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ABSTRACT 

 

Future space exploration requires easy-to-transport, and easy-to-build and deploy space 

habitats. NASA and Bigelow Aerospace have collaborated so that human habitation can 

be made safe and easy with inflatable space habitats (Litteken, 2017). One of the biggest 

threats faced by these structures in outer space is impact damage by micrometeoroid 

orbital debris (MMOD) traveling at velocities as high as 15 km/s (Lemmens, Krag, 

Rosebrock, & Carnelli, 2013). This work presents fabrication and testing of hybrid 

nanocomposites with carbon nanotubes (CNT) and coarse graphene nanoplatelets (GNP) 

as fillers and flexible epoxy matrix, that are proposed to be used for sensing the impact 

damage by MMOD in space inflatable structures. CNT and GNP were chosen as fillers 

owing to their excellent electrical properties and piezoresistivity. A new method was 

developed to cut graphite sheet (composed of GNPs) in laser marker and distribute it in 

patterns on carbon nanotube sheet (buckypaper) in epoxy matrix. Piezoresitivity tests 

were carried out and results were compared with percolation-based Monte Carlo 

simulations from past research. A hypervelocity impact test was designed and executed at 

the University of Dayton Research Institute, Ohio, to test the response of the sensors to 

hypervelocity impacts. Aluminum spheres of 3 mm diameter and 4.5 mm diameter were 

accelerated to 7 km/s and shot at the sensors, and results were recorded during and after 

the test. A periodic scanning multichannel control circuit was designed to power the 

sensors. LabVIEW codes were used for data acquisition and recognizing the location of 

the damage. The results proved that the hybrid CNT-GNP/epoxy nanocomposites can be 

used to create a damage detection system which would not only detect the impact damage 

caused by MMOD of 3mm diameter traveling at 7km/s but also discern its location and 
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depth of penetration by the MMOD.  
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1. Introduction 

Hybrid composites refer to composites with either multiple filler/fiber materials 

or multiple matrix materials. This work discusses hybrid nanocomposites made of two 

particulate fillers; carbon nanotubes and graphene platelets, in an epoxy matrix. 

Carbon nanotubes are known to have supreme mechanical and electrical properties and 

are a popular choice for fillers in polymer nanocomposites (Bhattacharya, 2016; 

Moniruzzaman & Winey, 2006; Fiedler, Gojny, Wichmann, Nolte, & Schulte, 2006). 

On the other hand, recent studies have shown that individual graphene sheets have 

extraordinary electronic transport properties, and one possible route to harnessing 

these properties for applications is to incorporate graphene sheets in a composite 

material (Stankovich, et al., 2006; Ramanathan, et al., 2008). Despite the 

numerous studies focused on the use of CNTs or GNPs as fillers to improve the 

electrical conductivity and electromechanical behaviors of polymer composites, 

relatively few studies have examined hybrid CNT–GNP composites (Gbaguidi, 

Namilae, & Kim, 2017; Lee, Jug, & Meng, 2013; Hwang, Park, & Park, 2013; Luo & 

Liu, 2013).  

CNT based nanocomposites are known to exhibit a change in electrical resistance 

when loaded mechanically. This phenomenon is called piezoresistivity. Although CNT-

based nanocomposites have been reported to show excellent piezoresistive properties 

(Obitayo & Liu, 2012; Hu, Fukunaga, Atobe, Liu, & Li, 2011; Dharap, Li, Nagarajaiah, 

& Barrera, 2004), addition of a second filler like graphite nanoplatelets (GNP) was found 

to further enhance their performance (Namilae, Li, & Chava, 2018). An explanation for 

this improvement is the bridging of CNT network by planar graphitic platelets resulting 
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in a continuous network of fillers. Owing to their piezoresistivity, their mechanical and 

electrical response is coupled and they can be used for various strain sensing applications. 

Health monitoring and damage detection are challenging when it comes to space 

inflatable structures as traditional methods with strain gage and fiber optic sensors cannot 

be employed. These methods are more suitable for rigid structures, where mounting of 

sensors, power distribution, and data communication are not an issue. In the case of 

inflatable structures, the sensors need to be pre-positioned before packing and need to 

maintain integrity while folding and deployment. If the sensors are mounted after 

deployment, there is no way to monitor the health of the structure before deployment. 

Issues related to cabling also become manifold when it comes to inflatable structures 

(Kennedy, Raboin, Spexarth, & Valle, 2000). The impact detection system would need to 

locate the damage, its size and depth of penetration in real time and warn the crew so that 

immediate action can be taken. To meet all these requirements one approach is to execute 

a flexible blanket of sensors that can detect impact and are integrated with the soft layers 

of inflatable structure in critical areas.  

One of the technologies designed for inflatable habitat materials is based on 

embedded capacitors (Brandon, et al., 2011). An array of capacitors made of flexible 

circuit technology act as impact damage sensors. Any penetration due to the damage is 

manifested as a change in applied voltage due to change in the area of the dielectric layer. 

Another type of sensors is passive wireless sensor tags that operate via radio-frequency 

energy transmitted from an interrogation device (Brandon, et al., 2011). They can provide 

information on other physical parameters like temperature, humidity, acceleration, etc. In 

this report, hybrid GNP-CNT/epoxy nanocomposites, owing to their piezoresistivity, 
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flexible matrix, mechanical strength and light weight will be explored for their feasibility 

to be integrated with walls of the inflatable structures.  

1.1. Motivation 

This work is done as a part of NASA SBIR Phase II of “Integrated Structural 

Health Sensors for Inflatable Space Habitats”. Phase I was completed successfully with 

experimental proofs showing that CNT-GNP hybrid nanocomposites have strain, 

vibration and damage sensing capabilities (Anees M., 2017). It was also proven that 

piezoresistivity is higher for 5 wt. % of GNP and CNT in epoxy (Li & Namilae, 2016). 

Additionally, it was found that using a flexible matrix of two-part 3M Scotch-Weld 

translucent epoxy adhesive 2216 gave up to 11% strains, and more than 5 times better 

piezoresistive response than the other CNT/epoxy based composites (Anees M., 2017). 

However, the techniques employed to develop these hybrid composites involved cutting 

GNP by hand and infiltrating the CNT with evenly mixed epoxy-GNP of specified 

weight percent, which did not offer reproducibility and could not be numerically modeled 

to validate or predict the response.  

In the following sections, a novel technique to fabricate hybrid nanocomposites 

with uniformly distributed GNP along with CNT is proposed, and their strain dependent 

electrical resistivity is studied. Finally, based on results from testing and numerical 

simulations, a comparative analysis of the effect of patterning on the piezoresistive 

response of the composites is done. The final step towards confirming the feasibility of 

using the hybrid nanocomposites for sensing applications in space is to test the sensors 

for their response to impact damage by projectiles traveling at hyper velocities. 

Integrating the sensors to develop a complete damage detection and monitoring system 
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would also require an efficient power system to scan the sensors every cycle, and a 

warning system to give information on damage. These areas have motivated the research 

presented here. 

1.2. Research Objectives 

The main research objective is to showcase the ability of these sensors to detect 

damage caused by MMOD impact, location of damage within an array of sensors (planar) 

as well as the depth of penetration by the projectile. To reach this goal, the following 

milestones were set and achieved: 

1) Devise a method to cut graphene nanoplatelets such that shape and size can be 

controlled, and the process is time efficient. 

2) Distribute the GNP in desired patterns on nanocomposites to study the effect of 

aspect ratio and distribution of GNP on the piezoresistive performance of the 

sensors and compare it with numerical results. 

3) Design test article and test fixtures for the hypervelocity impact testing of an array 

of hybrid nanocomposite sensors. This entails sizing analysis of the sensors and 

creating a test article that would simulate the layers of space inflatable structures 

4) Design and test a circuit to perform periodic scanning of the sensors that can be 

used during the test as well as used as a base model for further research on the 

power system.  

5) Design a data acquisition system using LabVIEW to get real-time data during the 

test. 

6) Plan and execute a hypervelocity impact test to study the performance of the sensors 

when hit by a projectile of 3mm diameter traveling at 7 km/s.  



5  

   

 

2. Background and Literature Review 

2.1. Polymer Nanocomposites 

Nanocomposites were revolutionized when Toyota researchers revealed that 

adding Mica to Nylon resulted in a fivefold increase in material’s yield and tensile 

strength (Balazs, Emrick, & Russell, 2006). Since then researchers have explored and 

pondered polymer and nanoparticle composites that are now widely used in the aerospace 

industry. Polymer nanocomposites (PNC) are fabricated by depositing very small 

particles, typically having a diameter less than 100 nm, in a host polymer matrix 

(Njuguna & Pielichowski, 2003). Traditionally polymer composites consist of a large 

volume (> 60 vol %) of fillers in the matrix (Keller, 2011), however nanocomposites 

consist of very low (< 2 vol %) volume of nanofillers like nanoclays (Ray & Okamoto, 

2003; Usuki, Hasegawa, & Kato, 2005), graphite nanoplatelets (Zheng & Wong, 2003; 

Zheng, Lu, & Wong, 2004; Cho, Lee, Yang, Fukushima, & Drzal, 2005; Ramanathan, 

2007) , and carbon nanotubes (Ajayan, Schadler, Giannaris, & Rubio, 2000; Thostenson, 

Ren, & Chou, 2001; Ramanathan, Liu, & Brinson, 2005)  that result in a vast change in 

properties of the composite. Mechanical properties such as tensile strength, toughness, 

elasticity and other properties like thermal and electrical conductivity of PNCs are 

improved depending on the properties of the nanofillers. Even a low volume fraction of 

well-dispersed nanofillers creates a large interfacial area resulting in a continuous 

network of altered polymer chains in the matrix that alters its properties fundamentally 

(Ramanathan, et al., 2008). This is due to the large surface area per unit volume they 

provide. For electronic applications, based on the requirement, enough conductivity is 

added in the matrix to provide electronic discharge, by using conductive fillers. The 
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fillers form a three-dimensional network through the component due to which high 

conductivity is achieved. This phenomenon is called percolation. Percolation theories are 

often used to describe conductive properties of composites made of conductive fillers and 

matrix. The percolation threshold is a measure of the conductivity of these composites 

and has been proven to be highly dependent on the aspect ratio of the filler particles. This 

work discusses PNCs developed with carbon nanotubes and graphene nanoplatelet fillers 

in epoxy matrix, which results in nanocomposites that have intrinsic electromechanical 

properties.  

 
(a)  

 
(b)  

 
(c)  

Figure 2.1 (a) Single-walled carbon nanotube (b) Fullerenes (c) Graphene 

Carbonaceous nanofillers include carbon nanofibers, carbon nanotubes and 

emerging graphene nanoplatelets. Carbon nanotubes (CNT) are long slender fullerenes, 

where the walls of the tubes are hexagonal carbon or graphite structure, as shown in Figure 

2.1 (a). Fullerenes are cage-like structures of carbon atoms which are made of hexagonal 

and pentagonal faces (Figure 2.1 (b)). CNTs are strong (Li, et al., 2005) and their extremely 

small size makes it ideal to be embedded in various types of materials as reinforcements to 

form lightweight strong nanocomposites. They have remarkable mechanical properties, 

high electrical and thermal conductivity and high aspect ratios. Since percolation 

thresholds depend on aspect ratio, carbon nanotubes have proven to be an excellent choice 

as fillers in polymer composites (Sandler, Kirk, Kinloch, Shaffer, & Windle, 2003). The 

electrical conductivity of CNT/epoxy nanocomposites can be enhanced by several orders 
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just by adding 0.5 wt. % of CNTs (Ma, Siddiqui, Marom, & Kim, 2010). 

Graphene is considered a two-dimensional carbon nanofiller with one atom thick 

planar sheet of sp2 bonded carbon atoms that are densely packed in a honeycomb crystal 

lattice (Figure 2.1 (c)). Graphene is preferred as a nanofiller over many other nanofillers 

due to its intrinsic properties. It has excellent electronic properties, since electrons move 

through its planar structure without much scattering or resistance. It has been predicted 

that a defect-free graphene platelet could have intrinsic tensile strength higher than any 

other material and can withstand ultra-high strains (Zhao, Nardelli, & Bernholc, 2002). 

Graphene exhibits thermal conductivity several times higher than Copper 

(Mukhopadhyay & Gupta, 2011). In addition, it has a high aspect ratio making it an 

impressive choice as nanofillers in nanocomposites (Kuilla, et al., 2010). When compared 

to other fillers like nanosized steel, natural rubber, Kevlar fiber, HDPE plastics and CNT, 

Graphene has the highest tensile strength of 130 GPa, highest thermal conductivity of 5.3 

× 103 W/mk at room temperature and electrical conductivity of 7200 S/m which is 1.8 

times that of CNTs (Kuilla, et al., 2010). Graphene-based nanocomposites are used in 

anti-static coatings, sensors, batteries, solar cells and transparent conductors (Al-Saleh, 

2015).  

Enhancement of properties in polymer nanocomposites has been explored by 

mixing two different fillers while maintaining the total amount, to form ternary hybrid 

nanocomposites (Sagalianov, Vovchenko, Matzui, & Lazarenko, 2017). The reason for 

this effect in CNT-GNP/epoxy composites in context with their improved electrical 

properties is that CNTs form a bridge between GNPs resulting in a continuous conductive 

network. The electrical conductivity of CNT-GNP/epoxy hybrid nanocomposites is found 
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to be many times more than nanocomposites with CNT alone and nanocomposites with 

GNP alone (Li, Wong, & Kim, 2008).  

Besides the exceptional mechanical, thermal and electrical properties of CNTs, 

one of their other lucrative properties is their self-sensing nature due to the coupling of 

mechanical deformation and electrical properties (Li, Dichiara, & Bai, 2013). As 

mechanical strain is applied, the microstructure or the conductive network of CNTs 

changes, giving rise to a change in resistance. This property is called piezoresistivity. 

CNT-based polymer composites can thus be used for strain sensing applications. Several 

works discuss the development of piezoresistive sensors with CNT polymer 

nanocomposites (Dharap, Li, Nagarajaiah, & Barrera, 2004; Kang, Schulz, Kim, Shanov, 

& Shi, 2006). The sensitivity of piezoresistive sensors is measured by the gage factor, 

which is defined as the fractional change in resistance per unit strain. GNP based polymer 

nanocomposites also show piezoresistive properties. The reason for their intrinsic 

piezoresistive behavior is the same as for CNT based PNCs. A number of experimental 

and numerical works have been done on the piezoresistivity of GNP based 

nanocomposites (Bae, et al., 2013; Bonavolontà, et al., 2016; Das & Prusty, 2013). 

Adding GNP as the second filler to CNT/epoxy PNCs has shown to improve their 

piezoresistive response (Hwang, Park, & Park, 2013; Park, Kim, Park, & Shim, 2011; 

Luo & Liu, 2013). The focus of this work is to exploit the self-sensing properties of 

CNT-GNP/epoxy hybrid nanocomposites to develop flexible lightweight strain sensors. 

2.2. Inflatable Space Habitats 

Inflatable space habitats can be defined as pressurized structures that can support 

human life in outer space. They typically consist of several soft foldable constituent 
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layers like inner liner, bladder, restraint layer, thermal control layer and protective layers 

(Brandon, et al., 2011).  In 2006, Genesis I became the first space module to be 

successfully sent into orbit by Bigelow Aerospace, testing various systems, materials, and 

techniques related to determining the viability of long-term inflatable space structures 

(Genesis I, 2019). Following that, in 2007, Genesis II, the second module was sent into 

orbit by the company, to build on the data and experience gleaned from it’s previously 

orbited sister-ship Genesis I (Genesis II, 2018). In 2016, The Bigelow Expandable 

Activity Module (BEAM), an experimental expandable capsule, docked with the 

International Space Station (ISS) (Advanced Exploration Systems, 2017). Inflatable 

structures are becoming one of the top choices to make human habitation possible in 

space due to large operational volume as compared to smaller launch volumes. This can 

be achieved by various efficient packing concepts. The materials used should have less 

weight, high tensile strength, good flexibility, durability and resistance to harsh space 

environments. (Häuplik-Meusburger, Sommer, & Aguzzi, 2009). Besides using an 

appropriate material with the right properties, it is also imperative that the habitats can 

withstand damage caused by Micrometeoroid and Orbital Debris (MMOD). As of 

January 2019, the number of space debris of size 1 mm to 1 cm in Earth orbit was 

estimated around 128 million with impact velocities that can reach 15 km/s (Lemmens, 

Krag, Rosebrock, & Carnelli, 2013). Damage caused by these ranges from small pits/hole 

penetrations to mission-critical damage for larger than one-centimeter projectiles. To 

protect space structures from MMOD impacts, passive protection can be achieved by 

having outer skin consist of multiple protection layers. Detection of impact damage and 

its location would help in mission success for manned and unmanned space crafts. 
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Damage detection and its location can provide valuable time to implement repairs or 

isolation of leaking areas of the habitat. For reentry vehicles, information about damage 

detection and its location could give time for repairs, replacements, and change of 

trajectories to limit the heating. 

2.3. Hypervelocity Impact by MMOD 

As of January 2019, 34 000 objects more than 10 cm, 900 000 objects from 1 cm 

to 10 cm and 128 million objects from 1mm to 1cm were estimated by statistical models 

to be in low earth orbit (Space Debris, 2018). Small objects can cause mission critical 

damage at hyper velocities. Large objects can be avoided through active measures and 

maneuvers, but small objects can only be avoided by passive methods like MMOD 

shields that form a part of the spacecraft or space habitat. Effect of hypervelocity impact 

depends on projectile and target material, impact velocity, incident angle and shape of 

projectile. Hypervelocity Impact test is the most important step in validating the design of 

MMOD shielding (Space Debris, 2018). During these tests, two or three stage light gas 

guns are used to accelerate projectiles to hyper velocities. The guns can launch a variety 

of projectile shapes in a controlled environment. 

Typical MMOD shields have Whipple shield type of design. The main 

components are bumper and rear wall. The purpose of the bumper is to break the 

projectile into a cloud of material containing projectile and bumper debris. This cloud 

expands while it moves towards the rear wall and momentum and energy are distributed 

over the area. The rear wall faces a blast loading from the debris cloud. Variations of 

Whipple shield include stuffed Whipple and flexible multi-shock Whipple shields 

(Christiansen, Nagy, Lear, & Prior, 2009). The efficiency of MMOD shields depends on 
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the state of debris cloud created when the bumper is hit by the projectile. The debris 

cloud can consist of solid, liquid and/or vaporized material depending on the interaction 

between projectile and bumper at the impact, which is directly related to mechanical and 

thermal properties of materials, and impact pressure generated. Higher impact pressure 

results in fewer solid fragments and more vapor content. Impact pressure depends on 

projectile velocity, angle of incidence and density of projectile and bumper. Initially, a 

compressive wave is generated at the impact, which results in an increase in density and 

temperature of projectile and bumper. Compressive waves are also generated that travel 

through the materials at free surfaces. If stress near the free surfaces exceeds the tensile 

strength of the materials, debris is created. Temperature rises during this process due to 

the increase in internal energies, which can melt and vaporize the materials (Arnold, et 

al., 2009). 

Stuffed Whipple shield includes Nextel ceramic fabric and high strength Kevlar 

fabric between the bumper and rear wall (Christiansen, Nagy, Lear, & Prior, 2009). This 

arrangement provides better protection from MMOD as the momentum of the debris 

cloud is decreased by the extra layers even more before it hits the rear wall. While the 

ceramic fiber layer breaks the debris fragments, the high strength fiber layer slows the 

expansion of the cloud without contributing to the material in the cloud. Multi shock 

shields comprise of multiple bumpers made of ceramic fabric and a Kevlar or aluminum 

rear wall. Figure 2.2 shows the design of a typical Whipple shield and the multi-shock 

type of design. 
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Figure 2.2 (Left) Typical Whipple shield (Right) Design for current study 

Ceramic layers break up the projectile more efficiently due to higher shock 

pressures. Besides, they do not produce much secondary debris (Arnold, et al., 2009). 

Multi-shock shield design is used for MMOD shields in space inflatable habitats. The test 

article and fixtures for the hypervelocity test were designed keeping in mind this 

arrangement of the MMOD shield.  

Bumper 

Rear Wall 

Bumper 

Kevlar rear Wall 
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3. Fabrication and Tensile Testing of Hybrid Nanocomposites 

3.1. GNP Laser Cutting and Patterning 

In this section, development of the laser cutting process of the graphite sheet to 

form nanoplatelets, which are used as second fillers in the composite, and GNP 

patterning on CNT buckypaper is discussed. In the development of nanocomposites, GNP 

was previously obtained by cutting graphene sheet using a knife blade. This process was 

time-consuming and did not give uniform sized platelets. Therefore, an automated 

process for laser cutting was developed. An MD-X 1520 laser marker by Keyence was 

selected for this purpose. Figure 3.1(a) shows the CAD Model of the laser marker 

mounted on the enclosure. Figure 3.1(b) shows the actual laser and developed enclosure. 

Figure 3.1(c) shows a graphite sheet placed on a variable height stand for cutting. 

Furthermore, it was observed that even though the platelets were uniformly cut, their 

distribution was random on CNT which made it difficult to predict and relate the results 

with the numerical model. Based on these considerations and the following advantages, 

laser cutting and GNP patterning on CNT were found to be imperative: 

1) Easy control on size and shape of GNPs. 

2) Automated cutting process in an enclosed area makes the working environment 

safer. 

3) Increase time efficiency. 

4) Can be used to find the relation between macro and microstructure studies 

(compare to simulations). 

5) Useful for optimization of shape and size for the highest piezoresistive response. 
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Figure 3.1 (a) CAD Model of laser mounted on the enclosure (b) Keyence Laser mounted 

on developed enclosure (c) Graphene sheet placed for cutting. 

3.1.1. Development of Hybrid Nanocomposites 

A uniform pattern of GNP can be easily cut from the graphite sheet using laser 

(Figure 3.2), but a technique had to be employed to carry the pattern to CNT buckypaper 

without moving the platelets. Kapton® was chosen as a substrate to transfer the platelets 

on to the buckypaper. Graphite sheet was cut on top of Kapton® in the laser and the 

Kapton®, carrying this pattern, was turned over on top of the buckypaper. The following 

section explains the experimental procedure in detail. 

 

Figure 3.2 1 mm diameter circular GNPs obtained from laser cutting of graphite sheet. 

The composites were made using CNT buckypaper and graphite platelets in a 

matrix of two-part 3M Scotch-Weld translucent epoxy adhesive 2216. A multiwall 



15  

   

 

carbon nanotube buckypaper consisting of 100% free-standing nanotubes, with an area 

density of 21.7 g/m2 and surface electrical resistivity of 1.5 Ω/m2 was obtained from 

nanotech Labs. The platelets were cut from a graphene sheet with surface resistivity of 

2.8x10-2 Ω/m2, acquired from Graphene Supermarket. To fabricate the composites, the 

CNT sheet was first cut into 63.5 mm x 38.1 mm (2.5 inch x 1.5 inch) strip samples. 32-

gauge copper electrodes were attached to both ends of the CNT sheet using conductive 

silver epoxy adhesive. The graphene sheet was cut into graphite nanoplatelets of the 

desired shape, using the Keyence MD-X-1000/1500 series 3 axis laser marker. A thin 

layer of the epoxy was applied between the Kapton® and graphene sheet, which ensured 

that the platelets would not displace while moving them to the CNT. Previously, this step 

was carried out with epoxy part B only, which led to uncured epoxy resin. 

 

(a)  

 

(b) 

 

(c) 

 

(d) 
 

Figure 3.3 (a) A pattern of GNP cut from Graphite sheet on top of Kapton® and 2216 

translucent epoxy part-B (b) Graphite sheet peeled away from Kapton® (c) Pattern of GNP 

on Kapton® (d) CNT buckypaper with a layer of two-part 2216 translucent epoxy. 

To achieve a pattern of GNP, the laser was set to cut repeated rows and columns 

of the circles or ellipses. The graphene sheet was carefully peeled away leaving GNP on 

the Kapton®. Marking laser properties such as power, scan speed, and frequency, were 

set so that laser would cut the graphene sheet while not damaging the Kapton® beneath 

it. The cut GNP platelets were then transferred to the CNT sheet, which already carried 
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the matrix. Alignment of the platelets was kept such that major axes of the ellipses were 

parallel to the electric fields. Five (5) wt. % of the platelets were used with the epoxy in 

each sample. For achieving a random distribution, the platelets were displaced around on 

the Kapton® before moving them to the CNT sheet. The composites were vacuum 

bagged and cured for one hour at 200 degrees Fahrenheit. Each specimen was further cut 

into three specimens measuring 63.5mm x 12.7 mm (2.5 inch x 0.5 inch).  

There were a few observations made while following this method. Firstly, the 

adhesive applied between Kapton® and graphene while cutting the pattern, not only 

shielded the Kapton®, but made the transfer much easier as the platelets would not move, 

and graphene sheet could be easily peeled away. Secondly, buckypapaer had to be 

infiltrated by epoxy before flipping the Kapton® on the CNT buckypaper, as the 

application of epoxy without moving the platelets would be impossible. Since it could not 

be ensured that the Kapton® was not damaged by the laser, a layer of Kapton® tape was 

put on top of the nanocomposite. Lastly, a limitation of this method of developing the 

sensors was that 100% of GNP could not be transferred to the buckypaper (Figure 3.3). 

This could be due to the uneven surface of the graphene sheet, which was not marked 

efficiently in thicker regions.  

3.2. Tensile Testing of Patterned GNP-CNT Hybrid nanocomposites 

The procedure of patterning GNP on CNT buckypaper was used to study the 

effect of size and orientation of the graphite platelets on the piezoresistive response of the 

hybrid nanocomposites. Four different types of specimen were fabricated for a 

comparative analysis; buckypaper with patterned circular GNP of radius of 1 mm (Figure 

3.4 (a)), buckypaper with randomly placed circular GNP of radius of 1 mm (Figure 3.4 
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(b)), buckypaper with patterned elliptical GNP of major axis 3 mm and minor axis 1 mm 

(Figure 3.4 (c)) and buckypaper with randomly placed elliptical GNP of major axis 3 mm 

and minor axis 1 mm (Figure 3.4 (d)). Content of GNP was kept constant in all the 

samples. 

                

                            

Figure 3.4 CNP cuts by laser placed on top of Kapton®; (a) circular patterned GNP, (b) 

randomly placed circular GNP, (c) elliptical patterned GNP, and (d) randomly placed 

elliptical GNP. 

A four-point probe measurement was used to measure the change in voltage and 

consequently the change in resistance while applying mechanical loading on the 

specimen. A LABVIEW code was used along with a DAQ system to record the change in 

voltage, while the tensile test was conducted at a constant speed of 10mm/minute in a 

digital force tester. A constant intensity current of 0.103 amperes was passed through the 

specimen. Figure 3.5 shows the buckypaper with copper electrodes and the final hybrid 

nanocomposite with elliptical graphite platelets. 

 

(b) 

(d) 

(a) 

(c) 
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3.3. Test Results 

Tensile tests were carried out to study the response of shape and spatial 

arrangement of GNP on the piezoresistive response of the sensors. The tensile testing of 

circular patterned and randomly placed GNP-CNT nanocomposites yielded the results 

shown in Figure 3.6. Average of three test specimens showed that resistance changed 

non-linearly with strain as in the case of elliptical GNP. Furthermore, patterned circular 

GNP and randomly placed GNP exhibited the same piezoresistive response.  

 

(a) 

 

(b) 

Figure 3.5 (a) CNT sheet with copper electrodes (b) Patterned elliptical GNP-CNT 

hybrid nanocomposite 

Specimens with a random distribution of GNP were prepared by cutting the 

graphene sheet in laser in a pattern and then moving the platelets. Therefore, this 

distribution cannot be called truly random. To see if this effect was contributing to the 

behavior of the nanocomposites as described in the previous section, patterned circular 

GNP-CNT and patterned elliptical GNP-CNT hybrid composites were tested and 

compared. The results are depicted in Figure 3.7, where the average of three samples 

showed non-linear resistance change with strain and no difference in the piezoresistive 

responses. 
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Figure 3.6 Effect of circular GNP alignment on the piezoresistivity of hybrid 

nanocomposites, from experimental results (average of 3 samples). 

 

Another possible reason for no effect of shape or spatial arrangement/ patterning 

of GNP on the piezoresistive response of the composite could be the novel way of 

developing the sensors, which hindered the interaction between GNP and CNT. To 

establish the reliability of the sensor development method and testing procedures, tensile 

testing was done on CNT epoxy and CNT-GNP epoxy hybrid nanocomposites, which 

had been tested before and proved the fact that adding GNP to the nanocomposites 

enhances their piezoresistive response. 

Following the same method, two types of specimens were prepared; CNT/epoxy 

nanohybrid composite with Kapton® on top and CNT-GNP/epoxy nanohybrid composite 

with Kapton® on top. Sample dimensions and test settings were the same as in previous 

tensile tests. GNPs were distributed on CNT in a random fashion as shown in Figure 3.8. 

Figure 3.9 shows the results of the tensile testing. 



20  

   

 

 

Figure 3.7 Effect of patterned circular and elliptical GNP alignment on the piezo resistivity 

of hybrid nanocomposites, from experimental results (average of 3 samples). 

As expected, the piezoresistive response of the composite with GNP infiltrated 

epoxy was higher than that of CNT epoxy composite. This proved that interaction 

between GNP and CNT was intact and the technique followed to make the sensors with 

patterned GNP gave reliable results. Based on the discussion above, it can be concluded 

that patterning/ spatial arrangement and shape of GNP do not have any effect on the 

piezoresistive response of the CNT-GNP hybrid nanocomposites. However, results from 

the numerical model suggest that uniform distribution of GNPs and their aspect ratio 

increase the piezoresistive performance of the composites (Gbaguidi, Namilae, & Kim, 

2017). 

Figure 3.8 (Top) CNT+GNP epoxy nanocomposite specimen (bottom) CNT epoxy 

nanocomposite specimen. 
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Figure 3.9 Effect of GNP on the piezo resistivity of the nanocomposites, from experimental 

results (average of 3 samples). 

3.4. Discussion 

Two phenomena were studied; effect of the aspect ratio of GNP, and effect of the 

distribution of GNP on piezoresistivity and electrical conductivity of the nanocomposites. 

Tensile tests were carried out to draw a comparison between piezoresistivity of circular 

and elliptical GNP-CNT nanocomposites and between patterned and randomly 

distributed GNP-CNT nanocomposites. The results showed that the aspect ratio and 

patterned/uniform distribution of GNP did not have any effect on the piezoresistive 

response of the sensors. Gbaguidi et al., 2017 presents a microstructure numerical model 

of CNT-GNP/epoxy hybrid nanocomposites which is used to show that piezoresistivity 

and electrical conductivity increase with GNP aspect ratio and their uniform alignment in 

the nanocomposites. CNT-GNP hybrid nanocomposites have shown improvement in 

mechanical, electrical and thermal properties when different aspect ratios and size of 

fillers are used (Chatterjee, et al., 2012) (Yue, Pircheraghi, Monemian, & Manas-
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Zloczower, 2014) (Yu, et al., 2008). One of the possible explanations for the results 

achieved with experimentation presented here could be that the GNP fillers were macro 

level, whereas, the numerical models and experimentation done in past have been done 

on micro level.  
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4. Prototype Testing for Debris Detection 

This chapter entails details about the preliminary tests conducted with prototypes 

of the sensor, data acquisition system and electronic circuit design and fabrication. This 

study also presents a preliminary finite element model of the hypervelocity impact test. 

Size of the sensors, required power and required sampling rates in the hypervelocity 

impact test discussed in Chapter 5, are chosen based on the results from the tests 

presented here. Fixture design and test article are discussed to show their similarity with 

soft layers of space inflatable structures. 

4.1. Test Setup 

 

Figure 4.1 Test Setup for prototype testing. 

The main objective of this test was to study the response of sensors to holes 

measuring at least 3mm diameter and verifying the capability of the data acquisition 

system to capture the change in voltage. The change in electrical resistance by drilling 3 

mm holes was recorded in 2 inch × 2 inch nanocomposites. Two configurations (single 
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sensor and arrays of sensors) of sensors were tested for change in electrical resistance as 

holes were added successively. Two different types of circuits were designed for the two 

configurations to send 0.5 A current. For single sensor testing, the circuit sent continuous 

current, whereas for an array of sensors, the circuit sent current periodically. A hand drill 

was used to simulate damage of 3 mm and 4.5 mm to the sensors. The change in voltage 

was recorded using LabVIEW codes, as damage was simulated in the sensors. The 

voltage readings were then converted to percentage change in resistance ratio (change in 

resistance over original resistance). Reliability of the LabVIEW codes and data 

acquisition system were tested by comparing the results with voltage readings from a 

multimeter before and after addition of holes. Figure 4.1 shows the test set-up for 

prototype testing. 

4.2.  Single Sensor 

Samples were tested for two hole/damage sizes; 3 mm and 4.5 mm. Various 

intensities of current were passed through the samples and change in resistance due to 

self-heating was recorded. A high value of current would result in a measurable change in 

resistance, but also caused higher self-heating. It was observed that 0.5 A current caused 

low ohmic heating and gave measurable results. The circuit designed for this experiment 

sent 0.5 A current continuously to the sensor. Voltage readings were recorded by the 

DAQ after addition of each hole in both the specimens. The results were plotted (Figure 

4.2 and Figure 4.3) and it was seen that the changes in resistance were detectable and 

measurable. It was observed that the change in resistance after the addition of each hole 

was stable. 
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Figure 4.2 Resistance change ratio by addition of 3 mm hole statically in 3 inch × 3 inch 

sensor. 

.  

Figure 4.3 Resistance change ratio by addition of 4.5 mm hole statically in a 3 inch × 3 

inch sensor. 

In case of the 3mm diameter hole, total of 5 holes were made. Addition of each 

hole resulted in a 1%-1.5% resistance change ratio. This can be attributed to the fact that 

the sensors were not held using any fixtures and other strains also contributed to the 

results. On the other hand, when a hole of 4.5 mm diameter was made, each hole resulted 



26  

   

 

in a 2% resistance change ratio. Clearly the change in resistance ratio was proportional to 

the size of damage. 

 

Figure 4.4 Circuit of four channel electronic control circuit. 

4.3. Array of Sensors 

The next step was to test an array of sensors for change in electrical resistance as 

damage was simulated and the change in voltage was recorded using the DAQ system. 

An array of four sensors measuring 2 inch × 2 inch was tested with a control circuit 

(Figure 4.4), which periodically passed 0.5A current through each sensor in the array 

one-by-one, using a switching mechanism. The circuit was set to send the current to each 

sensor for two seconds only and then move on to the next sensor in the array. DAQ 

system recorded the voltage across the sensor for these 2 seconds and an average of 

hundred readings were taken. This practice aided in the preparation of circuit designs and 

LabVIEW codes for the hypervelocity impact test (HVIT). The same concepts were 

applied to test an array of nine sensors during the HVIT.  
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4.4. Test Fixture Design and FEA for Hypervelocity Impact Test 

Figure 4.5 shows the design of the test fixture for the hypervelocity impact test. 

The hybrid sensors were glued on a style 7781 E fiberglass dry fabric and the fabric was 

held (glued) between two photo frame plates measuring 8 inch ×8 inch with a cut-out 

measuring 6 inch ×6 inch. Four holes were drilled at 7 inch ×7 inch from the center. Four 

such layers (held between 8 frames) were held together by 1 ft long high-strength 

steel 3/8 inch-16 threaded rod. Steel hex nuts and washers were used to position each 

layer. Each layer was 2 inch apart from the other layer. The frames were cut from 1/8 

inch Aluminum 6061 sheets. 

4.5. Hypervelocity Impact Simulation: Baseline Model 

A preliminary hypervelocity impact simulation was designed in LS Dyna. Since 

the sensors did not contribute to the strength of the target stack, only fiberglass was 

modeled and discretized for the analysis. The fixture frames and the fabric were 

discretized using shell elements. In the actual set-up, the glass fiber carried the sensors 

and was glued and clamped between the frames. This was simulated by maintaining mesh 

connectivity at all four edges of the fabric and the frames. Appropriate thickness was 

assigned to each component. Each layer was 2 inch apart from the other layers. 

The projectile was also discretized using shell elements and was assumed to be 

rigid. It was given an initial velocity of 7 Km/s. The frames were fixed at their position 

by using nodes on all edges of each frame and constraining them with single point 

constraints (SPC_NODE_SET) in the global coordinate system. 

AUTOMATIC_SURFACE_TO_SURFACE type contacts were used to transfer forces 

between the projectile and glass fiber. As shown in Figure 4.6, a biased mesh was created 
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in the center of each layer to capture the impact mechanics better. 

 

 

Figure 4.5 Fixture Design. 

Besides, the mesh of the projectile was created much coarser than the target layers 

in order for the contact to work efficiently.  

4.6. Assumptions 

Mainly two assumptions were made to simplify the model. Firstly, the projectile’s 

size was exaggerated to inch diameter so that reasonable mesh size could be used. Since 

the mesh size on the projectile needs to be coarser than the target, using the actual size of 

the projectile would require extremely fine mesh. The second assumption has been made 

for the material model for glass fiber. In order to model woven fabrics, two approaches 

have been used by researchers. One of them is to model and mesh each fiber so that a 

simple material model can be assigned to it (Nilakantan, Keefe, Bogetti, & Gillespie Jr, 
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2010). The other is to treat the fabric as a continuum material and use an appropriate 

material model which can capture the right damage mechanics (Shahkarami & Vaziri, 

2007; Lim, Shim, & Ng, 2003). The second approach has been taken for this simulation. 

 

Figure 4.6 Finite Element model of test article. 

4.7. Material Models 

In order to achieve realistic results, the most important factor is to use the right 

material model and material properties. Kinematic_Plastic material model (MAT_03) 

was chosen for aluminum frames. To model the woven fabric, the composite failure 
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model Chang Chang (1987) model, MAT_COMPOSITE_DAMAGE (MAT_022) was 

first considered due to its simple approach. However, it provides various failure modes 

due to in-plane stresses only. It is a two-dimensional failure model which neglects out-of-

plane shear and normal stresses. This might be enough for composites under in-plane 

loading but would fail to capture transverse impact failures (Yen, 2002). 

MAT_LAMINATED_COMPOSITE_FABRIC (MAT_58) is another popular choice used 

to model composite materials with unidirectional layers, complete laminates, and woven 

fabrics. It was used to successfully predict debris impact damage due to the reinforced 

carbon-carbon leading edge panels of the space shuttle Columbia (Carney, Melis, 

Fasanella, Lyle, & Gabrys, 2004). This model is a continuum damage mechanics material 

model that requires stress-strain curves as input to define mechanical behavior in tension, 

compression, and shear. The damage model is defined by maximum strain for layer 

failure, beyond which the elements are eroded from the model. It must be noted that this 

material model does not represent individual fibers but represents each layer in the 

laminate (Jackson, Fasanella, & Littell, 2017).  

A finite element model was first prepared with simple material models to 

establish a baseline. This step helped in ensuring that the boundary conditions, initial 

conditions, and contacts were working. Therefore, Kinematic_Plastic model was assigned 

to frames and the woven fabric. Failure strain for eroding elements was used as the 

failure criterion. The results are presented in the following sections. Table 4.1 shows 

material properties used for the simulation.  
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Table 4.1 

 Material Properties Used in the Simulation (Matweb.com, 2015). 

Material Property Value 

Mass Density  2.8 g/cm2 

Young’s Modulus 710 kbar 

Poisson’s Ratio 0.33 

Yield Stress 5.03 kbar 

Tangent Modulus 6.03 kbar 

Failure strain for eroding elements 0.046  

4.8. Results of the baseline model 

Figure 4.7, Figure 4.9 and Figure 4.7 show the results of the impact simulation on 

the baseline model. GLSTAT data from the model (Figure 4.7) shows that the total 

hourglass energy is less than 5% of the total energy, which is indicative of a stable 

simulation. The loss in total kinetic energy is seen to be compensated by increase in the 

sliding energy (Figure 4.7) and the increase in the internal energy of each layer (Figure 

4.8). It should be observed that the energy dissipated by each layer is negligible in order 

of magnitude. Sliding energy refers to the sum of slave (target) and master (projectile) 

energy in the contacts. Moreover, kinetic energy is appropriate to the initial velocity of 

the projectile. This shows that the baseline model is stable. Figure 4.9 shows a snapshot 

of the animation for finite element simulation. 

The next step would be to use the more complicated composite material model. 

However, material properties required for the inputs were not known to the manufacturer 

as the company does not perform any tests on the material. Besides, all the work done on  
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Figure 4.7 Energy data from the baseline model 

 

Figure 4.8 Internal energy absorption by each layer 

similar materials has been done at low-velocity impacts. Therefore, material 

characterization tests are required. In general, tensile tests would be needed in which 

coupon fibers are oriented at 0, 90 and +-45degrees. However, since in this case, the 

same fiber is woven together, tests in 0 or 90 degrees, and +- 45 degrees would suffice. 

The former would provide data on longitudinal properties while the latter would provide 
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data for shear properties.A simple finite element model of the material characterization 

test would then be executed to ensure that the material model replicates the material 

behavior with these inputs.  

 

Figure 4.9 Snapshot of hyper velocity impact simulation of baseline model 
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Figure 4.10 Comparison of response of sesnors to static and dynamic loading 

4.1. Discussion 

Holes of 3 mm and 4.5 mm were drilled in the sensors and results were plotted 

(Figure 4.10). The sensors gave detectable and measurable results. An array of four 

sensors was tested with periodic scanning circuit and LabVIEW codes, and the change in 

voltage was captured effectively. Results were compared based on: 

1. Size of the hole during static testing 

2. Static and hypervelocity impacts 

It was seen that the response of sensors during the hypervelocity impact test was 10 times 

that of the response recorded statically. The addition of a 3mm hole statically caused 

approximately a 1.3% resistance change ratio, the addition of a 4.5 mm hole statically 

caused a 2% resistance change ratio, whereas a projectile of 3mm diameter caused a hole 

of 4.5 mm diameter that resulted in 23.5 % resistance change ratio when shot at 7km/s at 

the sensors. Figure 4.10 shows a comparison of the three cases. This indicates that the 

sensors are more responsive and sensitive to dynamic loading.  
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The baseline finite element model presented here is a preliminary model and only 

helped in understanding and recognizing the process of completing the hypervelocity 

impact simulation. The results could not be directly used or related to the experiments as 

accurate material properties were not used. The material characterization tests could not 

be carried out, as achieving dynamic tensile properties at such high strain rates would 

require special equipment, which is out of the scope of present work and is recommended 

as future work. 
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5. Hyper Velocity Impact Test 

The following sections present hypervelocity impact tests conducted at University 

of Dayton Research Institute (UDRI), Ohio. Working of a light gas gun, importance of 

conducting impact tests, description of projectile, instrumentation and data acquisition are 

explained in detail. Finally the results are discussed and compared with similar works 

conducted in the past. 

5.1. Hyper-Velocity Impact Test 

The three most important requirements for a successful hypervelocity test as 

stated by the University of Dayton Research Institute are: 

1) A system to launch and accelerate the projectile at desired velocity. 

2) Sabots capable of supporting the projectile subjected to launch loads due to high 

g-accelerations and enabling easy release of the projectile without disturbing its 

flight path. 

3) A means for clear capturing of the discarded sabot without disturbing or 

damaging the projectile or target. 

5.1.1. Test Range 

This test was conducted on Range 4, a 50mm/20mm two-stage, light-gas gun 

located in the Impact Physics Laboratory at the University of Dayton Research Institute. 

A photograph of the gun is shown in Figure 5.1 (Range 4 is on the left). It has a 19- foot 

long, 50 mm bore diameter first stage, called pump tube, and a 16- foot long, 20 mm bore 

diameter second stage called launch tube. The projectiles were installed in a plastic sabot 
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Figure 5.1 Test Range at UDRI hypervelocity impact laboratory (Courtesy of UDRI). 

with a cavity sized to fit the projectile. This launch package was then loaded into the 

launch tube and fired at the test article mounted in the gas gun chamber shown in Figure 

5.2. A brief description of the firing cycle is shown in Figure 5.3. Axially split, 

aerodynamically- separating plastic sabots were used for the test. Front of the sabots has 

integral scoops that react with the range pressure and cause the petals to start rotating. 

The petals eventually separate from the projectile as they travel. As the separating 

projectile and sabot come close to the target, the projectile passes through the hole in a 

heavy steel stripper plate and sabot is stopped by the impact on the plate around the hole. 

Figure 5.4 shows a sabot and a spherical projectile. 

After launch, the sabot was stripped away from the projectile by a sacrificial steel 

sabot stripper plate located 18 feet from the launch tube muzzle. The projectile was in 

free flight to the target for approximately 24 feet. This free-flight distance permitted 

accurate measurement of the projectile velocity with laser-photodetector stations 

positioned along the projectile flight path. The tests were performed in a near vacuum 
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with approximately 11 mm of air pressure. 

 

Figure 5.2 Gas gun chamber at UDRI, Impact Physics Laboratory, Range 4 (Courtesy of 

UDRI). 

 

Figure 5.3 Two-stage light gas gun firing cycle (Courtesy of UDRI). 
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Figure 5.4 Sabot and spherical projectile (Courtesy of UDRI). 

5.1.2. Test Articles and Test Setup 

The full test article was similar to the micrometeoroid orbital debris protection 

layers commonly used for the inflatable space habitat structures. The main objective of 

this experiment was to test the functionality of sensors in arrays, to exhibit the capability 

to detect depth of damage and location of the depth in a plane. This was achieved by 

assembling various layers of sensors in the following way. 

The four-layer test article consisted of three hybrid nanocomposite impact sensors 

layers and one structural layer. Each impact sensor layer was composed of Kapton®-

covered flexible CNT-GNP sensor layer bonded onto thin fiberglass fabric, which was 

sandwiched between two aluminum perimetric frames. The four layers were placed two 

inches apart but held together by four all-thread rods through the corners of the frames. 

Top and front views of the test article are shown in Figure 5.5 and Figure 5.6 

respectively. 

Two tests were performed with a different sequence of sensors and different sizes 
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of projectiles. For the first test, although the effective sensing area of each layer was 6 

inch by 6 inch, the first layer only contained single 2 inch by 2 inch CNT-GNP sensor at 

the center of the layer as the impact point was predetermined. 

 

Figure 5.5 Top view of the test article 

The second layer consisted of an array of 9 of those hybrid sensors covering the 

entire sensing area. The third layer was arranged the same as the second layer, but the 

hybrid sensors were replaced by the inkjet-printed CNT water-based sensors. The last 

structural layer was a Vectran webbing, mounted to a fixture that had springs attached to 

the webs to provide a tensile load on the webs. Woven into the webbing were fiber optic 

bundles. This layer was provided by Luna Inc. The projectile used for this test was 3.17 

mm diameter.  

Another similar experiment was conducted using a 4.7 mm aluminum projectile. 

The first layer for this test consisted of one inkjet sensor in the center of the fabric. The 

second layer consisted of an array of 9 inkjet-printed sensors while the third layer 
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consisted of 9 hybrid sensors. Another change made to the test article was an aluminum 

plate with a hole in the center bonded to the first frame. This was done based on visual 

inspection of the test article after the first test. This arrangement avoided loss of data due 

to damage to the surrounding fiberglass fabric on the first layer. 

 

Figure 5.6 Various layers in the test article 

 

The test articles were mounted to a fixture attached to the rear wall of the target 

chamber using extensions of the all-thread rods used to assemble each test article and 

suitable spacers and nuts as shown in Figure 5.7. 

5.1.3. Projectile Description 

The projectiles used for the tests were 2017-T4 aluminum spheres. Projectile 

diameters were measured with a micrometer and their weights were determined using a 

Mettler Model H10 analytical balance with an accuracy of a ±0.0002 gram. The diameter 

of the projectile for the first test was 3.178 mm, while for the second test it was 4.76mm. 
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Figure 5.7 Test article Setup 

5.1.4. Instrumentation 

Despite all the instrumentation performed to gather data during the test, the 

resistance of all the sensors used was recorded before the start of the test and after the end 

of the test as precautions. Periodic sensing was performed on an array of 9 hybrid sensors 

using a multichannel circuit (Figure 5.8 ) by sending a 0.5 A current to each sensor in a 2-

second sequence. The circuit consisted of 9 channels that were addressed using 4 address 

lines. The voltage signal from each of the sensors was recorded using a LABVIEW code 

(Figure 5.9) in order to monitor their resistance. Change in voltage for the single hybrid 

sensor on the first layer was recorded before and after the impact using a multimeter. The 

circuit was placed inside the chamber and was covered with a plastic shielding to protect 

it from any potential damage from the impact debris. 

BNC feedthroughs and Swagelok fittings were used to bring cables in and out of 

the test chamber as shown in Figure 5.10. The data collected from the impact tests also 
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included the projectile diameter and weight, the projectile impact velocity, verification of 

projectile integrity using flash radiography, and photographic documentation of the 

damage to the test articles. All data-recording instruments are calibrated annually to 

NIST traceable standards. 

 

Figure 5.8 Circuit of nine channel electronic control circuit. 

5.1.1. Velocity Measurement 

The projectile velocity was measured with four HeNe laser-photodetector stations 

spaced over 159.63 inches. The last laser station was located roughly 60 inches from the 

target. Each laser projected a beam that intersected the projectile trajectory normal to the 

trajectory and illuminated an opposing photodetector station. When the projectile 

interrupted the beam, the interruption time was recorded by an HBM Genesis data 

acquisition system operating with a sampling rate of 10 MHz. 

The projectile velocity was calculated by dividing the measured distance between 

any two sets of laser-photodetector stations by the time of flight between those two  
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Figure 5.9 LabVIEW code for data acquisition of HVIT. 

 

Figure 5.10 BNC feedthroughs and Swagelok fittings for instrumentation during the test. 

stations. The use of four laser-photodetector stations allowed UDRI to make up to six 

different computations of the velocity of the projectile with three of these being 
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independent measurements. Velocity measurement accuracy is better than 0.5%. 

5.1.2. Flash Radiography 

Projectile integrity was verified using a Scandiflash 150 kV, dual-head, flash x-

ray system. Radiographs were made using Industrex Flex XL Blue Computed 

Radiography screens. The orthogonal pair of flash x-ray heads were used to capture 

images of the projectile after the sabot had been stripped and prior to impact with the 

target. “Firing” of the x-ray system was controlled using trigger pulses from time-delay 

generators which were “started” by signals produced by the passage of the projectile 

through the fourth laser-photodetector station. The appropriate time delays required to 

capture the views of the projectile, when it was over the film/screen, were preset prior to 

charging the x-ray system. Individual time delays were computed using the expected 

projectile velocity and the downrange location of the x-ray film with respect to the laser-

photodetector station providing the “start” signal. 

5.2. Impact Test Results 

A total of 2 successful tests were performed. A summary of the test conditions and 

test results for the test series are presented in Table 5.1. 
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Table 5.1  

Summary of the Impact Tests 

Test 

No. 

 

Projectile 

Material 

Projectile 

Diameter 

(mm) 

Projectile 

Mass (g) 

Impact 

Velocity 

(km/s) 

Impact 

Energy 

(J) 

Results 

1 2017-T4 

Al 

3.178 0.0458 6.99 1,118 All three fabric 

layers penetrated 

with spray on the 

fourth layer 

2 2017-T4 

Al 

4.760 0.1583 6.88 3,750 All three fabric 

layers  were 

penetrated with 

small perforation 

on the fourth 

layer 

5.3. First Impact Test 

During the first test, the first layer consisted of a single hybrid sensor in the center 

of the test article, while the second layer carried an array of 9 sensors. The third layer 

carried an array of 9 CNT printed sensors. Figure 5.11 and Figure 5.12 show the test 

article before and after impact. Damage was seen on the first three layers. The fiberglass 

fabric on the first layer carrying a single sensor was damaged due to shock and high 

pressure. 
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Figure 5.11 Test article before the impact 

Figure 5.13 shows the nomenclature for the array of 9 hybrid sensors. The sensors 

were marked 1 to 9 from top left to bottom right as shown. Figure 5.14 shows the damage 

on the first layer and the projectile used for the test. Figure 5.15 through Figure 5.20 

show front and back sides of all the layers after impact. The single sensor in the center on 

the first layer suffered damage of diameter 4.66 mm (Figure 5.15 and Figure 5.16). 

Figure 5.17 and Figure 5.18 show front and back side of the second layer of 9 hybrid 

sensors after the impact.  A damage measuring 20.2 mm was observed on sensor 5 in this 

layer. Figure 5.19 and Figure 5.20 show the front and back sides of the nine CNT printed 

sensors after impact. The electrodes of sensors 4, 5 and 6 were severed into two due to 

the size of the damage. No resistance measurements (infinity) was obtained after the test 

on those sensors. 
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Figure 5.122. Test article after the impact 

 

Figure 5.13 Nomenclature used to recognize the hybrid sensors in an array 
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Figure 5.14 Damage on the first layer (hybrid sensors) and the projectile after the first test 

 

Figure 5.15 Front side of the first layer (hybrid sensors) after first test 
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Figure 5.16 Back side of the first layer (hybrid sensors) after first test 

 

Figure 5.17 Front side of the second layer (hybrid sensors) after first test 
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Figure 5.18 Back side of the second layer (hybrid sensors) after first test 

 

Figure 5.19 Front side of the third layer (ink jet printed sensors) after the first test 
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Figure 5.20 Back side of the third layer (ink jet printed sensors) after the first test 

5.4. Resistance Measurement of Hybrid Sensors 

The resistance of the single sensor on the first layer changed from 3.65 ohms to 

4.51 ohms. Change in resistance ratio was calculated and was found to be 23.5%. Figure 

A.1 through Figure A.9 in the appendix show the percentage change in resistance which 

was derived from real-time voltage recordings during the experiment. Change in 

resistance for sensor 5 on the second layer was recorded by the data acquisition system 

and was found to be 150%. This is shown in Figure A.5 in the appendix. Although the 

other eight sensors were not impacted by the projectile, it was observed that they 

experienced some strain as the projectile hit sensor 5. This strain could have been caused 

by various factors like pressure and shock waves. Figure 5.21 shows the strain in the 

form of resistance change ratio in the plots for 9 sensors on the second layer. 
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Figure 5.21 Response of different sensors during first HVIT. 

5.5. Second Impact Test 

For the second test, the array of 9 hybrid sensors was placed on the third layer 

while one CNT inkjet-printed sensor and 9 CNT inkjet-printed sensors were placed 

respectively on the first and second layers. Figure 5.22 and Figure 5.23 show the test 

article before and after impact. This arrangement gave a clear picture of the extent of 

damage on sensors depending on their location within the layers of inflatable habitats.  

Figure 5.24 and Figure 5.25 show front and back side of the CNT inkjet-printed sensor on 

1 2 3 

4 5 6 

7 8 9 
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the first layer after the impact. Damage of size 6.07 mm was observed on the sensor. 

Figure 5.26 and Figure 5.27 show front and back side of the 9 CNT inkjet-printed sensor 

on the second layer after the impact. Clean damage of size 15.31 mm was measured on 

the middle CNT inkjet-printed sensor (sensor 5). Figure 5.28 and Figure 5.29 show front 

and back side of the hybrid sensors on the third layer after the impact. The nomenclature 

used for the previous test was followed to recognize the sensors. It was observed that the 

damage caused to the array of hybrid sensors was much larger as compared to the 

damage caused on the first and second layers. 

 

Figure 5.22 Test article before the test 
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Figure 5.23 Test article after the test 

 

Figure 5.24 Front side of the first layer (inkjet-printed sensors) after the second test 
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Figure 5.25 Back side of the first layer (inkjet-printed sensors) after the second test 

 

Figure 5.26 Front side of the second layer (inkjet-printed sensors) after the second test 
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Figure 5.27 Back side of the second layer (inkjet-printed sensors) after the second test 

 

Figure 5.28 Frontside of the third layer (ink jet printed sensors) after the second test 
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Figure 5.29 Back side of the third layer (inkjet printed sensors) after the second test 

5.6. Resistance Measurement of Hybrid Sensors 

As a result of the impact on the third layer consisting of 9 hybrid sensors, sensor 5, sensor 

6 and their connecting wires were completely severed and the voltage shot up to 5 V, 

which was maximum voltage set in the data acquisition system. This can be seen in 

Figure A.14 and Figure A.15 in the appendix, for resistance change ratio. Sensors 2, 

sensor 4 and sensor 7 experienced finite resistance change which is evident from Figure 

A.11, Figure A.13, and Figure A.16 in the appendix respectively. The percentage change 

in resistance was derived for each sensor from the real-time voltage, as shown in Figure 

A.10 through Figure A.18 in the appendix. 

Figure 5.30 shows how the damage to the test article is comparable to the strain in the 

form of resistive change in the plots for each sensor on the second layer of the test article. 
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Figure 5.30 Response of different sensors during second HVIT. 

5.7. Limitations of Hypervelocity Impact Test 

Following limitations were recognized for the hypervelocity impact test: 

 The data was acquired before and after the test only. This did not provide 

any information on dynamic response of the sensors. 

 The velocity of the projectile was measured only before the impact. The 

1 2 3 

4 
5 

6 

7 8 9 
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test provided no information on the velocity of the projectile after the 

impact (exit velocity) as the test chamber had no means to measure it. 

 A strong shock wave was experienced by the first layer of the sensors 

during the first impact test which caused damage to the glass fiber and the 

sensor. A thin metal plate with a hole in the center was used during the 

second test to shield the sensors from this effect.  

 Some sensors were severed during the test which resulted in loss of some 

data. 

5.8. Discussion 

Two tests were performed with two different sizes of projectiles and different 

sequences of hybrid sensors and inkjet-printed sensors. This provided a complete picture 

of the response of sensors to the projectile and to the debris cloud. Based on the impact 

physics and tests done in the past, it was expected that the first layer to be hit by the 

projectile would have a clear hole, while the following layers would sustain larger 

damage as they would be hit by a debris cloud. A similar pattern was observed after the 

HVIT at UDRI. All three layers were hit in both tests. The first layer had a clear hole of 

4.5 mm diameter, while the second layer had damage of 19.2 mm diameter. The voltage 

readings captured by the DAQ during the test were converted to change in resistance. 

23% change in resistance ratio was seen for the first layer (4.5mm diameter hole). 150% 

change was seen in the second layer (19.2 mm diameter hole), and in case of the third 

layer, the sensor in the middle was completely severed. The location and depth of damage 

could be detected by observing the response of the sensor number on each layer 

according to the nomenclature. The response could be seen in real time using the DAQ. 



61  

   

 

This shows the great potential of the sensors along with the DAQ and the control circuits 

to detect the damage, its location and depth of penetration by a 3mm diameter projectile 

at 7km/s. A structural health monitoring system can hence be developed using the hybrid 

CNT-GNP nanocomposite sensors. 

Brandon et al., 2011 explained the working and impact testing of capacitive 

sensors developed for detection of impact damage by MMOD in inflatable space 

structures. The results showed that for similar size of projectile (3mm) shot at 7km/s, the 

first layer of sensors got severed with a hole of 6mm diameter, whereas, the hybrid CNT 

GNP sensors, (first layer) showed a resistance change ratio of 23.5% for a hole of 4.66 

mm in same test conditions. For the second layer, both types of sensors had a hole of 

approximately 20 mm. However, the capacitance change ratio in capacitive sensors was 

only 10%, whereas the hybrid CNT GNP sensors underwent 150% resistance change 

ratio.  A comparison of the two types of sensors is shown in Table 5.2. Hence, the hybrid 

CNT GNP sensors exhibit robustness and higher sensitivity to impact damage compared 

to the capacitive sensors. In addition, they are flexible, easy to develop and the 

electronics and data acquisition involved are simpler and cheaper. Macro-Fiber 

Composite (MFC) piezoelectric device is another type of sensor that has been tested for 

detecting and assessing MMOD strike damage on inflatable rigidizeable composite space 

structures (Tarazaga, Peairs, Wilkie, & Inman, 2006). The results showed that these 

sensors can detect damage as small as 0.79 mm. However, due to power limitations of 

monitoring devices, high cost of data storage and transmission, it cannot be used in large 

systems.  

Acoustic emission sensors can detect damage in micron size scale but give an 



62  

   

 

approximate location of the damage and would require very effective noise control 

(Iliescu, Lakis, & Abou–Antoun, 2014). Fabric sensors made form spray-coated, 

piezoresistive, CNT latex thin films as sensing elements shows promising results in 

detection of pressure changes, and are low-cost, flexible, lightweight, robust and easy to 

fabricate (Wang, Gupta, Loh, & Koo, 2016). However, they have not been tested for 

impacts by projectile traveling at hypervelocity. 

Table 5.2  

Comparison of Sensitivity of Capacitive Sensors and Hybrid Nanocomposite Sensors to 

Impact Damage at 7 km/s for a Projectile of 3mm Diameter. 

 It was observed that the FEA results from the baseline model could not capture 

the right mode of damage for second, third and fourth layers. The HVIT results show that 

the first layer sustains a clear hole, while the following layers had bigger damage size. 

This is because the first layer is impacted by the projectile, but the following layers are 

impacted by a debris cloud consisting of shattered projectile and debris from the previous 

layer. However, in the finite element model, the projectile is assumed to be rigid. This 

resulted in similar damage for all the layers during the simulation. Moreover, the material 

Sensor Location on 

Test Article 

Size of 

Damage 

Capacitance or 

Resistance Change 

Ratio 

Capacitive Copper-Polyimide 

sensors (Brandon, et al., 2011) 

First layer 6 mm Shorted  

Second layer 22-25 mm 10% 

Piezoresistive hybrid 

nanocomposite sensors 

(Current Study) 

First layer 4.66 mm 23.5% 

Second layer 20.2 mm 150% 
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models used for the finite element model did not represent the actual materials which led 

to the discrepancies between the experimental results and the simulation results.  
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6. Conclusions and Future Work 

6.1. Conclusions 

Hybrid CNT-GNP nanocomposites were developed using a novel technique using 

a laser marker to cut the GNP and distribute them in a pattern in the matrix. The effect of 

distributing GNPs in a uniform fashion and aspect ratio of GNPs on piezoresistivity and 

electrical conductivity was studied  

The hybrid nanocomposite sensors were tested for their electrical response to 

holes added with a drill. A test fixture was successfully designed and manufactured for 

the HVIT that simulated the layers of fabric of inflatable space structures. DAQ system 

and power system were successfully designed and tested to be used along with the 

nanocomposite sensors to form a health monitoring system that can be integrated with 

space inflatable structures. The process to simulate the HVIT was recognized and 

executed to obtain a baseline model. However, the test could not be simulated due to 

unavailability of material properties. The HVIT was successfully carried out and proved 

that the hybrid nanocomposite sensors can detect damage due to MMOD in space 

inflatable structures efficiently. 

The primary scientific conclusions of this research are: 

1) Using laser marker to develop the hybrid CNT-GNP/epoxy nanocomposites 

resulted in better controlled microstructure of the hybrid nanocomposites. 

2)  The percolation based numerical model (Gbaguidi, Namilae, & Kim, 2017) 

showed that distribution of graphite platelets in a uniform fashion and aspect ratio 

of the graphite platelets resulted in an enhanced piezoresistive behavior at 

nanoscale. However, during tests with 1 mm diameter graphite platelets, it was 
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observed that distribution and aspect ratio of the platelets have no effect on 

piezoresistivity of the nanocomposites. This could be due to different tunneling 

mechanisms at micro-size and macro-size level. 

3) Change in resistance ratio due to a 4.5 mm diameter hole added statically was 

found to be 2%, whereas it was 23.5% when damage of same size was sustained 

by the sensors during the HVIT. Hence, the sensors went through 10 times higher 

change in resistance for impacts at high strain rates and their response is strain 

rate dependent. This could be due to dynamic strain and temperature effects along 

with piezoresistivity of the sensors. 

4) The HVIT was successfully carried out and proved that the hybrid nanocomposite 

sensors could detect damage due to MMOD of 3mm diameter (at 7km/s), its 

location and penetration depth in space inflatable structures efficiently.  

5) The hybrid GNP-CNT/epoxy nanocomposite piezoresistive sensors were found to 

be more robust and provided better resolution to impact damage caused by a 

projectile of 3mm at 7 km/s as compared to capacitive sensors that have been 

tested for the same technology in past (Brandon, et al., 2011).  

6) The hybrid GNP-CNT/epoxy nanocomposites were also found to be power 

efficient and economic compared to MFC composite piezoelectric sensors, and 

more accurate in determination of damage and its location as compared to sensors 

based on acoustic emission technology. 

In summary the hybrid CNT-GNP/epoxy nanocomposites are effective in detecting 

MMOD impact damage in space inflatable structures.  
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6.2. Future Work 

Following are the recommendations for future work: 

1) The technique followed to cut GNP in laser marker can be used to study the effect 

of size, shape and weight% of GNP on the hybrid nanocomposites. It was found 

that aspect ratio and distribution of GNPs did not cause any effect on 

piezoresistivity of the nanocomposites. Further investigation is required to 

determine other factors playing a role in this behavior like contact between CNT 

and GNP.  

2) In order to validate the experimental results regarding no effect of aspect ratio and 

distribution of graphite platelets on piezoresistivity, comparison should be drawn 

with numerical work done for larger size of graphite platelets. 

3) A hypervelocity Impact simulation was attempted in LS Dyna. However, it was 

realized that the simulation required material characterization tests that could not 

be carried out due to limited resources. These can be carried out at other facilities 

that provide high strain tensile testing. It is recommended that MAT_058 form LS 

Dyna material library is used for this simulation. Once the mechanical properties 

are known, characterization tests can be carried out in LS Dyna to verify the 

material model. Results achieved from the HVIT discussed in this work can be 

compared and the finite element model can be validated. Once this has been 

achieved, this model can be used in the future to predict the impact mechanics 

when parameters like stand-off distance between the layers, thickness of the 

layers are changed. 

4) During the HVIT, sensors of 2 inch by 2 inch were used, which showed excellent 
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response to the damage. However, in order to apply blanket technology to large 

inflatable structures, tests must be done on larger sizes of sensors so that the 

system is power efficient and economic. 

5) The electronic circuit and the data acquisition system used during the HVIT 

captured the change in voltage in a periodic manner. Every sensor was scanned 

for 2 seconds one after another. This gave a clear picture of the sensors’ response 

before and after impact. However, with continuous power to each sensor, its 

instantaneous response during the impact can also be captured. 
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 APPENDIX 

The following plots show the piezoresistive response of the sensors before and after 

the two hyper velocity impact tests. It is observed that the sensors that were not impacted 

by the projectile, also experience some strain before and after the test. It is speculated that 

one of the sources of this effect could be the process of creating vacuum inside the chamber 

after the DAQ system was turned on. Other sources of dynamic strain could be the shock 

wave during the impact, bending of the glass fiber fabric (carrying the sensors), and 

temperature and pressure changes in the chamber, as it was sealed and opened.  

 

Figure A.1 Resistance change ratio for sensor 1 in the array during the first test. 
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Figure A.2 Resistance change ratio for sensor 2 in the array during the first test 

 

Figure A.3 Resistance change ratio for sensor 3 in the array during the first test 
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Figure A.4 Resistance change ratio for sensor 4 in the array during the first test 

 

Figure A.5 Resistance change ratio for sensor 5 in the array during the first test 



78  

   

 

 

Figure A.6 Resistance change ratio for sensor 6 in the array during the first test 

 

Figure A.7 Resistance change ratio for sensor 7 in the array during the first test 
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Figure A.8 Resistance change ratio for sensor 8 in the array during the first test 

 

Figure A.9 Resistance change ratio for sensor 9 in the array during the first test 
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Figure A.10 Resistance change ratio for sensor 1 in the array during the second test 

 

Figure A.11 Resistance change ratio for sensor 2 in the array during the second test 
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Figure A.12 Resistance change ratio for sensor 3 in the array during the second test 

 

Figure A.13 Resistance change ratio for sensor 4 in the array during the second test 
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Figure A.14 Resistance change ratio for sensor 5 in the array during the second test 

 

Figure A.15 Resistance change ratio for sensor 6 in the array during the second test 
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Figure A.16 Resistance change ratio for sensor 7 in the array during the second test 

 

Figure A.17 Resistance change ratio for sensor 8 in the array during the second test 
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Figure A.18 Resistance change ratio for sensor 9 in the array during the second test 
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