
 Open access Journal Article DOI:10.1162/EVCO_A_00157

Hypervolume subset selection in two dimensions: Formulations and algorithms
— Source link

Tobias Kuhn, Carlos M. Fonseca, Luís Paquete, Stefan Ruzika ...+2 more authors

Institutions: Kaiserslautern University of Technology, University of Coimbra, University of Koblenz and Landau,
Instituto Superior Técnico

Published on: 01 Sep 2016 - Evolutionary Computation (MIT Press)

Topics: Linear programming relaxation, Integer programming, Evolutionary algorithm, Shortest path problem and
Multi-objective optimization

Related papers:

 Two-dimensional subset selection for hypervolume and epsilon-indicator

 Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study

 Hype: An algorithm for fast hypervolume-based many-objective optimization

 Performance assessment of multiobjective optimizers: an analysis and review

 An efficient algorithm for computing hypervolume contributions

Share this paper:

View more about this paper here: https://typeset.io/papers/hypervolume-subset-selection-in-two-dimensions-formulations-
skiudw6onw

https://typeset.io/
https://www.doi.org/10.1162/EVCO_A_00157
https://typeset.io/papers/hypervolume-subset-selection-in-two-dimensions-formulations-skiudw6onw
https://typeset.io/authors/tobias-kuhn-g731lg8c1b
https://typeset.io/authors/carlos-m-fonseca-1xqoert3wx
https://typeset.io/authors/luis-paquete-tz8a9lpua8
https://typeset.io/authors/stefan-ruzika-2nc6zx255v
https://typeset.io/institutions/kaiserslautern-university-of-technology-1pdvji5u
https://typeset.io/institutions/university-of-coimbra-jvau7lrk
https://typeset.io/institutions/university-of-koblenz-and-landau-3uw7ov5c
https://typeset.io/institutions/instituto-superior-tecnico-s59org2m
https://typeset.io/journals/evolutionary-computation-12qw6oyr
https://typeset.io/topics/linear-programming-relaxation-1l0cenkm
https://typeset.io/topics/integer-programming-237ni9is
https://typeset.io/topics/evolutionary-algorithm-3n96w666
https://typeset.io/topics/shortest-path-problem-30ne28nq
https://typeset.io/topics/multi-objective-optimization-2bm9mfif
https://typeset.io/papers/two-dimensional-subset-selection-for-hypervolume-and-epsilon-2vpke0sabz
https://typeset.io/papers/multiobjective-optimization-using-evolutionary-algorithms-a-260t9hkfdh
https://typeset.io/papers/hype-an-algorithm-for-fast-hypervolume-based-many-objective-3d5umfps3h
https://typeset.io/papers/performance-assessment-of-multiobjective-optimizers-an-wf8l3c8h73
https://typeset.io/papers/an-efficient-algorithm-for-computing-hypervolume-22r3mvz8bh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hypervolume-subset-selection-in-two-dimensions-formulations-skiudw6onw
https://twitter.com/intent/tweet?text=Hypervolume%20subset%20selection%20in%20two%20dimensions:%20Formulations%20and%20algorithms&url=https://typeset.io/papers/hypervolume-subset-selection-in-two-dimensions-formulations-skiudw6onw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hypervolume-subset-selection-in-two-dimensions-formulations-skiudw6onw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hypervolume-subset-selection-in-two-dimensions-formulations-skiudw6onw
https://typeset.io/papers/hypervolume-subset-selection-in-two-dimensions-formulations-skiudw6onw

Hypervolume Subset Selection in
Two Dimensions: Formulations and

Algorithms

Tobias Kuhn∗ Carlos M. Fonseca† Lúıs Paquete†

Stefan Ruzika‡ José Rui Figueira§

March 30, 2014

Abstract. The hypervolume subset selection problem consists of finding
a subset, with a given cardinality, of a nondominated set of points that maxi-
mizes the hypervolume indicator. This problem arises in selection procedures
of population-based heuristics for multiobjective optimization, and for which
practically efficient algorithms are strongly required. In this article, we pro-
vide two new formulations for the two-dimensional variant of this problem.
The first is an integer programming formulation that can be solved by solv-
ing its linear relaxation. The second formulation is a k-link shortest path
formulation on a special digraph with Monge property that can be solved by
dynamic programming in O(n2) time complexity. This improves upon the
existing result of O(n3) in Bader [4].

1 Introduction

The hypervolume subset selection problem (HSSP) is defined as the problem of finding a
subset in a set of nondominated points that has a predefined cardinality and maximizes
the hypervolume indicator. This indicator measures the dominated region in the corre-
sponding space bounded by some reference point. For the two-dimensional case the best
known algorithm is the dynamic programming (DP) approach described in [4] with a
time complexity of O(n3). Such a selection procedure can be used by population-based

∗Mathematical Institute, University of Kaiserslautern, Germany
†CISUC, Department of Informatics Engineering, University of Coimbra, Portugal
‡Mathematical Institute, University of Koblenz-Landau, Campus Koblenz, Germany
§CEG-IST, Instituto Superior Técnico, University of Lisbon, Portugal

1

heuristic approaches for multiobjective optimization problems, which aim to maximize
the hypervolume indicator (e.g. in [7, 5, 8]). In each iteration a pool of solutions is deter-
mined and a subset of these solutions with fixed cardinality is kept for further iterations.
Hence, fast subset selection procedures can enhance the running time of such heuristic
approaches (see [10, 11] for the case of the ǫ-indicator).
In this article, we propose two different formulations for the two-dimensional case of

the HSSP: An integer programming formulation and a k-link shortest path formulation.
Both formulations are based on a preprocessing step, which makes a partition of the
dominated region into different areas induced from the set of nondominated points. The
main result is the formulation of the HSSP as a k-link shortest path problem. In this
formulation, the arc costs possess a special property, called Monge property, that allows
us to solve the HSSP in O(n2) time, improving upon the O(n3) complexity bound in
Bader [4].
The remainder of this article is organized as follows. In Section 2, we introduce

concepts, their definitions, notation and some basic results. In Section 3, we briefly
review Bader’s dynamic programming algorithm. In Section 4, we explain the crucial
preprocessing step for calculating the weights used in the two formulations. In Section 5,
we introduce an integer programming formulation for the HSSP and prove the integrality
of the polyhedron of its linear programming relaxation. In Section 6, we present the
k-link shortest path formulation, which will be used to improve the known complexity
bound. Finally, in Section 7 we provide some conclusions and avenues for future research.

2 Terminology and Basic Results

In the following, some concepts, their definitions and the notation used in this article
are given. Consider the two vectors z1, z2 ∈ R

q:

z1 ≧ z2 :⇔ z1i > z2i for i = 1, 2, . . . , q ,

z1 ≥ z2 :⇔ z1 ≧ z2 and z1 6= z2 ,

z1 > z2 :⇔ z1i > z2i for i = 1, 2, . . . , q .

Definition 1 (Set of Nondominated Points):
A point z′′ ∈ R

q dominates z′ ∈ R
q if z′′ ≥ z′. Let N = {z1, . . . , zn} ⊆ R

q denote a set
of nondominated points, where no point in N is dominating another point in N .

Definition 2 (Hypervolume Indicator):
Let zref denote a reference point satisfying zref < zi, for all i = 1, . . . , n. The set

D(N) :=
n
⋃

i=1

{

z ∈ R
q : zref ≦ z ≦ zi

}

is called the dominated region of N (w.r.t. zref) and the hypervolume indicator of N
(w.r.t. zref) is defined as S(N) := λ (D(N)) where λ(·) denotes the Lebesgue measure
in R

q.

2

The hypervolume indicator maps a set of nondominated points to the size of the region
in the corresponding space dominated by that set and bounded below by a reference
point.

Definition 3 (HSSP):
Consider k ∈ {1, . . . , n}. The hypervolume subset selection problem (HSSP) consists
of selecting a subset N ′ ⊆ N with |N ′| = k such that the value of the hypervolume
indicator S(N ′) on the subset is maximal, i.e.

S(N ′) = max
N ′′⊆N
|N ′′|=k

S(N ′′)

Definition 4 (Totally Unimodular Matrix):
A matrix A ∈ R

p×q is called totally unimodular if the determinant of each square sub-
matrix of A belongs to {0, 1,−1}.

Theorem 5 (Integrality [9]): Let b, b′ ∈ Z
p, d, d′ ∈ Z

q. If A ∈ R
p×q is totally uni-

modular and P := {x ∈ R
q : b′ ≦ Ax ≦ b, d′ ≦ x ≦ d} 6= ∅, then P is an integral

polyhedron, i.e. each of its non-empty faces contains an integral point.

Definition 6 (Totally Monotone Matrix):
Consider a matrix A ∈ R

p×q. For a column 1 6 j 6 q, let min(j) denote the index of the
greatest row containing the minimum value of column j. Matrix A is called monotone
if 1 6 j1 < j2 6 q implies min(j1) 6 min(j2). Moreover, matrix A is called totally
monotone if each submatrix is monotone.

Theorem 7 (Matrix-Searching Algorithm [3]): Let A ∈ R
p×q, p > q, denote a

totally monotone matrix. Then the Matrix-Searching Algorithm in [3] finds the minimal
entries in all columns in O(p) time.

In the following sections, we assume a set of nondominated points N := {z1, . . . , zn} ⊆
R

2 with zi1 < z
j
1 for i < j, some reference point zref and a desired cardinality k ∈

{1, . . . , n}.

3 Bader’s Dynamic Programming Algorithm

Bader [4] proposes a DP algorithm for the two-dimensional case of the HSSP with
O(n3)-time complexity. This algorithm is based on the principle that for the given
nondominated set N the contribution to the hypervolume indicator of the left-most
point z1 only depends on its direct neighbor z2.
For a given zc ∈ N and cardinality t ∈ {1, . . . , k}, let P t

c denote the HSSP subprob-
lem of finding the subset of {zc, zc+1, . . . , zn} with cardinality t that has the maximum
hypervolume indicator and contains zc. Moreover, we denote with N t

c ⊆ N an optimal
subset for the subproblem P t

c .

3

Algorithm 1 Bader’s DP algorithm for the HSSP

Input: N ⊆ R
2, k

Output: Solution of the HSSP with cardinality k

1: N1
c := {zc} for all c ∈ {1, . . . , n}

2: for t = 2, . . . , k do
3: for c = 1, . . . , n− t+ 1 do
4: S(N t

c) := max
d>c

S(N t−1
d ∪ {zc})

return max
c6n−k+1

S(Nk
c)

z1

z2

z3

z4

A11

A21 A22

A31 A32 A33

A41 A42 A43 A44

zref

Figure 1: Partition of the dominated region for a given set N = {z1, z2, z3, z4}

The pseudocode of Bader’s DP algorithm is described in Algorithm 1. For t > 1 and
a given index c, the algorithm computes N t

c as the subset with maximum hypervolume
indicator from the sets N t−1

d ∪{zc}, for d = c+1, . . . , n− t+2. The final output is then
given by the set from Nk

c for all c 6 n− k + 1 with the largest hypervolume indicator.
Since for each t = 2, . . . , k all points zc ∈ N have to be combined with each set N t−1

d ,
d > c, the overall running time needed to calculate the optimal solution for the HSSP is
in O(n3).

4 Preprocessing: Decomposition of the Dominated

Region

This section is devoted to the preprocessing step, which is the crucial aspect for our new
formulations. The dominated region D(N) can be partitioned into certain rectangles.
Let Aij, i > j, be the rectangle defined by the subregion of D(N) which is exclusively
dominated by all points in {zj, . . . , zi} and no other point in N . An example of this
partition is given in Figure 1. For every such rectangle we define wij as the area λ (Aij)

of rectangle Aij. If we define z
0
1 := z

ref
1 and zn+1

2 := z
ref
2 the rectangle Aij can be written

as

4

Aij =

{

z ∈ R
2 :

(

z
j−1
1

zi+1
2

)

≦ z ≦

(

z
j
1

zi2

)}

.

Hence, we get wij = (zj1 − z
j−1
1) · (zi2 − zi+1

2) and we can calculate all the weights wij,
i > j, in O(n2) time.

5 An Integer Programming Formulation

This section presents an integer programming (IP) formulation for the HSSP and shows
that we can efficiently solve this formulation by solving its linear relaxation. Following
the notation in Section 4, we denote with Aij, i > j, the rectangle defined by the
subregion of D(N) which is exclusively dominated by {zj, . . . , zi} and no other point in
N . The following IP formulation models the corresponding HSSP:

(IPk) max
n

∑

i=1

i
∑

j=1

wijxij (1)

subject to
n

∑

ℓ=1

xℓℓ = k (2)

i
∑

ℓ=j

xℓℓ > xij i = 2, . . . , n; j = 1, . . . , i− 1 (3)

xij ∈ {0, 1} i = 1, . . . , n; j = 1, . . . , i

Thereby, variable xℓℓ is equal to 1 if and only if zℓ is selected and variable xij determines
whether the subregion Aij is covered by some point in {zj, . . . , zi}, which is guaranteed
by constraint (3). Constraint (2) ensures the compliance of the selection of exactly k

points and the objective function (1) calculates the value of the current hypervolume
indicator, which has to be maximized.
Consider now the linear programming (LP) relaxation. We show that the constraint

matrix of this LP in some standard form is totally unimodular. The LP relaxation is
given by the following formulation:

(LPk) max
n

∑

i=1

i
∑

j=1

wijxij (4)

subject to
n

∑

ℓ=1

xℓℓ = k (5)

i
∑

ℓ=j

xℓℓ − xij − sij = 0 i = 2, . . . , n; j = 1, . . . , i− 1 (6)

5

0 6 xij 6 1 i = 1, . . . , n; j = 1, . . . , i

sij > 0 i = 2, . . . , n; j = 1, . . . , i− 1

where the new variables sij are surplus variables.
If we rearrange the columns in a certain way, first the variables xℓℓ, ℓ = 1, . . . , n, and
after that the variables xij and sij, i = 2, . . . , n, j = 1, . . . , i − 1, according to the
ordering of the constraints (6), the structure of the constraint matrix corresponding to
(LPk) is given by

1 . . . 1 0 . . . 0 0 . . . 0

C -I -I

where C is a n(n−1)
2

× n-matrix and −I is the negative of the n(n−1)
2

× n(n−1)
2

-identity-

matrix. Let us denote by C̃ the submatrix

(

e

C

)

, where e ∈ R
n is the vector of all

ones, and by D the submatrix

0 . . . 0 0 . . . 0

-I -I

.

Observe that D is obviously totally unimodular and C̃ has the consecutive ones property
[9] and thus is also totally unimodular.

Theorem 8: The constraint matrix of (LPk) is totally unimodular.

Proof:
Let B denote an arbitrary squared submatrix of the constraint matrix of (LPk).

Case 1: B is completely contained in C̃ or completely contained in D and therefore
det (B) ∈ {0,±1}, since both matrices are totally unimodular.
Case 2: B possesses s > 0 and t > 0 columns from matrix C̃ and matrix D, respectively,
w.l.o.g. no duplicate column from D.
Choose some column j > s from B belonging toD and expand the determinant of B with
respect to the jth column (Laplace expansion). Since this column has only one nonzero
entry, say bij, we get det (B) = (−1)i+j+1 ·det (Mij), where Mij is the minor of matrix B

formed by eliminating row i and column j from B. The minor Mij corresponds also to a
squared submatrix of the constraint matrix and if we follow the above Laplace expansion
after t steps, we get a submatrix B̃ of B matching Case 1, i.e., det (B̃) ∈ {0,±1}. Then,
by construction we get det (B) = ± det (B̃) ∈ {0,±1}.
Since B was an arbitrarily chosen squared submatrix, we have shown the totally

unimodular property of the constraint matrix. �

Corollary 9 (Integrality): The polyhedron corresponding to (LPk) is integral.

6

Proof:
This follows from theorems 5 and 8 and the following upper bound of the surplus vari-
ables:

sij =
i

∑

ℓ=j

xℓℓ − xij 6 k − xij 6 k i = 2, . . . , n; j = 1, . . . , i− 1 . �

6 A k-link Shortest Path Formulation with Monge

Property

In the following, we show that the HSSP can be modeled using a k-link shortest path
formulation in an appropriate directed graph (digraph). The corresponding shortest
path problem with a cardinality constraint can then be solved using a DP approach.
This digraph has a special structure, the Monge property, that allows us to solve the
HSSP problem in O(n2) time-complexity.
We first explain the construction of the corresponding digraph G = (V,E) for the given

set N . The graph construction is based on the observation, that for every choice of a
subset {zs1 , . . . , zsk}, si 6 sj for i < j, the contribution to the hypervolume indicator of
the consecutive points {zsi+1, . . . , zsi+1−1} for two indices with si+1 < si+1 only depends
on the coordinates of the points zsi and zsi+1 . For each element zc ∈ N we create a node
c ∈ V . In addition, we also add two other nodes 0 and n+ 1 to V , as source and target
nodes, respectively. We add the arcs euv := (u, v), for all u, v ∈ {0, . . . , n+1} with u < v

to E. According to the notation in the preprocessing step (see Section 4), the cost cuv
of an arc euv is defined as follows

cuv :=
v−1
∑

i=u+1

i
∑

j=u+1

wij

where cu,u+1 = 0 for all u ∈ {0, . . . , n}.
The cost cuv describes the contribution to the hypervolume indicator of the whole set

{zu+1, . . . , zv−1}, which will be called the exclusive volume of the set {zu+1, . . . , zv−1}
and denoted by EV (zu+1, zv−1). An example for the graph construction is depicted in
Figure 2.

Observation 10:
Each choice in the HSSP of a subset {zs1 , . . . , zsk−1} out of N with cardinality k − 1
corresponds to a path in our constructed digraph with exactly k arcs that starts in node
0, visits the nodes s1 to sk−1, and ends in the node n+ 1. Since the cost of an used arc
euv corresponds to the exclusive volume of the jumped over nodes u + 1 to v − 1, the
hypervolume contribution S(N) minus the total cost of the path corresponds then to the
hypervolume contribution of the corresponding subset of N . Hence, the k-link shortest
path problem on our constructed digraph models the HSSP with desired cardinality
k − 1.

7

6

4 2

24

6 3 6 9

4

z1

z2

z3

z4

0 1 2 3 4 5
0 0 0 0 0

9426

12 8 19

2622

46

Figure 2: Example for the graph construction

Algorithm 2 DP for the special k-link shortest path problem

Input: G = (V,E) from above, k ∈ {1, . . . , n}
Output: D(k, n+ 1) length of the optimal path from 0 to n+ 1 with k arcs
1: D(1, v) := c0v for all v ∈ {1, . . . , n+ 1− k + 1}
2: for ℓ = 2, . . . , k do
3: for v = ℓ, . . . , n+ 1− k + ℓ do
4: D(ℓ, v) := min

u=ℓ−1,...,v−1
{D(ℓ− 1, u) + cuv}

Since in our special k-link shortest path problem the Bellman principle of optimality
is obviously valid, we can use a straightforward DP approach to solve this problem (see
Algorithm 2). In each iteration, the length D(ℓ, v) of the optimal path for the problem
of finding the ℓ-link shortest path from 0 to v is calculated. However, this would not
lead directly to a better running time than Bader’s DP algorithm (see Section 3), since
finding the minimum in line 4 is in a näıve way done in O(n), resulting in an overall
running time in O(n3).
In the following, we show that the time complexity can be improved by proving some

special structure for this digraph, the so called (concave) Monge property [2]:

Theorem 11 (Monge property): Consider the following arcs

ei,j, ei,j−1, ei+1,j, ei+1,j−1

for some i, j with j > i+ 2 (see also Figure 3). Then we have:

ci,j > ci,j−1 + ci+1,j − ci+1,j−1

Proof:
For 0 6 f 6 h 6 g 6 n we define B(f,g)(zh) as the area of the rectangle induced by the

two corner points zh and the special reference point zref(f,g) :=

(

z
f−1
1

z
g+1
2

)

with z01 = z
ref
1

and zn+1
2 = z

ref
2 (compare Figure 4).

8

i+1i j-1 j

Figure 3: Selected arcs in Theorem 11

zf

zh

zg

zg+1

zf−1

zref(f,g)

Figure 4: Example for B(f,g)(zh) (shaded area)

We immediately get the following three formulas:

EV (zi+1, zj−1) = EV (zi+2, zj−2) + B(i+1,j−2)(zi+1) + B(i+1,j−1)(zj−1)

EV (zi+1, zj−2) = EV (zi+2, zj−2) + B(i+1,j−2)(zi+1)

EV (zi+2, zj−1) = EV (zi+2, zj−2) + B(i+2,j−1)(zj−1)

Moreover, we know:

B(i+2,j−1)(zj−1) = B(i+1,j−1)(zj−1)− B(i+1,j−1)(zi+1) ∩ B(i+1,j−1)(zj−1)

= B(i+1,j−1)(zj−1)− wj−1,i+1

With these we can state the following chain:

ci,j = EV (zi+1, zj−1)

= EV (zi+2, zj−2) + B(i+1,j−2)(zi+1) + B(i+1,j−1)(zj−1)

= EV (zi+2, zj−2) + B(i+1,j−2)(zi+1) + B(i+2,j−1)(zj−1) + wj−1,i+1

= EV (zi+1, zj−2) + EV (zi+2, zj−1)− EV (zi+2, zj−2) + wj−1,i+1

= ci,j−1 + ci+1,j − ci+1,j−1 + wj−1,i+1 (7)

> ci,j−1 + ci+1,j − ci+1,j−1 �

9

Algorithm 3 Calculation of the costs cuv
Input: Weights wij, i > j, from preprocessing
Output: The costs cuv for all arcs euv, u, v ∈ {0, . . . , n+ 1} with u < v.
1: cu,u+1 := 0 for all u ∈ {0, . . . , n}
2: cu,u+2 := wu+1,u+1 for all u ∈ {0, . . . , n− 1}
3: for d = 3, . . . , n+ 1 do
4: for u = 0, . . . , n+ 1− d do
5: cu,u+d := cu,u+(d−1) + cu+1,u+d − cu+1,u+d−1 + wu+d−1,u+1

ui v j

Figure 5: Selected Arcs in Corollary 13

Observation 12:
From the proof of Theorem 11 we can design an algorithm for calculating the costs cuv
in O(n2) time. We use formula (7) to calculate the costs in a bottom-up manner (see
Algorithm 3). Note that in each iteration all costs used to calculate the cost cu,u+d have
been calculated before, since cu+1,u+d = cu+1,(u+1)+(d−1) and cu+1,u+d−1 = cu+1,(u+1)+(d−2).

From the Monge property it is easy to follow the following equivalent property [1].

Corollary 13: Consider the following arcs

ei,j, ei,v, eu,j, eu,v

with i < u < v < j (see also Figure 5). Then we have:

ci,j > ci,v + cu,j − cu,v

Going back to Algorithm 2, to find for a fixed ℓ 6 k the new entries D(ℓ, v), v =
ℓ, . . . , n+ 1, we have to find in a matrix M ℓ, where only the entries M ℓ(u, v) := M ℓ

uv :=
D(ℓ− 1, u) + cuv, v ∈ {ℓ, . . . , n+1− k+ ℓ}, u ∈ {ℓ− 1, . . . , v− 1} are relevant, for each
column v the minimal value, which is then assigned to D(ℓ, v). Ignoring all irrelevant
columns and rows, matrix M ℓ is a square matrix in R

(n−k+2)×(n−k+2).

Theorem 14: M ℓ is totally monotone for a fixed row ℓ ∈ {2, . . . , k}

10

Proof:
Choose some arbitrary submatrix with rows i1, i2, . . . , is, w.l.o.g. without empty columns.
Choose two columns from the submatrix j1 < j2. Suppose now that min(j1) > min(j2)
and let ig := min(j2) and ih := min(j1).
Then, we get the four entries:

M ℓ(ig, j1) = D(ℓ− 1, ig) + cig ,j1 , M ℓ(ig, j2) = D(ℓ− 1, ig) + cig ,j2 ,

M ℓ(ih, j1) = D(ℓ− 1, ih) + cih,j1 , M ℓ(ih, j2) = D(ℓ− 1, ih) + cih,j2

and due to our assumption we know M ℓ(ih, j2) > M ℓ(ig, j2) and moreover M ℓ(ig, j1) >
M ℓ(ih, j1), i.e. we have

D(ℓ− 1, ih) + cih,j2 > D(ℓ− 1, ig) + cig ,j2

−D(ℓ− 1, ih)− cih,j1 > −D(ℓ− 1, ig)− cig ,j1

which gives us summed up the result:

cig ,j2 − cig ,j1 < cih,j2 − cih,j1 (8)

Furthermore, we are now in the situation ig < ih < j1 < j2 and from Corollary 13 we
immediately get

cig ,j2 − cig ,j1 > cih,j2 − cih,j1

This leads together with (8) to a contradiction and we get min(j1) 6 min(j2). �

Corollary 15: Using the Matrix-Searching Algorithm from Theorem 7 in the DP ap-
proach (see Algorithm 2), the k-link shortest path problem in the constructed digraph can
be solved in O(nk) time.

Hence, incorporating the time for the preprocessing (see Section 4) we can state the
following result.

Corollary 16: The two-dimensional HSSP can be solved in O(n2) time.

Remark 17:
Note that the algorithm induced from Corollary 16 can obtain the solution of the HSSP
for all k = 1, . . . , n in O(n2) time.

7 Conclusion

In this paper, we considered the two-dimensional hypervolume subset selection prob-
lem. We have proposed a new integer programming formulation and showed that the
polyhedron of its linear relaxation is integral. Moreover, we have given a k-link shortest
path formulation on a simple, directed, acyclic graph. Exploiting the special structure

11

of the arc costs, we stated a dynamic programming approach which solves the problem
in O(n2) improving the best known complexity bound of O(n3). We remark that if a
parallel environment is available, the k-link shortest path problem on our special digraph
from Section 6 can be solved in O(n

√

k log(n)) [2].
It is an open question whether the time complexity of our dynamic programming

approach can be reduced by skipping the preprocessing step, i.e. calculating the weights/
costs on demand. In principle, an overall time complexity of O(nk) could be achieved
by computing the matrix entries during the run of the matrix searching algorithm in
constant amount of time (see, e.g., in [6]). However, for our particular problem, it is not
clear how to combine each step of the matrix searching algorithm with area computation
in constant amount of time.
The developed methods cannot be used for more than two dimensions. The IP formu-

lation (IPk) from Section 5 can be extended to three dimensions for N ⊆ R
3. However,

the corresponding LP will not define an integral polyhedron and can therefore not be
used to solve the IP. This can be observed for example with the following four points

z1 =

1
2
3

 z2 =

2
1
3.1

 z3 =

2.1
2.1
2

 z4 =

2.2
3
1

 .

Here, the linear relaxation (w.r.t. zref = 0) has objective value 11.31 and the inte-
ger program 11.02. Moreover, also the whole graph construction from Section 6 can-
not be applied to the three-dimensional case, since there the problem cannot be easily
transformed to a k-link shortest path problem, which can be observed in the following
example. Let us consider the following three points

z1 =

1
2
2

 , z2 =

2
1
3

 and z3 =

3
3
1

 .

Looking at the corresponding dominated regions/boxes (w.r.t. zref = 0), one can imply
that each pair out of the three induced boxes possesses a non-empty intersection only
belonging to both considered boxes. Hence, there is no unique sorting of the points as
in the two-dimensional case. Nevertheless, suppose that we assign an arbitrary sorting
to the three nodes in the corresponding digraph with five nodes (including source and
target nodes). Clearly, to model the subset selection corresponding to all points except
one, the arc jumping over this node must have cost equal to the exclusive volume of the
corresponding point. Then, the path corresponding to the subset selection by choosing
only the mid-point (w.r.t. the digraph nodes) will have the wrong value, since we only
need two arcs, for jumping only over the second and second last node, respectively. We
would miss to subtract the volume of the exclusive intersection of the two not selected
points.

12

8 Acknowledgments

This research has been partially supported by the Federal Ministry of Education and
Research Germany, grant DSS Evac Logistic, FKZ 13N12229 and by the bilateral co-
operation project “RepSys - Representation systems with quality guarantees for multi-
objective optimization problems” founded by the Deutscher Akademischer Austausch
Dienst and Conselho de Reitores das Universidades Portuguesas. Finally, the authors
wish to acknowledge the Lorentz Center Workshop on Set-Oriented and Indicator-Based
Multi-Criteria Optimization (SIMCO 2013), where some of the results presented in this
work were developed.

References

[1] A. Aggarwal and J. Park. Notes on Searching in Multidimensional Monotone Arrays.
In Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
pages 497–512, 1988.

[2] A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a Minimum-Weight k-link
Path in Graphs with the Concave Monge Property and Applications. Discrete &
Computational Geometry, 12(1):263–280, 1994.

[3] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter Shor, and Robert Wilber.
Geometric Applications of a Matrix-Searching Algorithm. Algorithmica, 2(1-4):195–
208, 1987.

[4] Johannes M. Bader. Hypervolume-Based Search for Multiobjective Optimization:
Theory and Methods. PhD thesis, Eidgenössische Technische Hochschule ETH
Zürich, 2009.

[5] Nicola Beume, Boris Naujoks, and Michael Emmerich. SMS-EMOA: Multiobjec-
tive selection based on dominated hypervolume. European Journal of Operational
Research, 181(3):1653 – 1669, 2007.

[6] J. Hershberger and S. Suri. Matrix Searching with the Shortest Path Metric. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing,
pages 485–494. ACM press, 1993.

[7] S. Huband, P. Hingston, L. While, and L. Barone. An Evolution Strategy with
Probabilistic Mutation for Multi-Objective Optimisation. In Proceedings of the
2003 Congress on Evolutionary Computation (CEC ’03), volume 4, pages 2284–
2291, Dec 2003.

[8] Christian Igel, Nikolaus Hansen, and Stefan Roth. Covariance Matrix Adaptation
for Multi-objective Optimization. Evol. Comput., 15(1):1–28, March 2007.

13

[9] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Opti-
mization. Wiley, New York, 1999.

[10] Ańıbal Ponte, Lúıs Paquete, and José R. Figueira. On Beam Search for Multicriteria
Combinatorial Optimization Problems. In Nicolas Beldiceanu, Narendra Jussien,
and Éric Pinson, editors, Integration of AI and OR Techniques in Contraint Pro-
gramming for Combinatorial Optimization Problems, volume 7298 of Lecture Notes
in Computer Science, pages 307–321. Springer Berlin Heidelberg, 2012.

[11] Daniel Vaz, Lúıs Paquete, and Ańıbal Ponte. A note on the ǫ-indicator subset
selection. Theoretical Computer Science, 499:113 – 116, 2013.

14

