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1 Introduction

The field of molecular evolution, though wide-reaching in its breadth, can
be compartmentalized into two types of investigations: studies of phylogeny,
and studies of the molecular evolutionary process. Of course, each of these
two categories encompasses many different types of questions, and many in-
vestigations require studies of both phylogeny and evolutionary process, but
the proposed binary classification is a useful construct. Software for molecu-
lar evolution is focused disproportionately on problems relating to phyloge-
netic reconstruction, with a number of outstanding comprehensive packages
to choose from. On the other hand, software for addressing questions of the
molecular evolutionary process tends to be found in stand-alone programs that
answer only one or two quite specific problems. The HyPhy system, available
for download from www.hyphy.org, was designed to provide a unified platform
for carrying out likelihood-based analyses on molecular evolutionary data sets,
the emphasis of analyses being the molecular evolutionary process, that is,
studies of rates and patterns of the evolution of molecular sequences.

HyPhy consists of three major components: a high-level programming
language designed to facilitate the rapid implementation of new statistical
methods for molecular evolutionary analysis; a collection of pre-written anal-
yses for carrying out widely-used molecular evolutionary methods; a graphical
user interface that allows users to quickly and interactively analyze data sets
of aligned sequences using evolutionary models and statistical methods that
they design using the software system. This chapter is intended to provide
an overview of the key elements of each of the three system components, in-
cluding both specific details of the basic functionality as well as a conceptual
description of the potential uses of the software. The nature of the package
prevents the creation of an exhaustive “cookbook” of available methods. In-
stead, we hope to provide a collection of fundamental tools and concepts that
allow users to begin using HyPhy to carry out both existing and new methods
of data analysis.
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1.1 Standard Analyses

The second of the three enumerated HyPhy components was a collection of
pre-written “standard” analyses. Since this section of the software is essen-
tially just a collection of prepackaged analyses, we will not devote much time
to a detailed discussion. However, we choose to describe it first in this chapter
to illustrate the types of analyses that HyPhy has been designed to address.
In Fig. 1 we show the initial Standard Analyses menu invoked by Analy-

ses:Standard Analyses... (note the use of Small Caps to indicate menu
items, with submenus or selections separated by a colon). Each of the nine
major headings includes a collection of routines that can be selected by the
user. For example, the Positive Selection menu item expands to offer five
different analyses relating to the task of identifying nucleotide sites undergo-
ing positive selection. A total of 35 batch files are included in the collection,
and most of these files include a variety of options enabling users to select
items such as evolutionary models or topology search methods. Topics include
molecular clock tests, positive selection analyses, phylogenetic reconstruction,
and model comparison procedures. The authors frequently add new standard
analysis to the package. HyPhy includes the ability to perform web updates,
which ensures that the distribution is kept up to date.

Fig. 1. HyPhy Standard Analyses Menu (Mac OS X)
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2 Model fitting and hypothesis testing with the HyPhy

Graphical User Interface.

2.1 Basic Analysis

The fundamental component of likelihood analyses of molecular evolutionary
data is to fit a given phylogenetic tree with a specified model of evolution to an
alignment and obtain maximum likelihood estimates (MLE) of all independent
model parameters, which commonly include branch length parameters and
character substitution rates (Felsenstein, 1981). Before we demonstrate how
to use HyPhy for simple model fitting, we will introduce the fundamental
components required of virtually every HyPhy data analysis.

1. Data Set. A Data Set is a multiple sequence alignment. HyPhy is able to
read a variety of sequence formats, including as NEXUS, PHYLIP and
FASTA.

2. Data Filter. A Data Filter specifies a part (or parts) of a data set. HyPhy
provides powerful tools to select sites and sequences from a data set to
analyze. The simplest data filter specifies the entire data set. Examples
of non-trivial filters include: every first and second position in a codon,
exon-intron-exon arrangements, or alignments sites matching a particular
motif, such as glycosylation sites. We will often refer to data filters as
partitions.

3. Substitution Models. We also need to provide stochastic models describing
how character substitutions occur along branches in a phylogenetic tree.
HyPhy includes a multitude of standard “named” models and provides
unparalleled flexibility for the users to define their own models. A substi-
tution model is specified by its instantaneous rate matrix and the vector of
equilibrium character frequencies. For instance, one of the most commonly
used nucleotide substitution models is the HKY85 model (Hasegawa et al.,
1985), whose instantaneous rate matrix is given by:

Q =









A C G T

A ⋆ κπC πG κπT

C κπA ⋆ κπG πT

G πA κπG ⋆ κπT

T κπA πC κπG ⋆









,

where κ denotes the ratio of transversion and transition rates and πi is
the base frequency of nucleotide i, i = A,C, G, T . We use ⋆ as a notation
to indicate that the diagonal elements of rate matrices are defined so that
the sum of each row in the rate matrix is 0. This condition ensures that
the probability transition matrix

P (t) = eQ(t)

defines a proper transition probability function (i.e. the sum of each row
in P is 1).
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4. Tree. A phylogenetic tree specifies the evolutionary history of extant se-
quences, represented in the data set. It can either be given, or inferred from
the data/model combination. While most other software packages force
the evolutionary process to follow the same model along every branch, in
HyPhy the user can have multiple models, with different rate matrices at
each branch. Therefore the notion of the tree in HyPhy is more than just
the evolutionary relationships, but rather the combination of a tree topol-
ogy AND substitution models attached to tree branches. The distinction
in HyPhy between a tree and a topology is an important one, as we will
illustrate through later examples.

5. Likelihood Function. A combination of a data filter and a tree (which
includes both topology and model information) is sufficient to define the
probability of the observed data given model parameter values, i.e., the
likelihood function. The likelihood function object in HyPhy is a conve-
nient way to combine multiple data filter/tree objects (with shared or
distinct model parameters) into a single likelihood function, which can be
then be maximized to obtain MLEs of all model parameters.

Example: Basic Analysis

We are now conceptually prepared to set up the simplest nucleotide se-
quence analysis with the help of HyPhy graphical user interface. Our example
data set is the p51 subunit of the reverse transcriptase gene of HIV-1, ob-
tained as one of the reference alignments from the Los Alamos HIV database,
hiv-web.lanl.gov. This data set is included as an example file with HyPhy
distribution.

Preparing the data.

First we must load the sequence alignment. We accomplish this by start-
ing HyPhy and selecting File:Open:Open Data File menu command from
the HyPhy console window. The file we wish to open is named p51.nex and
can be found in the data directory of HyPhy standard installation. Alterna-
tively, all example alignments used in this chapter can be downloaded from
www.hyphy.org/pubs/HyphyBookChapter.tgz

HyPhy will load the sequences and open a Data Panel (Fig. 3) We
will explore some the features of the data panel interface in later exam-
ples. For now, we wish to define a data filter (partition), in this case -
simply the entire alignment. Select all sites in the alignment by using the
Edit:Select All menu command and create a new partition by choosing
Data:Selection→Partition. The program creates a data filter with all
the sites selected in the sequence viewer, assigns a default name and color to
the partition, updates the navigation bar and selects the newly created par-
tition. One can edit the name and color of a partition by double clicking on
the partition row in the “Analysis Setup” area, or choosing Data:Partition
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Fig. 2. Partition properties dialog

Fig. 3. HyPhy data panel (Mac OS X)

Properties, with the partition row selected. Let us rename the partition to
“RT Gene” (for technical reasons HyPhy doesn’t allow spaces in the names of
partitions) as shown in Fig. 2.

Specifying the model.

Once the data has been filtered, we may assign a tree topology and a model to
the partition by clicking on the pulldown arrows in the appropriate columns
of the “Analysis Setup” table (Fig. 4). The data file p51.nex already in-

Fig. 4. Analysis Setup

cluded a tree topology, automatically loaded by HyPhy and made available
in the “Tree” pulldown list. For the model, let us choose substitution matrix
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HKY85, with Global parameters (in this case meaning that there is a single
transition transversion ratio κ for every branch in the tree) and equilibrium
frequencies gathered from the partition, so that entries of the frequency vec-
tor π are simply the frequencies of characters observed in the data. Once all
the necessary analysis components have been successfully assigned to at least
one data partition (RT Gene in this case), the status light in the bottom left
corner of the window will change from red to yellow, indicating that we are
now ready to create a likelihood function.

Likelihood Function.

We will denote the likelihood function of the model parameters Θ, given a
data set D and a tree T by

L(Θ|D, T )

HyPhy is then able to obtain maximum likelihood parameter estimates Θ̂ by
maximizing L(Θ|D, T ) over the possible values of Θ.

Let us now create and optimize the likelihood function. First, we select
Likelihood:Build Function. HyPhy creates the likelihood function as re-
quested and prints out some diagnostic messages to the console:

Created likelihood function ’p51_LF’ with

1 partitions,

1 shared parameters,

13 local parameters,

0 constrained parameters.

Pruning efficiency 764 vs 1534 (50.1956 % savings)

The number local parameters refer to the branch length parameters t. An
unrooted binary tree on n sequences, will have a total of 2N − 3 branches. In
our case N = 8 and thus there are 13 branch length parameters to estimate.
Pruning efficiency numbers show the computational savings that HyPhy was
able to realize using the column sorting ideas of (Kosakovsky Pond and Muse,
2004). Now, choose Likelihood:Optimize to instruct HyPhy to proceed with
fitting selected models to the data and obtaining parameter MLEs.

Results.

We are now ready to examine model fitting results. For this example, HyPhy
produces maximum likelihood estimates of 14 model parameters by numerical
optimization of the likelihood function. The program reports a text summary
to the console, and also opens a graphical parameter table display, as shown
in (Fig. 5). The status bar of the parameter table displays a one-line snapshot
of the likelihood analysis: maximum log-likelihood for our RT dataset was
estimated at −3327.25, and 14 independently adjusted parameters were used.
Knowledge of these two quantities is sufficient to evaluate various informa-
tion theoretic criteria for relative goodness of fit, such as Akaike Information
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Fig. 5. Graphical Parameter Display

Criterion (Akaike, 1974) as well as to perform likelihood ratio tests for nested
models.

Notice how HyPhy groups items in the parameter table by class: trees,
global parameters (shared by all tree branches) and local parameters (those
which affect a single branch); each item is labeled both by name and with an
appropriate icon. The single global parameter is the transversion:transition
ratio, κ, of the HKY85 model, and is labeled as RT Gene Shared TVTS. By
default, each shared parameter is prefixed with the name of the data partition
to which it is attached (RT Gene in this case). While at first the names of
local parameters may appear confusing, HyPhy uses a uniform naming scheme
for all local model parameters: tree name.branch name.parameter name. For
instance, p51 tree.B FR 83 HXB2.t, refers to a local parameter t along the
branch ending in B FR 83 HXB2 in the tree p51 tree. Leaf names in the tree
correspond to sequence names in the data file, while NodeN , where N is an
integer, are default names given to unlabeled internal nodes in the tree (users
can give internal nodes custom names as well). Parameter estimates can be
exported in a variety of formats by invoking File:Save.

Let us now open a tree window to visualize the evolutionary distances
between HIV-1 sequences in the example by double clicking on the tree row in
the parameter table. HyPhy will open a tree viewer panel, as shown in Fig. 6. A
common measure used to assess evolutionary distances is the expected number
of substitutions per site Es along a particular branch, equal to the weighted
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trace of the rate matrix:
Es = −

∑

j

πjQjj (1)

The HyPhy tree viewer automatically scales branches on Es, although the
scaling may be changed by the user.

Fig. 6. HyPhy Tree Viewer for p51.nex, scaled on the expected number of sub-
stitutions per site inferred by HKY85, with an example of a tooltip branch length
reporter

Confidence Intervals

All parameter estimates will be affected by stochastic noise, arising out of
finite data sample size. For instance, substitution bias parameters often have
large relative estimation errors, when compared to branch length parameters.
HyPhy allows the user to obtain confidence intervals on parameter estimates
using the asymptotic normality of MLEs. Likelihood theory states that MLEs
of model parameters are distributed as multivariate normal around the “true”
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parameter values, and the covariance matrix of the normal distribution can
be estimated by inverting the observed Fisher information matrix:

Î
(

Θ̂
)

=

(

∂2 log L(Θ|D, T )

∂θi∂θj

∣

∣

∣

∣

Θ=Θ̂

)

The Fisher information matrix measures the curvature of the log-likelihood
surface. Flat surfaces around the maximum do not inspire high confidence in
estimated parameter values, while steep surfaces lead to sharp estimates.

HyPhy can be instructed to construct the covariance matrix as well as
the confidence intervals for each parameter estimate based on the estimated
variance of the normal distribution, either for every parameter, or for selected
parameters (conditioned on the values of others). Select all the parameters
in the table by choosing Edit:Select All and then Likelihood: Covari-

ance and CI, and set “Estimation Method” to “Asymptotic Normal[finer]” in
the ensuing dialog box. “Crude” and “Finer” estimates differ in how HyPhy
computes the Fisher Information Matrix (which must be done numerically,
because analytic derivatives of the likelihood function are not available in
general). HyPhy will open two chart windows - the 95% confidence interval
window for all selected parameters, and the covariance matrix.

A B

Fig. 7. HyPhy confidence interval estimates using (A) asymptotic normality of
MLEs and (B) Profile plots using 95% levels of χ2

1

Likelihood Profile

Confidence intervals based on asymptotic normality rely upon many assump-
tions that may be violated for short alignments or parameter-rich models. For
example, such confidence intervals are always symmetric about the maximum
likelihood estimate, and if the likelihood surface is “skewed” around the MLE,
such intervals may be a poor representation of the real variance in parameter
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estimates. A second approach to determining statistical support for a parame-
ter value estimate is to employ likelihood profile confidence intervals, obtained
by inverting a likelihood ratio test.

Suppose we wish to compute a confidence interval CIα
i of level α for a

single model parameter θi. A common method is to first fix all other model
parameters θi′ , i

′ 6= i at their maximum likelihood estimates. We can now
think of the likelihood function, as a function of a single parameter θi. Thus,
a restricted version of the full likelihood function is

L̄(θi) = L(θi|D, T , θ̂i′).

Clearly, the maximum likelihood estimate for θi using the restricted likelihood
is the same as that given by the full likelihood function: θ̂i.

Consider two hypotheses: H0 : θi = x versus HA : θi 6= x. These hypothe-
ses can be tested using the restricted likelihood function and a one degree of
freedom likelihood ratio test (assuming that θ̂i′ is not on the boundary of the
parameter space):

2[log L̄(θ̂i) − log L̄(x)] ∼ χ2
1

If θ̂j is on the boundary, then the asymptotic distribution changes to

2[log L̄(θ̂i) − log L̄(x)] ∼ χ2
1 + χ2

0

2

Using this observation, a confidence region can be defined as all those
values x for which we fail to reject H0, i.e. all those x for which the likelihood
ratio statistic is less than the α percentile of the corresponding χ2 or mixture
distribution. If we also assume that the likelihood function is monotone (has
no local maxima), then we find the boundaries of the confidence interval by
tracing the log-likelihood function plot until the desired difference from the
maximum is obtained in both directions (see Fig. 8).

There are a couple of issues with this approach: (i) we assume sufficient
data for the asymptotic likelihood distributions to be applicable, which may
fail for short alignments, or models which are too parameter rich; and (ii)
we are obtaining the confidence intervals for one parameter at a time, rather
than a confidence region for all parameters (this is mostly due to technical
difficulties with finding such a region when there are many model parameters),
thus ignoring covariation among parameter estimates.

The first issue may be resolved, to an extent, by accepting or rejecting H0

using a non-LRT criterion, such as AIC (Akaike, 1974) The procedure is ex-
actly the same, but the cut-off level is no longer determined by the asymptotic
χ2 distribution, but rather by an information theoretic parameter addition
penalty. For AIC, 2[log L̄(θ̂i) − log L̄(x)] ≤ 2 would place x in the confidence
interval.

Also, to see how reasonable the asymptotic normality assumption is, one
could check whether a quadratic approximation to the log-likelihood holds
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well. The quadratic approximation for the log restricted likelihood around the
maximum likelihood estimate θ̂i can be derived from a Taylor series expansion:

log L̄(x) ≈ log L̄(θ̂i) +
d

dθi

log L̄(θi)

∣

∣

∣

∣

θ̂i

(

x − θ̂i

)

+
d2

dθ2
i

log L̄(θi)

∣

∣

∣

∣

θ̂i

(

x − θ̂i

)2

Because θ̂i maximizes the likelihood function, the first derivative term vanishes
and we have the desired quadratic approximation

log L̄(x) − log L̄(θ̂i) ≈
d2

dθ2
i

log L̄(θi)

∣

∣

∣

∣

θ̂i

(

x − θ̂i

)2

By plotting the likelihood profile and the quadratic approximation on the
same graph, one can see how well the χ2 approximation to the likelihood ratio
test will work. HyPhy offers each of the above confidence interval estimation
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Fig. 8. Likelihood Profile plot, with a quadratic approximation and a 95% χ2

1 cutoff
levels

techniques via Likelihood:Covariance and CI and Likelihood:Profile

Plot from the parameter table window.

Saving the analysis.

HyPhy can store all the information needed to recreate the analysis we just
performed in a single NEXUS file. This feature can be invoked by switching
back to the data panel, selecting File:Save and choosing the format option to
include the data in the file. Let us save this simple analysis as p51 HKY85.bf

in the “Saves” directory of the HyPhy installation.
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2.2 Local Branch Parameters

Almost all treatments of likelihood analysis of molecular sequence data as-
sume that there is only one parameter per branch in the phylogenetic tree -
branch length - and that other model parameters are shared by all branches.
However, it may be often be desirable to relax this assumption. For example,
to test if a group of branches (such as a single lineage or a clade) have differ-
ent substitution process parameters than the rest of the tree, it is necessary
to compare likelihoods of constrained and unconstrained models. HyPhy pro-
vides a general mechanism for defining an arbitrary number of branch-specific
and shared model parameters. Consider the HKY85 model discussed in the
previous section. Rewrite the rate matrix as:

Q(α, β, π) =









A C G T

A ⋆ βπC απG βπT

C βπA ⋆ βπG απT

G απA βπG ⋆ βπT

T βπA απC βπG ⋆









This may seem like a different matrix altogether, but if one sets t = α and
κ = β/α, we return to the previous parameterization if β > 0. In fact, this
new parameterization allows the transition rate (α) to be 0, and transvertion
rate (β) to be non-zero, whereas the first (more common) parameterization
does not. Even more importantly, we can now let each branch have a separate
α and β, which is equivalent to allowing every branch to have its own transi-
tion/transversion ratio. We declare such a model to be fully local, as opposed
to the fully global model of the previous section. Obviously, there is a range of
intermediate models where some of the branches share transition/transversion
ratios while others are free to vary.

To specify the fully local HKY85 model in HyPhy for our example dataset,
all that must be done differently is to select “Local” in place of “Global”
in the “Parameters” column of the analysis setup table in Fig. 4. You can
either start a new analysis from scratch, or continue from where we left off
in the global analysis of the previous section. In the latter scenario, HyPhy
will display a warning message, because changing substitution models causes a
fundamental change in the likelihood function (i.e. a different set of parameters
and rate matrices). Next, invoke Likelihood:Build Function and observe
that the resulting likelihood function has 26 local parameters (2 per branch,
as requested). Upon selecting Likelihood:Optimize, a parameter table is
once again shown, and we observe that the log-likelihood has improved to
−3320.84. A quick glance at the likelihood score improvement of 7 units for
12 additional parameters suggests that there is insufficient evidence favoring
the fully local model over the fully global model.

The rate parameter names in the parameter table for this analysis end
with “trst” and “trsv”, which hopefully mean “transition” and “transversion”.
HyPhy allows one to look at the rate matrix and map parameter names to
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what they actually stand for, in case parameter names are less descriptive.
To see how that is done, let us open the “Object Inspector” window (use
Window:Object Inspector on the Mac and File:Object Inspector on
Windows). In the newly opened window (Fig. 9(A) ) select “Models” from the
pulldown option list, and scroll through the rather long list of models, until
you find one in bold (meaning that this model is currently used in an active
likelihood function), named “RT Gene HKY85 local”. Again, the name of the
data partition is incorporated in the model identifier for easy reference. Double
click on that model and examine the rate matrix as shown in Fig. 9(B). The
equilibrium frequencies for this model (π) are the actual proportions of A,C,G
and T in the RT gene alignment, and “trst” are indeed the rates for A ↔ G
and C ↔ T substitutions, while “trsv” are the rates for all other substitutions.
By default, HyPhy will automatically multiply rate matrix entries by the
appropriate π, hence there is no need to include them in the rate matrix
explicitly.

A B

Fig. 9. (A) Models in the “Object Inspector” (B) HKY85 local model for the RT
gene

Let us now open the tree window for the local model (Fig. 10(A)). Recall
that branch lengths are given by (1). The tree looks very similar to the global
HKY85 tree from Fig. 6. However, a more interesting comparison would be
to see if the transition and transversion ratios vary from branch to branch.
HyPhy allows scaling of tree display on any local model parameter - “trst”
and “trsv” in this instance.

Double click on the tree name in the parameter table once again to open
another instance of the tree window - very useful for side by side comparisons.
Scale one of the trees on “trst” and another on “trsv” (Fig. 10(B,C)). Notice
how while the shapes are still similar, branch lengths are not quite propor-
tional between trees, while they would be if all branch transition/transversion
ratios were the same.

As a matter of fact, HyPhy tree viewer allows scaling on any function of
model parameters. Let us define the transition/transversion ratio parameter.
For every branch it is simply: ratio = trsv/trst. To define this scaling pa-
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Fig. 10. RT gene tree under HKY85 local model scaled on (A) expected number
of substitutions per site (B) transition rates (C) transversion rates (D) transver-
sion/transition ratios

rameter, switch to a tree window, select all branches (Edit:Select All)
and choose Tree:Edit Properties. The dialog box which appears shows all
available local branch parameters. Click on the “Add User Expression” button
(the + icon), type in the formula for the expression, rename it to “ratio”, and
select “OK” (Fig. 11). HyPhy has added “ratio” to the list of local parameters
(not estimable parameters, but rather functions of other parameters). You can
view the value of each branch ratio in the parameter table, and scale the tree
on the transition/transversion ratio (Fig. 10(D)). The difference in branch to
branch ratios are quite striking.

The HyPhy tree viewer can automatically label each branch of the tree
with any function of branch model parameters. As an example, we will label
each branch with the number of transitions Et and the expected number of
transversions Ev per site expected to occur along that branch per alignment
site. For the HKY85 local model

Et = 2β(πAπG + πCπT ), Ev = 2α[(πA + πG)(πC + πT )].

Note that Et and Ev add up to the total branch length and are linear functions
of the rates. Substituting the actual values of π for our data set (Fig. 9 B),
we get
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Fig. 11. New scaling parameter dialog

Et = 0.242583β, Ev = 0.474001α.

Employ the same process we did for adding the ratio parameter, and define
Et = 0.242583 ∗ trst and Ev = 0.474001 ∗ trsv. Now use Tree:Branch

Labels:Above Branches and Tree:Branch Labels:Below Branches

to label each branch with Et and Ev, adjust fonts and alignments to your
liking and check “Scale tree by resizing window” in the dialog opened with
Tree:Tree Display Options. The final display should look like Fig. 12.

2.3 Multiple partitions and hypothesis testing.

Early attempts to model molecular evolution of protein coding sequences used
the observation that the evolution in the first and second position of a codon
and the third position follow markedly different patterns. Indeed, for universal
genetic code, every substitution in the second codon position is nonsynony-
mous, i.e. it changes the protein encoded by the codon. For the first position
all but 8 of all possible substitutions, which do not lead to stop codons, are
nonsynonymous. In contrast, at the 3rd position 126 out of 176 substitutions
are synonymous. Because random nonsynonymous substitutions are likely to
be deleterious, it is commonly assumed that the substitution rate for the third
position is different (typically much higher) than that in the first and second
position. Our next task is to define a HyPhy analysis that treats first and
second codon positions as one data partition and the third codon position as
another, and to then fit a collection of models to the data. We will continue
using the HIV-1 p51 subunit of the RT gene data set from p51.nex.

First, open the data panel with p51.nex and select all the sites in the
alignment. Next, invoke one of the numerous data filtering tools in HyPhy
- the combing tool, by clicking on the comb tool button in the data panel
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Fig. 12. RT tree scaled on expected number of substitutions per site, and labeled
with the expected number of transitions and transversions per site (above and below,
respectively)

(Fig. 3). To select the first two position in every codon, we need a comb
of size 3, with first and second sites selected, and the third - omitted. In
the combing dialog, set the size of the comb to 3 and check the boxes next
to positions 1 and 2. Repeat the process, to define the partition with every
third codon position (make sure that the first partition is NOT highlighted in
the analysis set up table while you are applying the second comb, otherwise
HyPhy will comb the partition again, effectively selecting every third column
in the data partition of the first and the second positions we have just created).
Rename the partitions to “First Second” and “Third” respectively. Assign the
same tree topology to both data partitions, the HKY85 model, with global
parameter options and equilibrium frequencies collected separately from each
partition. In the end, the data panel should look like in Fig. 13.

When we build the likelihood function, HyPhy prints out a message

Tree topology p51_tree was cloned for partition Third.

It is important to understand that while both partitions share the tree topol-
ogy, for HyPhy a tree means both topology and models/parameters. The
two partitions need to have two trees, with independent branch lengths and
transversion/transition ratio parameters, κ12 and κ3, assigned the names
First Second Shared TVTS and Third Shared TVTS by HyPhy.



HyPhy 17

Fig. 13. Data panel with two data partitions and a comb filter dialog

After the models are fitted to the data, we observe that both the shapes of
the trees (Fig. 14), and the transversion/transition ratios (0.198 versus 0.067)
differ quite a lot between the partitions.

A careful reader might correctly point out that the analysis we have just
performed could have been done by fitting HKY85 to each of the partitions
separately. However, we will now illustrate what the joint likelihood function
of both partitions can offer in terms of hypothesis testing.

Simple Hypothesis Testing.

Consider the null hypothesis H0 : κ12 = κ3, versus the full model alternative
HA : κ12 6= κ3. The analysis we just performed was for the full model, and
before proceeding with the definition of the constraint in H0, the MLEs for
HA must be saved. To do so, click on the pulldown menu in the parameter
table (Fig. 4 and choose Save LF State. A collection of parameter MLEs
and constraints constitute a state, i.e. a hypothesis. Name the state “Full
Model”, and choose Select as alternative from the same pulldown menu.

Now, the constraint for the null hypothesis must be defined, and a new set
of MLEs for all independent model parameters must be calculated. To define
the constraint, select both transversion/transition ratio parameters (shift-click
to select multiple rows), and click on the constraint (2nd) button.

Note, that the parameter table updated to reflect that one of the ratios
is no longer independent. Next, we calculate a new set of parameter MLEs,
by optimizing the likelihood function anew. Not surprisingly, for H0 : κ12 =
κ3 = 0.11 which is between the independently estimated values.

Save the set of MLEs for H0 as “Constrained”, and then choose Select

as null. This instructs HyPhy to treat “Constrained” as the null hypoth-
esis. With all the components of a hypothesis test in place, choose LRT

from the same pulldown menu. HyPhy computes the likelihood ratio statis-
tic 2 (log LA − log L0) and a p-value based on the asymptotic χ2 distribution
with (in this case) one degree of freedom:
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Fig. 14. HIV-1 RT scaled on the expected number of substitutions per site for (A)
First and second codon positions, (B) Third codon position

Likelihood Ratio Test

2*LR = 12.5286

DF = 1

P-Value = 0.000400774

The likelihood ratio test strongly rejects the null hypothesis of equal transver-
sion/transition ratios between partitions.

Parametric Bootstrap.

The χ2
1 distribution is the asymptotic distribution for the LRT statistic, and

one would be well advised to realize that it may not always apply directly.
However, one can always verify the results of a χ2 test by parametric

bootstrap (Cox, 1961; Goldman, 1993). HyPhy has a very general way of
simulating sequence alignments parametrically - it can do so transparently
for any likelihood function, using current parameter values. For the purposes
of this example, HyPhy simulates 1000 8-sequence alignments with 1320 sites
each, using the model in the null hypothesis, i.e. constrained ratios. HyPhy
then fits the models in H0 and HA to every simulated dataset, and tabulates
the likelihood ratio test statistic. The resulting LRT distribution may then be
used for obtaining significance values for the original LRT value and verifying
how well the LRT statistic follows the asymptotic χ2 distribution.

The parametric bootstrap function can be accessed via the same pulldown
in the parameter table window. Enter the number of data replicates to be
simulated and choose whether or not HyPhy should save data and parameter
estimates for every replicate. A 1000 replicates should take 20-30 minutes
on a desktop. HyPhy opens a summary bootstrap table, and adds simulated
LRT statistic values as they become available, as well as keeping tabs on the
current p-value. Replicates with larger values of the LRT than the original
test are highlighted in bold. After bootstrapping has finished, you may open
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a histogram or cumulative distribution function plot for the LRT statistic, as
shown in Figure 15. Your simulation results will differ from run to run, but
you should still obtain a p-value very close to the asymptotic χ2 p-value and
a LRT histogram mirroring the shape of a χ2 with a single degree of freedom.

-0 2.5 5 7.5 10 12.5 15

471    P-Value: 0.001 Mean: 1.00221, Variance: 2.33321

A B

Fig. 15. (A) Simulated density for the likelihood ratio statistic (B) Bootstrapping
window example.

Relative ratio test.

It is clear from Fig. 14 that the tree on the first and second positions T12 has
much shorter branch lengths than the tree for the third position T3, which
is to be expected. However, apart from a few internal branches, the overall
shapes of the trees remain somewhat similar, suggesting that perhaps the only
fundamental difference between nucleotide level substitution processes is the
amount of change for the entire tree, while relative branch lengths Est(bi) are
the same among both trees. Mathematically, this constraint can be expressed
as

Es(bi|T12) = RREs(bi|T3), for all branches bi,

where the parameter RR is the relative ratio. As we have seen earlier, branch
lengths for HKY85 are linear function of the branch length parameter t, thus
it is sufficient to constrain t parameters to be proportional.

HyPhy has a built-in tool for easy specification of relative ratio con-
straints (Yang, 1996; Muse and Gaut, 1997) on trees or subtrees. To carry
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out the relative ratio test, select two trees (or two branches that root the sub-
trees, see below), and click on the relative ratio button (2nd from the right
in the toolbar) in the parameter table. Name the ratio parameter, and then
reoptimize the parameters. Use the technique from the previous example to
save the full and constrained models and to carry out the likelihood ratio
test, using either the asymptotic distribution or the parametric bootstrap.
The result from the chi-squared distribution is:

Likelihood Ratio Test

2*LR = 24.0092

DF = 12

P-Value = 0.0202825

The relative ratio hypothesis can therefore be rejected at the 0.05 level, but not
at the 0.01 level. Application of the parametric bootstrap yields a comparable
p-value.

Saving a complete analysis.

HyPhy is capable of saving an analysis and every hypothesis in a single file.
Invoke File:Save from the data panel, and choose the format which includes
sequence data in the resulting file dialog. If you later open the saved file by
selecting File:Open:Open Batch File, the analysis and all the hypotheses
you have defined will be available.

2.4 Codon Models

The natural unit of evolution for stochastic models of protein coding se-
quences is a codon. By modeling the substitutions on the level of codons,
rather than nucleotides, inherently different processes of synonymous and non-
synonymous substitutions can be handled adequately. By expanding the state
space for the substitution process from 4 nucleotides to 61 non-stop codons in
the universal genetic code, the computation cost increases dramatically, both
when evaluating transition probability matrices and calculating the likelihood
function itself. Modern computers can handle the added burden quite easily,
though.

Consider a codon-based extension to the HKY85 model, which is similar
to the (Muse and Gaut, 1994) model. We dub it MG94xHKY85. The 61× 61
rate matrix for this model, which gives the probability of substituting codon
x with codon y in infinitesimal time, is

Qx,y(α, β, κ) =























απny
x → y 1-step synonymous transition,

ακπny
, x → y 1-step synonymous transversion,

βπny
, x → y 1-step nonsynonymous transition,

βκπny
, x → y 1-step nonsynonymous transversion,

0, otherwise.

(2)
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As before, κ is the transversion/transition ratio. The parameter α denotes the
synonymous substitution rate, while β provides the nonsynonymous substi-
tution rate. The ratio of these two values, ω = β/α, can be used to measure
the amount of selective pressure along a specific branch. The value πny

is
the frequency of the “target nucleotide” for the substitution observed in the
appropriate codon position in the data set. For instance, if x = ATC and
y = AGC, then πny

would be the frequency of nucleotide G observed at sec-
ond codon positions in the alignment. The model only allows for one instan-
taneous nucleotide substitution between codon. For instance, ATC → AGG
is not allowed to happen by two concurrent nucleotide substitutions, because
such events have negligibly small probabilities. However, such changes are al-
lowed via multiple substitutions as evidenced by the fact that all transition
probabilities (entries in matrix exp[Qt]) are non-zero for t > 0.

The specification of the model is completed by providing the equilibrium
frequencies of the 61 codons. For a codon composed of three nucleotides i, j, k:

πijk =
π1

i π2
j π3

k

1 − π1
T π2

Aπ3
A − π1

T π2
Aπ3

G − π1
T π2

Gπ3
A

, (3)

where πk
n denotes the observed frequency of nucleotide n at codon position

k. The normalizing term accounts for absence of stop codons TAA, TAG and
TGA from the state space and the model.

Note that his model mixes local (α and β) and global (κ) parameters.

MG94xHKY85 applied to HIV-1 Integrase gene.

Following are the steps needed to apply a codon model to integrase BDA.nex,
found in the Examples directory of HyPhy standard distribution. This data file
contains the integrase gene of 6 Ugandan subtype D, 3 Kenyan subtype A and
2 subtype B (Bolivia and Argentina) HIV-1 sequences sampled in 1999. The
integrase gene is relatively conserved and is appropriate for between subtype
comparisons.

1. Open the data file via File:Open:Open Data File.
2. Select all the data and define a partition - it will be created as a nucleotide

partition at first.
3. Switch partition type to “Codon”. HyPhy will display a partition proper-

ties box. Rename the partition to “Integrase”, but keep all other default
settings.

4. Assign “Integrase BDA tree” topology, “MG94xHKY85 3x4” model and
“Local” parameters option.

5. Build (Likelihood:Build Function) the Likelihood Function. Note
that 38 local parameters (α and β for each of the 19 branches) and 1
global parameter (transversion/transition ratio) have been created.

6. Optimize (Likelihood:Optimize) the likelihood function. It should take
a minute or so on a desktop computer. Open two tree displays, and scale
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one on synonymous rates and the other on nonsynonymous rates. Notice
the radical differences between the trees, both in lengths and shapes, as
shown in Fig. 16.
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Fig. 16. HIV-1 integrase tree scaled on: (A) Synonymous rates α (B) Non-
synonymous rates β

Molecular Clock Tests.

When reversible models of evolution are used the rate parameters cannot be
identified separately from the time parameters, because only their products
are estimable. A set of sequences is said to have evolved under a molecular
clock if the expected amount of evolution (measured in expected numbers of
substitutions) from the most recent common ancestor to each of the descen-
dent sequences is the same. Mathematically, we constrain the length of the
paths between each sequence and the most recent common ancestor in the
phylogenetic tree to be the same. For the tree in Fig. 17, a molecular clock
would be imposed by the following two constraints: t2 = t1 and t3 = t1 + t4.
Note that imposing a molecular clock typically requires a rooted tree. Thus,
it is desirable to have a separate outgroup sequence (or groups of sequences),
which can be used to establish the root of a tree. For instance, in the HIV-1
integrase example (Fig. 16), subtype A sequences form an outgroup to both
B and D subtype clades.

For coding sequences, it is often useful to impose molecular clocks on
synonymous substitutions only. Synonymous substitutions are assumed to be
relatively free of selective constraints, whereas nonsynonymous substitutions
will be heavily influenced by purifying and positive selection.

HyPhy provides an easy way to impose molecular clock constraints on a
subtree, using some or all model parameters. For MG94xHKY85, it can be
shown that the expected number of substitutions per site has the form:
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Fig. 17. Example of a molecular clock constraint

Es(t, α, β, κ, π) = tα[f1(π) + κf2(π)] + tβ[g1(π) + κg2(π)],

where f1, f2, g1, g2 are functions determined by the nucleotide composition of
the alignment. The first term in the sum corresponds to the contribution of
synonymous substitutions, the second to the contribution of non-synonymous
substitutions. Since each is a multiple of the corresponding substitution pa-
rameter (α or β), imposing additive constraints on α and β will result in
additivity of corresponding expected substitution quantities. Note again that
the time parameter t is not estimable alone, and the parameters actually being
estimated (and constrained) are tα and tβ.

Thus, three types of molecular clocks may be tested for local codon models:
(i) synonymous only, (ii) non-synonymous only and (iii) full (both synonymous
and non-synonymous) rates.

Local Clock Tests on HIV-1 Integrase

We now address the following question: which of the three molecular clocks
are supported for the D-subtype clade? We assume that the MG94xHKY85
model has been fitted to the data as described above.

1. Save the likelihood function state as “Full Model”. Select it to be the
alternative hypothesis for our tests.

2. Select the branch that is the most recent common ancestor of the D clade
in the tree viewer. Invoke Tree:Show Parameters in Table. This
action will locate two rows in the parameter table, with the parameters
attached to that branch - “Node9”. This method is a general way for
locating branch specific model parameters in the table quickly - it also
works for a multiple branch selection. Highlight one of the two identified
rows.

3. Click on the molecular clock button (5th from the left) in the toolbar
of the parameter table. A pulldown menu will appear with the param-
eters available for the molecular clock constraints. Choose to constrain
“synRate”, for the synonymous rate clock.
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4. Optimize the likelihood function, save the new likelihood function state,
as “Synonymous Clock”, set it to be the null hypothesis. Perform the like-
lihood ratio test. The test will report the likelihood ratio statistic of 9.52,
which yields the p-value of 0.09, using the asymptotic χ2 with 5 degrees
of freedom. This value is reasonably close to rejecting the molecular clock
hypothesis, so a bootstrap p-value verification may be desirable. For codon
data, bootstrapping is a time consuming process, so you may only choose
to do 100 replicates. Our simulation yielded a p-value of 0.14, failing to
reject the molecular clock.

5. Select “Full Model” from the pulldown menu in the toolbar of the parame-
ter table, then go back to step 3 and repeat the steps 3 and 4, constraining
non-synonymous rates first and then both rates. Likelihood ratio tests fail
to reject either of the clocks.

6. Save the analysis from the data panel.

2.5 More general hypothesis testing

Example hypotheses of the previous section are all nested hypotheses, and can
be obtained by constraining some of the model parameters in the more gen-
eral hypothesis to reduce it to a particular case - the null hypothesis. Often,
interesting biological questions can not be framed as nested hypotheses. For
example, the question of whether a particular phylogeny with certain taxa con-
strained to be monophyletic is significantly different from the unconstrained
phylogeny is a non-nested question. Another example would be determining
which of two competing models better explains the data when the models
are non-nested. HyPhy includes a rather general mechanism for non-nested
hypothesis testing based on the parametric bootstrap (Cox, 1961; Goldman,
1993). All one needs to do is to define the competing models (by models, we
mean more than just the substitution matrices) on the same alignment, and
the testing can be accomplished by parametric bootstrapping.

Consider the example data set of the p51 subunit of HIV-1 reverse tran-
scriptase from the previous sections. As an illustration of testing non-nested
hypotheses, we will consider whether there is enough evidence to suggest that
the JTT model (?) describes the data better than the Dayhoff model of amino
acid evolution.

First, we must convert a codon alignment found in p51.nex into amino-
acids.

1. Open the data file p51.nex, select all alignment columns and create a
nucleotide partition

2. Change the data type of the partition to “Codon” obeying the universal
genetic code

3. Select Data:Additional Info:Aminoacid Translation. Choose “All”
in the ensuing dialog box HyPhy will translate all the sequences in all the
defined codon partitions, using the genetic code in that partition to amino
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acids, create a new data set and open a new data panel displaying all the
sequences

4. Let us now save the amino acid alignment to a separate data file. In the
newly opened data panel with the amino acid alignment, create a par-
tition with all the alignment sites and, with the partition row selected,
click on the “Save Partition To Disk” button. Choose “NEXUS Sequen-
tial[Labels]” format in the file save dialog, and save the file as p51.aa in
the “data” directory of the HyPhy distribution

Secondly, we evaluate the likelihood under the null hypothesis H0: Dayhoff
Model

1. Open the amino acid alignment p51.aa, select all alignment columns and
create a protein partition named “p51”

2. Assign the included p51 tree topology and the “Dayhoff” substitution
model to the “p51” partition

3. Build and optimize the likelihood function

The null model has 13 estimable parameters and yields a log-likelihood of
−2027.28.

Next, we set up the alternative hypothesis HA: JTT Model

1. Open the amino acid alignment p51.aa, while the previous analysis is
still open. We need to keep both analyses in memory at the same time.
Note how HyPhy renamed the new data panel “p512”, to avoid a naming
conflict with an already open window

2. Assign the tree topology found in the data file and the “Jones” substitu-
tion model to the data partition.

3. Build and optimize the likelihood function

The alternative model also has 13 adjustable parameters and yields the log-
likelihood of −1981.61.

The JTT model provides a higher likelihood value, but since the models
are not nested, we can not simply apply the likelihood ratio test to determine
whether the difference is statistically significant. We can, however, use the
parametric bootstrap to find a p-value for the test without relying on any
asymptotic distributional properties.

1. Switch to either of the data panels, and invoke Likelihood:General

Bootstrap. HyPhy will display a bootstrap set-up window, which is
very similar to the window we have seen in nested bootstrap examples.

2. Set the appropriate null and alternative hypotheses, by choosing the name
of the data panel (“p51” should be the null and “p512” should refer to
the alternative, if you have followed the steps closely).

3. Click on the “Start Bootstrapping” button, select Parametric Boot-

strap from the pulldown, enter 100 for the number of iterates.
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4. HyPhy will perform the requested number of iterates (it should take five
or ten minutes on a desktop), and yield the estimated p-value. In our
simulation we obtained a p-value of 0, suggesting that the data are better
described by the JTT model.

2.6 Spatial Rate Heterogeneity: Selective Pressure and Functional

Constraints.

It is a well appreciated fact that evolutionary rates in sequences vary from site
to site. Good substitution models should be able to include such rate variation
and provide ways to infer rates at a given site. Consider the MG94xHKY85,
modified to allow each site s to have it’s own synonymous (αs) and non-
synonymous (βs) rates. The rate matrix of MG94xHKY85 must be modified
as follows

Qx,y(α, β, κ) =























αsπny
x → y 1-step synonymous transition,

αsκπny
, x → y 1-step synonymous transversion,

βsπny
, x → y 1-step non-synonymous transition,

βsκπny
, x → y 1-step non-synonymous transversion,

0, otherwise.

The most general estimation approach would be to estimate αs and βs

separately for every site, but that would create too many parameters and
result in estimability issues. Another idea, first proposed by Yang (1993);
Nielsen and Yang (1998), is to treat site rate parameters (in their work only
one parameter is allowed to vary per site), as a random variable, drawn from
a certain (prior) distribution family, Fη(αs, βs) whose parameters η are either
given or estimated. The likelihood for an alignment with S sites, tree T , and
the vector Θ of model parameter values can be evaluated as:

L(D|T , Θ) =

S
∏

s=1

E [L(Ds|T , Θ, αs = a, βs = b)] .

The expectation is computed using the distribution specified by Fη(αs, βs).
Site likelihoods, conditioned on the values of αs and βs may be evaluated
using Felsenstein’s pruning algorithm (Felsenstein, 1981). Unless Fη(αs, βs)
specifies a discrete distribution with a small number of classes, the expectation
is computationally intractable. However, Yang (1994) introduced the approach
of discretizing the continuous distribution of rates to obtain a computationally
tractable formulation.

If site s in the alignment is following neutral evolution, then we expect
to infer βs ≈ αs. For sites subject to functional constraints, non-synonymous
mutations are almost certain to be highly deleterious or lethal, leading to
purifying selection and βs < αs. If βs > αs, the site s is evolving under
positive selective pressure, or undergoing adaptive evolution.
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In contrast to existing methods that simply have sites varying according to
their rates, HyPhy allows the user to identify multiple parameters that are free
to vary over sites. In the following example we allow both synonymous and
nonsynonymous rates to be variable across sites, leading to the possibility,
for instance, that a particular site might have a fast nonsynonymous rate
but a slow synonymous rate. We will consider the case of MG94xHKY85
applied to a codon data set with αs and βs sampled independently from
two separate distributions. Because only products of evolutionary rates and
times can be estimated, we let the mean of the distribution of αs to be one.
Widely used models of Nielsen and Yang (1998) assume that αs = 1 for every
site s, thus our approach is a natural extension. For our example, we choose
to sample αs from a gamma distribution γ(αs;µα) with mean 1 and shape
parameter µα discretized into 4 rate classes by the method of Yang (1993). The
nonsynonymous rates, βs, are assumed to come from a mixture of a general
γ distribution and a point mass at 0 to allow for invariable sites (REF). The
density of this distribution is

βs ∼ R [PIδ0(βs) + (1 − PI)γ(βs;µβ)] , (4)

where 0 ≤ PI ≤ 1 is the proportion of (non-synonymous) invariable sites,
R is the mean of the distribution, and is the ratio of the means of the non-
synonymous and synonymous distribution (similar to dN/dS). The density of
the unit mean gamma distribution with shape parameter µβ is γ(βs, µβ). The
gamma portion of the distribution is discretized into 3 rates, and, with the
invariant rate class, the total number of non-synonymous rate categories is 4.

To perform a maximum likelihood fit of this model in HyPhy we follow the
following steps.

1. Open the data file p51.nex.
2. Select all data, create a single partition, change its data type to codon

and name to RT Gene.
3. Assign the tree, the model “MG94xHKY85x3 4x2 Rates” with “Rate

Het.” model parameters and 4 (per parameter) rate categories. The model
we selected implements the extension to the MGx94xHKY85 model we
have just discussed.

4. Build the likelihood function and optimize it. Depending on the speed of
your computer this make take up to an hour.

Parameter estimates returned by the analysis are as follows:

RT_Gene_Shape_alpha = 1.637

RT_Gene_Shape_beta_Inv = 0.708

RT_Gene_Shape_beta = 1.174

RT_Gene_Shared_DNDS = 0.527

HyPhy can also display the discretized distributions along with their con-
tinuous originals. This feature can be accessed via the pulldown in category
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variable rows in the parameter table (Fig. 19). Density plots show the contin-
uos density curve, the table of discrete rate classes and their visual represen-
tations. Dotted lines depict the bounds for the intervals that each rate class -
a solid vertical line - represent.

Fig. 18. Synonymous and non-synonymous distributions for the analysis of HIV-1
RT gene

It is immediately clear that synonymous rates are not constant across
sites. Indeed the coefficient of variation for αs, which is equal to 1/

√
µ

α
, is

inferred to be 0.61, whereas we would expect a much smaller value were the
synonymous rates indeed constant among sites.

The really interesting task is, however, to determine which sites are con-
served, and which are evolving under selective pressure. An approach proposed
by Yang et al. (2000) is to employ the empirical Bayes technique. To do so,
we fix all model parameter estimates (more on the validity of that later),
and compute the posterior probability ps

i,j of observing rates ai, bj at site s.
HyPhy can compute the conditional likelihoods of every site (choose Likeli-

hood:Categories Processor from the parameter table, see Fig. 19) given
that the rates come from the category i, j:

lsi,j = L(Ds|T , Θ, αs = ai, βs = bj).

Thus, by Bayes rule
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ps
i,j = Pr{αs = ai, βs = bj |Ds} =

lsi,jPr{αs = ai, βs = bj}
∑

m,n lsm,n

.

Consider two events at site s: positive selection, PSs = {αs < βs}, and neg-
ative or purifying selection NSs = {αs > βs}. For any event one can define
the Bayes factor, which is simply the ratio of posterior odds of an event and
its prior odds. If the Bayes factor of an event is significantly greater than 1,
then the data support the event.

Fig. 19. Conditional site likelihoods module of HyPhy

Having opened the categories processor (Fig. 20), we proceed to perform
the posterior Bayes analysis as follows

1. Create a new random variable βs−αs. To do so, invoke Categories:Define

New Variable and enter the expression (try to use the pulldown
menu for quick access to category variables) 0.527RT Gene Categ beta−
RT Gene Categ alpha. We multiply by value of R(= 0.527), because in
HyPhy parameterization RT Gene Categ beta refers to the expression in-
side the brackets in (4) - you can check that by opening the model display
in “Object Inspector”.

2. Expand the view for the new difference variable by clicking on the arrow
next to it, and choose (shift-click or drag select) the event for positive
selection: all positive values of the difference variable.

3. Perform empirical Bayes analysis by selecting Categories:Event Pos-

teriors. In the window which opens, select type of “Bar Chart” and Y
of “Bayes Factor”. This display gives an easy overview of sites with large
support for positive selection - for example with Bayes factor over 20.

4. Instruct HyPhy to find all the sites with the Bayes factor over 20. For
this, select the Bayes factor column (click on the column header), and
choose Chart:Data Processing:Select Cells By Value. HyPhy will
prompt for the selection criterion: type in “cell value>20”. The results
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are shown in Fig. 21 According to this criterion, there are 12 positively
selected codons 35, 178, 179, 200, 211, 243, 272, 282, 329, 376, 377 and 403.
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Fig. 20. (A) Bayes factor for the event of positive selection at a site. (B) Log of the
Bayes factor for the event of negative selection at a site

Fig. 21. Sites found to be under positive selection and supporting Bayes factors in
HIV-1 RT gene
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The weakness of empirical Bayes.

It has been argued that maximum likelihood empirical Bayes methods for de-
tecting rates at sites may yield many false positives (ref). Alternatively, if very
few sites in the alignment are under selective pressure, it is possible that the
prior (and hence, posterior) distributions will place zero probability on any
site being positively selected, exhibiting low power. The main shortcoming of
empirical Bayes approaches is that parameter estimates are treated as correct
values, and the uncertainties in estimation procedures are discounted alto-
gether. If one were to compute 95% confidence intervals based on likelihood
profiles with HyPhy one would discover that

µα ∈ (0.759, 10.175), µβ ∈ (0.589, 3.467)

PI ∈ (0.642, 0.779), R ∈ (0.405, 0.688)

That is quite a range of variation, and change in any of those parameters
would affect the conclusions of empirical Bayes methods. For instance, the
most conservative (in terms of limiting false positives but also reducing power)
estimates can be obtained by choosing maximum possible µα, µβ and PI and
the minimum possible R. For this choice of parameters, the maximum Bayes
factor at any site is a mere 17.914 and by our old criteria no sites are found
to be under selective pressure. One should always realize that uncertainties
in parameter estimates can greatly influence the conclusions of an empirical
Bayes analysis, and it helps to compare various scenarios to assess inference
reliability.

Further pointers.

HyPhy can run analyses like the one just described in parallel on distributed
systems using Message Passing Interface (MPI). For instance, if 16 proces-
sors are available, computations of lsi,j for each of the 16 possible rate class
combinations (i, j) are placed automatically on separate processors, achiev-
ing speeds similar to those of a single rate analysis on a single CPU system,
making analyses with hundreds of sequences in an alignment feasible. Refer
to http://www.hyphy.org for more details.

HyPhy also implements an ever-expanding collection of rapid positive/negative
selection analyses for data exploration, loosely based on the counting method
of Suzuki and Gojobori (1999), as well as site-by-site (and/or lineage specific)
likelihood ratio testing. It is accessible via standard analyses and more details
can be found in HyPhy documentation.

2.7 Mixed data analyses

As more and more organisms are being fully sequenced, methods and tools for
analyzing multigene sequence alignments and, ultimately, genome-wide data
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sets, are becoming increasingly relevant. In the small example that follows we
will show how one can use HyPhy to begin to address such analytic needs.

We consider a sequence alignment of five sequences, each consisting of
two introns and an exon, which can be found in intronexon.nex within the
Examples directory.

We must partition the data into introns and exons. It is appropriate to
consider two partitions: coding and non-coding. For more complex data sets
one can easily define a separate partition for every gene, etc. First, create
a partition which includes all of the data (Edit:Select All, followed by
Data:Selection->Partition.

The exon spans nucleotide positions 90 through 275. One of the ways to
create the partition for the exon is to locate alignment column 90 in the data
panel and select it, then scroll to column 275 and Shift-click on it (this selects
the whole range). Note that the status line of the data panel was updated
to reflect your current selection. Make sure it shows “Current Selection: 90-
275”. An alternative approach is to start at column 90 and then click-drag to
column 275. Yet another possibility is to choose Data:Input Partition and
enter 89 − 274 (0-based indices).

Once the range has been selected, invoke Data:Selection->Partition.
We now have two partitions, overlapping over columns 90 − 275, as shown
in the Navigation Bar. The final step is to subtract the partitions to create
a new partition for the introns. To do this, we select both partition rows in
the data panel table (Shift-click selects multiple rows). Next, click on the
“Subtract 2 Overlapping Partitions” button. Select the appropriate operation
in the resulting pulldown. We have specified two non-overlapping partitions.
Note that the intron partition is not contiguous. Rename the intron partition
to “Introns” and the exon partition to “Exon”. One could achieve this same
partioning scheme by defining three partitions: 1-89, 90-275, 276-552, and
joining the first one and the third one.

There is one more filtering step left to do before we can begin analyzing
the data. As often happens with smaller subsets extracted from larger align-
ments, there are several alignment columns consisting entirely of deletions.
Such columns do not contribute informational content to likelihood analyses,
and should be removed. Select the “Exon” row in the partition table, click
on the “Data Operations” button and select Sites with all Deletions.
HyPhy will locate all such sites inside the selected partition only and select
them. Create a partition with those sites, subtract it from the exon partition
as discussed above, and delete the partition with uninformative sites (select
its row and click on the “Delete Partition” button).

Since introns are not subject to functional constraints of coding sequences
it makes sense to model their evolution with a nucleotide model (HKY85 with
global options). For the exon partition a codon model is appropriate. Change
the data type of “Exon” to “Codon”, and apply the “MG94xHKY85x3 4”
model with local options. The end result should look like Fig. 22 (A).
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A.

B.

Fig. 22. Exon-Intron mixed analysis. (A) Data panel setup and (B) Parameter table
with the relative ratio constraint

Next, build and optimize the likelihood function and open the parameter
table. Our analysis includes two trees with the same topology (one for introns
and the other for exons). The model for the intron tree has a single param-
eter per branch (branch length) and a shared transversion/transition ratio
(Exon Shared TV TS = 0.308), whereas the model for the exon tree has two
parameters per branch, synonymous and nonsynonymous rates and a shared
transversion/transition ratio (Introns Shared TV TS = 0.612). (Note that
we could use previously discussed methods for testing hypotheses to decide if
the two transversion/transition ratios are different.)

One of the common assumptions made for analyses of molecular sequence
data is that differences between coding and non-coding sequences can be ex-
plained by functional constraints and selective pressures on coding sequences,
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namely by changes in rates of nonsynonymous substitutions. In other words,
synonymous substitutions in coding regions and nucleotide substitutions in
neighboring non-coding stretches should have comparable relative rates. This
assumption may be violated if mutation rates vary along the sequence or if
there is selection operating in non-coding regions. We will now test this hy-
pothesis of a relative ratio between the introns and the exon in our example
data sets. In other words, we want to see if the exon tree scaled by synony-
mous rates has the same patter of relative branch lengths as the intron tree.
Mathematically, the set of relative ratio constraints constraints is:

exonTree.branch.synRate = R × intronTree.branch.t,

where R is the (global) relative ratio, and the constraint is applied to every
branch. For a small tree like ours, it is easy to use the proportional constraint
tool in the parameter table interface module to define the constraints one at a
time; however this could become very tedious for larger trees. Luckily, HyPhy
includes a command designed to traverse given trees and apply the same
constraint to every branch. As you will learn from the next section, at the core
HyPhy is a programming language (HBL), and all of the interface features we
have discussed previously use HBL behind the scenes. If the interface does
not include a built-in tool for a specific constraint, the user may tap directly
into HBL to carry out the task at hand. We will do just that for our example.

Open the parameter table for the Intron-Exon analysis we have just set
up (make sure none of the parameters are constrained). Invoke Likelihood:

Enter Command. HyPhy will take any input from the dialog box that ap-
pears, parse the commands contained therein and execute them. We need to
invoke ReplicateConstraint, which is a powerful, but somewhat complicated
command. If we were to impose the constraints by hand at every branch we
would begin with

IntronExon tree2.HKL5.synRate = R × IntronExon tree.HKL5.t,

and repeat applying the same constraint replacing “HKL5” with other branches
in the tree. A single call using ReplicateConstraint will accomplish the same
task:

global R = 1;

ReplicateConstraint(’’this1.?.synRate:=R*this2.?.t’’,

IntronExon_tree2,IntronExon_tree);

The expression in quotation marks is the constraint template. “this1” is
replaced with the first argument (IntronExon tree2), “this2”, with the second
and so on. The ’?’ is a wildcard meaning match any branch name. Replicate-
Constraint is a very handy command to know, and we refer the reader to
examples contained in the HyPhy distribution. The “global R=1” command
is needed to declare R as a shared parameter and initialize it (further details
are provided in the next section). Enter the above commands into the dialog
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box, and, if all went well, the parameter table will update and should look like
Fig. 22 (B). Optimize the likelihood function, define the null hypothesis, and
perform the likelihood ratio test. The asymptotic p-value of the test is 0.023,
rejecting the hypothesis of relative ratio. Since our data set is rather small,
we would be well advised to verify this result with parametric bootstrap. We
obtained bootstrap p-value of 0.003 with 1000 replicates.

3 The HyPhy Batch Language

Underlying the HyPhy graphical user interface is a powerful interpreted pro-
gramming language, HBL (HyPhy Batch Language). The authors originally
developed HBL as a research tool to allow rapid development of molecular
evolutionary analyses. The addition of the graphical interface is a more re-
cent development, and provides access to many common types of analyses.
However, the underlying programming language is considerably more power-
ful and flexible (albeit with a steeper learning curve). The goal of this section
is to provide readers with a basic understanding of the fundamentals of HBL
programming and an appreciation of the power of the language. In doing so,
we shall make use of a series of HyPhy batch files, which are available for
download at www.hyphy.org/pubs/HyphyBookChapter.tgz. Complete docu-
mentation of the batch language is available in the Batch Language Command
Reference at www.hyphy.org, and can also be accessed via the built-in com-
mand reference in the HyPhy console.

3.1 Fundamental Batch File Elements: basics.bf

The basic task shared by most HyPhy batch files is the optimization of a like-
lihood function for a given alignment/model/phylogeny combination. There-
fore, most every batch file will contain the following elementary components:

1. Input alignment data
2. Describe an evolutionary model of sequence change
3. Input or describe a phylogenetic tree
4. Define a likelihood function based on the alignment, phylogeny, and model
5. Maximize the likelihood function
6. Print the results to the screen and/or an output file.

The simple batch file basics.bf, reproduced in its entirety below, illustrates
the HBL code necessary to fit the F81 model of sequence evolution to an
alignment of four sequences.

DataSet myData = ReadDataFile ("data/four.seq");

DataSetFilter myFilter = CreateFilter (myData,1);

HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);

F81RateMatrix =
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{{* ,mu,mu,mu}

{mu,* ,mu,mu}

{mu,mu,* ,mu}

{mu,mu,mu,* }};

Model F81 = (F81RateMatrix, obsFreqs);

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize (MLEs, theLikFun);

fprintf (stdout, theLikFun);

Let us now explain how these nine statements accomplish the six key compo-
nents enumerated above.

Input alignment data.

The task of preparing data for analysis in HyPhy consists of two steps. First,
the data must simply be read from a data file. After the data is read, it must
be “filtered”. The process of filtering involves selecting the precise taxa and
alignment positions to be analyzed, and identifying the “type” of the data (e.g.
nucleotide, codon, dinucleotide).

DataSet myData = ReadDataFile ("data/four.seq");

DataSetFilter myFilter = CreateFilter (myData,1);

The first statement simply reads a sequence alignment into memory and
names it myData. The HBL function automatically detects the sequence type
(DNA) and the input format, then saves the data into a data structure of type
DataSet, a predefined HBL data type. The second statement is the simplest
version of the CreateFilter function. In this case, the function takes the align-
ment stored in myData and by default includes all of it in a structure named
myFilter. The argument “1” indicates that the data should be treated as sim-
ple nucleotide data. Had we wanted the data to be interpreted as codons, the
argument “3” would have been used instead. The CreateFilter command is
quite powerful, and we will illustrate the use of some of its optional arguments
in later examples. Multiple data filters may be created from the same data
set.

Describe an evolutionary model of sequence change.

The next task in our simple analysis is the definition of a model of sequence
change. One of the unique strengths of HyPhy is its ability to implement any
special case of a general time reversible model (and, more generally, any con-
tinuous time Markov chain model, not necessarily time reversible), regardless
of the dimensions of the character set. We rely on the fact that any special
case of the general reversible model can be written in a form where entries in
the substitution matrix are products of substitution parameters and character
frequencies. Thus, we have adopted a convention of describing time-reversible
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models with two elements: a matrix consisting of substitution rate parameters,
and a vector of equilibrium character frequencies.

F81RateMatrix =

{{* ,mu,mu,mu}

{mu,* ,mu,mu}

{mu,mu,* ,mu}

{mu,mu,mu,* }};

HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);

Model F81 = (F81RateMatrix, obsFreqs);

In our present example, the substituition parameter matrix of the F81 model
is defined and named in an obvious fashion (the HyPhy matrix placeholder
* is defined as “the negative sum of all non-diagonal entries on the row”).
Next, the built-in function HarvestFrequencies tabulates the frequencies in
myFilter and stores them in the newly created vector obsFreqs. The functions
of the numerical arguments can be found in the Batch Language Command
Reference. Finally, the matrix and frequencies are combined to form a valid
substitution model using the Model statement.

For the F81 model, the instantaneous rate matrix is traditionally denoted









A C G T

A −µ(1 − πA) µπC µπG µπT

C µπA −µ(1 − πC) µπG µπT

G µπA µπC −µ(1 − πG) µπT

T µπA µπC µπG −µ(1 − πT )









Observe the similarity between this matrix and the HyPhy syntax. By default
the Model statement multiplies each element of the rate matrix by the equilib-
rium frequency of an appropriate character, hence HyPhy declaration of F81
does not include the multiplication by elements of π. This behavior can be
overridden by passing a third argument of 0 to the model statement (that is
done, for example for the MG94 codon model).

Input or describe a phylogenetic tree.

HyPhy uses standard (Newick) tree definitions. Thus, the statement

Tree myTree = ((a,b),c,d);

defines a tree named myTree with four OTUs, or taxa, named a, b, c, and d,
corresponding to the names in the HyPhy datafile. HyPhy will accept either
rooted or unrooted trees; however, for most purposes rooted trees are auto-
matically unrooted by HyPhy because likelihood values for unrooted trees are
the same as those for rooted trees.

The Tree data structure is much more complex than simply describing a
tree topology. The Tree variable includes both topology information, as well as
evolutionary model information. The default behavior of a Tree statement is
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to attach the most recently defined Model to all branches in the tree. Thus, it
is often critical that the Model statement appears before the Tree statement.
We will discuss more advanced uses of the Tree statement later.

Define a likelihood function based on the alignment, phylogeny, and model.

The likelihood function for phylogenetic trees depends on the dataset, tree
topology, and the substitution model (and its parameters). To define a likeli-
hood function, we use a statement like

LikelihoodFunction theLikFun = (myFilter,myTree);

We name the likelihood function theLikFun, and it uses the data in myFilter
along with the tree topology and substitution model stored in in myTree.
Recall that the Tree structure myTree inherited the Model F81 by default.

Maximize the likelihood function.

Asking HyPhy to maximize the likelihood function is simple. The statement

Optimize (MLEs, theLikFun);

finds maximum likelihood estimates of all independent parameters and stores
the results in the matrix named MLEs.

Print the results to the screen and/or an output file.

The simplest way to display the results of a likelihood maximization step is
simply to print the likelihood function:

fprintf(stdout,theLikFun);

This C-like command prints the structure theLikFun to the default output
device stdout (stdout is typically the screen). The results of this statement
are the following:

Log Likelihood = -616.592813234418;

Tree myTree=((a:0.0136035,b:0.0613344)Node1:0.0126329,

c:0.070388,d:0.0512889);

When asked to print a likelihood function, HyPhy first reports the value of the
log-likelihood. It follows with a modified version of the Newick tree description
as shown in the output above. Each of the branches in the unrooted phylogeny
has an associated branch length, measured in units of expected number of
nucleotide substitutions per site. Those values appear after the colon following
the label for each branch. For example, the estimated branch length leading
to the tip ”b” is 0.0613344. Note that the internal node in the tree has been
automatically named “Node1” by HyPhy, and its associated branch length is
0.0126329. Values of the estimated substitution parameters or base frequencies
could be displayed by printing obsFreqs. HyPhy also allows for more detailed
user control of printed output, using a C-like fprintf syntax. The later examples
will illustrate this functionality.
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3.2 A Tour of Batch Files

Defining Substitution Models

Simple Nucleotide Models: modeldefs.bf.

One of the primary objectives of HyPhy is to free users from relying on the
substitution models chosen by authors of software. While a relatively small
set of model choices may be sufficient for performing phylogenetic analyses,
having only a few potential models is often limiting for studies of substitution
rates and patterns. To define a model in HyPhy, one needs only to describe
the elements in a substitution rate matrix. If the characters being studied
have n states, the rate matrix is n × n. For example, nucleotide models are
4× 4; models of amino acid change are 20× 20; codon-based models might be
64×64. HyPhy can work properly with any member of the class of general time
reversible models, regardless of the number of character states. Instantaneous
rate matrices in this class of models satisfy the condition πiQij = πjQji,
where πi is the equilibrium frequency of character i (for nucleotide data, )
and Qij is the ijth entry in the instantaneous rate matrix. HyPhy comes with
many predefined rate matrices for commonly used substitution models. You
can find examples in the Examples and TemplateBatchFiles directories of the
HyPhy distribution.

To illustrate the basics of model definition, we discuss the batch file mod-
eldefs.bf :

SetDialogPrompt("Select a nucleotide data file:");

DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

DataSetFilter myFilter = CreateFilter(myData,1);

HarvestFrequencies(obsFreqs,myFilter,1,1,1);

F81RateMatrix = {{*,m,m,m}{m,*,m,m}{m,m,*,m}{m,m,m,*}};

Model F81 = (F81RateMatrix, obsFreqs);

Tree myTree = ((a,b),c,d);

fprintf(stdout,"\n\n F81 Analysis \n\n");

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize(results,theLikFun);

fprintf(stdout,theLikFun);

fprintf(stdout,"\n\n HKY85 Analysis \n\n");

HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};

Model HKY85 = (HKY85RateMatrix, obsFreqs);

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize(results,theLikFun);

fprintf(stdout,theLikFun);

fprintf(stdout,"\n\n Repeat F81 Analysis \n\n");



40 Kosakovsky Pond and Muse

UseModel(F81);

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize(results,theLikFun);

fprintf(stdout,theLikFun);

This batch file illustrates two new concepts. First, and most importantly, the
lines

HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};

Model HKY85 = (HKY85RateMatrix, obsFreqs);

illustrate the definition of a new substitution matrix. In this case, we have
defined the model of Hasegawa et al. (1985) and named the model HKY85.
Those familiar with the HKY85 model, will probably recognize the form of the
matrix: transitions occur with rate a and transversions occur with rate b, with
each of those substitution parameters multiplied by the appropriate nucleotide
frequency to provide the final instantaneous rates. The second important point
to note is that we must associate the model with a tree before we can do
anything useful. In this case, we simply redefined the old tree to use the
HKY85 model instead of the F81 model (Recall that a tree consists of both
the topology and the substitution matrices attached to its branches). When
the statement Tree myTree = ((a,b),c,d); is issued, the variable myTree
is assigned the topology ((a,b),c,d) and the branches are assigned the HKY85
substitution model, which was the most recently defined Model. If we wanted
to preserve the original variable myTree, we could simply have defined a new
Tree structure using a command like Tree myNextTree = ((a,b),c,d);

Finally, for completeness, we created a new Tree and assigned it the F81
model and reproduced the original F81 analysis. Those final steps illustrate
how predefined Models can be assigned to Trees using the UseModel com-
mand.

Note also, the use of

SetDialogPrompt("Select a nucleotide data file:");

DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

to allow the user to locate the sequence file interactively, instead of hard-
coding it into the batchfile.

More Nucleotide Models: models.bf.

One of the most general models of nucleotide substitution is the general time
reversible model (REV). The instantaneous rate matrix for the REV model is

QREV =









A C G T

A ⋆ θ0πC θ1πG θ2πT

C θ0πA ⋆ θ3πG θ4πT

G θ1πA θ3πC ⋆ θ5πT

T θ2πA θ4πC θ5πG ⋆
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It is simple to implement this model in HyPhy. The statements

REVRateMatrix = {{*,a,b,c}{a,*,d,e}{b,d,*,f}{c,e,f,*}};

Model REV = (REVRateMatrix, obsFreq);

do the job.
To illustrate these notions in a more usefule context, consider the batchfile

models.bf. In that batchfile, models named F81, HKY85, REV, JC69, and K2P
are defined, and each is fit to the same dataset and tree topology. models.bf
also demonstrates a few useful HyPhy features. First, notice the definition of
a vector of frequencies for use by the equal frequency models:

equalFreqs = {{0.25}{0.25}{0.25}{0.25}};

In a similar manner, we define the string constant myTopology :

myTopology = "((a,b),c,d)";

By changing the topology in the definition of myTopology, the entire analysis
can be repeated using the new topology. This single step is faster than up-
dating the topology for every Tree statement, and is particularly useful for
topologies with many taxa. Finally, note the reuse of the three substitution
matrices and the two frequency vectors. The original matrix definitions are
used as templates by the Model statements.

Global vesus local parameters: localglobal.bf

Because the primary goal of HyPhy is to provide flexible modeling of the
nucleotide substitution process, HyPhy includes a more general parameteri-
zation scheme than most phylogeny estimation programs. Perhaps the most
important difference for the user to recognize is the distinction between local
and global parameters. In the simplest form, a local parameter is one that is
specific for a single branch on a tree. In contrast, a global parameter is shared
by all branches. To illustrate, consider the output generated by the batch file
localglobal.bf when run using ( four.seq):

Original (Local) HKY85 Analysis

Log Likelihood = -608.201788537279;

Tree myTree=((a:0.0143364,b:0.061677)Node1:0.0108616,

c:0.0716517,d:0.0526854);

Global HKY85 Analysis

Log Likelihood = -608.703204177757;

Shared Parameters:

S=3.08185
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Tree myTree=((a:0.0130548,b:0.0618834)Node1:0.0126785,

c:0.0717394,d:0.052028);

In localglobal.bf we have moved beyond the default settings of HyPhy, and
the details of the batch file will be discussed below. For now, concentrate on
the results. localglobal.bf performs two analyses of the data in four.seq, each
using the HKY85 model of sequence evolution. The first, labeled “Original
(Local) HKY85 Analysis”, is the same analysis that was performed in the
previous example (models.bf ). In this analysis, each branch in the tree was
allowed to have its own transition/transversion ratio.

The second analysis performed in localglobal.bf is an example of a global
analysis. In contrast to the previous analysis, the “Global HKY85 Analysis”
invokes a global transition-transversion ratio, S. In other words, all branches
share the same value of S. The estimated global value of S (3.08185) is shown
under the heading of Shared Parameters.

The local and global analyses use different numbers of parameters. The
local analysis uses a transition and transversion rate for each of the 5 branches,
along with 3 base frequencies, for a total of 13 parameters. The global analysis
includes a transversion rate for each branch, 3 base frequencies, and a single
transition-transversion ratio, for a total of 9 parameters. The global analysis
is a special case of the local analysis; therefore, the log-likelihood value for the
global analysis (-608.703) is lower than that of the local anaysis (-608.202).
The fact that the addition of 4 parameters results in such a small difference
in model fit suggests that the data harbor little support for the hypothesis
that the transition-transversion rate varies among these lineages.

The code for localglobal.bf is the following:

SetDialogPrompt ("Please specify a nuleotide data file:");

DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

DataSetFilter myFilter = CreateFilter(myData,1);

HarvestFrequencies(obsFreqs,myFilter,1,1,1);

fprintf(stdout,"\n\n Original (Local) HKY85 Analysis \n\n");

HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};

Model HKY85 = (HKY85RateMatrix, obsFreqs);

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize(results,theLikFun);

fprintf(stdout,theLikFun);

fprintf(stdout,"\n\n Global HKY85 Analysis \n\n");

global S=2.0;

GlobalHKY85Matrix = {{*,b,b*S,b}{b,*,b,b*S}

{b*S,b,*,b}{b,b*S,b,*}};

Model GlobalHKY85 = (GlobalHKY85Matrix, obsFreqs);
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Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize(results,theLikFun);

fprintf(stdout,theLikFun);

The code for the first analysis is identical to that from models.bf. The
global analysis introduces a new statement:

global S=2.0;

This statement declares S to be a global variable. By default, the description
of a model (and variables within that model) is used as a template that is
copied for every branch on the tree. An important fact is that we can not
later redefine S as a local variable. The scope of a variable is determined at
the time of its creation and can not be altered. In the statement defining
GlobalHKY85Matrix, one observes that b is used as the transversion rate,
while transitions occur at rate b ∗ S.

More complex models

HyPhy has support for an infinite number of substitution models. Any Markov
chain model using any finite sequence alphabet can be used. Models for codon
and amino acid sequences are available through the Standard Analyses menu
selection. We refer users who are interested in writing code for such alphabets
to the files in the Examples subdirectory.

Imposing constraints on variables

Simple Constraints: relrate.bf.

The primary reason for developing HyPhy was to provide a system for per-
forming likelihood analyses on molecular evolutionary data sets. In particular,
we wanted to be able to describe and perform likelihood ratio tests (LRTs)
easily. In order to perform an LRT it is first necessary to describe a con-
straint, or series of constraints, among parameters in the probability model.
To illustrate the syntax of parameter constraints in HyPhy, examine the code
in relrate.bf :

SetDialogPrompt("Select a nucleotide data file:");

DataSet myData = ReadDataFile (PROMPT_FOR_FILE);

DataSetFilter myFilter = CreateFilter (myData,1);

HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);

F81RateMatrix = {{* ,mu,mu,mu}{mu,* ,mu,mu}

{mu,mu,* ,mu}{mu,mu,mu,* }};

Model F81 = (F81RateMatrix, obsFreqs);

Tree myTree = (a,b,og);



44 Kosakovsky Pond and Muse

fprintf(stdout,"\n Unconstrained analysis:\n\n");

LikelihoodFunction theLikFun = (myFilter, myTree, obsFreqs);

Optimize (paramValues, theLikFun);

fprintf (stdout, theLikFun);

lnLA=paramValues[1][0];

dfA=paramValues[1][1];

fprintf(stdout,"\n\n\n Constrained analysis:\n\n");

myTree.a.mu := myTree.b.mu;

Optimize (paramValues, theLikFun);

fprintf (stdout, theLikFun);

lnL0=paramValues[1][0];

df0=paramValues[1][1];

LRT=-2*(lnL0-lnLA);

Pvalue=1-CChi2(LRT,dfA-df0);

fprintf(stdout,"\n\nThe statistic ",LRT," has P-value ",

Pvalue,"\n\n");

The unconstrained analysis is of the simple type we have discussed previ-
ously. In the constrained analysis, however, we impose the constraint of equal
substitution rates between lineages a and b with the command

myTree.a.mu := myTree.b.mu;

The results from this batchfile when applied to three.seq are:

Unconstrained analysis:

Log Likelihood = -523.374642786834;

Tree myTree=(a:0.0313488,b:0.00634291,og:0.11779);

Constrained analysis:

Log Likelihood = -525.013303516343;

Tree myTree=(a:0.018846,b:0.018846,og:0.116881);

The statistic 3.27732 has P-value 0.0702435

Since these models are nested, we can consider the likelihood ratio statis-
tic, −2(lnL0 − lnLA) to have an asymptotic chi-squared distribution. In this
case, the test statistic has a value of 3.27732. Note in the batchfile how the
likelihood values and parameter counts are returned by Optimize and stored
in paramValues. The built-in function CChi2 is the cumulative distribution
function of the chi-squared distribution.
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Molecular Clocks

Perhaps the most common molecular evolutionary hypothesis tested is that
a set of sequences has evolved according to a molecular clock. It now seems
quite clear that a global molecular clock exists for few, if any, gene sequences.
In contrast, the existence of local molecular clocks among more closely related
species is more probable. HyPhy allows for both types of constraints, including
the possibility of testing for multiple local clocks for different user-defined
clades in the same tree.

Global clocks: molclock.bf.

The batch file molclock.bf is a simple example of testing for a global molec-
ular clock. The code should be familiar, except for the new MolecularClock

statement, which declares that the values of the parameter mu should follow
a molecular clock on the entire tree myTree. An important difference in this
batch file is that the Tree statement defines a rooted tree. Had an unrooted
tree been used, it would be treated as a rooted tree with a multifurcation at
the root. When using time reversible models, which can’t resolve the place-
ment of the root, global molecular clock when given a rooted tree can be
interpreted as: there is a way to place the root on the root branch as to en-
force global molecular clock on specified rates. The section of code imposing
the molecular clock constraint is:

fprintf(stdout,"\n\n Molecular Clock Analysis: \n");

MolecularClock(myTree,m);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize(results,theLikFun);

Local clocks: localclocks.bf.

Particularly when studying data sets consisting of many species spanning a
wide level of taxonomic diversity, it may be of interest to assign local molec-
ular clocks to some clades. For instance, in a study of mammalian molecular
evolution one might specify that each genus evolves in a clocklike manner,
but that different genera evolve at different rates. To allow such analyses, the
MolecularClock command can be applied to any node on a tree. Unlike the
global clock of the previous case, it is not necessary for the MolecularClock
command to be applied to a rooted tree; the placement of the MolecularClock
command ”roots” the tree, at least locally. To illustrate this feature, we use
localclocks.bf in conjunction with the file six.seq. The relevant new sections of
the code are the tree topology definition:

myTopology = "(((a,b)n1,(c,(d,e))n2),f)";

and the declaration of two local molecular clocks:
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fprintf(stdout,"\n\n Local Molecular Clock Analysis: \n");

ClearConstraints(myTree);

MolecularClock(myTree.n1,m);

MolecularClock(myTree.n2,m);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize(results,theLikFun);

The topology string used in localclocks.bf takes advantage of HyPhy’s ex-
tended syntax. Notice how we have named two of the internal nodes n1 and
n2. Those names override HyPhy’s default (and rather cryptic) node naming
convention and allow us to call functions–in this case, MolecularClock– on the
clades they tag. The syntax of the MolecularClock statements is rather C-like.
MolecularClock(myTree.n1,m); imposes a local clock on the clade rooted at
node n1 in tree myTree. The parameter with clocklike behavior is m, the only
option for the F81 model being used. The results using the datafile six.seq
are:

UNCONSTRAINED ANALYSIS:

Log Likelihood = -685.473598259084;

Tree myTree=((a:0.0296674,b:0.00831723)n1:0.040811,

(c:0.0147138,(d:0.0142457,e:0.0328603)

Node7:0.0309969)n2:0.0130927,f:0.0517146);

GLOBAL MOLECULAR CLOCK ANALYSIS:

Log Likelihood = -690.857603506283;

Tree myTree=((a:0.0181613,b:0.0181613)n1:0.0350919,

(c:0.0385465,(d:0.0195944,e:0.0195944)

Node7:0.0189521)n2:0.0147067,f:0.053838);

P-value for Global Molecular Clock Test: 0.0292988

LOCAL MOLECULAR CLOCK ANALYSIS:

Log Likelihood = -690.761234081996;

Tree myTree=((a:0.0190659,b:0.0190659)n1:0.0386549,

(c:0.0370133,(d:0.0189116,e:0.0189116)

Node7:0.0181017)n2:0.0128865,f:0.0537045);

P-value for Local Molecular Clock Test: 0.0142589

By examining the output one finds that under the local clock model the two
subtrees do, indeed, have clocklike branch lengths, yet the tree as a whole is
not clocklike. The likelihood ratio test suggests that neither the global nor
local clock assumption is correct.
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Simulation Tools

The use of simulation in molecular evolutionary analysis has always been
important. Simulation allows us to test statistical properties of methods, to
assess the validity of theoretical asymptotic distributions of statistics, and to
study the robustness of procedures to underlying model assumptions. More
recently, methods invoking simulation have seen increased use. These tech-
niques include numerical resampling methods for estimating variances or for
computing confidence intervals, as well as parametric bootstrap procedures
for estimating p-values of test statistics. HyPhy provides both parametric and
nonparametric simulation tools, and examples of both are illustrated in the
following sections.

The Bootstrap: bootstrap.bf.

The bootsrap provides, among other things, a simple nonparametric approach
for estimating variances of parameter estimates. Consider bootstrap.bf. The
relevant commands from the batch file are as follows. (Some lines of code
have been deleted for clarity).

Model F81 = (F81RateMatrix, obsFreqs);

Tree myTree = (a,b,og);

LikelihoodFunction theLikFun = (myFilter, myTree);

Optimize (paramValues, theLikFun);

reps = 100;

for (bsCounter = 1; bsCounter<=reps; bsCounter = bsCounter+1)

{

DataSetFilter bsFilter = Bootstrap(myFilter,1);

HarvestFrequencies (bsFreqs, bsFilter, 1, 1, 1);

Model bsModel = (F81RateMatrix, bsFreqs);

Tree bsTree = (a,b,og);

LikelihoodFunction bsLik = (bsFilter, bsTree);

Optimize (bsParamValues, bsLik);

}

The first section of code is simply the completion of a typical data analy-
sis, storing and printing results from the analysis of data in myFilter. The for
loop is the heart of the batch file. For each of the reps replicates, we gener-
ate a new DataSetFilter named bsFilter. We do this by creating a bootstrap
replicate from the existing DataSetFilter named bsFilter, which was created
in the normal fashion. bsFilter will contain the same number of columns as
myFilter. Once the new filter has been created, we recreate a Model named
bsModel and a Tree named bsTree, which are then used in an appropriate
LikelihoodFunction command. Optimize is used to find MLEs of the parame-
ters. The end result of this batchfile is a table consisting of 100 sets of MLEs,
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each from a bootstrap sample from the original data. Notice in the complete
batch file (not shown in the code above) how we use the matrix variable BSRes
to tabulate and report the average of all bootstrap replicates. More complex
analyses, such as bootstrap confidence intervals, based on the bootstrap es-
timates can be programmed within the batchfile, or the results can be saved
and imported into a spreadsheet for statistical analyses.

The Permute function, with syntax identical to Bootstrap, exists for appli-
cations where the columns in the existing DataSetFilter must appear exactly
once in each of the simulated datasets. This feature may be useful for com-
parisons between the three codon positions or for studies investigating spatial
correlations or spatial heterogeneity.

The Parametric Bootstrap: parboot.bf.

Another useful simulation tool is the parametric bootstrap. HyPhy provides
the SimulateDataSet command to provide the type of model-based simulation
required. In parboot.bf we find the following lines of code. Again, some lines
have been deleted for clarity.

for (bsCounter = 1; bsCounter<=reps; bsCounter = bsCounter+1)

{

DataSet bsData = SimulateDataSet(theLikFun);

DataSetFilter bsFilter = CreateFilter (bsData,1);

HarvestFrequencies (bsFreqs, bsFilter, 1, 1, 1);

Model bsModel = (F81RateMatrix, bsFreqs);

Tree bsTree = (a,b,og);

LikelihoodFunction bsLik = (bsFilter, bsTree);

Optimize (bsParamValues, bsLik);

}

The end result is analagous to that of bootstrap.bf : we simulate reps
datasets, find MLEs, and tabulate results. The fundamental difference is that
the datasets are formed by simulating using the tree structure, evolutionary
model, and parameters in theLikFun via the function SimulateDataSet. An
important technical difference is that SimulateDataSet generates a DataSet
as opposed to the DataSetFilter created by Bootstrap. Thus, we must use the
CreateFilter command to create an appropriate filter.

Again note the use of BSRes for tabulating results, and also the use of
fscanf for acquiring input from the user (see the Batch Language Command
Reference for details).

Putting It All Together: positions.bf

As an example of the type of analysis HyPhy was designed to implement,
we now describe the batchfile positions.bf. This file illustrates some of the
features of the CreateFilter command by ignoring species C in four.seq and
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by creating separate filters for each of the three codon positions. The HKY85
model is used as the basic substitution model. A global transition:transversion
ratio, R, is created; its value is allowed to be shared by all three positions. In
the “Combined Analysis”, the entire data set is analyzed in the normal way,
treating all sites identically. A second LikelihoodFunction is then created, in
which the data are split into three partitions according to codon position.
Each of the three partitions is allowed to evolve with a separate rate. However,
the transition/transversion ratio is constrained to be the same for all three
codon positions as well as for all lineages. The likelihood ratio test statistic
comparing these two models is computed, and the statistical significance of the
test is reported using both the chi-squared approximation and nonparametric
bootstrapping.

The file positions.bf is rather complicated, so we will focus only on some
of its key features.

Read and filter the data.

It is often the case that molecular data sets have some repeating underlying
structure that we would like to exploit or study. For instance, coding regions
might be described with the repeating structure 123123123. . . . In positions.bf
we create separate DataSetFilters for first, second, and third codon positions.
The command:

DataSetFilter myFilter1 = CreateFilter (myData,1,"<100>","0,1,3");

creates a DataSetFilter named MyData1 that includes only the first nucleotide
of each triplet. Likewise, the statement

DataSetFilter myFilter3 = CreateFilter (myData,1,"<001>","0,1,3");

creates a DataSetFilter named MyData3 that includes only the third nu-
cleotide of every triplet. Had we wished to create a filter consisting of both
first and second positions, we would have used a statement like

DataSetFilter myFilter12 = CreateFilter (myData,1,"<110>","0,1,3");

Define a substitution model for each position.

The next portion of positions.bf creates a vector of observed frequencies for
each of the filters using standard syntax.

HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);

HarvestFrequencies (obsFreqs1, myFilter1, 1, 1, 1);

HarvestFrequencies (obsFreqs2, myFilter2, 1, 1, 1);

HarvestFrequencies (obsFreqs3, myFilter3, 1, 1, 1);

Next, the basic substitution model is defined. We use the HKY85 model,
with transversion parameter b and global transition:transversion ratio R. A
separate Model is created for each partition, since they each use different
frequencies:
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global R;

HKY85RateMatrix = {{*,b,R*b,b}{b,*,b,R*b}{R*b,b,*,b}{b,R*b,b,*}};

Model HKY85 = (HKY85RateMatrix, obsFreqs);

Tree myTree = (a,b,d);

Model HKY851 = (HKY85RateMatrix, obsFreqs1);

Tree myTree1 = (a,b,d);

Model HKY852 = (HKY85RateMatrix, obsFreqs2);

Tree myTree2 = (a,b,d);

Model HKY853 = (HKY85RateMatrix, obsFreqs3);

Tree myTree3 = (a,b,d);

Define two likelihood functions.

We are now ready to set up LikelihoodFunctions and Optimize them. The
analysis of the combined data set is routine:

LikelihoodFunction theLikFun = (myFilter,myTree);

Optimize (paramValues, theLikFun);

We also store some results for later use:

lnLik0 = paramValues[1][0];

npar0 = paramValues[1][1]+3;

fprintf (stdout, theLikFun, "\n\n");

The statement npar0 = paramValues[1][1]+3; requires some explanation.
The Optimize function always returns the number of parameters that were
optimized as the [1][1] element of its returned matrix of results. Typically,
we do not optimize over base frequency values, electing instead to simply use
observed frequencies, which are usually very close to the maximum likelihood
estimates. Since the frequencies are, in fact, estimated from the data, they
need to be included in the parameter count. The value of npar0, therefore,
includes the count of independent substitution parameters in the model (the
number of which is returned by Optimize) along with the three independent
base frequencies estimated from the data.

The LikelihoodFunction for the “partitioned” analysis simply uses the ex-
tended form of the LikelihoodFunction command:

LikelihoodFunction theSplitLikFun = (myFilter1,myTree1,

myFilter2,myTree2,

myFilter3,myTree3);

Optimize (paramValues, theSplitLikFun);

lnLik1 = paramValues[1][0];

npar1 = paramValues[1][1]+9;

Note the addition of the 9 estimated frequencies to the model’s parameter
count, 3 for each partition.
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Find P-values for hypothesis tests.

Finally, we compute the P-value for the test of the combined analysis (null
hypothesis) against the split model (alternative hypothesis). Two approaches
are used. First, the normal chi-squared approximation to the LRT statistic:

LRT = 2*(lnLik1-lnLik0);

pValueChi2 = 1-CChi2 (LRT, npar1-npar0).

One can also estimate the P-value using the parametric bootstrap. The
statement for simulating a random dataset based on theLikFun is

DataSet simData = SimulateDataSet(theLikFun);

The remaining part of the loop is basically a copy of the original analysis,
with variable names adjusted to indicate that they are coming from simulated
data. For each simulated dataset we compute the LRT, named simLRT, and
compare it to the observed LRT. The estimate of the P-value is the proportion
of simulated datasets with a LRT larger than that of the observed data. We
keep track of the number of such events using the variable count :

simLRT = 2*(simlnLik1-simlnLik0);

if (simLRT > LRT)

{

count = count+1;

}

and report the results:

fprintf(stdout,"\n\n*** P-value (Parametric BS)= ",count/reps,"\n");

The batchfile positions.bf provides a good example of the flexibility of
HyPhy, and many of the same ideas could be used to develop analyses of
multiple genes. Of particular importance for multilocus is the ability to mix
local and global variables. To our knowledge, the type of modeling and testing
flexibility demonstrated in positions.bf is unique.

Site-to-site rate heterogeneity.

One of the most important additions to recent models of sequence evolution
is the incorporation of site-to-site rate heterogeneity, which allows the highly
desirable property of some positions evolving quickly, some slowly, while others
have intermediate rates. A variety of approaches have been introduced in
the literature (Refs). In the first portion of this chapter, we demonstrated
some of HyPhy’s basic functionality with regard to rate heterogeneity. We
now continue this discussion, demonstrating the “traditional” approaches to
modeling rate heterogeneity, as well as some novel features unique to HyPhy.
We feel that the flexibility in modeling site-to-site rate heterogeneity is one of
the strongest aspects of the software package.
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The fundamental elements of incorporating site-to-site rate heterogeneity
are demonstrated in the file ratehet.bf. There one will find an analysis labeled
“Variable Rates Model 1”, which simply uses the F81 nucleotide model with
sites falling into one of four rate classes. The first rate class is an invariant
class (ie, rate 0), while rates of the remaining three categories have relative
rates of 1, 2, and 4. The frequencies of the four categories are assumed to be
equal for illustration. The key section of code is the following:

category rateCat = (4, EQUAL, MEAN, , {{0}{1}{2}{4}}, 0, 4);

F81VarRateMatrix = {{*,rateCat*m,rateCat*m,rateCat*m}

{rateCat*m,*,rateCat*m,rateCat*m}

{rateCat*m,rateCat*m,*,rateCat*m}

{rateCat*m,rateCat*m,rateCat*m,*}};

Model F81Var = (F81VarRateMatrix, obsFreqs);

The “category” statement defines a discrete probability distribution for the
rates. In this case, there are four possible (relative) rates, 0, 1, 2, and 4, and
the categories occur with equal frequencies (see the HyPhy documentation and
the examples below for further information on the category statement). The
second and third statements define a variant of the F81 model of nucleotide
evolution. Had we left out the “rateCat” multiplier in the rate matrix, the
model would be the standard F81 model. With the inclusion of “rateCat”,
which is defined in the first statement to be a category variable, we have a
model declaring that each site evolves according to the F81 model, but that
the rates vary from site to site in accordance to the distribution described in
the category statement. Note that in this case the relative rates are specified
by the user, so there is no rate haterogeneity parameter to be estimated from
the data.

In the “Variable Rates Model 2” analysis we find an implementation of
the slightly more complex (but more well-known) discrete gamma model, first
described by Yang (1994). The key element in this analysis is simply a different
category statement:

category rateCat = (4, EQUAL, MEAN, GammaDist(_x_,alpha,alpha),

CGammaDist(_x_,alpha,alpha),0,1e25,CGammaDist(_x_,alpha+1,alpha));

We again introduce a discrete distribution with four equiprobable classes,
but this time the relative rates of those classes are provided by the gamma
distribution. In turn, the arguments in the category statement declare

1. Use 4 rate categories
2. Assign equal frequencies to the 4 categories
3. Use the mean of each discretized interval to represent the rate for the

corresponding class
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4. The density function for the rates is the gamma density (which is a built-
in function. Alternatively, the formula for any desired density could be
entered.)

5. The cumulative density function is provided by the gamma distribution
function (Again, this is a predefined function, and the cdf for any chosen
density could be substituted.)

6. The relative rates are limited to the range 0 to 1×1025 (to make numerical
work simpler)

7. The final argument is optional, and specifies a formula for the mean of
each interval. If this argument were not provided, the mean would be
evaluated numerically.

With this model, HyPhy would estimate the branch lengths for each branch in
the tree, along with the shape parameter, α, that is specified in the category
statement.

The third and final example in ratehet.bf allows rates to vary according to
an exponential distribution. The category statement in this case is essentially
the same as for the gamma distribution, but with the density and distribution
functions for the exponential distribution used instead:

category rateCat = (4, EQUAL, MEAN, alpha*Exp(-alpha*_x_),

1-Exp(-alpha*_x_), 0, 1e25, -_x_*Exp(-alpha*_x) + (1-Exp(-alpha*_x_))/alpha);

This fundamental approach can be used to fit any discretized density to data
by simply writing an appropriate category statement and combining it with
any desired substitution matrix. A number of examples are provided in the
sample files in the HyPhy distribution.

In the file twocats.bf we demonstrate a new idea in modeling rate hetero-
geneity, the possibility of moving beyond the simple idea of each site having
its own rate. For illustration, we show that it is simple to define a model
that allows each site to have its own transition and transversion rate, but
sites with high transition rates need not also have high transversion rates. We
demonstrated an application of this approach to codon-based models based
on synonymous and nonsynonymous rates in the first half of the chapter.
The basic approach is the same as for the previous examples, we will use the
category statement to define distributions of rate heterogenetiy. However, in
this case we will use two category statements, one for transitions and one for
transversions.

The first analysis in twocats is essentially the discrete gamma model found
in ratehet.bf, but with 16 categories rather than four. The second analysis
introduces separate distributions for transitions and transversions. Each type
of rate is assumed to come from a (discrete) gamma distribution with four
categories, but each distribution has its own parameters. This model leads to a
model with 4×4 = 16 rate categories, and thus has computational complexity
equal to the 16-category discrete gamma in the first analysis. The category
statements have the same basic format as the previous examples:
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category catTS = (4, EQUAL, MEAN, GammaDist(_x_,alphaS,alphaS),

CGammaDist(_x_,alphaS,alphaS),0,1e25,CGammaDist(_x_,alphaS+1,alphaS));

category catTV = (4, EQUAL, MEAN, GammaDist(_x_,alphaV,beta),

CGammaDist(_x_,alphaV,beta),0,1e25,CGammaDist(_x_,alphaV+1,beta)*alphaV/beta);

An important mathematical fact arises at this point. Traditionally, the gamma
distribution in rate analyses has been described only by its “shape“ param-
eter”. The gamma distribution in general is described by a shape parameter
and a scale parameter. The confounding of rates and times allows for the (ar-
bitrary) determination of one of the two parameters, and for simplicity the two
parameters have simply been assumed to be equal. When we move to the case
of two gamma distributions, we still have this level of freedom to arbitrarily
assign one parameter. In this example, we have maintained the “traditional”
style for the transition rates (see the category statement for catTS ), but we
must use both the shape and scale parameters for the second distribution.
Thus, we end up with three parameters that govern the distributional form
for the transition and transversion rates: alphaS, the shape parameter for the
transition rate distribution, along with alphaV and beta, the shape and scale
parameters for the gamma distribution describing transversion rates.

We must still introduce these category variables into the substitution ma-
trix, and examining the definition of HKY85TwoVarRateMatrix we see that
transition rates are multipled by catTS, while transversion rates are multipled
by catTV.

Analyzing codon data.

So far we have considered only nucleotide alignments and evolutionary models
as examples. The example included in the file codon.bf we will discuss how to
read and filter codon data and define substitution models which operate at
the level of codons.

Defining codon data filters.

Codon data sets are nucleotide sequences where the unit of evolution is a
triplet of nucleotides, and some states (stop codons) are disallowed. The task
of making HyPhy interpret a nucleotide alignment as codons is handled by
supplying a few additional parameters in a call to CreateFilter. Consider the
following line in codons.bf :

DataSetFilter codonFilter = CreateFilter(myData,3,"","","TAA,TAG,TGA");

The second argument of 3 instructs HyPhy to consider triplets of characters in
the data set myData as units of evolution. If it had been 2, then the filter would
consist of di-nucleotides. The empty third and the fourth arguments include
all sequences and sites in the filter. The fifth argument is the comma separated
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list of exclusions, i.e. character states that are not allowed. One can easily
recognize that the list includes the three stop codons for the universal genetic
code. All sites in the original nucleotide alignment that contained at least one
of the excluded states would be omitted from the filter, and a message would
be written to messages.log, located in the main HyPhy directory.

Filter myFilter consists of data 43 − 3 = 61 states, i.e. all sense codons in
the universal genetic code, therefore any substitution model compatible with
this filter must describe a process with 61 states and use a 61×61 rate matrix.
Before we proceed with the definition of this matrix, a crucial question must
be answered: how does HyPhy index codons? For example, which entry in the
rate matrix will describe the change from codon ATC to codon TTC? HyPhy
uses a uniform indexing scheme, which is rather straightforward. The default
nucleotide alphabet is ordered as ACGT, and each character was assigned an
index in that order: A=0, C=1, G=2, T=3 (note that all indexing starts at
0, as in the programming language C). In previous examples, we used this
mapping to define nucleotide rate matrices. For example, the entry in row 2
and column 3 would define the rate of G → T substitutions. Analogously, all
sense codons all ordered alphabetically: AAA, AAC, AAG, AAT, ACA, ...,
TTG, TTT, excluding stop codons, with the corresponding indexing from 0
to 60. It is easy to check that ATC will have the index of 13, whereas TTC is
assigned the index of 58. Consequently, the rate of ATC to TTC substitutions
should be placed in row 13 and column 58 of the rate matrix.

A 61 × 61 rate matrix has 3721 entries, hence defining them one by one
would be a daunting task indeed, so we need a way to avoid an explicit enu-
meration. Consider the MG94xHKY85 model (2) explained in section 2.4.
Each substitution rate can be classified by determining the following four at-
tributes: (i) is the change one-step or multi-step, (ii) is the change synonymous
or non-synonymous, (iii) is the change a transition or a transversion and (iv)
what is the equilibrium frequency of the target nucleotide.

A compact way to define the model is to loop through all possible 3721
pairs of codons, answer the four questions above, and assign the appropriate
rate to the matrix cell. HyPhy has no intrinsic knowledge of how codons are
translated to amino-acids, and this information is needed to decide whether a
nucleotide substitution is synonymous or non-synonymous. codons.bf contains
such a map for the universal genetic code in the matrix UniversalGeneticCode.
For all possible 64 codons there are 21 possible translations (20 amino acids
and a ’stop’). Each of the 64 cells of UniversalGeneticCode contains an amino
acid (or stop) code from 0 to 20, whose meaning is explained in the comments
in codons.bf. We refer the reader to the code and comments in codons.bf for
implementation details. The implementation is straightforward, but somewhat
obtuse. Once the reader becomes comfortable with referencing codons by their
indices and interpreting them, the code should be clear.

The file codons.bf illustrates several other useful concepts:
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• How to define and call user functions. Function BuildCodonFrequencies
is employed to compute codon equilibrium frequencies based on observed
nucleotide proportions, defined in (3).

• The use of a built-in variable to reference the tree string present in the
data file (DATAFILE TREE )

• The use of double underscore operator to substitute numerical values of
arguments into formula definitions and avoid unwanted dependencies.

Lastly, the codons.bf writes data out for further processing with a stan-
dard file from HyPhy distribution to perform posterior Bayesian analysis, as
discussed in section 2.4.

4 Conclusion

This chapter has provided an overview of the basic features and use of the
HyPhy system. With a programming language at its core, users may elect to
write their own likelihood-based molecular evolutionary analyses. A graphical
user interface offers much of the power of the batch language, allowing users
to fit complex, customizable models to sequence alignments. The user inter-
face also provides access to the parametric bootstrap features of HyPhy for
carrying out tests of both nested and non-nested hypotheses. Many features
of the package, of course, could not be described in this chapter. For instance,
HyPhy includes a model editor for describing new stochastic models to be used
in analyses, and the graphical user interface provides a mechanism to define
arbitrary constraints among parameters for construction of likelihood ratio
tests. Its authors continue to develop HyPhy, with a goal of providing a flex-
ible, portable, and powerful system for carrying out cutting-edge molecular
evolutionary analyses.
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