-colored 2-dimensional polyhedral
complex K inductively, as the union of complexes K1 ⊂ K2 ⊂ . . .. On each
step, any black face of Ki is going to be a hyperedge in Γ and a wheel in Γ′,
and vice versa for white faces.

Let’s define K1. Its vertices are indexed by Γ1. Since Γ1 is a wheel in Γ′, it
can be identified with a triangle in a unique way, where edges of the trian-
gle are precisely intersections (with two elements) of Γ1 with hyperedges
of Γ′. So we let K1 be this polygon, colored black.

Next we define an inductive step. Suppose Kn is given. Take a face X .
Then X is either black or white. The construction is absolutely symmetric,
so let’s suppose thatX is black. Then the set of vertices ofX is a hyperedge
in Γ and a wheel in Γ′. Moreover, we will make sure that, in our inductive
construction, edges of X are exactly intersections (with two elements) of X
with hyperedges of Γ′. Notice that this holds for K1.

Let {a, b} ⊂ X be an edge that is not an edge of some white face. If
any edge of X is also an edge of some white face then discard X , and try
another face. If we can not find a face with an edge that is not an edge of
some face of an opposite color then the algorithm stops.

Since X is a wheel of Γ′, {a, b} is the intersection of X with a unique
hyperedge Y of Γ′. This will be our next face. Since a, b ∈ X , X is a unique
hyperedge in Γ containing a, b. So Y must be a wheel in Γ. Therefore, we
can identify Y with vertices of a triangle such that its edges are identified
with (2-pointed) intersections of Y with hyperedges in Γ. For example,
(a, b) will be one of these edges. We define Kn+1 as Kn with Y added as a
new white polygon.

We have to check that Kn+1 is a bi-colored polygonal complex, i.e. that
any two faces of Kn+1 share at most two vertices, and if they share exactly
two vertices, then in fact they share an edge and are colored differently. So
let Z be a face of Kn such that |Z ∩ Y | > 1 but Z 6= Y . Then Z can not be a
hyperedge of Γ′, so Z is a black face. Since Z is a wheel of Γ′, Z ∩ Y is an
edge of Z. And since Y is a wheel in Γ, Z ∩ Y is an edge of Y .

At some point this algorithm stops. Let K be the resulting polygonal
complex. Let {Γi | i ∈ S} (resp. {Γ′

i | i ∈ S′}) be the collection of its black
faces (resp. white faces) for some S ⊂ {1, . . . , n− 2} (resp. S′ ⊂ {1, . . . , n−
2}). Let

e =
∑

i∈S

|Γi| =
∑

i∈S′

|Γ′
i|

be the number of edges of K and let

v = | ∪i∈S Γi| = | ∪i∈S′ Γ′
i|

be the number of its vertices. Finally, let f = fb + fw be the number of
its faces, where fb = |S| (resp. fw = |S′|) is the number of black faces
(resp. white faces).
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Notice that apriori K is not necessarily homeomorphic to a closed sur-
face, because at some vertices of K several sheets can come together. At
these points, the link of K is homeomorphic to the disjoint union of several
circles. Let K̄ → K be the “normalization” obtained by separating these
sheets. Then K̄ is homeomorphic to a closed surface. Let v̄ ≥ v be the
number of vertices in K̄. We have

2(v̄ − e+ f) ≥ 2v − 2e+ 2fb + 2fw =

= | ∪i∈S Γi|+ | ∪i∈S′ Γ′
i| −

∑

i∈S

|Γi| −
∑

i∈S′

|Γ′
i|+ 2|S|+ 2|S′| =

= | ∪i∈S Γi| −
∑

i∈S

(|Γi| − 2) + | ∪i∈S′ Γ′
i| −

∑

i∈S

(|Γi| − 2) ≥ 4

since Γ and Γ′ are hypergraphs. Since they are strong hypergraphs, the
inequality is strict unless S = S′ = {1, . . . , n− 2}. It follows that

χ(K̄) ≥ 2,

and the inequality is strict unless S = S′ = {1, . . . , n − 2}. But the Euler
characteristic can not be bigger than 2, with the equality if and only if K̄ is
a sphere. It follows that K̄ = K is a bi-colored triangulation of a 2-sphere
which uses all hyperedges in Γ as black faces and all hyperedges in Γ′ as
white faces.

It remains to show that Γ uniquely determines the triangulation. It is
enough to show that Γ′ is the set of all wheels Ξ of Γ. Since Γ′ ⊆ Ξ, it is
enough to show that there are no wheels in Γ other than the set of white
triangles in K. Assume there exists a wheel {i, j, k} which is not a white
triangle. Let D be one of the two polygons on the sphere bordered by this
wheel. By switching between the two polygons, we may assume that at
least two of the three edges of D are bordered by two black triangles which
lie outside of D. If the remaining black triangle bordering D lies on the
outside of D, this contradicts the irreducibility of Γ. If the remaining black
triangle lies on the inside ofD, then we obtain a polygon bordered by white
triangles and having 4 edges, which contradicts Lemma 7.5. �

We now construct both spherical and non-spherical generic hypertrees.

7.10. DEFINITION. Let K be an even triangulation. Let D be a polygon such
that any triangle inside D adjacent to a boundary edge of D is white.

We call K a generic triangulation if:

• K is irreducible, i.e., if D has three edges then D is a white triangle
or the complement of a black triangle (see Lemma 7.5).

• If D has 6 edges then D is either a hexagon A or B or the comple-
ment of a hexagon A′ or B′ from the following picture:
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7.11. REMARK. Genericity means that vertices are sprinkled on the sphere
sufficiently densely. We didn’t try to give a combinatorial classification of
generic triangulations, although this is perhaps possible. But to give a fla-
vor of what’s going on, suppose K is any even triangulation and let K′ be
a “quadrupled” even triangulation obtained by the following procedure:
take all vertices in K and add a midpoint of any edge of K as a new point

FIGURE 4. Quadrupling a triangulation

of K′. For any black (resp. white) triangle T = {a, b, c} of K, the triangu-
lation K′ has black (resp. white) triangles {a, b′, c′}, {a′, b, c′}, and {a′, b′, c}
and a white (resp. black) triangle {a′, b′, c′}, where a′, b′, c′ are new points
in T opposite to vertices a, b, c, see Figure 4. It is not hard to see that after
quadrupling K several times the triangulation becomes generic. Indeed,
any closed path with 6 edges will happen either in the region of the trian-
gulation that looks like a standard A2-triangulated R2, in which case D is
a hexagon A or A′, or this path loops around a vertex of valence 6= 6. In
this case the valence must be equal to 4, and we have a hexagon B or B′. In
fact, quadrupling just once is enough [Har].

7.12. LEMMA. Let K be a generic triangulation and let Γ be its collection of black
triangles. Then Γ is a generic hypertree, except when n = 8 and K is the triangu-
lation given by the bipyramid (see Section §9).

7.13. REMARK. The genericity assumption in Lemma 7.12 is necessary: the
bipyramid is easily seen to not be a generic triangulation for n > 8 (for
example there are many loops with 6 edges with black triangles on one
side of it that pass once through the north pole and once through the south
pole). We will show in §9 that the corresponding divisor is a pull-back of
the “Brill–Noether divisor” for a certain map M0,n → Mn−3, and conse-
quently its symmetry group is much larger than the dihedral group. This
divisor can be realized by various hypertrees Γ′ obtained from Γ by per-
muting equatorial points. By Lemma 7.12, the bipyramid for n = 8 is the
only generic triangulation that does not correspond to a generic hypertree.

Proof of Lemma 7.12. We write a ↔ b if vertices a and b are connected by an
edge. Up to symmetries, there are three possible cases.
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Case X: ij and jk are both edges of black triangles. These triangles are
removed in ΓN\{i,j,k}.

Case Y: ij is an edge of a black triangle, which will be removed in ΓN\{i,j,k},
but i 6↔ k and j 6↔ k. We also remove a black triangle adjacent to k as fol-
lows: if i, j, k are vertices of the hexagon A′, then we remove the black
triangle inside the hexagon adjacent to k; in all other cases, we remove a
random black triangle adjacent to k.

Case Z: i 6↔ j, j 6↔ k, and i 6↔ k. In this case we remove two black
triangles adjacent to the same point (it could be i, j, or k) according to the
following rules. If one of the points i, j, or k has valence 2 (see Definition
1.8), then we remove both triangles adjacent to this point (any of i, j, k is
going to work). If each of the points i, j, k has valence more than 2, but these
points are vertices of the hexagon A′, then we remove the black triangle
inside the hexagon adjacent to i and any other black triangle adjacent to i.
In any other case we just remove two random black triangles adjacent to i.

We claim that the remaining n − 4 triangles Γ̃ form a hypertree if we

identify i = j = k. Let S ⊂ Γ̃ be a proper subset of s black triangles, with
1 < s < n − 4. It is enough to show that S covers at least s + 2 vertices
(after we identify i = j = k). Let ∆ be the union of triangles in S before the
identification. Since Γ is irreducible, ∆ contains at least s+ 3 vertices of N .
So it suffices to prove the following:

7.14. CLAIM. If i, j, k ∈ ∆ then ∆ contains at least s+ 4 vertices of N .

By (7.2), this claim is equivalent to the following more simple:

7.15. CLAIM. The complement S2\∆ contains either a connected component with
at least 9 sides or at least two connected components with at least 6 sides each
(by 7.2, the number of sides is always divisible by 3).

We argue by contradiction. Note that we remove two triangles, and
a connected component of S2 \ ∆ that contains any of them has at least
six edges. Therefore both removed triangles belong to the same connected
component, call it D, with six edges (and all other connected components
are white triangles). Recall that i, j, k ∈ ∆ and ∆ ⊂ S2 \D.

We know how all hexagons look like: D must either be the inside of a
hexagon A or B or the “outside” of a hexagons A′ or B′. The hexagon A is
excluded because it contains only one black triangle.

The hexagon B contains two black triangles inside, so they must be the
removed triangles. Since i, j, k ∈ ∆, it must be that i, j, k are on the bound-
ary of the hexagon. In cases X and Y the removed triangles contain i, j, k;
hence, two opposite vertices of the hexagon B are excluded. In this case
it follows that one of i, j, k is connected by an edge to the other two. This
is only possible in case X . But in case X the removed triangles have in
common only j; hence, j must be strictly inside the hexagon, which is a
contradiction. Finally, the case Z is impossible because the removed tri-
angles have in common i, therefore i must be the point strictly inside the
hexagon, which is a contradiction.

Suppose thatD is the outside of the hexagonA′ orB′. Since the removed
triangles are contained inD, it follows that no two of i, j, k can be connected
by a black triangle inside the hexagon.
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Assume D is the outside of the hexagon A′. Then i, j, k are the three
vertices of A′ with no two of them connected by an edge. In cases Y and Z
one of the removed triangles is inside A′, which is a contradiction.

Assume we are in case X . Let a (resp. b, resp. c) be the middle vertex
(on the boundary of A′) between i, j (resp. j, k, resp. i, k). We claim
that i, j, a and j, k, b must form white triangles. (Assume {i, j, a} is not a
white triangle. Consider the polygon Q bordered by the white triangles
that contain the edges {i, a}, {j, a}, {i, j}. Then Q has either 3 or 4 edges.
This is a contradiction. The other case is identical.)

Consider the complement of the polygon P bordered by black triangles
{i, a, c}, {k, b, c} and the two black triangles adjacent to the edges {i, j} and
{j, k}. Since K is a generic triangulation, it must be that P is either the
complement of one of the hexagons A′ or B′ (in which case P contains two
vertices strictly in its interior, whileA′, B′ do not; hence, a contradiction) or
P is the inside of one of the hexagons A or B. This completely determines
the triangulation; in case A we must have n = 8, while in case B we have
n = 9. It is easy to see that in case A this gives the bipyramid triangulation,
and that case B cannot happen for an irreducible hypertree.

Assume now that D is the outside of the hexagon B′. Since no two of
i, j, k can be connected by a black triangle inside the hexagon and since
i, j, k are inside the hexagon, it follows that the point strictly in the interior
of B′ must be one of i, j, k. In cases X , Y since i, j, k belong to the removed
triangles, which are in D, it follows that i, j, k are on the boundary of B′,
which is a contradiction. In caseZ, note that since the valence of the interior
point is 2, the removed triangles must be the two black triangles inside B′,
which is a contradiction.

�

7.16. W. Thurston [Th] suggests an approach for the classification of trian-
gulations of the sphere based on hyperbolic geometry. Moreover, he gives
a complete classification for triangulations with vi = 2 or 3 for all vertices
i. It would be interesting to see how irreducible and generic triangulations
fit in his classification.

We have not tried to classify all non-spherical hypertrees. It is easy to see
that just choosing a random collection of triples is not going to work: one
of the results in the theory of random hypergraphs is that they are almost
surely disconnected. It is easy to see that disconnected hypertrees do not
satisfy (‡). But perhaps one can enumerate all hypertrees inductively, using
some simple “add a vertex” procedures. Here is an example of such a con-
struction. The number of irreducible hypertrees produced this way grows
very rapidly as n goes to infinity.

7.17. CONSTRUCTION. Suppose that Γ′ is an irreducible hypertree on N
with triples only. After renumbering, we can assume that n belongs to only
two triples, namely to Γ′

n−3 and Γ′
n−2. Suppose also that n − 1 ∈ Γ′

n−2.
We define n− 1 triples for k = n+1 as follows: Γi := Γ′

i for i = 1, . . . , n− 3;
if Γ′

n−2 = {i, n−1, n} then we define Γn−2 := {i, n−1, n+1}; and we define
Γn−1 := {a, n, n+1}, where a is any index in N \ (Γn−2 ∪ Γn−3), see Fig. 5.

7.18. PROPOSITION. Γ is an irreducible hypertree.
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FIGURE 5.

Proof. Suppose I ⊂ {1, . . . , n− 1}, 1 < |I| < n− 1. Consider several cases.
If I ⊂ {1, . . . , n− 3} then

|
⋃

i∈I

Γi| = |
⋃

i∈I

Γ′
i| ≥ |I|+ 3,

and we are done. If I = I ′ ∪ {n − 2} (resp. I = I ′ ∪ {n − 1}), where
I ′ ⊂ {1, . . . , n− 3}, then

|
⋃

i∈I

Γi| ≥ |
⋃

i∈I′

Γ′
i|+ 1,

because n + 1 belongs to the first union but does not belong to the second
union. So again we are done unless |I ′| = 1, in which case the claim is easy.

It remains to consider the case I = I ′ ∪ {n − 2, n − 1}, where I ′ ⊂
{1, . . . , n − 3} (and note that |I ′| < n − 3). If I ′ is empty then the claim
is easy. Otherwise, let I ′′ = I ′ ∪ {n− 2}. Then 1 < |I ′′| < n− 2 and so

|
⋃

i∈I′′

Γ′
i| ≥ |I ′′|+ 3.

But
⋃

i∈I

Γi k
⋃

i∈I′′

Γ′
i ⊔ {n+ 1}.

So Γ is an irreducible hypertree. �

7.19. LEMMA. Let Γ′ be an irreducible hypertree composed of triples and let Γ be
the irreducible hypertree obtained from Γ′ by the inductive construction 7.17. If Γ′

is generic, then Γ is generic.

Proof. Let {i, j, k} be a triple in N ∪ {n+ 1} that is not a triple, nor a wheel

in Γ. Denote by Γ̃α the triple Γα obtained by identifying i, j, k with p, with

the convention that we drop the Γ̃α’s that are not triples. We prove that we

can find n− 3 triples Γ̃α that satisfy (‡).
Consider the case when n + 1 ∈ {i, j, k}, say k = n + 1: If {i, j} is con-

tained in some Γα for α ∈ {1, . . . , n−3}, say Γn−3, then we take as our n−3

triples Γ̃1, . . . , Γ̃n−4 and one of Γ̃n−2, Γ̃n−1 (one that is a triple; for example,
since Γn−2∩Γn−1 = {n+1} and {i, j, n+1} is not a wheel in Γ, one of Γn−2,
Γn−1 does not contain i, j). If {i, j} is not contained in any of Γ1, . . . ,Γn−3,

we take Γ̃1, . . . , Γ̃n−3 as our triples. The result follows from the fact that for
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any T ⊂ {1, . . . , n− 3}, since n+ 1 /∈ ∪n−3
α=1Γα, we have

∣

∣

⋃

α∈T

Γ̃α
∣

∣ ≥
∣

∣

⋃

α∈T

Γα
∣

∣− 1 ≥ |T |+ 3− 1 = |T |+ 2.

Adding one of Γ̃n−2, Γ̃n−1 adds the index n+ 1 to the union, and condition
(‡) is still satisfied. The case when n ∈ {i, j, k}, n + 1 /∈ {i, j, k} is similar:
we take Γ̃1, . . . , Γ̃n−4 (note, n /∈ ∪n−4

α=1Γα) and Γ̃n−1 as our triples.
Consider now the case when n, n + 1 /∈ {i, j, k}. Then {i, j, k} is not a

triple, nor a wheel in Γ′. Since Γ′ is a generic hypertree, there are n − 4
triples from Γ′ which after identifying identifying i, j, k with p satisfy (‡).

If the n−4 triples are also triples in Γ (i.e., Γ′
n−2 is not among them), then

adding one Γn−1 to them will do. Assume the contrary. Since |Γ̃′
n−2| = 3,

then |Γ̃n−2| = 3. We claim that the remaining n − 5 triples and Γ̃n−2, Γ̃n−1

will do the job. Let T be a subset of the n − 5 remaining triples. Clearly,

{Γ̃α}α∈T satisfy (‡). Adding one of Γ̃n−2, Γ̃n−1 to {Γ̃α}α∈T will not violate

(‡). But {Γ̃α}α∈T , Γ̃n−2, Γ̃n−1 also satisfy (‡):
∣

∣

⋃

α∈T

Γ̃α ∪ Γ̃n−2 ∪ Γ̃n−1

∣

∣ ≥
∣

∣

⋃

α∈T

Γ̃α ∪ Γ̃′
n−2 ∪ {n+ 1}

∣

∣ ≥ (|T |+ 1) + 2 + 1.

This finishes the proof. �

§8. DETERMINANTAL EQUATIONS

In this section we give simple determinantal equations of hypertree di-
visors in M0,n and then use them to show that black and white hypertrees

of a spherical hypertree give the same divisor in M0,n.
We consider only the case when hyperedges are triples. Fix a hypertree

Γ = {Γ1, . . . ,Γn−2}

on the set {1, . . . , n}. We work in “homogeneous coordinates” on M0,n,
i.e., we represent a point of M0,n by n roots x1, . . . , xn of a binary n-form.

8.1. PROPOSITION. Let A be an (n − 2) × n matrix with the following rows
(well-defined up to sign) : if Γα = {i, j, k} then

Aαi = xj − xk, Aαj = xk − xi, Aαk = xi − xj .

Then DΓ is given by the vanishing of any (n− 3)× (n− 3) minor of A obtained
by deleting a row and three columns with non-zero entries in that row.

8.2. EXAMPLE. Consider the only hypertree for n = 7 with hyperedges

Γ = {712, 734, 756, 135, 246}.

Then we have

A =













x2 − x7 x7 − x1 0 0 0 0 x1 − x2
0 0 x4 − x7 x7 − x3 0 0 x3 − x4
0 0 0 0 x6 − x7 x7 − x5 x5 − x6

x3 − x5 0 x5 − x1 0 x1 − x3 0 0
0 x4 − x6 0 x6 − x2 0 x2 − x4 0













and DΓ is given by equation

−x27x2x3 + x7x1x2x3 + x27x1x4 − x7x1x2x4 − x7x1x3x4 + x7x2x3x4+
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x27x2x5 − x7x1x2x5 − x27x4x5 + x1x2x4x5 + x7x3x4x5 − x2x3x4x5 − x27x1x6

+x7x1x2x6 + x27x3x6 − x1x2x3x6 − x7x3x4x6 + x1x3x4x6 + x7x1x5x6

−x7x2x5x6 − x7x3x5x6 + x2x3x5x6 + x7x4x5x6 − x1x4x5x6 = 0

Proof. This is very simple. Fix different points x1, . . . , xn ∈ A1. The condi-
tion that these points can be obtained by projecting a hypertree curve is as
follows: there exist y1, . . . , yn ∈ A1 such that a triple of points

(xi, yi), (xj , yj), (xk, yk)

lie on the line for any hyperedge Γα = {i, j, k}. This can be expressed by
vanishing of the determinant

− det





1 xi yi
1 xj yj
1 xk yk



 = yi(xj − xk) + yj(xk − xi) + yk(xi − xj) = 0.

This gives a homogeneous system of linear equations on yi’s with the ma-
trix of coefficients A. Notice that it has a 2-dimensional subspace of trivial
solutions (obtained by placing all points pi along some line on the plane).
Thus the condition that there exists a planar realization of Γ with projec-
tions x1, . . . , xn is given by vanishing of any non-trivial (n − 3) × (n − 3)
minor. For example, fix a row that corresponds to Γα = {i, j, k}. We can
force yi = yj = yk = 0 as this points have to lie on a line anyways. Then we
get a system of linear equations on the remaining n − 3 variables and the
condition is that this system has a non-trivial solution. This gives a minor
as in the statement of the theorem. �

These equations do not explain why black and white hypertrees of the
spherical hypertree yield the same divisor: their matrices AB and AW will
be vastly different. For example, one can check that rkAB 6= rkAW for
some values of variables x1, . . . , xn. Fortunately, DΓ has another determi-
nantal equation.

8.3. PROPOSITION. Let G be a 2-dimensional simplicial complex with simplices
Γ1, . . . ,Γn−2 (oriented arbitrarily). Then H1(G,Z) = Zn−3. We choose a gener-
ating set of paths P1, . . . , Pm (one can take m = n− 3), where

Pi = (α1
i → α2

i . . .→ αri → αr+1
i = α1

i )

is a path in {1, . . . , n − 2} such that Γ
α
j
i
∩ Γ

α
j+1
i

6= ∅ for any j. Consider an

m × (n − 2)-matrix B such that Biα = 0 if α 6∈ Pi and Biα = xk − xl if
α = αsi ∈ Pi, where k = Γαs

i
∩ Γαs+1

i
and l = Γαs

i
∩ Γαs−1

i
. Then DΓ is given by

vanishing of any non-trivial (n− 3)× (n− 3)-minor of B.

8.4. COROLLARY. Black and white hypertrees of a spherical hypertree give the
same divisor on M0,n.

Proof of the Corollary. Notice that G is just the “black” part of the bi-colored
triangulation of the sphere. We orient all black and white triangles ac-
cording to an orientation of the sphere. We can choose a generating set of
H1(G,Z) to be given by cycles around white triangles. Then B has the fol-
lowing very simple form. It has rows indexed by white triangles, columns
indexed by black triangles. The entryBwb is equal to zero if triangles w and



HYPERTREES, PROJECTIONS, AND MODULI OF STABLE RATIONAL CURVES 43

b do not share an edge, and Bwb = xi − xj if w and b intersect along the
edge [ij] (oriented according to the orientation of b). Now notice that the
corresponding matrix for the white hypertree is just the minus transposed
matrix −Bt. �

8.5. EXAMPLE. Consider the spherical hypertree from Example 1.6. The ma-
trix B looks as follows (we skip zero entries):
























x1 − x3 x2 − x1 x3 − x2
x4 − x1 x8 − x4 x1 − x8
x3 − x4 x5 − x3 x4 − x5

x5 − x8 x8 − x10 x10 − x5
x6 − x5 x5 − x9 x9 − x6

x10 − x7 x9 − x10 x7 − x9
x3 − x6 x6 − x7 x7 − x3

x8 − x2 x7 − x8 x2 − x7

























Proof of the Proposition. This is similar to the proof of the previous Proposi-
tion: we fix x1, . . . , xn ∈ A1 but now instead of using y1, . . . , yn as variables,
we use slopes of the lines k1, . . . , kn−2 as variables. To reconstruct the pla-
nar realization, we choose a height y1 arbitrarily and then consecutively
compute the remaining “heights” yi: if yi is already known and i and j are
connected by a line with slope kα then of course

yj = yi + kα(xj − xi),

which gives yj . We only have to show that heights of points thus obtained
do not depend on a sequence of lines that connects them to the first point.
But this precisely means that for each cycle of lines

α1 → α2 . . .→ αr → αr+1 = α1,

the relative height of the last point with respect to the first point is equal
to 0, i.e., that slopes satisfy the system of linear equations with matrix B.
Throwing away a trivial solution when all slopes are equal, we get the
equation of DΓ as a minor of B of codimension 1 (note that rows and
columns of B add to zero.) �

§9. HYPERTREES AND BRILL–NOETHER DIVISORS ON Mg

Consider the Keel–Vermeire divisor on M0,6. According to our descrip-
tion, DΓ is the locus of projections of vertices of the complete quadrilateral.
This is a spherical hypertree with the triangulation given by an octahedron.
There are two hypertrees (black and white) that give the same divisor. The
total number of Keel–Vermeire divisors on M0,6 is 15. They are parameter-
ized by markings of the octahedron, i.e., by tri-partitions of {1, . . . , 6} into
pairs. For example, Figure 6 corresponds to a 3-partition (12)(34)(56).

Now let us explain the left-hand-side of Figure 6. For any tri-partition,
consider the map M0,6 →M3 obtained by gluing points in pairs

M0,6 → M3

7→
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FIGURE 6. The Keel-Vermeire divisor in M0,6

Keel defined a divisorDK ⊂M0,6 as the pull-back of the hyperelliptic lo-

cus inM3. This locus is divisorial. By the theory of admissible covers [HM],
a hyperelliptic involution on the general genus 3 curve in the limit induces
an involution of P1 that exchanges points in the pairs (12), (34), and (56).
Quotient by this involution is a degree 2 map P1 → P1, which can be real-
ized by embedding P1 in P2 as a plane conic and projecting it from a point.
It follows thatDK ⊂M0,6 is the locus of 6 points on a conic such that chords
connecting pairs of points (12), (34), and (56) are concurrent.

It is quite amazing that these two descriptions give the same divisor:

9.1. PROPOSITION. DK = DΓ.

Proof. Passing to the projectively dual picture, let A1, A2, A3, A4 ∈ P2 be
general points and let L ⊂ P2 be a general line. Let {Lij} be 6 lines con-
necting pairs of points Ai, Aj . The claim is that there exists an involution
of L that permutes L∩Lij and L∩Li′j′ if {i, j}∪ {i′, j′} = {1, 2, 3, 4}. More
precisely, we prove that DΓ ⊂ DK . Since DK is an irreducible divisor (this
is easy to see by the above description), the Proposition follows.

The proof is illustrated in Figure 7. Let T : P2 99K P2 be the standard
Cremona transformation with the base locus {A1, A2, A3}. Then T contracts
lines L23, L13, and L12 to points A′

1, A
′
2, A

′
3. Let A′

4 = T (A4).

FIGURE 7. DK = DΓ

Notice that T (L) = C is a conic that passes through A′
1, A

′
2, A

′
3. These

points are images of points L ∩ L23, L ∩ L13, and L ∩ L12, respectively. For
any i = 1, 2, 3, the map T sends the line Li4 to the line that passes through
A′
i andA′

4. So the diagonals connectingA′
i to T (Li4∩L) are concurrent. �
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9.2. REMARK. The equation of DK was found by Joubert [J, 1867]. A point
of M0,6 is given by 6 roots x1, . . . , x6 of a binary sextic. Put them on the
Veronese conic. This gives 6 points pi = (1, xi, x

2
i ). The equation of the line

〈pi, pj〉 is

1

xj − xi
det





X Y Z
1 xi x2i
1 xj x2j



 = X(xixj)− Y (xi + xj) + Z = 0.

The condition that the three lines are concurrent is

det





x1x2 x1 + x2 1
x3x4 x3 + x4 1
x5x6 x5 + x6 1



 = 0. (9.2.1)

After some calculations, this gives

(14)(36)(25) + (16)(23)(45) = 0, (9.2.2)

where we use the classical bracket notation (ij) = xi − xj . The equation
for DΓ is of course the same, see §8 and [St, p. 93].

9.3. REMARK. In fact DK was known earlier. Cayley [C, 1856] studied
Hilbert functions of graded algebras (using a different language) and com-
puted the Hilbert function of the algebra of invariants of binary sextics:

h
(

k[Sym6 k2]SL2
)

=
1− x30

(1− x2)(1− x4)(1− x6)(1− x10)(1− x15)
.

This lead him to the (correct) prediction that this algebra is generated by
invariants A,B,C,D,E of degrees 2, 4, 6, 10, 15 with a single relation

E2 = f(A,B,C,D)

for some polynomial f . Salmon [S, 1866] computed these invariants and
proved (page 210) that E has very simple meaning: E = 0 if and only if
roots of the sextic are in involution! We are not specifying a tri-partition
here, so any of the 15 tri-partitions can occur. Salmon computes (page 275)
an expression of E in terms of roots of the sextic: E is a product of 15
determinants (9.2.1), one determinant for each tri-partition (ij)(kl)(mn).

One can ask if there are other hypertree divisors with similar “dual”
meaning as pull-backs of Brill–Noether (or perhaps Koszul) divisors onMg.
We will show that this is so for the easiest spherical hypertree one can draw:
the bipyramid. We will leave it to the reader to find further examples.

Let n = 2k + 2. A hypertree curve is illustrated in Figure 8 (for n = 12).
We label lines by A0 = B0, Ai, Bi (i = 1, . . . , k − 1), and Ak = Bk. The
labels are chosen so that the point 1 (resp., the point 2) belongs to the lines
Ai, Bi for i even (resp., odd) and such that the points 4, 5, . . . , 3 + (n− 2/2)
are obtained by intersecting lines

A0 = B0 → B1 → . . .→ Bk = Ak

while the points 4 + (n− 2/2), . . . , n, 3 are obtained by intersecting

Bk = Ak → Ak−1 → . . .→ A0 = B0.
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FIGURE 8. Bipyramid hypertree for n = 12

The bipyramid determines a tri-partition

{1, . . . , n} = {1, 2} ∪X ∪ Y

into two poles (in our example 1 and 2) and two “alternating” subsets X
and Y of the equator with |X| = |Y | = k. In our example k = 5,

X = {3, 5, 7, 9, 11} and Y = {4, 6, 8, 10, 12}.

Let DΓ ⊂M0,n be the corresponding hypertree divisor.

9.4. DEFINITION. Consider the map

M0,2k+2
ψ

−→ M2k−1

7→

obtained by gluing the poles of P1 and then gluing to it two copies of P1

with k marked points on each one along points of parts A and B of the tri-
partition. Let DK ⊂ M0,2k+2 be the pull-back of the Brill–Noether divisor

in M2k−1 that parameterizes k-gonal curves.

9.5. PROPOSITION. DK = DΓ.

9.6. REMARK. It is well-known that the Brill-Noether divisor on M2k−1 is
extremal for k ≤ 5. However, for k ≥ 6 the Brill-Noether divisor is not
extremal [Fa]. The Proposition shows that nevertheless, the proper trans-
form of the Brill-Noether divisor via the map ψ is an extremal divisor on
M0,2k+2. See also Remark 10.1 and the examples in Section §10.

Proof. Using theory of admissible covers, we can identify DK with a locus
in M0,n such that the corresponding P1 with n marked points admits a g1k
with members X , Y , and Z such that 1, 2 ∈ Z. In other words, DK param-
eterizes n-tuples {p1, . . . , pn} of points on a rational normal curve

C ⊂ Pk

such that
〈p1, p2〉 ∩ 〈pi〉i∈X ∩ 〈pi〉i∈Y 6= ∅. (9.6.1)

If k ≥ 4 then the attached P1’s (and hence the map ψ) are not uniquely defined. How-
ever, we will see that DK does not depend on any choices.
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It is not hard to see that DK is irreducible (DK can be parametrized by
an open in (P1)n−1, as the markings pi for i = 1, . . . , n − 1 determine pn).
So it remains to show that DΓ ⊂ DK . Consider n points p1, . . . , pn ∈ P1

obtained by projecting vertices of a hypertree from Figure 8 (assume all
lines Ai, Bi are distinct). We claim that if we put these points on a rational
normal curve C ⊂ Pk, the condition (9.6.1) is going to be satisfied.

In a projectively dual plane, we get a configuration of n lines in P2 de-
picted in Figure 9. Let us explain what’s new in this picture. The line L

FIGURE 9. Dual configuration of a bipyramid (n = 12)

is projectively dual to the focus of projection (we draw L as a curve be-
cause we are about to identify it with a rational normal curve in Pk). The
definition of points Q1, . . . , Q (k−1)(k−2)

2

is clear from the picture.

Let S be the blow-up of P2 in points Ai (i > 0), Bi (i > 0), and all Qi. We
do not blow-upA0 = B0, so basically we blow-up a “triangular number” of
points arranged in the triangular grid. One has to be slightly careful though
because this arrangement of lines has moduli, and in particular there are no
“horizontal” lines containing points in the grid other than lines 1 and 2. For
example, there is in general no line containing Q1, Q2, and Q3.

Consider a divisor

D = kH −A1 − . . .−Ak −B1 − . . .−Bk−1 −Q1 − . . .−Q (k−1)(k−2)
2

on S. The following effective divisors are linearly equivalent to D:

D1 = L3 ∪ . . . ∪ L2k+1 and D2 = L4 ∪ . . . ∪ L2k+2,

where Li is a proper transform of a line number i. It follows that the linear
system |D| has no fixed components, and therefore it defines a rational map

Ψ : S 99K Pk
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regular outside of points of intersection of D1 and D2. In fact Ψ is regular
at A0 = B0 because |D| also contains

L2 ∪ L6 ∪ L8 . . . ∪ L2k+2

which does not contain A0 = B0. The following argument proves that the
dimension of the linear system |D| is k and that the restriction of |D| to L

cuts a complete linear system: If |D| contains a member D̃ that contains L

as a component, a simple analysis using Bezout theorem shows that D̃ ⊃
D1 ∪D2, which is impossible (see a similar analysis below).

We see that Ψ(L) = C ⊂ Pk is a rational normal curve. Notice that hy-
perplanes 〈pi〉i∈X and 〈pi〉i∈Y are cut out by divisors D1 and D2 and that
these divisors have another point in common on S, namely A0 = B0. Fi-
nally, let’s consider the line 〈p1, p2〉. Any hyperplane containing this line

corresponds to a divisor D̃ in |D| that contains points 1 and 2. By Bezout

theorem, D̃ contains the line L2, and then the residual divisor D̃ − L2 con-
tains the line L1 (again by Bezout theorem). It follows that D̃ also contains
a point A0 = B0 and therefore

Ψ(A0) ∈ 〈p1, p2〉 ∩ 〈pi〉i∈A ∩ 〈pi〉i∈B.

QED �

The bipyramid divisor is very exceptional for its symmetries: the sym-

metry group of a bipyramid is a binary dihedral group D̃k but the corre-
sponding divisor in M0,2k+2 is a pull-back from M0,2k+2/S2 × Sk × Sk.

§10. PULL-BACKS OF DIVISORS FROM Mg

We will consider pull-backs of several “geometric” divisors on Mg,k (for
special values of g and k) via maps

ρ :M0,n →Mg,k, n = 2g + k

obtained by identifying g pairs of markings on a rational stable curve. We
give some evidence that in general this does not lead to any new interesting
divisors on M0,n. This is in contrast with the case n = 6 (when we obtain
the Keel-Vermeire divisors) and the cases in Section §9 (where we pull-back
via different types of maps).

10.1. REMARK. In our examples we will pull back divisorsE onMg,k which

are extremal in Eff(Mg,k). Moreover, in the examples 10.6 and 10.8 the

divisor E is contracted to a point by a birational contraction Mg,k 99K Y

[Je]. It is natural to ask whether the restriction to M0,n is still a birational
contraction onto the image, which would imply that the components of
ρ∗E are extremal in Eff(M0,n). This turns out not to be true in general, as

in our examples we prove that the pull-back of E to M0,n is not extremal.

10.2. We will consider proper transforms of divisors E in M0,n via ρ:

D = ρ−1(E) ∩M0,n. (10.2.1)

The main reason for considering the proper transform is to avoid hav-
ing boundary components contained in the pull-back ρ∗E. (This actually
happens: see Example 10.8 for an instance of this.)
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To compute the class of the divisor D we will consider its pull-back to
the Fulton-MacPherson configuration space [FM]. Denote by P1[n] (resp.,
A1[n]), the Fulton-MacPherson space of n points on P1 (resp., on A1). The
space P1[n] is isomorphic to the Kontsevich moduli space [FP] of stable
maps M0,n(P1, 1). There are forgetful morphisms:

φ̃ : P1[n] →M0,n, φ := φ̃|A1[n] : A
1[n] →M0,n.

10.3. NOTATION. Let DI (|I| ≥ 2) be the boundary divisor whose general
point corresponds to a stable map f : C → P1, with C a rational curve with
two components C1, C2, with markings from I on C1 and markings from
Ic on C2 and such that f has degree 0 on C1 and degree 1 on C2.

10.4. LEMMA. A divisor class D on M0,n is determined by its pull-back φ∗D as

follows: If in the Kapranov model of M0,n with respect to the n-th marking we
have D = dH −

∑

mIEI , then

φ∗D = −dD{1,...,n−1}−
∑

3≤|I|<n−1,n 6∈I

m{1,...,n−1}\IDI+( sum of DI with n ∈ I)

Proof. This is an easy calculation using the relations between the boundary

divisors DI (see [FM]) and the fact that φ̃∗δI = DI +DIc . Since the divisors

{DI}|I|≥3,n 6∈I , {DI}|I|≥2,n∈I

are linearly independent, it follows that D is determined by φ∗D. �

10.5. Let x1, . . . , xn be coordinates on An and let:

U = An \
⋃

i 6=j

(xi = xj).

Clearly, we have φ(U) ⊂M0,n. IfD is an effective divisor onM0,n such that
all components ofD intersectM0,n, then all components of φ∗D intersect U .
We will consider divisors D as in (10.2.1). Hence, any component of φ∗D is
a component of the closure

E′ = φ−1(ρ−1(E)) ∩ U

In the cases that we study (Examples 10.6 and 10.8) the divisor E′ is
irreducible and linearly equivalent to a sum of boundary divisors.

The space A1[n] can be described as the blow-up of An along diagonals
in increasing order of dimension. The divisor DI is the exceptional divisor
corresponding to the diagonal ∆I where coordinates xi for i ∈ I are equal.

If F is an irreducible polynomial in x1, . . . , xn defining E′ in U and hav-
ing multiplicity nI along the ∆I , the class of E′ in A1[n] is given by:

E′ = −
∑

nIDI .

10.6. EXAMPLE. Let ρ : M0,7 → M3,1 be the map that identifies pairs of

markings (12), (34), (56). Let E be the closure in M3,1 of the locus cor-
responding to pairs (C, p) with C a smooth genus 3 curve and p ∈ C a
Weierestrass point. Every smooth curve C has a finite number of Weier-
strass points; hence, E is a divisor in M3,1.
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Consider now an integral nodal curve C. Let wC be the dualizing sheaf
and let w1, . . . , wg be a basis for H0(C,wC). Locally at a smooth point p of
C we have wi = fi(t)dt, where t is a local parameter at p, fi is a regular
function. Just as for smooth curves, the point p is called a Weierstrass point
if and only if the Wronskian of the functions f1, . . . , fg vanishes at p. (See
[LW] for the general definitions of Weierstrass points on singular curves.)

Let (C, p) ∈ ρ(M0,7). As there can only be finitely many Weierstrass
points on C, it follows that C has a Weierstrass point at p if and only if
(C, p) belongs to E.

Let t, xi, yi (1 ≤ i ≤ 3) be coordinates on A7, with the pairs (xi, yi) the
markings that get identified. The locus E′ ∩ U (see 10.5) parametrizes data

(A1, x1, x2, x3, y1, y2, y3, t)

for which the corresponding tri-nodal curve has a Weierstrass point at t.
Consider the basis of (local) differentials f1dt, f2dt, f3dt, where

fi(t) =
1

(t− xi)(t− yi)
(1 ≤ i ≤ 3).

The divisor E′ is defined in U by the vanishing of the Wronskian:
∣

∣

∣

∣

∣

∣

f1(t) f2(t) f3(t)
f ′1(t) f ′2(t) f ′3(t)
f ′′1 (t) f ′′2 (t) f ′′3 (t)

∣

∣

∣

∣

∣

∣

.

Moreover, it is easy to see that the determinant doesn’t change if we
replace the rational functions fi with the polynomials:

gi(t) = fi(t)

3
∏

i=1

(t− xi)(t− yi). (10.6.1)

Using the program Macaulay we compute the multiplicities of this deter-
minant along the diagonals ∆I ⊂ A7. Using Lemma 10.4, we compute the
class of the divisor D = φ(E′) ⊂ M0,7 in the Kapranov model with respect
to the 7-th marking to be:

D = 3H −
6
∑

i=1

Ei − E12 − E34 − E56.

The divisor D is clearly big, as H is big and we have D = H +Q, where
Q is the proper transform of any quadric in P4 that contains the lines deter-
mined by the pairs of points (12), (34), (56).

10.7. EXAMPLE. Consider the map ρ : M0,7 → M3,1 as in Example 10.6.

Let E be the closure in M3,1 of the locus corresponding to pairs (C, p) with
C a smooth genus 3 curve and p ∈ C a point on a bitangent, i.e., wC =
ØC(2p+ 2q) for some q ∈ C.

Let t, xi, yi (1 ≤ i ≤ 3) be coordinates on A7, with the pairs (xi, yi) the
markings that get identified. The locus E′ ∩ U (see 10.5) parametrizes data

(A1, x1, x2, x3, y1, y2, y3, t)
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for which the corresponding tri-nodal curve has the tangent at t tangent at
some other point. Consider the canonical map

g : A1 → P2, t 7→ (g1(t), g2(t), g3(t)),

where g1, g2, g3 are as in (10.6.1). Consider the function in t, s ∈ A1:

m(t, s) =
1

(s− z)2

∣

∣

∣

∣

∣

∣

g1(t) g2(t) g3(t)
g1(s) g2(s) g3(s)
g′1(t) g′2(t) g′3(t)

∣

∣

∣

∣

∣

∣

.

For a fixed t ∈ A1, the equation m(t, s) = 0 computes the points of inter-
section of the tangent line at t with the curve g(A1). The function m(t, s) is
quadratic in s:

m(t, s) = As2 +Bs+ C, A =
∂2m

∂2s
(t, 0), B =

∂m

∂s
(t, 0), C = m(t, 0)

The divisor E′ is defined in U by the vanishing of the discriminant

∆ = B2 − 4AC.

As in Example 10.6, using the program Macaulay and Lemma 10.4, we
compute the class of the divisorD = φ(E′) ⊂M0,7 (in the Kapranov model
with respect to the 7-th marking) to be:

D = 8H − 4
6
∑

i=1

Ei − 2
∑

i 6=j∈{1,...,6}

Eij − 2E123 − 2E456.

The divisor D is clearly big, as H is big and we have

D = 2(H + δij + δlm + δkn),

for any {i, j, k} = {1, 2, 3}, {l,m, n} = {4, 5, 6}.

10.8. EXAMPLE. Let ρ : M0,10 → M5 be the map that identifyies the pairs
of points (11′), (22′), (33′), (44′), (55′). Let E be the Brill-Noether divisor of
trigonal curves in M5. By the calculations in [HM], [EH], the class of E is
equal to

8λ− δirr − 4δ1 − 6δ2.

Using standard formulas for pull-backs of tautological classes, it is easy to
compute the class of its pull-back ρ∗E. To preserve all symmetries of this
divisor in the notation, we give the formula for the pull-back π∗11ρ

∗E to
M0,11 in the Kapranov model with respect to the 11-th marking. The class
is given by

π∗11ρ
∗E = 20H − 16

∑

E1 − 12
∑

E12 − 12
∑

E11′ − 9
∑

E123−

−6
∑

E121′ − 7
∑

E1234 − 4
∑

E1231′ − 6
∑

E121′2′−

−6
∑

E12345 − 3
∑

E12341′−

−3
∑

E123451′ − 2
∑

E1231′2′3′ −
∑

E123451′2′ + 2
∑

E12341′2′3′ ,
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To explain the notation, the sums are taken over all permutations that pre-
serve the number of pairs from (11′), (22′), (33′), (44′), (55′). For example:

∑

E1 =
5
∑

i=1

Ei +

5
∑

i=1

Ei′ ,
∑

E11′ =
∑

1≤i≤5

Eii′ ,

∑

E12 =
∑

i 6=j,1≤i,j≤5

Eij + Ei′j′ + Eij′ ,

∑

E123 =
∑

1≤i,j,k≤5,i 6=j,k,j 6=k

Eijk + Ei′j′k′ + Eijk′ + Eij′k′ , etc.

It is clear from this formula that ρ∗E is reducible and contains the main
component (that intersectsM0,10) as well as some boundary divisors. These
boundary divisors can be easily determined using the method of admissi-
ble covers, but computing the corresponding multiplicities is a bit subtle.

As in the previous examples, we can nevertheless compute the class of
the main component. Let

x1, . . . , x5, y1, . . . , y5

be the coordinates on A10, with the pairs (xi, yi) the markings that get iden-
tified. Using the theory of admissible covers, the locus E′ ∩ U (see 10.5)
parametrizes data (A1, x1, . . . , x5, y1, . . . , y5) for which the corresponding
nodal curve in M5 has a g13 , i.e., the chords determined by the pairs (xi, yi)
have a common transversal when considering A1 ⊂ P3 as a twisted cubic
via the Veronese embedding. Consider the Grassmannian of lines in P3:

G(1, 3) ⊂ P(∧2k4)

together with its Plücker embedding. By [St] Exmple 3.4.6, five lines in P3

with Plücker coordinates L1, . . . , L5 have a common transversal if and only
if the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 L1.L2 L1.L3 L1.L4 L1.L5

L2.L1 0 L2.L3 L2.L4 L2.L5

L3.L1 L3.L2 0 L3.L4 L3.L5

L4.L1 L4.L2 L4.L3 0 L4.L5

L5.L1 L5.L2 L5.L3 L5.L4 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

vanishes. Here Li.Lj denotes the wedge product in ∧2k4). Let Li be the
chord determined by the pair (xi, yi). The lines Li connect points on the
twisted cubic, which we can parametrize as (1, t, t2, t3). It follows that the
wedge product Li.Lj is the Vandermonde determinant:

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
xi yi xj yj
x2i y2i x2j y2j
x3i y3i x3j y3j

∣

∣

∣

∣

∣

∣

∣

∣

.

As the terms (yi − xi), (yj − xj) can be factored out, we are left with a
degree 20 polynomial F that defines E′ in U . Using the program Macaulay
it is easy to see that F is irreducible and we can compute the multiplicities
of F along the diagonals ∆I ⊂ A10. Using Lemma 10.4, it follows that the
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class of the pull-back π∗ND of the divisor D = φ(E′) ⊂ M0,10 to M0,11 (in
the Kapranov model with respect to the 11-th marking) is given by:

π∗ND = 20H − 16
∑

E1 − 12
∑

E12 − 12
∑

E11′ − 9
∑

E123−

−8
∑

E121′ − 7
∑

E1234 − 5
∑

E1231′ − 6
∑

E121′2′−

−6
∑

E12345 − 3
∑

E12341′ − 3
∑

E1231′2′−

−3
∑

E123451′ −
∑

E12341′2′ − 2
∑

E1231′2′3′ −
∑

E123451′2′ .

The divisor π∗ND is linearly equivalent to a sum of boundary divisors:
consider the sum of the 20 hyperplanes determined by choosing a pair of
points {xi, xj}, or {yi, yj} and taking the hyperplane passing through the
remaining points (these are the boundary divisors δxi,xj and δyi,yj ). It is
easy to see that all the multiplicities of this union of hyperplanes are larger
than the multiplicities in the formula for π∗ND.

It follows that π∗ND is a moving divisor. Since any effective divisor lin-

early equivalent to π∗ND is a pull-back by πN from M0,10, it follows that D
is a moving divisor.
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ceaux cohérents, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 17 (1963).
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