{: SCISPACE

formerly Typeset

@ Open access « Posted Content - DOI:10.1101/2019.12.19.882506
HyPo: Super Fast & Accurate Polisher for Long Read Genome Assemblies
— Source link (4

Ritu Kundu, Joshua Casey, Wing-Kin Sung, Wing-Kin Sung

Institutions: National University of Singapore, Genome Institute of Singapore

Published on: 20 Dec 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Genome

Related papers:

« Minimap2: pairwise alignment for nucleotide sequences

« Assembly of long, error-prone reads using repeat graphs

» The Sequence Alignment/Map format and SAMtools

« Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement

« BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs

Share thispaper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/hypo-super-fast-accurate-polisher-for-long-read-genome-
21gch2wloe

https://typeset.io/
https://www.doi.org/10.1101/2019.12.19.882506
https://typeset.io/papers/hypo-super-fast-accurate-polisher-for-long-read-genome-21qch2wloe
https://typeset.io/authors/ritu-kundu-574s155iit
https://typeset.io/authors/joshua-casey-3f6sz3c8lh
https://typeset.io/authors/wing-kin-sung-5b3lbprmjx
https://typeset.io/authors/wing-kin-sung-5b3lbprmjx
https://typeset.io/institutions/national-university-of-singapore-24b050gz
https://typeset.io/institutions/genome-institute-of-singapore-2xqaut7o
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/genome-1ezdrtwk
https://typeset.io/papers/minimap2-pairwise-alignment-for-nucleotide-sequences-2cfu5pxwu1
https://typeset.io/papers/assembly-of-long-error-prone-reads-using-repeat-graphs-1n5kaxr2q5
https://typeset.io/papers/the-sequence-alignment-map-format-and-samtools-4zxkoslnzd
https://typeset.io/papers/pilon-an-integrated-tool-for-comprehensive-microbial-variant-uw5jb62qdl
https://typeset.io/papers/busco-assessing-genome-assembly-and-annotation-completeness-2odd0pa0yc
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hypo-super-fast-accurate-polisher-for-long-read-genome-21qch2wloe
https://twitter.com/intent/tweet?text=HyPo:%20Super%20Fast%20&%20Accurate%20Polisher%20for%20Long%20Read%20Genome%20Assemblies&url=https://typeset.io/papers/hypo-super-fast-accurate-polisher-for-long-read-genome-21qch2wloe
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hypo-super-fast-accurate-polisher-for-long-read-genome-21qch2wloe
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hypo-super-fast-accurate-polisher-for-long-read-genome-21qch2wloe
https://typeset.io/papers/hypo-super-fast-accurate-polisher-for-long-read-genome-21qch2wloe

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

HYPO: SUPER FAST & ACCURATE POLISHER FOR LONG READ
GENOME ASSEMBLIES

A PREPRINT

Ritu Kundu!, Joshua Casey', and Wing-Kin Sung!*"

'Department of Computer Science, National University of Singapore, Singapore 117417
?Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672
“To whom correspondence should be addressed. Tel: +65 68088039; Email:ksung @ comp.nus.edu.sg

December 19, 2019

ABSTRACT

Efforts towards making population-scale long read genome assemblies (especially human genomes)
viable have intensified recently with the emergence of many fast assemblers. The reliance of these fast
assemblers on polishing for the accuracy of assemblies makes it crucial. We present HyPo—a Hybrid
Polisher—that utilises short as well as long reads within a single run to polish a long read assembly
of small and large genomes. It exploits unique genomic kmers to selectively polish segments of
contigs using partial order alignment of selective read-segments. As demonstrated on human genome
assemblies, Hypo generates significantly more accurate polished assemblies in about one-third time
with about half the memory requirements in comparison to Racon (the widely used polisher currently).

Keywords Polishers - Long read assemblies - Human genomes - Hypo

1 Introduction

Genome assembly—reconstructing a genome from the fragments (reads) produced by a DNA sequencer—and its
analysis to explore genetic variations amongst or within species is central to genomics. Third-generation (DNA)
sequencers (TGS) like Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) have given new im-
petus to genomics by enabling high quality assembly and analysis of genomes. Overcoming the major limitation
of second-generation or next-generation sequencers (NGS; e.g. Illumina) stemming from read-length being limited
to several hundred base pairs, TGS produce reads with an average length of tens of thousands of base pairs which
leads to more contiguous assembly, resolution of more repetitive elements, and revelation of larger structural varia-
tions [Roberts et al., 2013} [Lee et al., 2016]. Till very recently, de novo assembly of human genome was done using the
ultra-long-reads from nanopore (along with other complimentary technologies to improve the quality) which not only
exceeds the continuity of the human reference genome (GRCH38) but also produces a telomere-to-telomere complete
Chromosome X [Miga et al., 2019]. However, in contrast to the NGS short reads with accuracy greater than 99%, long
reads suffer from the drawback of higher error rates (> 10%) [Weirather et al., 2017} Jain et al., 2018]]. Moreover, the
error profile of long reads skews towards insertion-deletions (indels) than substitutions; homopolymer indels being
more prominent amongst those [Weirather et al., 2017].

To deal with noisy long reads, assemblers typically resort to correcting errors before assembly which is computa-
tionally expensive, especially for large genomes [Sovi¢ et al., 2016, [Fu et al., 2019, Zhang et al., 2019]]. In addition,
assembled contigs are polished—base accuracy improvement by using consensus generation from the reads—in the end
to enhance the assembly quality. Recently, several fast assemblers (miniasm [Li, 2016], Ra [Vaser and §ikic’, 2019],
wtdbg?2 [Ruan and Li, 2019]]) have been made available which circumvent the resource and time intensive step of read
error correction and thereby assemble structurally correct contigs an order of magnitude faster, albeit with more base
level errors (about 10 times more errors as compared to those with other assemblers which make use of corrected
reads). These fast assemblers rely solely on polishing for error-correction. Importantly, in long read assemblies, it is

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

critical to correct errors in order to avoid their grave impact on protein prediction owing to the higher error rate and
indel predominance [Watson and Warr, 2019]]. Thus, polishing tools play a crucial role in producing accurate long read
assemblies, especially the ones generated by fast, error-correction-free assemblers.

Polishers can broadly be categorised as ‘Sequencer-bound’ and ‘General’. Sequencer-bound polishers require raw signal-
level information generated by a particular sequencer and therefore those can polish using reads only from a specific
sequencer. For ONT, NanoPolish [Loman et al., 2015]] and its successor Medaka [Nanopore Technologies, 2019] fall
into this category. Similarly, for PacBio, Quiver [Chin et al., 2013]] and its successor Arrow [Laird Smith et al., 2016|]
are available.

General polishers, on the other hand, are robust enough to work with reads generated by any sequencer. Ear-
lier, Pilon [Walker et al., 2014] has been a widely used general polisher for bacterial and small (< 100 bp long)
eukaryotic genomes. However, Pilon is now increasingly being supplanted by (or used in combination with)
Racon [Vaser et al., 2017]] owing to the ultra-fast speed of the latter due to which it scales well resource-wise on
large genomes. Several new polishers have emerged more recently: wtpoa-cns (stand alone consensus module of
wtdbg?2), ntEdit [Warren et al., 2019]], Apollo [[Firtina et al., 2019]]. Each polisher other than ntEdit rely on the align-
ment information of reads on the draft (uncorrected) assembly. Pilon is based on the pileup of bases from the reads at
each base position in the draft contigs. Racon and wtpoa-cns use consensus generation from graphical Partial Order
Alignment (POA) [Lee et al., 2002, Lee, 2003] of multiple sequences (i.e. of aligned read-segments). Both Racon
and wtpoa-cns (conceptually) break contigs into smaller segments and use a single instruction multiple data (SIMD)
implementation of POA in order to make it faster and thus practical. Apollo deploys a machine-learning approach to
build a profile Hidden Markov Model (pHMM) [Firtina et al., 2018]] of the draft assembly which is then used to correct
errors. In contrast to exploiting read-to-assembly alignments, ntEdit corrects error based on scanning kmers (sequences
of length k) in the draft and checking their presence/absence utilising Bloom Filters that store kmers in the reads.

Each general polisher has its own share of limitations. Pilon and ntEdit are designed to work primarily with short reads
which are remarkably accurate. Additionally, as mentioned above, Pilon does not scale well on large genomes in terms
of resources.On the other hand, Racon and wtpoa-cns are fast and scalable on large genomes and can handle short as
well as noisy long reads. However, in one run, either only long or only short reads can be used for polishing by both;
long read polishing followed by short read polishing is recommended for better accuracy. Apollo can use both types
of reads within a single run but it is excruciatingly slow; for instance, it took about two and a half hours to polish an
E.Coli data-set using PacBio reads where Racon took only about 2 minutes [Firtina et al., 2019]]. Currently, Racon is
the widely used polisher given its speed and relatively better accuracy (our results also confirm that Racon, overall,
produces more accurate results than other polishers).

Here, we present HyPo—a Hybrid Polisher—that utilises short as well as long reads within a single run to polish a long
reads assembly of small and large genomes. It exploits unique genomic kmers to selectively polish segments of contigs
using POA of selective read-segments. We demonstrate that Hypo generates significantly more accurate polished
assembly in about one-third of the time with only about half the memory requirements in comparison to Racon.

While the performance of polishers can be compared by comparing the resources (memory and time) used, the evaluation
of the accuracy of polishers usually follows the same approach as the one used to compare assemblers which typically
involves comparisons based on one or more of the following: similarity of contigs with the corresponding reference
genome, assembly statistics (N50, % reference aligned etc.), rates of substitution/insertions/deletions. However, these
accuracy assessment criteria suffer from two drawbacks: (i) Polished assemblies are not that drastically different from
each other as draft assemblies which makes it difficult for these parameters to highlight differences amongst them. (ii)
These parameters do not sufficiently capture the differences between the improvement of base-level accuracy by various
polishers. We also present here a novel way to compare base-level accuracy of polishers if given the information about
the true variants in the assembled genome. Additionally, we compare polishers on more reliable criteria to compare
polished assemblies such as: (i) BUSCO Score [Simao et al., 2015]] using the eukaryote set of orthologs (ii) the number
of known genomic features found like genes, CDS (coding sequence), exons etc.

2 Methods

Broadly, we (conceptually) divide a draft (uncorrected) contig into two types of regions (segments): Strong and Weak.
Strong regions are those which have strong evidence (support) of their correctness and thus do not need polishing.
Weak regions, on the other hand, will be polished using POA. Each weak region will be polished using either short
reads or long reads; short reads taking precedence over long reads. To identify strong regions, we make use of solid
kmers (expected unique genomic kmers). Strong regions also play a role in selecting the read-segments to polish their
neighbouring weak regions. Furthermore, our approach takes into account that the long reads and thus the assemblies
generated from them are prone to homopolymer errors as mentioned in the beginning.

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

2.1 Identifying Strong Regions

Identifying solid kmers Frequency distribution is obtained from kmer counting in the short (accurate) reads. A
frequency range is determined such that the kmers with low frequency (likely errors) and those with high frequency
(likely originating in repeat regions) are excluded. The kmers appearing in the selected frequency range (which is
spread around read-coverage) are likely to be the kmers appearing uniquely in the genome that has been assembled.
From the kmers thus extracted, we filter out those which have homopolymer runs (a sequence with repetition of the
same base) at the either ends; we refer to the remaining kmers as solid kmers.

Finding support We scan each contig and record the solid kmers appearing in them; considering only those
occurrences that do not begin or end in homopolymers i.e. the base previous (next) to the beginning (end) of
the occurrence should be different from the first (last) base of the solid kmer. Since the draft has significant base-level
errors, many of these solid kmers found in contigs will be erroneous. To identify a non-erroneous solid kmer in a contig,
we employ the evidence present in the reads aligned to the corresponding segment of the contig containing the kmer
in the following way: If a solid kmer appears in a ‘reasonable’ distance of expected position in an aligned read, we
say that the read supports that solid kmer; if ‘sufficient’ number of aligned reads support a solid kmer, we call it a
supported kmer.

Strong regions We (conceptually) merge the overlapping and adjacent supported kmers into a strong region avoiding
those whose inclusion may have errors. The regions interspersed between strong regions become the weak regions.

2.2 Polishing Weak Regions

We divide the weak regions into smaller windows making use of minimizers [Roberts et al., 2004]] which have sufficient
support (defined in the same way as in solid kmers). Next, we try to find read-segments aligned to these windows for
getting consensus using their POA. We will refer to the read-segments selected to polish a window as arms. Note that
we may have three kinds of arms: (1) An Internal arm spans the whole window (read-alignment starts before and ends
after the window); (2) A Prefix arm starts at the beginning of window but terminates without reaching the end of the
window (read-alignment starts before and ends in the window); (3) A suffix arm starts in the window and terminates
with its end (read-alignment starts in the window and ends after it). Due to the small size of a window, we will not have
many arms which are completely contained within a window; if there are any, we ignore it. Before we proceed, we
would like to clarify that this step bears similarity to Racon in the sense that we also divide regions to be polished into
smaller windows and use alignment information to find arms for POA. However, the window-division method as well
as which and how arms are being selected are substantially different.

Finding short arms We use the first and the last supported kmers of the preceding (if any) and the following (if
any) strong regions or preceding and following minimizers (if any) adjacent to a window as anchors to select the
read-segments to polish the window as follows: Each non-ambiguously and primarily aligned read that has the anchors
within a reasonable distance from the expected position is selected and the sequence between markers is used as the
arm if it is sufficiently long. If a window has no adjacent strong region (or minimizers) at either end then we rely
only on alignment information from CIGAR string to extract coordinates of the read corresponding to the window’s
starting/ending coordinates. If a window has sufficient number of internal arms then its prefix/suffix arms are not used
for POA consensus.

Finding long arms Next, we find arms from long reads but only in those windows which do not have sufficient
number of short arms. We do not seek help from neighbouring strong regions here and utilise only CIGAR string to
extract segments from only those reads which are ‘sufficiently similar’ to the draft sequence in the window.

POA consensus We use modified SPOA library (stand alone POA module of Racon) to derive consensus of arms
in each window and replace the window sequence (draft) with the consensus sequence. We use the global alignment
method for internal arms but a (customised) prefix/suffix alignment for prefix/suffix arms ensuring that the alignment
starts/ends at the beginning/ending of the window. We perform two rounds of POA consensus generation in the windows
with long arms.

The final polished sequence is then obtained by concatenating the polished sequence of each window/strong re-
gion/minimizer (where polished sequence of a strong region/minimizer is same as the draft sequence.)

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

3 Evaluation

We compared the results of polishing with only short reads and two-rounds polishing (first with long reads fol-
lowed by that with short reads). We evaluate Racon [Vaser et al., 2017]], wtpoa-cns [Ruan and Li, 2019]], ntE-
dit [Warren et al., 2019], and Pilon [Walker et al., 2014]] against Hypo for short reads only polishing. ntEdit and
Pilon were excluded from the 2-rounds polishing as they do not operate with long reads. The alignment files required
by most of the polishers were generated using Minimap?2 [Li, 2018]].

3.1 Data-sets

The data-sets for which evaluation results have been included in this manuscript are the whole human genome data-set
HGO002 (from Genome-in-a-Bottle (GIAB) [Zook et al., 2016]]) and data-sets extracted from it for Chromosome 21
(Chr21) and 1 (Chrl). The preliminary results for other data-sets (not included here) show similar trends. The data-set
consists of PacBio reads (69X coverage) and paired-end Illumina reads (2¥250; 55X coverage). Chr21 and Chrl
have been assembled using Wtdbg2 and Canu [Koren et al., 2017]] (a widely used assembler which uses read-errors
correction before assembly) while the whole genome was assembled using Wtdbg?2 only.

3.2 Accuracy Evaluation

We used GRCh38 as the reference for evaluation. For accuracy evaluation we used Quast [Mikheenko et al., 2018]|
to compute the BUSCO score and find the genomic features (like genes, CDS (coding sequence), exons). When we
had the information about the true variants—gold standard High Confidence (HC) small variants—for the genome under
consideration, we assessed the base-level errors in an assembly. We used a novel method of evaluating accuracy where
computing errors takes into account the hetrozygosity of true variants. We mapped the contigs to the reference using
Minimap2 and made use of paftools.js script (included in the Minimap2 package) setting up the parameters such that
every difference between contigs and the reference is reported as a variant. We considered only the regions where
such variants have been called for each assembly being compared and which overlapped with the region for which true
variants are available. Any variant which was not listed amongst the true variants was considered an error. Every true
variant with each haplotype being different from the reference and not listed in the called variants from the assembly
was considered a missed variant. We compared the error variants and missed variants of each assembly.

3.3 Performance Evaluation

Each polisher (except Racon) was run with 48 threads on a machine running Ubuntu (18.04.2 LTS) with the following
specifications: 512 GB RAM (DDR4), 48 cores (Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz), 3.84TB SSD as the
scratch. For the whole genomes, Racon could not work on the 512G machine even after trying the wrapper to split
target and using the reads in fasta format rather than fastq. The performance measures for the whole genome polishing
by Racon is on another machine with 8TB RAM.

4 Results

The following keys have been used for short reads only polishing: r (Racon polished), w (wtpoa-cns polished), h (Hypo
polished), n (ntEdit polished), p (Pilon polished). The 2-rounds polished results by Racon and wtpoa-cns using long
reads and short reads have been labelled as r2 and w2, respectively. h2 has been used to label the polished results of
Hypo using both long and short reads.

4.1 Performance comparison

Tables [[]and 2] respectively, record the timings and the memory consumption of various polishers.

For polishing using only short reads, ntEdit was the fastest polisher amongst all. However, Hypo was not much slower
for all practical purposes. Racon seemed to be the slowest on small data-sets. However, Pilon (which polishes with only
[llumina reads) could not be run on the whole data-set (owing to its memory requirements). In particular, Hypo took
less than one-third the time as that of Racon and less than half the time of wtpoa-cns.

For 2-rounds polishing, Wtdbg2 and Racon both seemed to take similar time. Hypo completed in less than one-third the
time as that of the other 2 polishers. Racon was quite fast when polishing with only long reads but extremely slow with
short reads.

"The commands used for various tools have been included in the supplementary material.

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

As for the memory requirements, Wtpoa-cns was consistent in using almost marginal RAM. ntEdit expectedly did not
need much memory to run as it uses bloom filters to store kmers in the reads and only scans the contigs. Pilon was the
most expensive in this context; so much so that it became infeasible to run Pilon on the whole genome. Racon also
had very steep memory requirements; even the efforts of batch processing and converting reads from fastq to fasta
format to reduce the file size were not enough to run Racon on the whole genome on a 512GB RAM machine. Hypo, in
comparison to Racon, had only half the memory demands that could be met by a usual server machine. In addition,
Hypo provides for adjusting the number of contigs that it processes in one batch which can be used to run it on smaller
machines, albeit with compromising on speed.

4.2 Comparison of Errors

Figures [4.3] through {4.3] demonstrate the errors and the missed variants int the contigs polished by various polishers.
Errors wise, Hypo undoubtedly beat the other polishers by a great margin. The second best polisher was Racon which, in
comparison to Hypo, had more than three fold increase in InDel errors and about 50% increase in SNP errors. Similarly,
Hypo missed the lowest number of variants amongst all polishers. Racon, the next best polisher, missed almost double
the variants as that of Hypo. Adding long reads, further improved the errors in Hypo results. Interestingly, the errors
in Racon polished results remained the same. Canu assembly, as expected, contained fewer errors as compared to
WTDBG?2 assembly (because Canu employs error correction of reads before assembling them). Consequently, the same
pattern followed in the polished results.

4.3 Comparison of Genomic Features and BUSCO Scores

Comparison on the basis of the number of (full) genomic features found int he contigs and the BUSCO score have been
shown in Tables 3] and] respectively.

Genomic features: Hypo found the maximum number of genomic features in each of the data-sets. For Illumina-only
polished assemblies, the second best was amongst Racon or Pilon; Pilon did much better than Racon on Canu assemblies
and Racon performed slightly better than Pilon on Wtdbg2 assembles. Unexpectedly, wtpoa-cns polishing, instead of
increasing the number of features like other polishers, decreased them. The 2-round polishing using long reads slightly
made the performance of wtpoa-cns2 better but it still lost the features that were present in the draft. Adding long reads
to Hypo polishing slightly improved the results (an exception is Chr21 Canu assembly). Again, quite surprisingly, there
was no change in Racon’s result with 2-round polishing.

BUSCO Score There was no clear winner w.r.t BUSCO score. While wtpoa-cns produced the best score on some
data-sets, it resulted in the worst score on others. On the whole genome, Racon produced the worst score. The score for
Hypo-polished assembly, on each data-set was quite close to the best (if not the best).

Tool availability The tool and its source code are available on GitHub at the following link:
https://github.com/kensung-lab/hypo

Data source Information about the sources of data-sets and other details have been listed in the Supplementary
Material.

https://github.com/kensung-lab/hypo
https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.8825086; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

B #5NP(Errors) W #Dels (Errors) [#lIns (Errors)

Nep -]

£

=

=

p
r2
W
h2
100 500 1000 5000 10000
B #s5MPiMissed) [l #Dels (Missed) [#Ins (Missed)
400
300
200
100

Draft T W h n p 2 w2 h2

Figure 1: Number of errornuous (log-scale) and missed variants: Chr21 (Wtdbg2 assembly)

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.8825086; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

B #5NP(Errors) W #Dels (Errors) [#lIns (Errors)

Nep -]

£

=

=

p
r2
W
h2
100 500 1600 5000
B #s5MPiMissed) [l #Dels (Missed) [#Ins (Missed)
300
200
100

Draft T W h n p 2 w2 h2

Figure 2: Number of errornuous (log-scale) and missed variants: Chr21 (Canu assembly)

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.8825086; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

B #5SMPiErros) [#Dels (Errors) [0 #lIns (Errars)

o
o
=3

-

£

é o =] = -

j
(2]

1000 5000 10000 50000 100000

B #s5MPiMissed) [l #Dels (Missed) [#Ins (Missed)
2500

2000

1500

1000

S00

Draft r W h

s
-
a
3
S

Figure 3: Number of errornuous (log-scale) and missed variants: Chrl (Wtdbg2 assembly)

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.8825086; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

B #5SMP(Error) W #Dels(Errars) [0 #Ins (Errors)

o
o
=3

-

£

é o =] = -

j
(2]

1000 5000 10000 50000

B #s5MPiMissed) [l #Dels (Missed) [#Ins (Missed)
2000

1500

1000

500

Draft r e h n P r2 W h2

Figure 4: Number of errornuous (log-scale) and missed variants: Chrl (Canu assembly)

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.8825086; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

B #5SMPiErros) [#Dels (Errors) [0 #lIns (Errars)

72, e

[

I

]
N ®» e

 ——

g @\aan
o
N —

h2l-

S000 10000 50000 100000 500000

B #s5MPiMissed) [l #Dels (Missed) [#Ins (Missed)
15000

10000

S000

Draft r W h n r2 w2 h2

Figure 5: Number of errornuous (log-scale) and missed variants: Whole genome (Wtdbg2 assembly)

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

A PREPRINT - DECEMBER 19, 2019

Table 1: Comparison of time ([hh:]Jmm:ss) consumed by various polishers. W indicates Wtdbg2 assembly and C
indicates Canu assembly. For 2-rounds polishing, Plus sign (+) has been used as the delimiter. Colour code: Dark
green, light green, and red colours have been used to highlight the best, the next best and the worst polisher w.r.t

time-requirements.

r w h n p 2 w2 h2

Chr21 (W) 6:52 4:09.35 2:07 1:44 7:29 01:22 + 08:04 + 05:29
6:39 4:09

Chr21 (C) 7:07 4:15.55 2:12 1:49 4:25 01:30 + 03:14 + 02:55
6:43 4:15

Chrl (W) 47:35 26:35 12:05 9:24 27:37 || 07:38 51:36 19:17
47:56 26:43

Chrl (C) 46:33 27:17 10:53 9:43 19:03 || 08:19 + 19:53 12:58
49:20 27:10

Whole genome (W) | 12:44:33 | 06:37:49 | 2:59:18 | 2:18:32 | - 1:21:57 + | 10:48:17 + | 4:12:44
13:13:55 | 6:27:49

Table 2: Comparison of memory (GB) consumed by various polishers. W indicates Wtdbg2 assembly and C indicates
Canu assembly. For 2-rounds polishing, Comma (,) has been used as the delimiter. Colour code: Dark green, light
green, and red colours have been used to highlight the best, the next best and the worst polisher w.r.t time-requirements.

r w h n p 2 w2 h2

Chr21 (W) 13.95 096 | 11.66 | 0.53 91.9 8.26, 6.38, 12.74
13.95 0.95

Chr21 (C) 13.94 1 11.66 | 0.53 87.86 3.09, 5.12, 11.66
13.94 1.01

Chrl (W) 86.84 1.07 | 48.07 | 2.42 137.26 || 44.62, 10.15, | 61.79
86.84 1.07

Chrl (C) 87.02 1.08 | 33.31 | 2.42 131.38 || 15.31, 6.27, 34.68
87 1.08

Whole genome (W) | 11479 | 2.18 | 376.3 | 42.57 | - 54895, | 10.78, | 410.08
114791 | 1.87

Table 3: Comparison of the genomic features found in the draft and various polished assemblies. W indicates Wtdbg2
assembly and C indicates Canu assembly. The draft features are in absolute numbers whereas the numbers for different
polishers indicate the change w.r.t draft (- signs indicates the decrease). Colour code: Dark green, light green, and red
colours have been used to highlight the best, the next best and the worst polisher w.r.t time-requirements.

draft r w h n p 2 w2 h2
Chr21 (W) 36,478 655 -257 689 579 618 655 -422 732
Chr21 (C) 37,248 93 -1,064 180 105 128 49 -980 164
Chrl (W) 340,581 2,622 | -4,488 2,825 | 1,682 | 2,643 || 2,622 | -3,003 4,195
Chrl (C) 351,426 287 -6,468 547 454 554 330 -6,599 | 566
Whole genome (W) | 3,242,831 | 85,177 | -42,916 | 96,260 | 74,984 | - 85,177 | -32,364 | 104,096

11

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

Table 4: Comparison of the genomic features found in the draft and various polished assemblies. W indicates Wtdbg2
assembly and C indicates Canu assembly. Semicolon (;) has been used as the delimiter. Colour code: Dark green, light
green, and red colours have been used to highlight the best, the next best and the worst polisher w.r.t time-requirements.

draft r w h n p 2 w2 h2
Chrl (W) 11.55; | 11.88; | 10.89; | 12.21; | 11.55; | 12.21; || 11.88; | 11.22; | 12.21;
1.65 2.31 2.31 1.65 1.98 1.98 2.31 1.98 1.65
Chrl (C) 11.22; | 11.55; | 11.55; | 11.55; | 11.55; | 11.55; || 11.55; | 11.55; | 11.55;
2.64 1.65 2.64 1.65 1.98 1.65 1.65 1.32 1.65
Whole genome (W) | 87.13; | 87.46; | 88.45; | 88.12; | 88.45; | - 87.46; | 88.45; | 88.12;
5.61 3.96 2.97 3.96 3.30 3.96 3.96 3.96

12

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

References

[Chin et al., 2013] Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., Clum, A., Copeland,
A., Huddleston, J., Eichler, E. E., Turner, S. W., and Korlach, J. (2013). Nonhybrid, finished microbial genome
assemblies from long-read smrt sequencing data. Nature Methods, 10:563 EP —. Article.

[Firtina et al., 2018] Firtina, C., Bar-Joseph, Z., Alkan, C., and Cicek, A. (2018). Hercules: a profile HMM-based
hybrid error correction algorithm for long reads. Nucleic Acids Research, 46(21):e125-e125.

[Firtina et al., 2019] Firtina, C., Kim, J. S., Alser, M., Senol Cali, D., Ercument Cicek, A., Alkan, C., and Mutlu, O.
(2019). Apollo: A Sequencing-Technology-Independent, Scalable, and Accurate Assembly Polishing Algorithm.
arXiv e-prints, page arXiv:1902.04341.

[Fuetal., 2019] Fu, S., Wang, A., and Au, K. F. (2019). A comparative evaluation of hybrid error correction methods
for error-prone long reads. Genome Biology, 20(1):26.

[Jain et al., 2018] Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., Tyson, J. R., Beggs, A. D.,
Dilthey, A. T., Fiddes, 1. T., Malla, S., Marriott, H., Nieto, T., O’Grady, J., Olsen, H. E., Pedersen, B. S., Rhie, A.,
Richardson, H., Quinlan, A. R., Snutch, T. P., Tee, L., Paten, B., Phillippy, A. M., Simpson, J. T., Loman, N. J.,
and Loose, M. (2018). Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature
Biotechnology, 36:338 EP —.

[Koren et al., 2017] Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017).
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
Research, 27(5):722-736.

[Laird Smith et al., 2016] Laird Smith, M., Delany, N., Hepler, N., Alexander, D., Katzenstein, D., Brown, M., and
Paxinos, E. (2016). An improved circular consensus algorithm with an application to detect hiv-1 drug resistance
associated mutations (drams). In PacBio Conference Proceedings.

[Lee, 2003] Lee, C. (2003). Generating consensus sequences from partial order multiple sequence alignment graphs.
Bioinformatics, 19(8):999-1008.

[Lee et al., 2002] Lee, C., Grasso, C., and Sharlow, M. F. (2002). Multiple sequence alignment using partial order
graphs . Bioinformatics, 18(3):452-464.

[Lee et al., 2016] Lee, H., Gurtowski, J., Yoo, S., Nattestad, M., Marcus, S., Goodwin, S., Richard McCombie, W., and
Schatz, M. C. (2016). Third-generation sequencing and the future of genomics. bioRxiv.

[Li, 2016] Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103-2110.

[Li, 2018] Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094-3100.

[Loman et al., 2015] Loman, N. J., Quick, J., and Simpson, J. T. (2015). A complete bacterial genome assembled de
novo using only nanopore sequencing data. Nature Methods, 12:733 EP —.

[Miga et al., 2019] Miga, K. H., Koren, S., Rhie, A., Vollger, M. R., Gershman, A., Bzikadze, A., Brooks, S., Howe,
E., Porubsky, D., Logsdon, G. A., Schneider, V. A., Potapova, T., Wood, J., Chow, W., Armstrong, J., Fredrickson, J.,
Pak, E., Tigyi, K., Kremitzki, M., Markovic, C., Maduro, V., Dutra, A., Bouffard, G. G., Chang, A. M., Hansen, N. F,,
Thibaud-Nissen, F., Schmitt, A. D., Belton, J.-M., Selvaraj, S., Dennis, M. Y., Soto, D. C., Sahasrabudhe, R., Kaya,
G., Quick, J., Loman, N. J., Holmes, N., Loose, M., Surti, U., Risques, R. a., Graves Lindsay, T. A., Fulton, R., Hall,
L, Paten, B., Howe, K., Timp, W., Young, A., Mullikin, J. C., Pevzner, P. A., Gerton, J. L., Sullivan, B. A., Eichler,
E. E., and Phillippy, A. M. (2019). Telomere-to-telomere assembly of a complete human x chromosome. bioRxiv.

[Mikheenko et al., 2018] Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., and Gurevich, A. (2018). Versatile
genome assembly evaluation with QUAST-LG. Bioinformatics, 34(13):1142-i150.

[Nanopore Technologies, 2019] Nanopore Technologies, O. (accessed June 2019). Medaka. https://
nanoporetech.github.io/medaka/.

[Roberts et al., 2004] Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., and Yorke, J. A. (2004). Reducing storage
requirements for biological sequence comparison. Bioinformatics, 20(18):3363-3369.

[Roberts et al., 2013] Roberts, R. J., Carneiro, M. O., and Schatz, M. C. (2013). The advantages of smrt sequencing.
Genome Biology, 14(6):405.

[Ruan and Li, 2019] Ruan, J. and Li, H. (2019). Fast and accurate long-read assembly with wtdbg2. bioRxiv.

[Simio et al., 2015] Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. (2015).

BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics,
31(19):3210-3212.

13

https://nanoporetech.github.io/medaka/
https://nanoporetech.github.io/medaka/
https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882506; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A PREPRINT - DECEMBER 19, 2019

[Sovi¢ et al., 2016] Sovié, I., Krizanovi¢, K., Skala, K., and Siki¢, M. (2016). Evaluation of hybrid and non-hybrid
methods for de novo assembly of nanopore reads . Bioinformatics, 32(17):2582-2589.

[Vaser and Sikié, 2019] Vaser, R. and Siki¢, M. (2019). Yet another de novo genome assembler. bioRxiv.

[Vaser et al., 2017] Vaser, R., Sovié, 1., Nagarajan, N., and gikié, M. (2017). Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Research, 27(5):737-746.

[Walker et al., 2014] Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A.,
Zeng, Q., Wortman, J., Young, S. K., and Earl, A. M. (2014). Pilon: An integrated tool for comprehensive microbial
variant detection and genome assembly improvement. PLOS ONE, 9(11):1-14.

[Warren et al., 2019] Warren, R. L., Coombe, L., Mohamadi, H., Zhang, J., Jaquish, B., Isabel, N., Jones, S. J. M.,
Bousquet, J., Bohlmann, J., and Birol, I. (2019). ntEdit: scalable genome sequence polishing. Bioinformatics.

[Watson and Warr, 2019] Watson, M. and Warr, A. (2019). Errors in long-read assemblies can critically affect protein
prediction. Nature Biotechnology, 37(2):124-126.

[Weirather et al., 2017] Weirather, J., de Cesare, M., Wang, Y., Piazza, P., Sebastiano, V., Wang, X., Buck, D., and
Au, K. (2017). Comprehensive comparison of pacific biosciences and oxford nanopore technologies and their
applications to transcriptome analysis [version 2; peer review: 2 approved]. F1000Research, 6(100).

[Zhang et al., 2019] Zhang, H., Jain, C., and Aluru, S. (2019). A comprehensive evaluation of long read error correction
methods. bioRxiv.

[Zook et al., 2016] Zook, J. M., Catoe, D., McDaniel, J., Vang, L., Spies, N., Sidow, A., Weng, Z., Liu, Y., Mason,
C. E., Alexander, N., Henaff, E., McIntyre, A. B. R., Chandramohan, D., Chen, F, Jaeger, E., Moshrefi, A., Pham, K.,
Stedman, W., Liang, T., Saghbini, M., Dzakula, Z., Hastie, A., Cao, H., Deikus, G., Schadt, E., Sebra, R., Bashir, A.,
Truty, R. M., Chang, C. C., Gulbahce, N., Zhao, K., Ghosh, S., Hyland, F., Fu, Y., Chaisson, M., Xiao, C., Trow, J.,
Sherry, S. T., Zaranek, A. W., Ball, M., Bobe, J., Estep, P., Church, G. M., Marks, P., Kyriazopoulou-Panagiotopoulou,
S., Zheng, G. X. Y., Schnall-Levin, M., Ordonez, H. S., Mudivarti, P. A., Giorda, K., Sheng, Y., Rypdal, K. B., and
Salit, M. (2016). Extensive sequencing of seven human genomes to characterize benchmark reference materials.
Scientific Data, 3(1):160025.

14

https://doi.org/10.1101/2019.12.19.882506
http://creativecommons.org/licenses/by-nc-nd/4.0/

